Submit manuscript...
Journal of
eISSN: 2376-0060

Lung, Pulmonary & Respiratory Research

Review Article Volume 10 Issue 2

Human blood circulation model based on flow laws of intensity and continuity in relation to earth’s surface gravity

Tibor Endre Nagy,1 Erzsébet Szolnoki2

1Department of Infectology, University of Debrecen, Hungary
2Department of Internal Medicine, Gábor Kátai Hospital, Hungary

Correspondence: Tibor Endre Nagy, Faculty of Medicine, Department of Infectology, University of Debrecen, Bartok Bela u. 2-26, 4031, Debrecen, Hungary

Received: May 29, 2023 | Published: June 8, 2023

Citation: Nagy TE, Szolnoki E. Human blood circulation model based on flow laws of intensity and continuity in relation to earth’s surface gravity. J Lung Pulm Respir Res. 2023;10(2):46-54.. DOI: 10.15406/jlprr.2023.10.00301

Download PDF

Abstract

With the help of the physical laws of flow, it is possible to describe the entire human blood circulation. However, this requires precise knowledge of the individual parameters. Within this, the determination of the flow rate included in the law of continuity is essential. Together with the data of the heart and circulation examination procedures, in order to establish the average human blood circulation, an intermediate velocity value must be selected, which is located in the middle between the two extreme velocities of the blood circulation. Another important factor from the point of view of the structure and operation of the model is the value of the earth's surface gravity. By finding the average flow speed value and using ‘g’, a torus-shaped circulation can be created, which can actually reflect the circulation conditions. By further refining the model, the pulmonary and systemic circulations can be separated and a ‘folded figure eight’ model can be formed. This realistically reflects the different sizes, flow and pressure conditions of the two blood circulations, as well as the work of the left and right sides of the heart.

Keywords: earth’s surface gravity, weight of bodies, fluid flow laws, pulmonary and systemic circulation, blood circulation velocity, cardiac output, die dilution method, single blood circulation time, cardiac ultrasound measurements

Introduction

To model human blood circulation, it is necessary to define and use many physiological parameters. While some of these data are well-known and well-defined datasets, some values that have not been determined so far are essential for the model describing the blood circulation as a whole. This objective can be achieved by having the data necessary to use the fluid flow laws.1 Until now, medicine, more specifically cardiology, has mainly dealt with the law of intensity, or in other words calculated with minute volume.2 The applicability of the law of continuity of liquids when determining the parameters of the circulation runs into limitations, since two components of the relationship are unknown. Even if the intensity is known from the quotient of blood volume and blood flow time, the value of the flow cross-section area and flow velocity may vary within the product. However, if we arbitrarily choose an average blood flow rate in the circulation that corresponds in size and quality to clinical experience, then the model can be set up. Having the value of the intensity and knowing the chosen average flow velocity, the area of the flow cross-section can be determined. The definition of pressure, work and power in a circulation model to be established in relation to the driving force is not sufficiently clarified. In the human body, the driving force established by the heart as a causal factor is trivial. However, this can be paralleled by the idea that the driving force in a model is also influenced by the weight of the blood in the vascular system. In this way, the maintaining force of the circulation can be determined in the model by calculating the value of g on the earth's surface. This can only be defined in a special case, i.e., as a compressive force acting on the base of a blood column. This static idea could be represented by obeying the compressive force from the weight of the blood column by momentarily opening the plate that closes the bottom of the tube and letting out a small fragment of it3 by repeatedly returning this fraction to the top of the blood column, working against gravity, and the method can be made dynamic. This creates a kind of hydrodynamic circulation that can even be sustained permanently (n1,2,3). This is similar to that experienced in human blood circulation and figuratively corresponds to the fractional functioning of the human heart. It can also be compared with the work done during each of its contractions.4

The relationship between the mass of physical bodies and biological individuals on the Earth's surface

The weight (W) of the bodies on the surface of the earth, but also of the biological creatures, is equal to the force (F) with which they press the surface due to the gravity of the Earth. Weight is the product of the mass of bodies (m) and the gravity of the Earth's surface (g). According to Newton's law of gravitation, the force of attraction (F) between the body and the Earth is directly proportional to their masses (m, M) and inversely proportional to the square of their distance (r2) which is equal with the Earth’ radius (the mass of the Earth at its center).5 Since W = F, not only the body on the surface of the Earth but also the mass of the individual at a given level of development in Darwinian evolution is lost (only the mass of the Earth remains in the Formula 1).

W weight = F force ,s o , m bod y o r livin g organism g Earth'surface =G m bod y o r livin g organism M Earth r Earth 2 , and: g Earth'surface = G M Earth r Earth 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadEfajuaGdaWgaaWcbaqcLbmacaWG3bGaamyzaiaadMgacaWGNbGa amiAaiaadshaaSqabaqcLbsacqGH9aqpcaWGgbWcdaWgaaqaaKqzad GaamOzaiaad+gacaWGYbGaam4yaiaadwgaaSqabaqcLbsacaGGSaGa am4Caiaad+gajuaGdaWgaaWcbaaabeaajugibiaacYcajuaGdaqfqa GcbeWcbaaabeqdbaaaaKqzGeGaamyBaSWaaSbaaeaajugWaabaaaaa aaaapeGaamOyaiaad+gacaWGKbGaamyEaSWaaSbaaWqaaaqabaqcLb macaWGVbGaamOCaSWaaSbaaWqaaaqabaqcLbmacaWGSbGaamyAaiaa dAhacaWGPbGaamOBaiaadEgalmaaBaaameaaaeqaaKqzadGaam4Bai aadkhacaWGNbGaamyyaiaad6gacaWGPbGaam4Caiaad2gaaSWdaeqa aKqzGeGaeyyXICTaam4zaSWaaSbaaeaajugWaiaadweacaWGHbGaam OCaiaadshacaWGObGaai4jaiaadohacaWG1bGaamOCaiaadAgacaWG HbGaam4yaiaadwgaaSqabaqcLbsacqGH9aqpcaWGhbGaeyyXICDcfa 4aaSaaaOqaaKqzGeGaamyBaKqbaoaaBaaaleaajugWa8qacaWGIbGa am4BaiaadsgacaWG5bWcdaWgaaadbaaabeaajugWaiaad+gacaWGYb WcdaWgaaadbaaabeaajugWaiaadYgacaWGPbGaamODaiaadMgacaWG UbGaam4zaSWaaSbaaWqaaaqabaqcLbmacaWGVbGaamOCaiaadEgaca WGHbGaamOBaiaadMgacaWGZbGaamyBaaWcpaqabaqcLbsacqGHflY1 caWGnbqcfa4aaSbaaSqaaKqzadGaamyraiaadggacaWGYbGaamiDai aadIgaaSqabaaakeaajugibiaadkhalmaaBaaabaqcLbmacaWGfbGa amyyaiaadkhacaWG0bGaamiAaaWcbeaadaahaaqabeaajugWaiaaik daaaaaaKqzGeGaaiilaaGcbaqcLbsacaWGHbGaamOBaiaadsgacaGG 6aaakeaajugibiaadEgajuaGdaWgaaWcbaqcLbmacaWGfbGaamyyai aadkhacaWG0bGaamiAaiaacEcacaWGZbGaamyDaiaadkhacaWGMbGa amyyaiaadogacaWGLbaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaK qzGeGaam4raiabgwSixlaad2eajuaGdaWgaaWcbaqcLbmacaWGfbGa amyyaiaadkhacaWG0bGaamiAaaWcbeaaaOqaaKqzGeGaamOCaSWaaS baaeaajugWaiaadweacaWGHbGaamOCaiaadshacaWGObaaleqaamaa CaaabeqaaKqzadGaaGOmaaaaaaaaaaa@D785@   (1)

Where G is the gravitational constant (6.673848·10-11m3·kg-1·s-2).
Figure 1 A simplified representation to explain the relationship between human blood circulation and Earth's gravity (g). From this point of view, objects on the earth's surface and biological beings behave similarly. Both exert a force (F) on the earth's surface in proportion to their mass (m). This compressive force is determined by the product of the given mass of blood and the value of gravity on the earth's surface (F=m∙g). This force effect provides an opportunity to determine other parameters of the circulation (e.g., Wwork). If the circumference of the blood circulation, or the height of its straightened version (s) increases, its weight/mass (Wweight; m) also increases in parallel. The consequence of which is an increase in the compressive force (F) acting on the base (A). This upright static model could be represented by using the compressive force resulting from the weight of the blood column, momentarily opening the plate delimiting the bottom of the tube and releasing a small part of it. If this fraction is returned to the top of the blood column by working against gravity (Wwork=m∙g∙s), and then repeating this operation several times, the method can be made dynamic.

Figure 1 A simplified representation to explain the relationship between human blood circulation and Earth's gravity (g).

Average human blood circulation in relation to the laws of fluid flow

There are two fundamental laws regarding the flow of fluids. One expresses the flow intensity (Eq.2, left side) the other is the law of continuity (Eq.2, right side).6 Using them (separately but also together), the intensity (I), length (s), radius (r) and cross-sectional area (A) of the circulating fluid as well as the flow velocity (v) can be determined with the knowledge of the appropriate members. Since:

I= V 2π t 2π = A s 2π t 2π and I=Av MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGjb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOvaSWaaSbaaeaajugWaiaa ikdacqaHapaCaSqabaaakeaajugibiaadshalmaaBaaabaqcLbmaca aIYaGaeqiWdahaleqaaaaajugibiabg2da9Kqbaoaalaaakeaajugi biaadgeacqGHflY1caWGZbqcfa4aaSbaaSqaaKqzadGaaGOmaiabec 8aWbWcbeaaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaaikda cqaHapaCaSqabaaaaKqzGeGaaGPaVlaaykW7juaGdaqfqaGcbeWcba aabeqdbaaaaKqzGeGaamyyaiaad6gacaWGKbqcfa4aaubeaOqabSqa aaqab0qaaaaajugibiaaykW7caWGjbGaeyypa0JaamyqaiabgwSixl aadAhaaaa@65A3@   (2)

However, Eq. 2 on the left has two unknowns, i.e. A and s are unknown. Thus, even if V and t are known, the cross sectional area and path cannot be calculated. Eq. 2 on the right also has two unknowns, since even if the intensity can be calculated based on the formula on the left of Eq.2, A and v cannot be determined separately. However, combining the two equations does not give us the opportunity to calculate A and s either. In fact, only intensity can be accurately determined. According to them, the following limited possibilities exist.

Equating the two formulas (left and right of Eq. 2) based on intensity (I) and flow cross-sectional area (A):

A s 2π t 2π =Av , so, s 2π t 2π = v , and s 2π =v t 2π , and: A= I t 2π s 2π and A= I v , so I t 2π s 2π = I v and t 2π s 2π = 1 v and v t 2π = s 2π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGbbGaeyyXICTaam4CaKqbaoaaBaaaleaajugW aiaaikdacqaHapaCaSqabaaakeaajugibiaadshalmaaBaaabaqcLb macaaIYaGaeqiWdahaleqaaaaajugibiaaykW7cqGH9aqpcaWGbbGa eyyXICTaamODaiaaykW7juaGdaWgaaWcbaaabeaajugibiaaykW7ca GGSaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadohacaWGVbGa aiilaKqbaoaavabakeqaleaaaeqaneaaaaqcfa4aaSaaaOqaaKqzGe Gaam4CaSWaaSbaaeaajugWaiaaikdacqaHapaCaSqabaaakeaajugi biaadshajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdahaleqaaaaaju gibiaaykW7cqGH9aqpcaWG2bqcfa4aaSbaaSqaaaqabaqcLbsacaGG SaGaaGPaVlaaykW7juaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaaG PaVlaadggacaWGUbGaamizaKqbaoaavabakeqaleaaaeqaneaaaaqc LbsacaaMc8Uaam4CaSWaaSbaaeaajugWaiaaikdacqaHapaCaSqaba qcLbsacaaMc8Uaeyypa0JaamODaiabgwSixlaadshalmaaBaaabaqc LbmacaaIYaGaeqiWdahaleqaaKqzGeGaaiilaaGcbaqcLbsacaWGHb GaamOBaiaadsgacaGG6aaakeaajugibiaadgeacqGH9aqpjuaGdaWc aaGcbaqcLbsacaWGjbGaeyyXICTaamiDaKqbaoaaBaaaleaajugWai aaikdacqaHapaCaSqabaaakeaajugibiaadohajuaGdaWgaaWcbaqc LbmacaaIYaGaeqiWdahaleqaaaaajugibiaaykW7juaGdaqfqaGcbe WcbaaabeqdbaaaaKqzGeGaamyyaiaad6gacaWGKbqcfa4aaubeaOqa bSqaaaqab0qaaaaajugibiaadgeacqGH9aqpjuaGdaWcaaGcbaqcLb sacaWGjbaakeaajugibiaadAhaaaGaaGPaVlaaykW7caGGSaGaaGPa VlaaykW7juaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaaGPaVlaado hacaWGVbqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaaykW7caaM c8Ecfa4aaSaaaOqaaKqzGeGaamysaiabgwSixlaadshajuaGdaWgaa WcbaqcLbmacaaIYaGaeqiWdahaleqaaaGcbaqcLbsacaWGZbqcfa4a aSbaaSqaaKqzadGaaGOmaiabec8aWbWcbeaaaaqcLbsacaaMc8Uaey ypa0tcfa4aaSaaaOqaaKqzGeGaamysaaGcbaqcLbsacaWG2baaaiaa ykW7caaMc8Ecfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadggaca WGUbGaamizaKqbaoaavabakeqaleaaaeqaneaaaaqcLbsacaaMc8Ec fa4aaSaaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaaikdacq aHapaCaSqabaaakeaajugibiaadohajuaGdaWgaaWcbaqcLbmacaaI YaGaeqiWdahaleqaaaaajugibiaaykW7cqGH9aqpjuaGdaWcaaGcba qcLbsacaaIXaaakeaajugibiaadAhaaaGaaGPaVNqbaoaavabakeqa leaaaeqaneaaaaqcLbsacaWGHbGaamOBaiaadsgajuaGdaqfqaGcbe WcbaaabeqdbaaaaKqzGeGaaGPaVlaadAhacaaMc8UaeyyXICTaamiD aSWaaSbaaeaajugWaiaaikdacqaHapaCaSqabaqcLbsacqGH9aqpca WGZbWcdaWgaaqaaKqzadGaaGOmaiabec8aWbWcbeaaaaaa@05AA@   (3)

After simplifying with A and then with I, a path-time-velocity relation valid for the flow laws is obtained. In this way, however, the flow cross-sectional area (A) is lost as a key factor, which is indispensable for a model that includes all flow-related physical factors.

By equating the two laws, the combination of the four factors (A, v, s, t) in full compatibility with the others, eliminating uncertainties, can correctly reflect the conditions actually occurring in the human body in the form of a so-called ‘average human blood circulation model’.

The relationship between blood circulation time, heart stroke volume, heart rate and flow intensity

To create an average human blood circulation model, it is first necessary to determine the single circulation time (tturnaround time or t) in the human body. This can be measured with various circulation testing procedures. This can be done using the dye dilution,7 heat dilution,8 or radiocirculation,9,10 method, which takes 25-30 seconds in a healthy adult at rest. The volume of blood (Vturnaround volume) for this time interval must then be calculated. The most important factor in this regard is how much blood the heart pushes to the periphery during a contraction, or systole. In a person of average body weight, when the left ventricle of the heart is completely filled with blood, its so-called end-diastolic volume (EDV) is equal to 120 ml. However, when the left ventricle of the heart is in a state after full contraction, the end-systolic volume (ESV) is 50 ml. The difference between the two volumes equals the so-called stroke volume (sv), which is 70 ml.11 As another key factor, it is necessary to determine, the time interval during which a single contraction of the heart takes place. In medical physiology, the number of heart contractions is usually related to the duration of one minute. Knowing the number of blood volumes resulting from a single heart contraction and the time interval required for this, the multiple of the basic unit, the fractional number can be determined.12 Dimensional relationship between heartbeats (n) and time interval (t; e.g., 1 minute):

n t minute ; n min =n 1 min ; 60 1 min = 60 min = 60 60s =1 1 s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOBaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGaciyB aiaacMgacaGGUbGaamyDaiaadshacaWGLbaaleqaaaaajuaGdaqfqa GcbeWcbaaabeqdbaaaaKqzGeGaai4oaKqbaoaavabakeqaleaaaeqa neaaaaqcfa4aaSaaaOqaaKqzGeGaamOBaaGcbaqcLbsaciGGTbGaai yAaiaac6gaaaGaeyypa0JaamOBaKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaciyBaiaacMgacaGGUbaaaKqbaoaavabakeqaleaaae qaneaaaaqcLbsacaGG7aqcfa4aaubeaOqabSqaaaqab0qaaaaajugi biaaiAdacaaIWaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaci GGTbGaaiyAaiaac6gaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOn aiaaicdaaOqaaKqzGeGaciyBaiaacMgacaGGUbaaaiabg2da9Kqbao aalaaakeaajugibiaaiAdacaaIWaaakeaajugibiaaiAdacaaIWaGa am4CaaaacqGH9aqpcaaIXaqcfa4aaSaaaOqaaKqzGeGaaGymaaGcba qcLbsacaWGZbaaaaaa@6E54@   (4)

n: heart beat number, t: a certain time interval

According to them, the following ratio pair can be established: 1 heart contraction or 1 pulse beat is proportional to 1 second, as the unknown number of pulses (n) is proportional to the known time interval (for example, 30-60 seconds):

1 contraction n = 1s 30s , n= 30 contraction , and: 1 contraction n = 1s 60s , n= 60 contraction MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaSWaaSbaaeaajugWaiaadogacaWGVbGaamOBaiaa dshacaWGYbGaamyyaiaadogacaWG0bGaamyAaiaad+gacaWGUbaale qaaaGcbaqcLbsacaWGUbaaaiabg2da9Kqbaoaalaaakeaajugibiaa igdacaWGZbaakeaajugibiaaiodacaaIWaGaam4CaaaacaaMc8UaaG PaVlaacYcajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaamOBaiab g2da9iaaiodacaaIWaqcfa4aaSbaaSqaaKqzadGaam4yaiaad+gaca WGUbGaamiDaiaadkhacaWGHbGaam4yaiaadshacaWGPbGaam4Baiaa d6gaaSqabaqcfa4aaSbaaSqaaaqabaqcLbsacaGGSaqcfa4aaubeaO qabSqaaaqab0qaaaaajugibiaadggacaWGUbGaamizaiaacQdajuaG daqfqaGcbeWcbaaabeqdbaaaaKqbaoaalaaakeaajugibiaaigdalm aaBaaabaqcLbmacaWGJbGaam4Baiaad6gacaWG0bGaamOCaiaadgga caWGJbGaamiDaiaadMgacaWGVbGaamOBaaWcbeaaaOqaaKqzGeGaam OBaaaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaGaam4CaaGcbaqc LbsacaaI2aGaaGimaiaadohaaaGaaGPaVlaaykW7caGGSaqcfa4aau beaOqabSqaaaqab0qaaaaajugibiaad6gacqGH9aqpcaaI2aGaaGim aSWaaSbaaeaajugWaiaadogacaWGVbGaamOBaiaadshacaWGYbGaam yyaiaadogacaWG0bGaamyAaiaad+gacaWGUbaaleqaaaaa@9380@   (5)

The dimensionless number is obtained by dividing the time intervals that take place in the circulation, specifically the time of one turn of the circulation (t) and the time of one contraction of the heart (t1contraction). Since the time dimensions cancel each other, we get the number of heart contractions (n).

t 2π(25) t 1contraction = n 25 = 25 , an d t 2π(30) t 1contraction = n 30 = 30 , an d t 2π(60) t 1contraction = n 60 =60 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiDaSWaaSbaaeaajugWaiaaikdacqaHapaCcaGGOaGa aGOmaiaaiwdacaGGPaaaleqaaaGcbaqcLbsacaWG0bqcfa4aaSbaaS qaaKqzadGaaGymaiaadogacaWGVbGaamOBaiaadshacaWGYbGaamyy aiaadogacaWG0bGaamyAaiaad+gacaWGUbaaleqaaaaajugibiabg2 da9iaad6gajuaGdaWgaaWcbaqcLbmacaaIYaGaaGynaaWcbeaajugi biabg2da9iaaikdacaaI1aqcfa4aaSbaaSqaaaqabaqcLbsacaGGSa qcfa4aaSbaaSqaaaqabaqcLbsacaWGHbGaamOBaiaadsgajuaGdaWg aaWcbaaabeaajuaGdaWcaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzad GaaGOmaiabec8aWjaacIcacaaIZaGaaGimaiaacMcaaSqabaaakeaa jugibiaadshalmaaBaaabaqcLbmacaaIXaGaam4yaiaad+gacaWGUb GaamiDaiaadkhacaWGHbGaam4yaiaadshacaWGPbGaam4Baiaad6ga aSqabaaaaKqzGeGaeyypa0JaamOBaSWaaSbaaeaajugWaiaaiodaca aIWaaaleqaaKqzGeGaeyypa0JaaG4maiaaicdajuaGdaWgaaWcbaaa beaajugibiaacYcajuaGdaWgaaWcbaaabeaajugibiaadggacaWGUb GaamizaKqbaoaaBaaaleaaaeqaaKqbaoaalaaakeaajugibiaadsha juaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaaiAdacaaIWa GaaiykaaWcbeaaaOqaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaa igdacaWGJbGaam4Baiaad6gacaWG0bGaamOCaiaadggacaWGJbGaam iDaiaadMgacaWGVbGaamOBaaWcbeaaaaqcLbsacqGH9aqpcaWGUbqc fa4aaSbaaSqaaKqzadGaaGOnaiaaicdaaSqabaqcLbsacqGH9aqpca aI2aGaaGimaaaa@A45F@   (6)

The same applies to the proportion of blood volume (V). A larger volume means a longer single circulation time. In contrast, a single contraction of the heart lasts a short time. The ratio of the two will be the same dimensionless number, which the number of heart contractions (n).

V turnaround(25) sv = n 25 = 25 , an d V turnaround(30) sv = n 30 = 30 , an d V turnaround(60) sv = n 60 =60 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOvaSWaaSbaaeaajugWaabaaaaaaaaapeGaamiDaiaa dwhacaWGYbGaamOBaiaadggacaWGYbGaam4BaiaadwhacaWGUbGaam iza8aacaGGOaGaaGOmaiaaiwdacaGGPaaaleqaaaGcbaqcLbsacaWG ZbGaamODaaaacqGH9aqpcaWGUbWcdaWgaaqaaKqzadGaaGOmaiaaiw daaSqabaqcLbsacqGH9aqpcaaIYaGaaGynaKqbaoaaBaaaleaaaeqa aKqzGeGaaiilaKqbaoaaBaaaleaaaeqaaKqzGeGaamyyaiaad6gaca WGKbqcfa4aaSbaaSqaaaqabaqcfa4aaSaaaOqaaKqzGeGaamOvaSWa aSbaaeaajugWa8qacaWG0bGaamyDaiaadkhacaWGUbGaamyyaiaadk hacaWGVbGaamyDaiaad6gacaWGKbWdaiaacIcacaaIZaGaaGimaiaa cMcaaSqabaaakeaajugibiaadohacaWG2baaaiabg2da9iaad6galm aaBaaabaqcLbmacaaIZaGaaGimaaWcbeaajugibiabg2da9iaaioda caaIWaqcfa4aaSbaaSqaaaqabaqcLbsacaGGSaqcfa4aaSbaaSqaaa qabaqcLbsacaWGHbGaamOBaiaadsgajuaGdaWgaaWcbaaabeaajuaG daWcaaGcbaqcLbsacaWGwbWcdaWgaaqaaKqzadWdbiaadshacaWG1b GaamOCaiaad6gacaWGHbGaamOCaiaad+gacaWG1bGaamOBaiaadsga paGaaiikaiaaiAdacaaIWaGaaiykaaWcbeaaaOqaaKqzGeGaam4Cai aadAhaaaGaeyypa0JaamOBaKqbaoaaBaaaleaajugWaiaaiAdacaaI WaaaleqaaKqzGeGaeyypa0JaaGOnaiaaicdaaaa@932B@   (7)

 The relative ratio of the time intervals:

t 2π(25) t 2π(60) = 25s 60s = 25 60 = 0.4166 , or: t 2π(60) t 2π(25) = 60s 25s = 60 25 =2.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiDaKqbaoaaBaaaleaajugWaiaaikdacqaHapaCcaGG OaGaaGOmaiaaiwdacaGGPaaaleqaaaGcbaqcLbsacaWG0bWcdaWgaa qaaKqzadaeaaaaaaaaa8qacaaIYaGaeqiWda3daiaacIcacaaI2aGa aGimaiaacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGe GaaGOmaiaaiwdacaWGZbaakeaajugibiaaiAdacaaIWaGaam4Caaaa cqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYaGaaGynaaGcbaqcLbsaca aI2aGaaGimaaaacqGH9aqpcaaIWaGaaiOlaiaaisdacaaIXaGaaGOn aiaaiAdajuaGdaWgaaWcbaaabeaajugibiaacYcajuaGdaWgaaWcba aabeaajugibiaad+gacaWGYbGaaiOoaKqbaoaavabakeqaleaaaeqa neaaaaqcfa4aaSaaaOqaaKqzGeGaamiDaSWaaSbaaeaajugWa8qaca aIYaGaeqiWda3daiaacIcacaaI2aGaaGimaiaacMcaaSqabaaakeaa jugibiaadshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikaiaaik dacaaI1aGaaiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqc LbsacaaI2aGaaGimaiaadohaaOqaaKqzGeGaaGOmaiaaiwdacaWGZb aaaiabg2da9KqbaoaalaaakeaajugibiaaiAdacaaIWaaakeaajugi biaaikdacaaI1aaaaiabg2da9iaaikdacaGGUaGaaGinaaaa@84AC@   (8)

The ratio of the time of one revolution of blood circulation (t) and the time of systole (t1contraction), as well as their variants, are as follows. The ratio of these time variants also shows the interchangeability index (nx/ny) between them:

t 2π(25) t 1contraction t 2π(60) t 1contraction = n 25 n 60 = 25 60 = 0.416 ; t 2π(30) t 1contraction t 2π(60) t 1contraction = n 30 n 60 = 30 60 = 0.5 ; t 2π(60) t 1contraction t 2π(60) t 1contraction = n 60 n 60 = 60 60 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqbaoaalaaakeaajugibiaadshalmaaBaaabaqcLbmacaaIYaGa eqiWdaNaaiikaiaaikdacaaI1aGaaiykaaWcbeaaaOqaaKqzGeGaam iDaKqbaoaaBaaaleaajugWaiaaigdacaWGJbGaam4Baiaad6gacaWG 0bGaamOCaiaadggacaWGJbGaamiDaiaadMgacaWGVbGaamOBaaWcbe aaaaaakeaajuaGdaWcaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGa aGOmaiabec8aWjaacIcacaaI2aGaaGimaiaacMcaaSqabaaakeaaju gibiaadshalmaaBaaabaqcLbmacaaIXaGaam4yaiaad+gacaWGUbGa amiDaiaadkhacaWGHbGaam4yaiaadshacaWGPbGaam4Baiaad6gaaS qabaaaaaaajugibiabg2da9Kqbaoaalaaakeaajugibiaad6galmaa BaaabaqcLbmacaaIYaGaaGynaaWcbeaaaOqaaKqzGeGaamOBaKqbao aaBaaaleaajugWaiaaiAdacaaIWaaaleqaaaaajugibiabg2da9Kqb aoaalaaakeaajugibiaaikdacaaI1aaakeaajugibiaaiAdacaaIWa aaaiabg2da9iaaicdacaGGUaGaaGinaiaaigdacaaI2aqcfa4aaSba aSqaaaqabaqcLbsacaGG7aqcfa4aaSbaaSqaaaqabaqcfa4aaSaaaO qaaKqbaoaalaaakeaajugibiaadshalmaaBaaabaqcLbmacaaIYaGa eqiWdaNaaiikaiaaiodacaaIWaGaaiykaaWcbeaaaOqaaKqzGeGaam iDaKqbaoaaBaaaleaajugWaiaaigdacaWGJbGaam4Baiaad6gacaWG 0bGaamOCaiaadggacaWGJbGaamiDaiaadMgacaWGVbGaamOBaaWcbe aaaaaakeaajuaGdaWcaaGcbaqcLbsacaWG0bqcfa4aaSbaaSqaaKqz adGaaGOmaiabec8aWjaacIcacaaI2aGaaGimaiaacMcaaSqabaaake aajugibiaadshajuaGdaWgaaWcbaqcLbmacaaIXaGaam4yaiaad+ga caWGUbGaamiDaiaadkhacaWGHbGaam4yaiaadshacaWGPbGaam4Bai aad6gaaSqabaaaaaaajugibiabg2da9Kqbaoaalaaakeaajugibiaa d6gajuaGdaWgaaWcbaqcLbmacaaIZaGaaGimaaWcbeaaaOqaaKqzGe GaamOBaSWaaSbaaeaajugWaiaaiAdacaaIWaaaleqaaaaajugibiab g2da9KqbaoaalaaakeaajugibiaaiodacaaIWaaakeaajugibiaaiA dacaaIWaaaaiabg2da9iaaicdacaGGUaGaaGynaKqbaoaaBaaaleaa aeqaaKqzGeGaai4oaKqbaoaaBaaaleaaaeqaaKqbaoaalaaakeaaju aGdaWcaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8a WjaacIcacaaI2aGaaGimaiaacMcaaSqabaaakeaajugibiaadshaju aGdaWgaaWcbaqcLbmacaaIXaGaam4yaiaad+gacaWGUbGaamiDaiaa dkhacaWGHbGaam4yaiaadshacaWGPbGaam4Baiaad6gaaSqabaaaaa Gcbaqcfa4aaSaaaOqaaKqzGeGaamiDaSWaaSbaaeaajugWaiaaikda cqaHapaCcaGGOaGaaGOnaiaaicdacaGGPaaaleqaaaGcbaqcLbsaca WG0bWcdaWgaaqaaKqzadGaaGymaiaadogacaWGVbGaamOBaiaadsha caWGYbGaamyyaiaadogacaWG0bGaamyAaiaad+gacaWGUbaaleqaaa aaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGUbqcfa4aaSba aSqaaKqzadGaaGOnaiaaicdaaSqabaaakeaajugibiaad6galmaaBa aabaqcLbmacaaI2aGaaGimaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWc aaGcbaqcLbsacaaI2aGaaGimaaGcbaqcLbsacaaI2aGaaGimaaaacq GH9aqpcaaIXaqcfa4aaSbaaSqaaaqabaaaaa@0A0B@   (9)

In terms of volumes (V), the conversion rates of the different versions are:

V 2π (25) sv V 2π (60) sv = n 25 n 60 = 25 60 = 0.416 ; V 2π (30) sv V 2π (60) sv = n 30 n 60 = 30 60 = 0.5 ; V 2π(60) sv V 2π (60) sv = n 60 n 60 = 60 60 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqbaoaalaaakeaajugibiaadAfalmaaBaaabaqcLbmacaaIYaGa eqiWdahaleqaamaaBaaabaqcLbmacaGGOaGaaGOmaiaaiwdacaGGPa aaleqaaaGcbaqcLbsacaWGZbGaamODaaaaaOqaaKqbaoaalaaakeaa jugibiaadAfalmaaBaaabaqcLbmacaaIYaGaeqiWdahaleqaamaaBa aabaqcLbmacaGGOaGaaGOnaiaaicdacaGGPaaaleqaaaGcbaqcLbsa caWGZbGaamODaaaaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOBaK qbaoaaBaaaleaajugWaiaaikdacaaI1aaaleqaaaGcbaqcLbsacaWG UbWcdaWgaaqaaKqzadGaaGOnaiaaicdaaSqabaaaaKqzGeGaeyypa0 tcfa4aaSaaaOqaaKqzGeGaaGOmaiaaiwdaaOqaaKqzGeGaaGOnaiaa icdaaaGaeyypa0JaaGimaiaac6cacaaI0aGaaGymaiaaiAdajuaGda WgaaWcbaaabeaajugibiaacUdajuaGdaWgaaWcbaaabeaajuaGdaWc aaGcbaqcfa4aaSaaaOqaaKqzGeGaamOvaSWaaSbaaeaajugWaiaaik dacqaHapaCaSqabaWaaSbaaeaajugWaiaacIcacaaIZaGaaGimaiaa cMcaaSqabaaakeaajugibiaadohacaWG2baaaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOvaSWaaSbaaeaajugWaiaaikdacqaHapaCaSqabaWa aSbaaeaajugWaiaacIcacaaI2aGaaGimaiaacMcaaSqabaaakeaaju gibiaadohacaWG2baaaaaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWG Ubqcfa4aaSbaaSqaaKqzadGaaG4maiaaicdaaSqabaaakeaajugibi aad6gajuaGdaWgaaWcbaqcLbmacaaI2aGaaGimaaWcbeaaaaqcLbsa cqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIZaGaaGimaaGcbaqcLbsaca aI2aGaaGimaaaacqGH9aqpcaaIWaGaaiOlaiaaiwdajuaGdaWgaaWc baaabeaajugibiaacUdajuaGdaWgaaWcbaaabeaajuaGdaWcaaGcba qcfa4aaSaaaOqaaKqzGeGaamOvaSWaaSbaaeaajugWaiaaikdacqaH apaCcaGGOaGaaGOnaiaaicdacaGGPaaaleqaaaGcbaqcLbsacaWGZb GaamODaaaaaOqaaKqbaoaalaaakeaajugibiaadAfalmaaBaaabaqc LbmacaaIYaGaeqiWdahaleqaamaaBaaabaqcLbmacaGGOaGaaGOnai aaicdacaGGPaaaleqaaaGcbaqcLbsacaWGZbGaamODaaaaaaGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaamOBaSWaaSbaaeaajugWaiaaiAdaca aIWaaaleqaaaGcbaqcLbsacaWGUbWcdaWgaaqaaKqzadGaaGOnaiaa icdaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOnai aaicdaaOqaaKqzGeGaaGOnaiaaicdaaaGaeyypa0JaaGymaKqbaoaa Baaaleaaaeqaaaaa@C6A1@   (10)

According to them, in the case of the time dimension (t) and three spatial dimensions (V) assigned to the number of heart contractions, the result and the conversion rate are similar.

By multiplying the basic unit blood volume (stroke volume, sv) by the dimensionless heart contraction number (n), the blood volume can be increased to infinity. Specifically, in this case, the amount of blood (V) will be as follows:

V 2π =nsv=2570ml=1750ml=1.75L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGwb qcfa4aaSbaaSqaaKqzadGaaGOmaiabec8aWbWcbeaajugibiabg2da 9iaad6gacqGHflY1caWGZbGaamODaiabg2da9iaaikdacaaI1aGaey yXICTaaG4naiaaicdacaWGTbGaamiBaiabg2da9iaaigdacaaI3aGa aGynaiaaicdacaWGTbGaamiBaiabg2da9iaaigdacaGGUaGaaG4nai aaiwdacaWGmbaaaa@555D@   (11)

If we assign a time dimension to this spatial dimension, i.e. we relate the volume to a time interval, we can talk about the blood volume per time unit. Moreover, considering the previous case (Eq.2, left), which is better known from medical physiology, the data concerning the intensity of the flowing fluids (I) corresponds to the volume (V) per unit time (t). This value is essentially the same as the concept of cardiac output (CO) determined on the basis of blood circulation tests. Intensity as a physical parameter corresponds to the value known from cardiology as minute volume (I ≈ CO),13 also with regard to the same dimensions.

The law of intensity, which corresponds to the cardiac output in medicine, is equal to the product of the heart rate, which is variable and the stroke volume, which is essentially unchanged (CO=n∙sv). Since the heart rate implicitly contains the time interval to which it is applied, different values are obtained depending on its value. In this way, the blood volume per minute, i.e., the minute volume, is 4.2 liters/minute (60/minute x 70 ml=4200 ml/minute) for a heart rate of 60. However, this volume value may change if the data is applied for half a minute or 25 seconds. The circulating blood volume (CO) for 25, 30 seconds or 1 minute is therefore the following:

I 1 = V 2π t 2π(25s) =C O 25s = n 25 sv t 2π(25s) = 25 70 ml t 2π(25s) = 1750ml t 2π(25s) =1750ml/25s=1.75L/25 s , and: I 2 = V 2π t 2π(30s) =C O 30s(1/2min) = n 30 sv t 2π(30s) = 30 70 ml t 2π(30s) = 2100ml t 2π(30s) =2.1L/0.5 min , moreover: I= V 2π t 2π(60s) =C O 1min = n 60 sv t 2π(60s) = 60 70 ml t 2π(1min) = 6070ml 1min = 4200ml 1min =4.2L/1min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadMealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaamOvaKqbaoaaBaaaleaajugWaiaaikdacqaHap aCaSqabaaakeaajugibiaadshalmaaBaaabaqcLbmacaaIYaGaeqiW daNaaiikaiaaikdacaaI1aGaam4CaiaacMcaaSqabaaaaKqzGeGaey ypa0Jaam4qaiaad+eajuaGdaWgaaWcbaqcLbmacaaIYaGaaGynaiaa dohaaSqabaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGUbWcda WgaaqaaKqzadGaaGOmaiaaiwdaaSqabaqcLbsacqGHflY1caWGZbGa amODaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8aWj aacIcacaaIYaGaaGynaiaadohacaGGPaaaleqaaaaajugibiabg2da 9KqbaoaalaaakeaajugibiaaikdacaaI1aGaeyyXICTaaG4naiaaic dajuaGdaWgaaWcbaaabeaajugibiaad2gacaWGSbaakeaajugibiaa dshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikaiaaikdacaaI1a Gaam4CaiaacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqz GeGaaGymaiaaiEdacaaI1aGaaGimaiaad2gacaWGSbaakeaajugibi aadshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikaiaaikdacaaI 1aGaam4CaiaacMcaaSqabaaaaKqzGeGaeyypa0JaaGymaiaaiEdaca aI1aGaaGimaiaad2gacaWGSbGaai4laiaaikdacaaI1aGaam4Caiab g2da9iaaigdacaGGUaGaaG4naiaaiwdacaWGmbGaai4laiaaikdaca aI1aGaam4CaKqbaoaaBaaaleaaaeqaaKqzGeGaaiilaaGcbaqcLbsa caWGHbGaamOBaiaadsgacaGG6aaakeaajugibiaadMealmaaBaaaba qcLbmacaaIYaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGa amOvaKqbaoaaBaaaleaajugWaiaaikdacqaHapaCaSqabaaakeaaju gibiaadshajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaa iodacaaIWaGaam4CaiaacMcaaSqabaaaaKqzGeGaeyypa0Jaam4qai aad+eajuaGdaWgaaWcbaqcLbmacaaIZaGaaGimaiaadohacaGGOaGa aGymaiaac+cacaaIYaGaciyBaiaacMgacaGGUbGaaiykaaWcbeaaju gibiabg2da9Kqbaoaalaaakeaajugibiaad6galmaaBaaabaqcLbma caaIZaGaaGimaaWcbeaajugibiabgwSixlaadohacaWG2baakeaaju gibiaadshajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaa iodacaaIWaGaam4CaiaacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaS aaaOqaaKqzGeGaaG4maiaaicdacqGHflY1caaI3aGaaGimaKqbaoaa BaaaleaaaeqaaKqzGeGaamyBaiaadYgaaOqaaKqzGeGaamiDaSWaaS baaeaajugWaiaaikdacqaHapaCcaGGOaGaaG4maiaaicdacaWGZbGa aiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYa GaaGymaiaaicdacaaIWaGaamyBaiaadYgaaOqaaKqzGeGaamiDaSWa aSbaaeaajugWaiaaikdacqaHapaCcaGGOaGaaG4maiaaicdacaWGZb GaaiykaaWcbeaaaaqcLbsacqGH9aqpcaaIYaGaaiOlaiaaigdacaWG mbGaai4laiaaicdacaGGUaGaaGynaiGac2gacaGGPbGaaiOBaKqbao aaBaaaleaaaeqaaKqzGeGaaiilaaGcbaqcLbsacaWGTbGaam4Baiaa dkhacaWGLbGaam4BaiaadAhacaWGLbGaamOCaiaacQdaaOqaaKqzGe Gaamysaiabg2da9KqbaoaalaaakeaajugibiaadAfalmaaBaaabaqc LbmacaaIYaGaeqiWdahaleqaaaGcbaqcLbsacaWG0bWcdaWgaaqaaK qzadGaaGOmaiabec8aWjaacIcacaaI2aGaaGimaiaadohacaGGPaaa leqaaaaajugibiabg2da9iaadoeacaWGpbWcdaWgaaqaaKqzadGaaG ymaiGac2gacaGGPbGaaiOBaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajugibiaad6galmaaBaaabaqcLbmacaaI2aGaaGimaaWcbeaaju gibiabgwSixlaadohacaWG2baakeaajugibiaadshajuaGdaWgaaWc baqcLbmacaaIYaGaeqiWdaNaaiikaiaaiAdacaaIWaGaam4CaiaacM caaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOnaiaa icdacqGHflY1caaI3aGaaGimaKqbaoaaBaaaleaaaeqaaKqzGeGaam yBaiaadYgaaOqaaKqzGeGaamiDaSWaaSbaaeaajugWaiaaikdacqaH apaCcaGGOaGaaGymaiGac2gacaGGPbGaaiOBaiaacMcaaSqabaaaaK qzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOnaiaaicdacqGHflY1 caaI3aGaaGimaiaad2gacaWGSbaakeaajugibiaabgdaciGGTbGaai yAaiaac6gaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGinaiaaikda caaIWaGaaGimaiaad2gacaWGSbaakeaajugibiaabgdacaqGTbGaae yAaiaab6gaaaGaeyypa0Jaaeinaiaab6cacaaIYaGaamitaiaac+ca caaIXaGaciyBaiaacMgacaGGUbaaaaa@7CB2@   (12)

The first two CO values increase when projected at a heart rate of 60/min, the third remains unchanged. By dividing each CO by the ratio 25s/60s=0.41666 and 30s/60s=0.5 and 60s/60s=1, the result will be 4.2 L/min respectively (1.75 L/min/0.4166=4.2 L/min, 2.1 L/min/0.5=4.2 L/min, 4.2 L/min/1=4.2 L/min).

Projecting these CO values onto a heart rate of 72 contractions in 60 seconds, i.e., with a heart rate of 72/1minute, considering their ratios (25/72=0.3472, 30/72=0.4166, and 60/72=0.8333), the CO value will be higher than the previous one (Eq.5). In this way, the output of the heart will be 1.75L/0.3472=5.04 L/min and 2.1L/0.4166=5.04 L/min, as well as 4.2L/0.833=5.4 L/min, which agrees with our knowledge of cardiology.14

These are well-measurable but variable quantities, which can increase significantly under submaximal physical load (6-8 L/min). In case of an extreme degree of load, which means an increase in static or dynamic work performed against the gravitational field, the work of the heart and the related performance increase. After reaching a limit value, CO reaches its highest value in case of maximum heart rate. In the case of a relatively young adult male long-distance runner (from a starting value of 42-45/min), if the heart rate increases to a value of 170-175/min, the CO is as follows: 25s/170=0.147, 30s/170=0.1764, 60s/170=0.3529, therefore 1.75L/min/0.147=11.9L/min, 2.1L/min/0.1764=11.9, 4.2L/min/0.353=11.9 L/min.

Cross-sectional area and flow velocity of average human blood circulation

However, cardiac output is only a special value that does not express the quantitative parameters and qualitative characteristics of the complete human blood flow. Therefore, this should be supplemented, the following considerations are necessary.

When determining the cross-sectional area of an average human circulation with a circular shape and a circular cross-sectional area (A), the following data (V, t, s and v) shall be taken into account. Based on Eq. 2, taking the single circulation time (t2π(25)) as 25 s,15 the circular cross-sectional area (A) of the average circulation is as follows:

Since: s 2 π =v t 2π , and: V 2π =A s 2π , so: V 2π =Av t 2π , therefore: A= V 2π v t 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadofacaWGPbGaamOBaiaadogacaWGLbGaaiOoaiaadohajuaGdaWg aaWcbaqcLbmacaaIYaGaeqiWdaxcfa4aaSbaaWqaaaqabaaaleqaaK qzGeGaeyypa0JaamODaiabgwSixlaadshajuaGdaWgaaWcbaqcLbma caaIYaGaeqiWdahaleqaaKqbaoaaBaaaleaaaeqaaKqzGeGaaiilaK qbaoaavabakeqaleaaaeqaneaaaaqcLbsacaWGHbGaamOBaiaadsga caGG6aqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadAfajuaGda WgaaWcbaqcLbmacaaIYaGaeqiWdahaleqaaKqzGeGaeyypa0Jaamyq aiabgwSixlaadohajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdahale qaaKqbaoaaBaaaleaaaeqaaKqzGeGaaiilaaGcbaqcLbsacaWGZbGa am4BaiaacQdacaWGwbWcdaWgaaqaaKqzadGaaGOmaiabec8aWbWcbe aajugibiabg2da9iaadgeacqGHflY1caWG2bGaeyyXICTaamiDaKqb aoaaBaaaleaajugWaiaaikdacqaHapaCaSqabaqcfa4aaSbaaSqaaa qabaqcLbsacaGGSaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaa dshacaWGObGaamyzaiaadkhacaWGLbGaamOzaiaad+gacaWGYbGaam yzaiaacQdajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaamyqaiab g2da9KqbaoaalaaakeaajugibiaadAfalmaaBaaabaqcLbmacaaIYa GaeqiWdahaleqaaaGcbaqcLbsacaWG2bGaeyyXICTaamiDaSWaaSba aeaajugWaiaaikdacqaHapaCaSqabaaaaaaaaa@998D@   (13)

Another way to determine the intensity of blood flow is to use the law of continuity. The law of continuity of flowing fluids, which is another obligatory law, gives intensity (Eq.2 right side) as the product of the flow cross section area (A) and the flow rate (v). However, neither the cross-sectional area through which the blood would flow nor its flow rate is known. The situation is further complicated by the fact that A and v can change, while the intensity remains unchanged. With a smaller cross-sectional area, the flow rate may increase, while with a larger cross-sectional area it may decrease (see also Bernoulli’s law). Therefore, since this flow formula contains two unknowns, in addition to knowing the flow intensity, the average flow velocity would be needed to calculate the average cross sectional area. Overall, in order to use both laws of flow, the average flow rate should be known.

One possible way to determine blood flow velocity is as follows. Given that the flow velocity in the capillaries is approximately 1 mm/s16–18 and that the main artery (aorta) is 1m/s.19,20 the average velocity should be somewhere in the middle, i.e., between cm and decimeter. A sufficiently accurate value can be determined with this symmetric (not based on an arithmetic mean) delimitation method that takes into account the extreme values of the circulation and moves from the outside towards the center. This average speed is therefore about 5 centimeters per second or 0.5 decimeters per second. The variability of the extreme values (e.g., 1.5 m/s in the aorta or 0.3 mm/s in the capillaries) does not significantly change this average value.

Calculating with the law of intensity, substituting the value of velocity (vaverage), the average flow cross-sectional area (A1) is as follows.

A 1 = V 2π(25) v t 2π(25) = nsv v t 2π(25) = 25 70 c m 3 0.05 m s 25s = 1.75 10 3 m 3 0.05 m s 25s =1.4 10 3 m 2 =14c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajugibiaadAfalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikai aaikdacaaI1aGaaiykaaWcbeaaaOqaaKqzGeGaamODaiabgwSixlaa dshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikaiaaikdacaaI1a GaaiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWG UbGaeyyXICTaam4CaiaadAhaaOqaaKqzGeGaamODaiabgwSixlaads hajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaaikdacaaI 1aGaaiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsaca aIYaGaaGynaiabgwSixlaaiEdacaaIWaqcfa4aaSbaaSqaaaqabaqc LbsacaWGJbGaamyBaSWaaWbaaeqabaqcLbmacaaIZaaaaaGcbaqcLb sacaaIWaGaaiOlaiaaicdacaaI1aqcfa4aaSaaaOqaaKqzGeGaamyB aaGcbaqcLbsacaWGZbaaaiabgwSixlaaikdacaaI1aGaam4Caaaacq GH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaGaaiOlaiaaiEdacaaI1aGa eyyXICTaaGymaiaaicdalmaaCaaabeqaaKqzadGaeyOeI0IaaG4maa aajuaGdaWgaaWcbaaabeaajugibiaad2galmaaCaaabeqaaKqzadGa aG4maaaaaOqaaKqzGeGaaGimaiaac6cacaaIWaGaaGynaKqbaoaala aakeaajugibiaad2gaaOqaaKqzGeGaam4CaaaacqGHflY1caaIYaGa aGynaiaadohaaaGaeyypa0JaaGymaiaac6cacaaI0aGaeyyXICTaaG ymaiaaicdajuaGdaahaaWcbeqaaKqzadGaeyOeI0IaaG4maaaajuaG daWgaaWcbaaabeaajugibiaad2galmaaCaaabeqaaKqzadGaaGOmaa aajugibiabg2da9iaaigdacaaI0aGaam4yaiaad2gajuaGdaahaaWc beqaaKqzadGaaGOmaaaaaaa@AF35@   (14)

Even in the case of an increased blood volume (V) in proportion to the single circulation time (t30), the flow cross-sectional area (A2) will be the same.

A 2 = V 2π(30) v t 2π(30) = 30 70 c m 3 0.05 m s 30s = 2100 c m 3 5 cm s 30s = 2100c m 3 150cm =14c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9Kqbaoaa laaakeaajugibiaadAfajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWda NaaiikaiaaiodacaaIWaGaaiykaaWcbeaaaOqaaKqzGeGaamODaiab gwSixlaadshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaaiikaiaaio dacaaIWaGaaiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqc LbsacaaIZaGaaGimaiabgwSixlaaiEdacaaIWaqcfa4aaSbaaSqaaa qabaqcLbsacaWGJbGaamyBaSWaaWbaaeqabaqcLbmacaaIZaaaaaGc baqcLbsacaaIWaGaaiOlaiaaicdacaaI1aqcfa4aaSaaaOqaaKqzGe GaamyBaaGcbaqcLbsacaWGZbaaaiabgwSixlaaiodacaaIWaGaam4C aaaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYaGaaGymaiaaicdaca aIWaqcfa4aaSbaaSqaaaqabaqcLbsacaWGJbGaamyBaSWaaWbaaeqa baqcLbmacaaIZaaaaaGcbaqcLbsacaaI1aqcfa4aaSaaaOqaaKqzGe Gaam4yaiaad2gaaOqaaKqzGeGaam4CaaaacqGHflY1caaIZaGaaGim aiaadohaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOmaiaaigdaca aIWaGaaGimaiaadogacaWGTbWcdaahaaqabeaajugWaiaaiodaaaaa keaajugibiaaigdacaaI1aGaaGimaiaadogacaWGTbaaaiabg2da9i aaigdacaaI0aGaam4yaiaad2gajuaGdaahaaWcbeqaaKqzadGaaGOm aaaaaaa@936C@   (15)

Taking into account the law of continuity, by substituting the value of velocity (vaverage), the average blood flow cross-sectional area (A) can be given as follows:

I 25 =A v , so: A= I 25 v = 1.75 10 3 c m 3 25s 5 cm s = 1750 c m 3 s 125 cm s =14c m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGjb WcdaWgaaqaaKqzadGaaGOmaiaaiwdaaSqabaqcLbsacqGH9aqpcaWG bbGaeyyXICTaamODaKqbaoaaBaaaleaaaeqaaKqzGeGaaiilaKqbao aavabakeqaleaaaeqaneaaaaqcLbsacaWGZbGaam4BaiaacQdacaaM c8Ecfa4aaubeaOqabSqaaaqab0qaaaaajugibiaaykW7caWGbbGaey ypa0tcfa4aaSaaaOqaaKqzGeGaamysaKqbaoaaBaaaleaajugWaiaa ikdacaaI1aaaleqaaaGcbaqcLbsacaWG2baaaiaaykW7cqGH9aqpju aGdaWcaaGcbaqcLbsacaaIXaGaaiOlaiaaiEdacaaI1aGaeyyXICTa aGymaiaaicdalmaaCaaabeqaaKqzadGaaG4maaaajuaGdaWcaaGcba qcLbsacaWGJbGaamyBaSWaaWbaaeqabaqcLbmacaaIZaaaaaGcbaqc LbsacaaIYaGaaGynaiaadohaaaaakeaajugibiaaiwdajuaGdaWcaa GcbaqcLbsacaWGJbGaamyBaaGcbaqcLbsacaWGZbaaaaaacqGH9aqp juaGdaWcaaGcbaqcLbsacaaIXaGaaG4naiaaiwdacaaIWaqcfa4aaS aaaOqaaKqzGeGaam4yaiaad2galmaaCaaabeqaaKqzadGaaG4maaaa aOqaaKqzGeGaam4CaaaaaOqaaKqzGeGaaGymaiaaikdacaaI1aqcfa 4aaSaaaOqaaKqzGeGaam4yaiaad2gaaOqaaKqzGeGaam4CaaaaaaGa eyypa0JaaGymaiaaisdacaWGJbGaamyBaSWaaWbaaeqabaqcLbmaca aIYaaaaaaa@87C2@   (16)

(The average cross-sectional area will also be similar /A1=A2/ in the case of the correspondingly increased flow intensity for 30 and 60 seconds.)

The length of the average blood circulation by knowing the circulation's single turnaround time

Based on the single circulation time of blood circulation (t), which is 25-30 s, and its average flow speed (vaverage), which is 5 cm/s, the length of the average circulation (s) can be determined:

Since: V 2π =A s 2 π , so: s 2 π = V 2π A = 2100 c m 3 14c m 2 =150cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaamyAaiaad6gacaWGJbGaamyzaiaacQdajuaGdaqfqaGcbeWcbaaa beqdbaaaaKqzGeGaamOvaKqbaoaaBaaaleaajugWaiaaikdacqaHap aCaSqabaqcLbsacqGH9aqpcaWGbbGaeyyXICTaam4CaKqbaoaaBaaa leaajugWaiaaikdacqaHapaCjuaGdaWgaaadbaaabeaaaSqabaqcLb sacaGGSaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadohacaWG VbGaaiOoaKqbaoaavabakeqaleaaaeqaneaaaaqcLbsacaWGZbqcfa 4aaSbaaSqaaKqzadGaaGOmaiabec8aWLqbaoaaBaaameaaaeqaaaWc beaajugibiabg2da9KqbaoaalaaakeaajugibiaadAfajuaGdaWgaa WcbaqcLbmacaaIYaGaeqiWdahaleqaaaGcbaqcLbsacaWGbbaaaiab g2da9KqbaoaalaaakeaajugibiaaikdacaaIXaGaaGimaiaaicdaju aGdaWgaaWcbaaabeaajugibiaadogacaWGTbWcdaahaaqabeaajugW aiaaiodaaaaakeaajugibiaaigdacaaI0aGaam4yaiaad2gajuaGda ahaaWcbeqaaKqzadGaaGOmaaaaaaqcLbsacqGH9aqpcaaIXaGaaGyn aiaaicdacaWGJbGaamyBaaaa@7A31@   (17)

Alternatively:

s 2 π =v t 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqaaKqzadGaaGOmaiabec8aWTWaaSbaaWqaaaqabaaaleqa aKqzGeGaeyypa0JaamODaiabgwSixlaadshalmaaBaaabaqcLbmaca aIYaGaeqiWdahaleqaaaaa@4544@   (18)

For a single turnaround time of 25 seconds, the tube length is as follows (see Eq.2):

s 1 =5 10 2 m/s25 s= 1.25 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaaykW7cqGH9aqpqaaa aaaaaaWdbiaaiwdacqGHflY1caaIXaGaaGimaKqba+aadaahaaWcbe qaaKqzadWdbiabgkHiTiaaikdaaaqcLbsacaWGTbGaai4laiaadoha cqGHflY1caaIYaGaaGynaiaabccacaWGZbGaeyypa0JaaGymaiaac6 cacaaIYaGaaGynaKqba+aadaWgaaWcbaaabeaajugib8qacaWGTbaa aa@53E1@   (19)

For a single turnaround time of 30 s, the tube length (s) is:

s 2 =5 10 2 m/s30 s= 1.5 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq4djugibi aadohajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaaGPaVlab g2da9abaaaaaaaaapeGaaGynaiabgwSixlaaigdacaaIWaWcpaWaaW baaeqabaqcLbmapeGaeyOeI0IaaGOmaaaajugibiaad2gacaGGVaGa am4CaiabgwSixlaaiodacaaIWaGaaeiiaiaadohacqGH9aqpcaaIXa GaaiOlaiaaiwdajuaGpaWaaSbaaSqaaaqabaqcLbsapeGaamyBaaaa @53B7@   (20)

It can be seen from this that the average length of blood circulation under physiological conditions at rest is between 1.25 m and 1.5 m.

The circumference and radius of the average blood circulation

For an average blood circulation of round and circular cross-section (torus), the circumference (C) and radius (r) are as follows:

C=2rπ , so r= C 2π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaeyypa0JaaGOmaiabgwSixlaadkhacqGHflY1cqaHapaCjuaGdaqf qaGcbeWcbaaabeqdbaaaaKqzGeGaaiilaKqbaoaavabakeqaleaaae qaneaaaaqcLbsacaWGZbGaam4BaKqbaoaavabakeqaleaaaeqaneaa aaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadkhacqGH9aqpju aGdaWcaaGcbaqcLbsacaWGdbaakeaajugibiaaikdacqGHflY1cqaH apaCaaaaaa@5171@   (21)

Since the perimeter (C1) is equal to the length (s1), the radius (r1) of the torus is:

r 1 = s 1 2π = 1.25 m 6.2831853 = 19.8943 cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiaaykW7cqGH9aqp juaGdaWcaaGcbaqcLbsacaWGZbWcdaWgaaqaaKqzadGaaGymaaWcbe aaaOqaaKqzGeGaaGOmaiabgwSixlabec8aWbaacqGH9aqpjuaGdaWc aaGcbaqcLbsacaaIXaGaaiOlaiaaikdacaaI1aqcfa4aaSbaaSqaaa qabaqcLbsacaWGTbaakeaajugibiaaiAdacaGGUaGaaGOmaiaaiIda caaIZaGaaGymaiaaiIdacaaI1aGaaG4maaaacqGH9aqpcaaIXaGaaG yoaiaac6cacaaI4aGaaGyoaiaaisdacaaIZaqcfa4aaSbaaSqaaaqa baqcLbsacaWGJbGaamyBaaaa@5EEE@   (22)

Since the circumference (C2) is equal to the length (s2), the radius (r2) of the circle is:

r 2 = s 2 2π = 1.5 m 6.2831853 = 23.8732 cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaaykW7cqGH9aqp juaGdaWcaaGcbaqcLbsacaWGZbqcfa4aaSbaaSqaaKqzadGaaGOmaa WcbeaaaOqaaKqzGeGaaGOmaiabgwSixlabec8aWbaacqGH9aqpjuaG daWcaaGcbaqcLbsacaaIXaGaaiOlaiaaiwdajuaGdaWgaaWcbaaabe aajugibiaad2gaaOqaaKqzGeGaaGOnaiaac6cacaaIYaGaaGioaiaa iodacaaIXaGaaGioaiaaiwdacaaIZaaaaiabg2da9iaaikdacaaIZa GaaiOlaiaaiIdacaaI3aGaaG4maiaaikdajuaGdaWgaaWcbaaabeaa jugibiaadogacaWGTbaaaa@5EB9@   (23)

The product of the two values (V1=A∙s1 and V2=A∙s2) also gives the mass of the blood (m), if we take the density (ρ) of blood to be the same as that of water for the sake of simplicity (m=ρ∙V).

The radius of cross-sectional area of the average blood circulation

In the case of average blood flow velocity (v=5cm/s) calculated on the basis of the extreme velocity values of blood circulation (Eq.14), the cross-sectional radius (r) of the average blood circulation is 2.11 cm, and its diameter is 4.22 cm.

The radius (r) of the cross-sectional area (A) of the circular tube, or torus, can be expressed from the relation A = r2∙π:

A= r 2 π , so r= A π , and d=2r=2 A π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaaGPaVlabg2da9iaadkhalmaaCaaabeqaaKqzadGaaGOmaaaajugi biabgwSixlabec8aWLqbaoaavabakeqaleaaaeqaneaaaaqcLbsaca GGSaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadohacaWGVbqc fa4aaubeaOqabSqaaaqab0qaaaaajuaGdaqfqaGcbeWcbaaabeqdba aaaKqzGeGaamOCaiabg2da9KqbaoaakaaakeaajuaGdaWcaaGcbaqc LbsacaWGbbaakeaajugibiabec8aWbaaaSqabaqcfa4aaubeaOqabS qaaaqab0qaaaaajugibiaacYcajuaGdaqfqaGcbeWcbaaabeqdbaaa aKqzGeGaamyyaiaad6gacaWGKbqcfa4aaubeaOqabSqaaaqab0qaaa aajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaamizaiabg2da9iaa ikdacqGHflY1caWGYbGaeyypa0JaaGOmaiabgwSixNqbaoaakaaake aajuaGdaWcaaGcbaqcLbsacaWGbbaakeaajugibiabec8aWbaaaSqa baaaaa@67D9@   (24)

The radius (r) and diameter (d) of the tube numerically:

r= 14c m 2 3.141592 = 2.111 cm , and d=4.222cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0tcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiaaigdacaaI 0aGaam4yaiaad2galmaaCaaabeqaaKqzadGaaGOmaaaaaOqaaKqzGe GaaG4maiaac6cacaaIXaGaaGinaiaaigdacaaI1aGaaGyoaiaaikda aaaaleqaaKqzGeGaeyypa0JaaGOmaiaac6cacaaIXaGaaGymaiaaig dajuaGdaWgaaWcbaaabeaajugibiaadogacaWGTbqcfa4aaubeaOqa bSqaaaqab0qaaaaajugibiaacYcajuaGdaqfqaGcbeWcbaaabeqdba aaaKqzGeGaamyyaiaad6gacaWGKbqcfa4aaubeaOqabSqaaaqab0qa aaaajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaamizaiabg2da9i aaisdacaGGUaGaaGOmaiaaikdacaaIYaGaam4yaiaad2gaaaa@5EAC@   (25)

Fractionation of the average blood circulation based on stroke volume and cross-sectional area

The amount of blood ejected during a single contraction of the heart, i.e., the stroke volume (sv), according to the ultrasound examination of the heart, is nearly 70 ml. With this blood volume, knowing the cross-sectional area (A) of the average blood circulation, the height (s) of the cylindrical part of the volume by which it moves in the direction of flow can be calculated. The volume can be divided into the product of the base area and the height of the cylinder that can be fitted into the torus. Thus, the amount of displacement of the blood circulation will be the ratio of the volume to the surface area (s=V/A), i.e., 70 cubic centimeters per 14 square centimeters, which corresponds to 5 cm. With this distance, the torus-shaped circulation model can be divided into minor units (n), which actually corresponds to the number of fractions per revolution of the circulation (t). This number is 25, which also corresponds to the pulse.

The force of gravity affecting the average blood circulation

If the mass of blood (m1), or in this case the volume of blood (V1) is moved by the force of gravity (g) for a single revolution time (t), then this force (F1) is:

F=ma= m 1 g= V 1 ρg , so F 1 = 1.75 kg 9.80665 m s 2 = 17.1616 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGPaVlabg2da9iaad2gacqGHflY1caWGHbGaeyypa0JaamyBaSWa aSbaaeaajugWaiaaigdaaSqabaqcLbsacqGHflY1caWGNbGaeyypa0 JaamOvaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqGHflY1 cqaHbpGCcqGHflY1caWGNbqcfa4aaubeaOqabSqaaaqab0qaaaaaju gibiaacYcajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaam4Caiaa d+gajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaamOraSWaaSbaae aajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaIXaGaaiOlaiaaiEda caaI1aqcfa4aaSbaaSqaaaqabaqcLbsacaWGRbGaam4zaiabgwSixl aaiMdacaGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaaiwdajuaGdaWg aaWcbaaabeaajugibiaad2gacqGHflY1caWGZbWcdaahaaqabeaaju gWaiabgkHiTiaaikdaaaqcLbsacqGH9aqpcaaIXaGaaG4naiaac6ca caaIXaGaaGOnaiaaigdacaaI2aqcfa4aaSbaaSqaaaqabaqcLbsaca WGobaaaa@7C84@   (26)

Where mass (m1) is the product of volume (V1) and density (ρ) of the blood (m=V∙ρ; ρ≈1.060g/cm3). However, for the sake of simplicity, the density of blood is taken to be equal to that of water.

Moreover, for the larger volume (mass; m2), the moving force (F2):

F 2 = 2.1 kg 9.80665 m s 2 = 20.593965 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaaikda caGGUaGaaGymaKqbaoaaBaaaleaaaeqaaKqzGeGaam4AaiaadEgacq GHflY1caaI5aGaaiOlaiaaiIdacaaIWaGaaGOnaiaaiAdacaaI1aqc fa4aaSbaaSqaaaqabaqcLbsacaWGTbGaeyyXICTaam4CaSWaaWbaae qabaqcLbmacqGHsislcaaIYaaaaKqzGeGaeyypa0JaaGOmaiaaicda caGGUaGaaGynaiaaiMdacaaIZaGaaGyoaiaaiAdacaaI1aqcfa4aaS baaSqaaaqabaqcLbsacaWGobaaaa@5B38@   (27)

The force driving the average blood circulation and its vertical, straightened dynamic version, which is a consequence of Earth's gravity, can vary between 17.1 N and 20.6 N in a resting state under physiological conditions. In the case of a force requiring the movement of a larger blood mass, i.e., when the circulation's single rotation time increases to 40, 50 or 60 seconds, the pressure would rise to such an extent that the cardiovascular system could not withstand it without damage.

The pressure conditions established by the gravitational force in the average blood circulation

The pressure (P) exerted by the force (F) on a unit area (A) in the case of the average human circulation is as follows:

P 1 = F 1 A = 17.1616N 0.0014 m 2 = 12258.2857 N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajugibiaadAeajuaGdaWgaaWcbaqcLbmacaaIXaaaleqaaaGcba qcLbsacaWGbbaaaiabg2da9KqbaoaalaaakeaajugibiaaigdacaaI 3aGaaiOlaiaaigdacaaI2aGaaGymaiaaiAdacaWGobaakeaajugibi aaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGinaiaad2gajuaGdaah aaWcbeqaaKqzadGaaGOmaaaaaaqcLbsacqGH9aqpcaaIXaGaaGOmai aaikdacaaI1aGaaGioaiaac6cacaaIYaGaaGioaiaaiwdacaaI3aqc fa4aaSbaaSqaaaqabaqcLbsacaWGobGaai4laiaad2gajuaGdaahaa WcbeqaaKqzadGaaGOmaaaaaaa@613B@   (28-a)

In the case of the larger moving force (F2) and the same pipe cross-sectional area (A) the driving force (F2) is as follows:

P 2 = F 2 A = 20.593965N 0.0014 m 2 = 14709.975 N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9Kqbaoaalaaa keaajugibiaadAeajuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaGcba qcLbsacaWGbbaaaiabg2da9KqbaoaalaaakeaajugibiaaikdacaaI WaGaaiOlaiaaiwdacaaI5aGaaG4maiaaiMdacaaI2aGaaGynaiaad6 eaaOqaaKqzGeGaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaI0aGa amyBaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaaaajugibiabg2da9i aaigdacaaI0aGaaG4naiaaicdacaaI5aGaaiOlaiaaiMdacaaI3aGa aGynaKqbaoaaBaaaleaaaeqaaKqzGeGaamOtaiaac+cacaWGTbqcfa 4aaWbaaSqabeaajugWaiaaikdaaaaaaa@620A@   (28-b)

Since: 1 N/m2 = 7.5 •10-3 mmHg, in the case of the smaller driving force (F1), the value of the pressure (P1) in the average circulation is:

P 1 = 12258.2857 N/ m 2 7.5 10 3 =91937.14 10 3 mmHg 92 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaaigda caaIYaGaaGOmaiaaiwdacaaI4aGaaiOlaiaaikdacaaI4aGaaGynai aaiEdajuaGdaWgaaWcbaaabeaajugibiaad6eacaGGVaGaamyBaSWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeyyXICTaaG4naiaac6caca aI1aGaeyyXICTaaGymaiaaicdajuaGdaahaaWcbeqaaKqzadGaeyOe I0IaaG4maaaajugibiabg2da9iaaiMdacaaIXaGaaGyoaiaaiodaca aI3aGaaiOlaiaaigdacaaI0aGaeyyXICTaaGymaiaaicdajuaGdaah aaWcbeqaaKqzadGaeyOeI0IaaG4maaaajuaGdaWgaaWcbaaabeaaju gibiaab2gacaqGTbGaaeisaiaabEgacqGHijYUcaaI5aGaaGOmaKqb aoaaBaaaleaaaeqaaKqzGeGaaeyBaiaab2gacaqGibGaae4zaaaa@70F4@   (29-a)

Moreover, in the case of a greater physiologic driving force (F2), the value of the pressure (P2) in the circulation will increase:

P 2 = 14709.975 N/ m 2 7.5 10 3 =110324.8125 10 3 mmHg 110 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaaigdacaaI 0aGaaG4naiaaicdacaaI5aGaaiOlaiaaiMdacaaI3aGaaGynaKqbao aaBaaaleaaaeqaaKqzGeGaamOtaiaac+cacaWGTbqcfa4aaWbaaSqa beaajugWaiaaikdaaaqcLbsacqGHflY1caaI3aGaaiOlaiaaiwdacq GHflY1caaIXaGaaGimaSWaaWbaaeqabaqcLbmacqGHsislcaaIZaaa aKqzGeGaeyypa0JaaGymaiaaigdacaaIWaGaaG4maiaaikdacaaI0a GaaiOlaiaaiIdacaaIXaGaaGOmaiaaiwdacqGHflY1caaIXaGaaGim aSWaaWbaaeqabaqcLbmacqGHsislcaaIZaaaaKqzGeGaaeyBaiaab2 gacaqGibGaae4zaiabgIKi7kaaigdacaaIXaGaaGimaKqbaoaaBaaa leaaaeqaaKqzGeGaaeyBaiaab2gacaqGibGaae4zaaaa@713F@   (29-b)

Depending on the individual parameters (F, A), the pressure (P) in the average human circulation can take any value between 92 mmHg and 110 mmHg. Calculated with a simple mathematical average (101mmHg), this corresponds to 120 mmHg systolic and 80 mmHg diastolic data (or, in another variation, a blood pressure of 125/75 mm Hg). The latter higher average pressure (110mmHg) corresponds to the upper limit of normal blood pressure, i.e., blood pressure of 135/85 mmHg. These values correspond to the physiological measurement data determined by the invasive internal catheter method or by indirect external blood pressure detection.21

Gravitational work performed during a single rotation of the average blood circulation

The engine of the toroidal average human circulation is the function of the heart pump, which is, in a figurative sense, the equivalent of the driving force of gravity in the human body. The work required to maintain the flow (W1) is the product of the force (F1) and the blood flow length (s1):

W 1 = F 1 s 1 =17.1616N1.25m= 21.452 Nm= 21.452 J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaadAealmaa BaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyyXICTaam4CaSWaaSbaae aajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaIXaGaaG4naiaac6ca caaIXaGaaGOnaiaaigdacaaI2aGaamOtaiabgwSixlaaigdacaGGUa GaaGOmaiaaiwdacaWGTbGaeyypa0JaaGOmaiaaigdacaGGUaGaaGin aiaaiwdacaaIYaqcfa4aaSbaaSqaaaqabaqcLbsacaWGobGaamyBai abg2da9iaaikdacaaIXaGaaiOlaiaaisdacaaI1aGaaGOmaKqbaoaa BaaaleaaaeqaaKqzGeGaamOsaaaa@6199@   (30-a)

In the other case, when the greater force prevails (F2), the amount of work (W2) increases:

W 2 = F 2 s 2 = 20.593965 N1.5m= 30.5967 Nm= 30.8909 J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb WcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaadAeajuaG daWgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyyXICTaam4CaSWaaS baaeaajugWaiaaikdaaSqabaqcLbsacqGH9aqpcaaIYaGaaGimaiaa c6cacaaI1aGaaGyoaiaaiodacaaI5aGaaGOnaiaaiwdajuaGdaWgaa Wcbaaabeaajugibiaad6eacqGHflY1caaIXaGaaiOlaiaaiwdacaWG TbGaeyypa0JaaG4maiaaicdacaGGUaGaaGynaiaaiMdacaaI2aGaaG 4naKqbaoaaBaaaleaaaeqaaKqzGeGaamOtaiaad2gacqGH9aqpcaaI ZaGaaGimaiaac6cacaaI4aGaaGyoaiaaicdacaaI5aqcfa4aaSbaaS qaaaqabaqcLbsacaWGkbaaaa@65CF@   (30-b)

Therefore, the work of the heart maintaining the average human blood circulation, which is equivalent to the work of the gravitational attractive force, can vary between 21.4 J and 30.9 J at rest under physiological conditions.

The output of the heart for a single circulation time of the average blood circulation

The performance of the heart can be determined based on the estimation of the two extreme values of the maximum and minimum circulation speed (in the aorta and capillaries) existing in the human body. This limited average value (5 cm/s), approximated from above and below towards the center, can then be applied to the time of one turn (t1=25 and t2=30 sec) [2,15]. In this way, the power (P1(watt)) of the work (W1) of the driving force (F1) required to maintain the average blood flow velocity (vaverage) is:

P 1(watt) = m 1 g s 1 t 2π(25) = F s 1 t 2π(25) = W 1 t 2π(25) = 17.1616 kg m s 2 1.25m 25s = 21.452Nm 25s = 0.858 J/s= 0.858 W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb qcfa4aaSbaaSqaaKqzadGaaGymaiaacIcacaWG3bGaamyyaiaadsha caWG0bGaaiykaaWcbeaajugibiabg2da9Kqbaoaalaaakeaajugibi aad2galmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyyXICTaam4z aiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaaleqaaaGcbaqcLb sacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8aWjaacIcacaaIYaGa aGynaiaacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGe GaamOraiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaaleqaaaGc baqcLbsacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8aWjaacIcaca aIYaGaaGynaiaacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqa aKqzGeGaam4vaKqbaoaaBaaaleaajugWaiaaigdaaSqabaaakeaaju gibiaadshajuaGdaWgaaWcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaa ikdacaaI1aGaaiykaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcba qcLbsacaaIXaGaaG4naiaac6cacaaIXaGaaGOnaiaaigdacaaI2aqc fa4aaSbaaSqaaaqabaqcLbsacaWGRbGaam4zaKqbaoaalaaakeaaju gibiaad2gaaOqaaKqzGeGaam4CaSWaaWbaaeqabaqcLbmacaaIYaaa aaaajugibiabgwSixlaaigdacaGGUaGaaGOmaiaaiwdacaWGTbaake aajugibiaaikdacaaI1aGaam4CaaaacqGH9aqpjuaGdaWcaaGcbaqc LbsacaaIYaGaaGymaiaac6cacaaI0aGaaGynaiaaikdacaWGobGaam yBaaGcbaqcLbsacaaIYaGaaGynaiaadohaaaGaeyypa0JaaGimaiaa c6cacaaI4aGaaGynaiaaiIdajuaGdaWgaaWcbaaabeaajugibiaadQ eacaGGVaGaam4Caiabg2da9iaaicdacaGGUaGaaGioaiaaiwdacaaI 4aqcfa4aaSbaaSqaaaqabaqcLbsacaWGxbaaaa@AC4B@   (31-a)

(Since 1 kg·1 m2·1 s‒2 = 1 J, and 1 Joule per second [J/s] = 1 Watt /W/.)

In the other case, with higher work (W2) but higher single turaround flow time (t2π(30)), the power (P2(watt)) decreases slightly.

P 2(watt) = W 2 t 2π(30) = 20.593965 J 30 s = 0.6864 W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqaaKqzadGaaGOmaiaacIcacaWG3bGaamyyaiaadshacaWG 0bGaaiykaaWcbeaajugibiabg2da9KqbaoaalaaakeaajugibiaadE falmaaBaaabaqcLbmacaaIYaaaleqaaaGcbaqcLbsacaWG0bqcfa4a aSbaaSqaaKqzadGaaGOmaiabec8aWjaacIcacaaIZaGaaGimaiaacM caaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGOmaiaa icdacaGGUaGaaGynaiaaiMdacaaIZaGaaGyoaiaaiAdacaaI1aqcfa 4aaSbaaSqaaaqabaqcLbsacaWGkbaakeaajugibiaaiodacaaIWaqc fa4aaSbaaSqaaaqabaqcLbsacaWGZbaaaiabg2da9iaaicdacaGGUa GaaGOnaiaaiIdacaaI2aGaaGinaKqbaoaaBaaaleaaaeqaaKqzGeGa am4vaaaa@64B5@   (31-b)

Moreover, the output for a single heart contraction (t1contraction) at average circulatory velocity (vaverage), aortic blood flow speed (vaorta), and capillary blood flow rate (vcapillary) is as follows:

P 1(watt) = m sv g s 1 t 2π(25) = m sv g v average =0.07kg9.80665 m s 2 0.05 m s =0.03432 kg m 2 s 3 =0.03432 J s 0.034 W , but: P 1(watt) = m sv g s 1 t 2π(25) = m sv g v aorta =0.070kg9.80665 m s 2 1.5 m s =1.02969J/s 1.03 W , and: P 1(watt) = m sv g s 1 t 2π(25) = m sv g v capillary =0.070kg9.80665 m s 2 0.001 m s = 0.000686 W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadcfalmaaBaaabaqcLbmacaaIXaGaaiikaiaadEhacaWGHbGaamiD aiaadshacaGGPaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGe GaamyBaKqbaoaaBaaaleaajugWaiaadohacaWG2baaleqaaKqzGeGa eyyXICTaam4zaiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaale qaaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8aWjaa cIcacaaIYaGaaGynaiaacMcaaSqabaaaaKqzGeGaeyypa0JaamyBaK qbaoaaBaaaleaajugWaiaadohacaWG2baaleqaaKqzGeGaeyyXICTa am4zaiabgwSixlaadAhalmaaBaaabaqcLbmacaWGHbGaamODaiaadw gacaWGYbaeaaaaaaaaa8qacaWGHbGaam4zaiaadwgaaSWdaeqaaKqz GeGaeyypa0JaaGimaiaac6cacaaIWaGaaG4naiaadUgacaWGNbGaey yXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdacaaI2aGaaGynaKqb aoaalaaakeaajugibiaad2gaaOqaaKqzGeGaam4CaSWaaWbaaeqaba qcLbmacaaIYaaaaaaajugibiabgwSixlaaicdacaGGUaGaaGimaiaa iwdajuaGdaWcaaGcbaqcLbsacaWGTbaakeaajugibiaadohaaaGaey ypa0JaaGimaiaac6cacaaIWaGaaG4maiaaisdacaaIZaGaaGOmaKqb aoaalaaakeaajugibiaadUgacaWGNbGaamyBaSWaaWbaaeqabaqcLb macaaIYaaaaaGcbaqcLbsacaWGZbWcdaahaaqabeaajugWaiaaioda aaaaaKqzGeGaeyypa0JaaGimaiaac6cacaaIWaGaaG4maiaaisdaca aIZaGaaGOmaKqbaoaalaaakeaajugibiaadQeaaOqaaKqzGeGaam4C aaaacqGHijYUcaaIWaGaaiOlaiaaicdacaaIZaGaaGinaKqbaoaaBa aaleaaaeqaaKqzGeGaam4vaKqbaoaaBaaaleaaaeqaaKqzGeGaaiil aaGcbaqcLbsacaWGIbGaamyDaiaadshacaGG6aaakeaajugibiaadc fajuaGdaWgaaWcbaqcLbmacaaIXaGaaiikaiaadEhacaWGHbGaamiD aiaadshacaGGPaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGe GaamyBaKqbaoaaBaaaleaajugWaiaadohacaWG2baaleqaaKqzGeGa eyyXICTaam4zaiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaale qaaaGcbaqcLbsacaWG0bqcfa4aaSbaaSqaaKqzadGaaGOmaiabec8a WjaacIcacaaIYaGaaGynaiaacMcaaSqabaaaaKqzGeGaeyypa0Jaam yBaSWaaSbaaeaajugWaiaadohacaWG2baaleqaaKqzGeGaeyyXICTa am4zaiabgwSixlaadAhalmaaBaaabaqcLbmacaWGHbGaam4Baiaadk hacaWG0bGaamyyaaWcbeaajugibiabg2da9iaaicdacaGGUaGaaGim aiaaiEdacaaIWaGaam4AaiaadEgacqGHflY1caaI5aGaaiOlaiaaiI dacaaIWaGaaGOnaiaaiAdacaaI1aqcfa4aaSaaaOqaaKqzGeGaamyB aaGcbaqcLbsacaWGZbWcdaahaaqabeaajugWaiaaikdaaaaaaKqzGe GaeyyXICTaaGymaiaac6cacaaI1aqcfa4aaSaaaOqaaKqzGeGaamyB aaGcbaqcLbsacaWGZbaaaiabg2da9iaaigdacaGGUaGaaGimaiaaik dacaaI5aGaaGOnaiaaiMdacaWGkbGaai4laiaadohacqGHijYUcaaI XaGaaiOlaiaaicdacaaIZaqcfa4aaSbaaSqaaaqabaqcLbsacaWGxb qcfa4aaSbaaSqaaaqabaqcLbsacaGGSaaakeaajugibiaadggacaWG UbGaamizaiaacQdaaOqaaKqzGeGaamiuaSWaaSbaaeaajugWaiaaig dacaGGOaGaam4DaiaadggacaWG0bGaamiDaiaacMcaaSqabaqcLbsa cqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGTbWcdaWgaaqaaKqzadGaam 4CaiaadAhaaSqabaqcLbsacqGHflY1caWGNbGaeyyXICTaam4CaSWa aSbaaeaajugWaiaaigdaaSqabaaakeaajugibiaadshajuaGdaWgaa WcbaqcLbmacaaIYaGaeqiWdaNaaiikaiaaikdacaaI1aGaaiykaaWc beaaaaqcLbsacqGH9aqpcaWGTbWcdaWgaaqaaKqzadGaam4CaiaadA haaSqabaqcLbsacqGHflY1caWGNbGaeyyXICTaamODaKqbaoaaBaaa leaajugWaiaadogacaWGHbGaamiCaiaadMgacaWGSbGaamiBaiaadg gacaWGYbGaamyEaaWcbeaajugibiabg2da9iaaicdacaGGUaGaaGim aiaaiEdacaaIWaGaam4AaiaadEgacqGHflY1caaI5aGaaiOlaiaaiI dacaaIWaGaaGOnaiaaiAdacaaI1aqcfa4aaSaaaOqaaKqzGeGaamyB aaGcbaqcLbsacaWGZbqcfa4aaWbaaSqabKqaGfaajugWaiaaikdaaa aaaKqzGeGaeyyXICTaaGimaiaac6cacaaIWaGaaGimaiaaigdajuaG daWcaaGcbaqcLbsacaWGTbaakeaajugibiaadohaaaGaeyypa0JaaG imaiaac6cacaaIWaGaaGimaiaaicdacaaI2aGaaGioaiaaiAdajuaG daWgaaWcbaaabeaajugibiaadEfaaaaa@7C43@   (32-a)

These are therefore speed-dependent values and indicate how much the heart's performance is at certain sections of the vascular path in relation to a single circulation period of the blood flow. At the average circulation speed (5 cm/s), the power per total circulation time is medium, between the power of a single contraction of the heart21 and the power in the capillaries.

However, performance (Pwatt) relative to average circulation time (t) for average circulation (vaverage) and aortic (vaorta) and capillary vasculature flow rates (vcapillary) is as follows:

P 1(watt) = V 2π(25) t 2π(25) = n 25 m sv g s 1 t 2π(25) =25 m sv g v average =250.07kg9.80665 m s 2 0.05 m s =0.858 kg m 2 s 3 = 0.858 W , but: P 1(watt) = V 2π(25) t 2π(25) = n 25 m sv g s 1 t 2π(25) =25 m sv g v aorta =250.070kg9.80665 m s 2 1.5 m s =25 .74225 W , and: P 1(watt) = V 2π(25) t 2π(25) = n 25 m sv g s 1 t 2π(25) =25 m sv g v capillary =250.070kg9.80665 m s 2 0.001 m s = 0.01716 W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadcfalmaaBaaabaqcLbmacaaIXaGaaiikaiaadEhacaWGHbGaamiD aiaadshacaGGPaaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGe GaamOvaSWaaSbaaeaajugWaiaaikdacqaHapaCcaGGOaGaaGOmaiaa iwdacaGGPaaaleqaaaGcbaqcLbsacaWG0bWcdaWgaaqaaKqzadGaaG Omaiabec8aWjaacIcacaaIYaGaaGynaiaacMcaaSqabaaaaKqzGeGa eyypa0tcfa4aaSaaaOqaaKqzGeGaamOBaKqbaoaaBaaaleaajugWai aaikdacaaI1aaaleqaaKqzGeGaeyyXICTaamyBaKqbaoaaBaaaleaa jugWaiaadohacaWG2baaleqaaKqzGeGaeyyXICTaam4zaiabgwSixl aadohalmaaBaaabaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWG0bqc fa4aaSbaaSqaaKqzadGaaGOmaiabec8aWjaacIcacaaIYaGaaGynai aacMcaaSqabaaaaKqzGeGaeyypa0JaaGOmaiaaiwdacqGHflY1caWG TbWcdaWgaaqaaKqzadGaam4CaiaadAhaaSqabaqcLbsacqGHflY1ca WGNbGaeyyXICTaamODaSWaaSbaaeaajugWaiaadggacaWG2bGaamyz aiaadkhaqaaaaaaaaaWdbiaadggacaWGNbGaamyzaaWcpaqabaqcLb sacqGH9aqpcaaIYaGaaGynaiabgwSixlaaicdacaGGUaGaaGimaiaa iEdacaWGRbGaam4zaiabgwSixlaaiMdacaGGUaGaaGioaiaaicdaca aI2aGaaGOnaiaaiwdajuaGdaWcaaGcbaqcLbsacaWGTbaakeaajugi biaadohalmaaCaaabeqaaKqzadGaaGOmaaaaaaqcLbsacqGHflY1ca aIWaGaaiOlaiaaicdacaaI1aqcfa4aaSaaaOqaaKqzGeGaamyBaaGc baqcLbsacaWGZbaaaiabg2da9iaaicdacaGGUaGaaGioaiaaiwdaca aI4aqcfa4aaSaaaOqaaKqzGeGaam4AaiaadEgacaWGTbqcfa4aaWba aSqabeaajugWaiaaikdaaaaakeaajugibiaadohajuaGdaahaaWcbe qaaKqzadGaaG4maaaaaaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaiIda caaI1aGaaGioaKqbaoaaBaaaleaaaeqaaKqzGeGaam4vaKqbaoaaBa aaleaaaeqaaKqzGeGaaiilaaGcbaqcLbsacaWGIbGaamyDaiaadsha caGG6aaakeaajugibiaadcfalmaaBaaabaqcLbmacaaIXaGaaiikai aadEhacaWGHbGaamiDaiaadshacaGGPaaaleqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaamOvaSWaaSbaaeaajugWaiaaikdacqaHap aCcaGGOaGaaGOmaiaaiwdacaGGPaaaleqaaaGcbaqcLbsacaWG0bqc fa4aaSbaaSqaaKqzadGaaGOmaiabec8aWjaacIcacaaIYaGaaGynai aacMcaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOB aSWaaSbaaeaajugWaiaaikdacaaI1aaaleqaaKqzGeGaeyyXICTaam yBaSWaaSbaaeaajugWaiaadohacaWG2baaleqaaKqzGeGaeyyXICTa am4zaiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaaleqaaaGcba qcLbsacaWG0bWcdaWgaaqaaKqzadGaaGOmaiabec8aWjaacIcacaaI YaGaaGynaiaacMcaaSqabaaaaKqzGeGaeyypa0JaaGOmaiaaiwdacq GHflY1caWGTbWcdaWgaaqaaKqzadGaam4CaiaadAhaaSqabaqcLbsa cqGHflY1caWGNbGaeyyXICTaamODaKqbaoaaBaaaleaajugWaiaadg gacaWGVbGaamOCaiaadshacaWGHbaaleqaaKqzGeGaeyypa0JaaGOm aiaaiwdacqGHflY1caaIWaGaaiOlaiaaicdacaaI3aGaaGimaiaadU gacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdacaaI 2aGaaGynaKqbaoaalaaakeaajugibiaad2gaaOqaaKqzGeGaam4CaS WaaWbaaeqabaqcLbmacaaIYaaaaaaajugibiabgwSixlaaigdacaGG UaGaaGynaKqbaoaalaaakeaajugibiaad2gaaOqaaKqzGeGaam4Caa aacqGH9aqpcaqGYaGaaeynaiaab6cacaqG3aGaaeinaiaabkdacaqG YaGaaeynaKqbaoaaBaaaleaaaeqaaKqzGeGaam4vaKqbaoaaBaaale aaaeqaaKqzGeGaaiilaaGcbaqcLbsacaWGHbGaamOBaiaadsgacaGG 6aaakeaajugibiaadcfalmaaBaaabaqcLbmacaaIXaGaaiikaiaadE hacaWGHbGaamiDaiaadshacaGGPaaaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaamOvaSWaaSbaaeaajugWaiaaikdacqaHapaCca GGOaGaaGOmaiaaiwdacaGGPaaaleqaaaGcbaqcLbsacaWG0bWcdaWg aaqaaKqzadGaaGOmaiabec8aWjaacIcacaaIYaGaaGynaiaacMcaaS qabaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOBaKqbaoaa BaaaleaajugWaiaaikdacaaI1aaaleqaaKqzGeGaeyyXICTaamyBaK qbaoaaBaaaleaajugWaiaadohacaWG2baaleqaaKqzGeGaeyyXICTa am4zaiabgwSixlaadohalmaaBaaabaqcLbmacaaIXaaaleqaaaGcba qcLbsacaWG0bqcfa4aaSbaaSqaaKqzadGaaGOmaiabec8aWjaacIca caaIYaGaaGynaiaacMcaaSqabaaaaKqzGeGaeyypa0JaaGOmaiaaiw dacqGHflY1caWGTbqcfa4aaSbaaSqaaKqzadGaam4CaiaadAhaaSqa baqcLbsacqGHflY1caWGNbGaeyyXICTaamODaSWaaSbaaeaajugWai aadogacaWGHbGaamiCaiaadMgacaWGSbGaamiBaiaadggacaWGYbGa amyEaaWcbeaajugibiabg2da9iaaikdacaaI1aGaeyyXICTaaGimai aac6cacaaIWaGaaG4naiaaicdacaWGRbGaam4zaiabgwSixlaaiMda caGGUaGaaGioaiaaicdacaaI2aGaaGOnaiaaiwdajuaGdaWcaaGcba qcLbsacaWGTbaakeaajugibiaadohalmaaCaaabeqaaKqzadGaaGOm aaaaaaqcLbsacqGHflY1caaIWaGaaiOlaiaaicdacaaIWaGaaGymaK qbaoaalaaakeaajugibiaad2gaaOqaaKqzGeGaam4CaaaacqGH9aqp caaIWaGaaiOlaiaaicdacaaIXaGaaG4naiaaigdacaaI2aqcfa4aaS baaSqaaaqabaqcLbsacaWGxbaaaaa@CCF7@   (32-b)

In contrast to the previous ones (Eq.32.a), due to the relatively low speed of the average blood circulation (5 cm/s), the power per one revolution of the circulation (t) will be similar to the power of a single contraction of the heart (t1contraction). At the flow rate of the aorta and capillaries, the performance would be so high without fractionation that the heart would not be able to perform this and the capillary system would be damaged.

Based on the physical hemodynamic parameters defined so far, the following average human blood circulation model can be developed.

Figure 2 The figure shows a torus-shaped representation of the average human blood circulation. The individual parameters /radius (r), volume (V), cross-section area (A), force (F), work (W), press (PmmHg), power (Pwatt)/ were determined from the velocity of the average circulation (vaverage), as well as from the time (t=25s-30s) and distance data (C =1.25m-1.5m) determined by circulation testing procedures.

Figure 2 The figure shows a torus-shaped representation of the average human blood circulation.

The above data refer to the average human blood circulation as a whole. The time interval of the systemic and pulmonary circulation (t2π,systemic=25s and t2π,pulmonary=4s) can be accurately determined with the circulation testing procedures known from medical physiology in different ways, but with tests leading to similar results, such as with dye or heat dilution, as well as with radioisotope methods. Based on the closely related circulating blood volumes (V2π,systemic and V2π,pulmonary), as well as the speed of the average human blood circulation (vaverage), a small and large blood circulation, which ensures a continuous one-way blood flow, can be distinguished. In possession of these data, the originally single round blood flow can be separated into two separate ones, which represent the blood circulation in refined detail.

Separation of pulmonary and systemic circulation

If we extract a section from the torus-shaped average human blood circulation, the length of which decreases in proportion to the circulation time (t), the intensity does not change with the same flow cross-sectional area (I=A∙v).

The size (s, C) resulting from the single circulation time (t2π,torus) and average speed of the blood circulation (vaverage,torus) also includes the pulmonary circulation (tpulmonary,spulmonary,vaverage pulmonary). By subtracting the length (spulmonary) and volume of the pulmonary circulation (Vpulmonary) from the length (storus) and volume of the average human circulation (Vaverage), we obtain the length and volume of the systemic average circulation (C systemic = C torus – C pulmonary and V2π,systemic = V2π,torus - V2π,pulmonary). In this way, by separating the toroidal blood flow into two parts, a pulmonary and a systemic circulation, the highest degree of Darwinian evolution is realized, which culminates in the human circulatory system.

Similar to the toroidal average circulation, the velocity and cross-section of the pulmonary circulation should be considered similar (v = 5 cm/s and A = 14 cm2). This is necessary for the law of continuity to apply. If this law did not work, disturbances would occur in the cardio-pulmonary system and various disease states and related disease symptoms would occur.

In this way, knowing the time of pulmonary circulation (t,pulmonary=3.98-4.47-4.67s).22,23 which means the time of blood flow from the right ventricle to the left atrium (Cpulmonary), the length (s), radius (r) and cross sectional area (A) of the average pulmonary circulation can also be determined.

Figure 3 Representation of the average human blood circulation in the form of a "double torus", which approximately shows a ratio of six times or one sixth in relation to each other in terms of their various parameters. The figure shows the distribution of the blood volume per cycle (Vpulmonary = 0.28dm3 and Vsystemic = 1.4-1.8 dm3) in proportion to the circulation times (t2π,pulmonary = 4s and t2π,systemic = 21-26s). This blood flow model, which can also be called the "folded figure of eight", shows unique parameters /radius (r), circumference (C), volume (V), cross-sectional area (A), force (F), work (W), pressure (PmmHg), power (PWatt)/ for both blood circuits, i.e., the pulmonary and systemic blood circuits. These are consistent with data from medical circulation testing procedures and clinical heart ultrasound (echocardiography) studies.

Figure 3 Representation of the average human blood circulation in the form of a "double torus", which approximately shows a ratio of six times or one sixth in relation to each other in terms of their various parameters.

Based on the two blood volumes, these average blood pressure values persist between 77.2 mmHg and 95.6 mmHg. In a state of rest, in the case of physiological conditions, any value between the two values can exist. These correspond approximately to blood pressure values of 92/62 mmHg and 120/70 mmHg, which are also limit values. In cases lower than the former, we can talk about hypotonic states of various origins, and in cases higher than the latter, we can talk about incipient hypertension.21

Parameters of the average pulmonary circulation

Similar to the above, the two obligatory flow laws apply to the average pulmonary circulation the path of circulating blood:

As t 2π =Av, so: s pulmonary t 2π(pulmonary) = v average , and : s pulmonary = v average t 2π(pulmonary) , as: s pulmonary = C pulmonar y circumference , C pulmonar y circumference =5 cm s 4s= 20 cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGbbGaeyyXICTaam4CaaGcbaqcLbsacaWG0bqc fa4aaSbaaSqaaKqzadGaaGOmaiabec8aWbWcbeaaaaqcLbsacaaMc8 Uaeyypa0JaamyqaiabgwSixlaadAhacaaMc8UaaGPaVlaacYcajuaG daqfqaGcbeWcbaaabeqdbaaaaKqbaoaavabakeqaleaaaeqaneaaaa qcLbsacaWGZbGaam4BaiaacQdajuaGdaqfqaGcbeWcbaaabeqdbaaa aKqbaoaalaaakeaajugibiaadohalmaaBaaabaqcLbmacaWGWbGaam yDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqa baaakeaajugibiaadshalmaaBaaabaqcLbmacaaIYaGaeqiWdaNaai ikaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWG YbGaamyEaiaacMcaaSqabaaaaKqzGeGaaGPaVlabg2da9iaadAhalm aaBaaabaqcLbmacaWGHbGaamODaiaadwgacaWGYbGaamyyaiaadEga caWGLbaaleqaaKqbaoaaBaaaleaaaeqaaKqzGeGaaiilaKqbaoaava bakeqaleaaaeqaneaaaaqcLbsacaWGHbGaamOBaiaadsgacaGG6aqc fa4aaSbaaSqaaaqabaqcfa4aaubeaOqabSqaaaqab0qaaaaajugibi aadohalmaaBaaabaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4B aiaad6gacaWGHbGaamOCaiaadMhaaSqabaqcLbsacaaMc8Uaeyypa0 JaamODaSWaaSbaaeaajugWaiaadggacaWG2bGaamyzaiaadkhacaWG HbGaam4zaiaadwgaaSqabaqcLbsacqGHflY1caWG0bqcfa4aaSbaaS qaaKqzadGaaGOmaiabec8aWjaacIcacaWGWbGaamyDaiaadYgacaWG TbGaam4Baiaad6gacaWGHbGaamOCaiaadMhacaGGPaaaleqaaKqbao aaBaaaleaaaeqaaKqzGeGaaiilaaGcbaqcLbsacaWGHbGaam4Caiaa cQdajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaam4CaSWaaSbaae aajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadgga caWGYbGaamyEaaWcbeaajugibiabg2da9iaadoeajuaGdaWgaaWcba qcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGa amOCaiaadMhalmaaBaaameaaaeqaaKqzadGaam4yaiaadMgacaWGYb Gaam4yaiaadwhacaWGTbGaamOzaiaadwgacaWGYbGaamyzaiaad6ga caWGJbGaamyzaaWcbeaajuaGdaWgaaWcbaaabeaajugibiaacYcaju aGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaam4qaKqbaoaaBaaaleaa jugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggaca WGYbGaamyEaSWaaSbaaWqaaaqabaqcLbmacaWGJbGaamyAaiaadkha caWGJbGaamyDaiaad2gacaWGMbGaamyzaiaadkhacaWGLbGaamOBai aadogacaWGLbaaleqaaKqzGeGaeyypa0JaaGynaKqbaoaalaaakeaa jugibiaadogacaWGTbaakeaajugibiaadohaaaGaeyyXICTaaGinai aadohacqGH9aqpcaaIYaGaaGimaKqbaoaaBaaaleaaaeqaaKqzGeGa am4yaiaad2gaaaaa@0467@   (33)

From the length of the pulmonary circumference (Cpulmonary circumference), the radius of the pulmonary circulation (rpulmonary circulation) is as follows:

C=2r π , so r pulmonar y circulation = C pulmonar y circumference 2π = 20cm 6.283184 =3.1831cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaeyypa0JaaGOmaiabgwSixlaadkhacqGHflY1cqaHapaCjuaGdaWg aaWcbaaabeaajugibiaacYcajuaGdaWgaaWcbaaabeaajugibiaado hacaWGVbqcfa4aaubeaOqabSqaaaqab0qaaaaajugibiaadkhajuaG daWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6 gacaWGHbGaamOCaiaadMhalmaaBaaameaaaeqaaKqzadGaam4yaiaa dMgacaWGYbGaam4yaiaadwhacaWGSbGaamyyaiaadshacaWGPbGaam 4Baiaad6gaaSqabaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWG dbWcdaWgaaqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+gaca WGUbGaamyyaiaadkhacaWG5bWcdaWgaaadbaaabeaajugWaiaadoga caWGPbGaamOCaiaadogacaWG1bGaamyBaiaadAgacaWGLbGaamOCai aadwgacaWGUbGaam4yaiaadwgaaSqabaaakeaajugibiaaikdacqGH flY1cqaHapaCaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaeOmaiaabc dacaWGJbGaamyBaaGcbaqcLbsacaqG2aGaaeOlaiaabkdacaqG4aGa ae4maiaabgdacaqG4aGaaeinaaaacqGH9aqpcaqGZaGaaeOlaiaabg dacaqG4aGaae4maiaabgdacaqGJbGaaeyBaaaa@9180@   (34)

The magnitude of the average systemic circulation can be determined by subtracting the length of the pulmonary circulation from the toroidal circulation:

s average human circulation1 s average huma n pulmonar y circulation = s average human systemi c circulation1 =1.25m0.2m=1.05m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadohajuaGdaWgaaWcbaqcLbmaqaaaaaaaaaWdbiaadggacaWG2bGa amyzaiaadkhacaWGHbGaam4zaiaadwgacaqGGaGaamiAaiaadwhaca WGTbGaamyyaiaad6gacaqGGaGaam4yaiaadMgacaWGYbGaam4yaiaa dwhacaWGSbGaamyyaiaadshacaWGPbGaam4Baiaad6gacaaIXaaal8 aabeaajugibiabgkHiTiaadohalmaaBaaabaqcLbmapeGaamyyaiaa dAhacaWGLbGaamOCaiaadggacaWGNbGaamyzaiaabccacaWGObGaam yDaiaad2gacaWGHbGaamOBaSWaaSbaaWqaaaqabaqcLbmacaWGWbGa amyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhalm aaBaaameaaaeqaaKqzadGaam4yaiaadMgacaWGYbGaam4yaiaadwha caWGSbGaamyyaiaadshacaWGPbGaam4Baiaad6gaaSWdaeqaaaGcba qcLbsacqGH9aqpcaWGZbqcfa4aaSbaaSqaaKqzadWdbiaadggacaWG 2bGaamyzaiaadkhacaWGHbGaam4zaiaadwgacaqGGaGaamiAaiaadw hacaWGTbGaamyyaiaad6gacaqGGaGaam4CaiaadMhacaWGZbGaamiD aiaadwgacaWGTbGaamyAaiaadogalmaaBaaameaaaeqaaKqzadGaam 4yaiaadMgacaWGYbGaam4yaiaadwhacaWGSbGaamyyaiaadshacaWG PbGaam4Baiaad6gacaaIXaaal8aabeaajugibiabg2da9iaaigdaca GGUaGaaGOmaiaaiwdacaWGTbGaeyOeI0IaaGimaiaac6cacaaIYaGa amyBaiabg2da9iaaigdacaGGUaGaaGimaiaaiwdacaWGTbaaaaa@AA2B@   (35-a)

The length of the average systemic circulation (Eq.73) in the figure-8 circulation model based on the length of the larger average toroidal circulation will be as follows:

s average human circulation2 s average human pulmonar y circulation = s average human systemi c circulation2 =1.5m0.2m=1.3m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaWgaaqaaKqzadaeaaaaaaaaa8qacaWGHbGaamODaiaadwgacaWG YbGaamyyaiaadEgacaWGLbGaaeiiaiaadIgacaWG1bGaamyBaiaadg gacaWGUbGaaeiiaiaadogacaWGPbGaamOCaiaadogacaWG1bGaamiB aiaadggacaWG0bGaamyAaiaad+gacaWGUbGaaGOmaaWcpaqabaqcLb sacqGHsislcaWGZbqcfa4aaSbaaSqaaKqzadWdbiaadggacaWG2bGa amyzaiaadkhacaWGHbGaam4zaiaadwgacaqGGaGaamiAaiaadwhaca WGTbGaamyyaiaad6gacaqGGaGaamiCaiaadwhacaWGSbGaamyBaiaa d+gacaWGUbGaamyyaiaadkhacaWG5bWcdaWgaaadbaaabeaajugWai aadogacaWGPbGaamOCaiaadogacaWG1bGaamiBaiaadggacaWG0bGa amyAaiaad+gacaWGUbaal8aabeaajugibiabg2da9iaadohajuaGda WgaaWcbaqcLbmapeGaamyyaiaadAhacaWGLbGaamOCaiaadggacaWG NbGaamyzaiaabccacaWGObGaamyDaiaad2gacaWGHbGaamOBaiaabc cacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4y aSWaaSbaaWqaaaqabaqcLbmacaWGJbGaamyAaiaadkhacaWGJbGaam yDaiaadYgacaWGHbGaamiDaiaadMgacaWGVbGaamOBaiaaikdaaSWd aeqaaKqzGeGaeyypa0JaaGymaiaac6cacaaI1aGaamyBaiabgkHiTi aaicdacaGGUaGaaGOmaiaad2gacqGH9aqpcaqGXaGaaeOlaiaaboda caWGTbaaaa@A7D2@   (35-b)

The volume (Vpulmonary ≈ mpulmonary) of blood (in the figure-8 circulation) passing through the smaller cross-section in the average pulmonary circulation expressed in kilograms is as follows:

V pulmonary = A pulmonary s pulmonar y circulation =0.0014 m 2 0.2m=0 .00028 m 3 0 .28 k g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaOpGqSvxza8qacaWGwbWcdaWgaaqaaKqzadGaamiCaiaadwhacaWG SbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaKqzGe Wdaiabg2da98qacaWGbbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwha caWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaK qzGeGaeyyXICTaam4CaKqbaoaaBaaaleaajugWaiaadchacaWG1bGa amiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaSWaaSbaaW qaaaqabaqcLbmacaWGJbGaamyAaiaadkhacaWGJbGaamyDaiaadYga caWGHbGaamiDaiaadMgacaWGVbGaamOBaaWcbeaajugib8aacqGH9a qpcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaisdacaWGTbWcdaah aaqabeaajugWaiaaikdaaaqcLbsacqGHflY1caaIWaGaaiOlaiaaik dacaWGTbGaeyypa0Jaaeimaiaab6cacaqGWaGaaeimaiaabcdacaqG YaGaaeioaKqbaoaaBaaaleaaaeqaaKqzGeGaamyBaSWaaWbaaeqaba qcLbmacaaIZaaaaKqzGeGaeyisIS7dbiaabcdacaqGUaGaaeOmaiaa bIdajuaGdaWgaaWcbaaabeaajugibiaadUgacaWGNbqcfa4damaaBa aaleaaaeqaaaaa@8D55@   (36)

Since this mass (m) is moved by gravity (g) along the circumference (s, C), the force (F):

F=ma=mg , so F pulmonary = 0.28 kg9.80665m s 2 =2 .74586 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb GaaGPaVlabg2da9iaad2gacqGHflY1caWGHbGaeyypa0JaamyBaiab gwSixlaadEgajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaaiilaK qbaoaavabakeqaleaaaeqaneaaaaqcLbsacaWGZbGaam4BaKqbaoaa vabakeqaleaaaeqaneaaaaqcfa4aaubeaOqabSqaaaqab0qaaaaaju gibabbaaaaaG+acXwDLbWdbiaadAealmaaBaaabaqcLbmacaWGWbGa amyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaS qabaqcLbsapaGaeyypa0JaaGimaiaac6cacaaIYaGaaGioaKqbaoaa BaaaleaaaeqaaKqzGeGaam4AaiaadEgacqGHflY1caaI5aGaaiOlai aaiIdacaaIWaGaaGOnaiaaiAdacaaI1aGaamyBaiabgwSixlaadoha lmaaCaaabeqaaKqzadGaeyOeI0IaaGOmaaaajugibiabg2da98qaca qGYaGaaeOlaiaabEdacaqG0aGaaeynaiaabIdacaqG2aqcfa4aaSba aSqaaaqabaqcLbsacaWGobaaaa@7777@   (37)

The pressure (Ppulmonary) in the pipe is based on the force (F) acting on the surface (A) as follows:

P pulmonary = F pulmonary A pulmonary = 2.74586N 0.0014 m 2 = 1961.33 N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaOpGqSvxza8qacaWGqbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwha caWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaK qzGeWdaiabg2da9Kqba+qadaWcaaGcbaqcLbsacaWGgbqcfa4aaSba aSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaam yyaiaadkhacaWG5baaleqaaaGcbaqcLbsacaWGbbWcdaWgaaqaaKqz adGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadk hacaWG5baaleqaaaaajugib8aacqGH9aqpjuaGdaWcaaGcbaqcLbsa caqGYaGaaeOlaiaabEdacaqG0aGaaeynaiaabIdacaqG2aGaamOtaa GcbaqcLbsacaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaisdacaWG TbWcdaahaaqabeaajugWaiaaikdaaaaaaKqzGeGaeyypa0Zdbiaaig dacaaI5aGaaGOnaiaaigdacaGGUaGaaG4maiaaiodajuaGdaWgaaWc baaabeaajugibiaad6eacaGGVaGaamyBaSWaaWbaaeqabaqcLbmaca aIYaaaaaaa@7B5C@   (38-a)

Since 1 N/m2 = 7.5∙10-3 Hgmm, the pressure in the average human pulmonary circulation, expressed in millimeters of mercury:

P (mmHg)pulmonary =1961.337.5 10 3 mmHg= 14.71 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqqaaaa aaOpGqSvxza8qacaWGqbWcdaWgaaqaaKqzadGaaiikaiaad2gacaWG TbGaamisaiaadEgacaGGPaGaamiCaiaadwhacaWGSbGaamyBaiaad+ gacaWGUbGaamyyaiaadkhacaWG5baaleqaaKqzGeGaeyypa0Zdaiaa igdacaaI5aGaaGOnaiaaigdacaGGUaGaaG4maiaaiodacqGHflY1ca aI3aGaaiOlaiaaiwdacqGHflY1caaIXaGaaGimaSWaaWbaaeqabaqc LbmacqGHsislcaaIZaaaaKqzGeGaamyBaiaad2gacaWGibGaam4zai abg2da98qacaaIXaGaaGinaiaac6cacaaI3aGaaGymaKqbaoaaBaaa leaaaeqaaKqzGeGaaeyBaiaab2gacaqGibGaae4zaaaa@68B1@   (38-b)

Thus, according to our current knowledge, under physiological conditions, at rest, the average pulmonary pressure is 14.7 mmHg.24  

Outstanding parameters of the average systemic circulation

On the other hand, the volume values of the average systemic circulation (V1 and V2) are numerically as follows:

V 1systemi c circ. = A systemic s 1systemi c circ. =0.0014 m 2 1.05m=0.00147 m 3 1.47 k g , and: V 2systemi c circ. = A systemic s 2systemi c circ. =0.0014 m 2 1.3m=0.00182 m 3 =1.82kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbOpaaaaaasvgza8qacaWGwbWcdaWgaaqaaKqzadGaaGymaiaadoha caWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWcdaWgaa adbaaabeaajugWaiaadogacaWGPbGaamOCaiaadogacaGGUaaaleqa aKqzGeWdaiabg2da98qacaWGbbWcdaWgaaqaaKqzadGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaSqabaqcLbsa cqGHflY1caWGZbWcdaWgaaqaaKqzadGaaGymaiaadohacaWG5bGaam 4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWcdaWgaaadbaaabeaa jugWaiaadogacaWGPbGaamOCaiaadogacaGGUaaaleqaaKqzGeWdai abg2da9iaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGinaiaad2ga juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgwSixlaaigdaca GGUaGaaGimaiaaiwdacaWGTbGaeyypa0Jaaeimaiaab6cacaqGWaGa aeimaiaabgdacaqG0aGaae4naiaad2gajuaGdaahaaWcbeqaaKqzad GaaG4maaaajugibiabgIKi7+qacaaIXaGaaiOlaiaaisdacaaI3aqc fa4aaSbaaSqaaaqabaqcLbsacaWGRbGaam4zaKqba+aadaWgaaWcba aabeaajugibiaacYcaaOqaaKqzGeGaamyyaiaad6gacaWGKbGaaiOo aaGcbaqcLbsapeGaamOvaSWaaSbaaeaajugWaiaaikdacaWGZbGaam yEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaSWaaSbaaWqa aaqabaqcLbmacaWGJbGaamyAaiaadkhacaWGJbGaaiOlaaWcbeaaju gib8aacqGH9aqppeGaamyqaSWaaSbaaeaajugWaiaadohacaWG5bGa am4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaKqzGeGaey yXICTaam4CaSWaaSbaaeaajugWaiaaikdacaWGZbGaamyEaiaadoha caWG0bGaamyzaiaad2gacaWGPbGaam4yaSWaaSbaaWqaaaqabaqcLb macaWGJbGaamyAaiaadkhacaWGJbGaaiOlaaWcbeaajugib8aacqGH 9aqpcaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaisdacaWGTbWcda ahaaqabeaajugWaiaaikdaaaqcLbsacqGHflY1caaIXaGaaiOlaiaa iodacaWGTbGaeyypa0Jaaeimaiaab6cacaqGWaGaaeimaiaabgdaca qG4aGaaeOmaiaad2galmaaCaaabeqaaKqzadGaaG4maaaajugibiab g2da98qacaaIXaGaaiOlaiaaiIdacaaIYaGaam4AaiaadEgaaaaa@DE7C@   (39)

The forces (F1 and F2) acting on the average systemic circulation are as follows:

F 1systemi c circ. =ma= m 1systemi c circ. g, so F 1systemi c c. =1.47kg9.80665m s 2 =14 .4158 N, but: F 2systemi c circ. =ma= m 2systemi c circ. g, so F 2systemi c c. =1.82kg9.80665m s 2 =17 .8481 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbOpaaaaaasvgza8qacaWGgbWcdaWgaaqaaKqzadGaaGymaiaadoha caWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWcdaWgaa adbaaabeaajugWaiaadogacaWGPbGaamOCaiaadogacaGGUaaaleqa aKqzadWdaiaaykW7jugibiabg2da9iaad2gacqGHflY1caWGHbGaey ypa0Zdbiaad2galmaaBaaabaqcLbmacaaIXaGaam4CaiaadMhacaWG ZbGaamiDaiaadwgacaWGTbGaamyAaiaadogalmaaBaaameaaaeqaaK qzadGaam4yaiaadMgacaWGYbGaam4yaiaac6caaSqabaqcLbsacqGH flY1caWGNbWdaiaacYcajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGe Gaam4Caiaad+gajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeWdbiaa dAealmaaBaaabaqcLbmacaaIXaGaam4CaiaadMhacaWGZbGaamiDai aadwgacaWGTbGaamyAaiaadogalmaaBaaameaaaeqaaKqzadGaam4y aiaac6caaSqabaqcLbsapaGaeyypa0JaaGymaiaac6cacaaI0aGaaG 4naiaadUgacaWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaa iAdacaaI2aGaaGynaiaad2gacqGHflY1caWGZbWcdaahaaqabeaaju gWaiabgkHiTiaaikdaaaqcLbsacqGH9aqppeGaaeymaiaabsdacaqG UaGaaeinaiaabgdacaqG1aGaaeioaKqbaoaaBaaaleaaaeqaaKqzGe GaamOta8aacaGGSaaakeaajugibiaadkgacaWG1bGaamiDaiaacQda aOqaaKqzGeWdbiaadAealmaaBaaabaqcLbmacaaIYaGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogalmaaBaaameaa aeqaaKqzadGaam4yaiaadMgacaWGYbGaam4yaiaac6caaSqabaqcLb sacaaMc8+daiabg2da9iaad2gacqGHflY1caWGHbGaeyypa0Zdbiaa d2galmaaBaaabaqcLbmacaaIYaGaam4CaiaadMhacaWGZbGaamiDai aadwgacaWGTbGaamyAaiaadogalmaaBaaameaaaeqaaKqzadGaam4y aiaadMgacaWGYbGaam4yaiaac6caaSqabaqcLbsacqGHflY1caWGNb WdaiaacYcajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeGaam4Caiaa d+gajuaGdaqfqaGcbeWcbaaabeqdbaaaaKqzGeWdbiaadAealmaaBa aabaqcLbmacaaIYaGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWG TbGaamyAaiaadogalmaaBaaameaaaeqaaKqzadGaam4yaiaac6caaS qabaqcLbsapaGaeyypa0JaaGymaiaac6cacaaI4aGaaGOmaiaadUga caWGNbGaeyyXICTaaGyoaiaac6cacaaI4aGaaGimaiaaiAdacaaI2a GaaGynaiaad2gacqGHflY1caWGZbWcdaahaaqabeaajugWaiabgkHi TiaaikdaaaqcLbsacqGH9aqppeGaaeymaiaabEdacaqGUaGaaeioai aabsdacaqG4aGaaeymaKqbaoaaBaaaleaaaeqaaKqzGeGaamOtaaaa aa@FB55@   (40)

In the systemic average circulation, the pressures (Psystemic circulation1 and Psystemic circulation2) created as a result of the forces (Fsystemic circulation1 and Fsystemic circulation2) moving smaller and larger masses on the given cross-sectional area (A) are as follows:

P systemi c circulation1 = F systemi c circulation1 A systemic = 14 .4158 N 0.0014 m 2 = 10297 N/ m 2 , and P systemi c circulation2 = F systemi c circulation2 A systemic = 17 .8481 N 0.0014 m 2 =1 2748.643 N/ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbOpaaaaaasvgza8qacaWGqbWcdaWgaaqaaKqzadGaam4CaiaadMha caWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogalmaaBaaameaaae qaaKqzadGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGSbGaamyy aiaadshacaWGPbGaam4Baiaad6gacaaIXaaaleqaaKqzGeWdaiabg2 da9Kqba+qadaWcaaGcbaqcLbsacaWGgbWcdaWgaaqaaKqzadGaam4C aiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogalmaaBa aameaaaeqaaKqzadGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWG SbGaamyyaiaadshacaWGPbGaam4Baiaad6gacaaIXaaaleqaaaGcba qcLbsacaWGbbWcdaWgaaqaaKqzadGaam4CaiaadMhacaWGZbGaamiD aiaadwgacaWGTbGaamyAaiaadogaaSqabaaaaKqzGeWdaiabg2da9K qbaoaalaaakeaajugibiaabgdacaqG0aGaaeOlaiaabsdacaqGXaGa aeynaiaabIdajuaGdaWgaaWcbaaabeaajugibiaad6eaaOqaaKqzGe GaaGimaiaac6cacaaIWaGaaGimaiaaigdacaaI0aGaamyBaSWaaWba aeqabaqcLbmacaaIYaaaaaaajugibiabg2da98qacaaIXaGaaGimai aaikdacaaI5aGaaG4naKqbaoaaBaaaleaaaeqaaKqzGeGaamOtaiaa c+cacaWGTbWcdaahaaqabeaajugWaiaaikdaaaqcfa4damaavabake qaleaaaeqaneaaaaqcLbsacaGGSaaakeaajugibiaadggacaWGUbGa amizaaGcbaqcLbsapeGaamiuaSWaaSbaaeaajugWaiaadohacaWG5b Gaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWcdaWgaaadbaaa beaajugWaiaadogacaWGPbGaamOCaiaadogacaWG1bGaamiBaiaadg gacaWG0bGaamyAaiaad+gacaWGUbGaaGOmaaWcbeaajugib8aacqGH 9aqpjuaGpeWaaSaaaOqaaKqzGeGaamOraSWaaSbaaeaajugWaiaado hacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbWcdaWg aaadbaaabeaajugWaiaadogacaWGPbGaamOCaiaadogacaWG1bGaam iBaiaadggacaWG0bGaamyAaiaad+gacaWGUbGaaGOmaaWcbeaaaOqa aKqzGeGaamyqaSWaaSbaaeaajugWaiaadohacaWG5bGaam4Caiaads hacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaaajugib8aacqGH9aqp juaGdaWcaaGcbaqcLbsacaqGXaGaae4naiaab6cacaqG4aGaaeinai aabIdacaqGXaqcfa4aaSbaaSqaaaqabaqcLbsacaWGobaakeaajugi biaaicdacaGGUaGaaGimaiaaicdacaaIXaGaaGinaiaad2gajuaGda ahaaWcbeqaaKqzadGaaGOmaaaaaaqcLbsacqGH9aqppeGaaeymaiaa ikdacaaI3aGaaGinaiaaiIdacaGGUaGaaGOnaiaaisdacaaIZaqcfa 4aaSbaaSqaaaqabaqcLbsacaWGobGaai4laiaad2gajuaGdaahaaWc beqaaKqzadGaaGOmaaaaaaaa@F0CD@   (41)

Since 1N/m2 = 0.007501 mmHg, the pressure (PmmHg systemic circulation1) is expressed in millimeters of mercury:

P systemi c circulation1 =102977.5 10 3 mmHg = 77 .227 mmHg , and P systemi c circulation2 =12748.6437.5 10 3 mmHg= 95.615 mmHg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugiba bbOpaaaaaasvgza8qacaWGqbWcdaWgaaqaaKqzadGaam4CaiaadMha caWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogalmaaBaaameaaae qaaKqzadGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGSbGaamyy aiaadshacaWGPbGaam4Baiaad6gacaaIXaaaleqaaKqzGeWdaiabg2 da9iaaigdacaaIWaGaaGOmaiaaiMdacaaI3aGaeyyXICTaaG4naiaa c6cacaaI1aGaeyyXICTaaGymaiaaicdalmaaCaaabeqaaKqzadGaey OeI0IaaG4maaaajugibiaad2gacaWGTbGaamisaiaadEgacaqGGaGa aeypaiaabccapeGaae4naiaabEdacaqGUaGaaeOmaiaabkdacaqG3a qcfa4aaSbaaSqaaaqabaqcLbsacaWGTbGaamyBaiaadIeacaWGNbqc fa4damaavabakeqaleaaaeqaneaaaaqcLbsacaGGSaaakeaajugibi aadggacaWGUbGaamizaaGcbaqcLbsapeGaamiuaSWaaSbaaeaajugW aiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJb WcdaWgaaadbaaabeaajugWaiaadogacaWGPbGaamOCaiaadogacaWG 1bGaamiBaiaadggacaWG0bGaamyAaiaad+gacaWGUbGaaGOmaaWcbe aajugib8aacqGH9aqpcaqGXaGaaGOmaiaaiEdacaaI0aGaaGioaiaa c6cacaaI2aGaaGinaiaaiodacqGHflY1caaI3aGaaiOlaiaaiwdacq GHflY1caaIXaGaaGimaSWaaWbaaeqabaqcLbmacqGHsislcaaIZaaa aKqzGeGaamyBaiaad2gacaWGibGaam4zaiabg2da98qacaaI5aGaaG ynaiaac6cacaaI2aGaaGymaiaaiwdajuaGdaWgaaWcbaaabeaajugi biaad2gacaWGTbGaamisaiaadEgaaaaa@AD9B@   (42)

These systemic average human blood pressure values, based on the two blood volumes (masses), are between 77.2 mmHg and 95.6 mmHg. This also means that they can take any value between the two values under physiological conditions at rest. This corresponds approximately to blood pressure values of 95/60 mmHg and 120/70 mmHg. Blood pressure values above and below these are essentially limit values. Values that differ from this, measured at rest, are already pathological in nature; in these cases, we can talk about diseases of various origins, high blood pressure or hypotensive states.21

The difference between the average systemic and pulmonary circulation in the ratio of their parameters

The difference between the two average blood flow circles can be illustrated by comparing them. The ratio of the two shows the relationship between the parameters according to the following equation in close connection with the statements of Bernoulli's law. According to this, the work done by the contraction of both chambers of the heart (W) is proportional to the product of the pressure (P) in the two blood circuits and the blood volume (V) of the systemic and pulmonary circulation, as W=P∙V.

Since the blood volume (V) is proportional to the mass of the blood (m) or is essentially the same as it (m=ρ∙V; ρ≈1kg/dm3), simplifying with m and g, the equation is reduced to the ratio of the distance (s) traveled by the bloodstream:

P (mmHg)systemic P (mmHg)pulmonary = W systemic V systemic W pulmonary V pulmonary = F systemic s systemic V systemic F pulmonary s pulmonary V pulmonary = m systemic g s systemic V systemic m pulmonary g s pulmonary V pulmonary = m systemic g s systemic m systemic m pulmonary g s pulmonary m pulmonary = = s systemic s pulmonary = 1.3m 0.2m =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcqqa6daaaaaGuLrgapeqaaKqzGeGaamiuaSWaaSbaaeaajugW aiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiykaiaadohacaWG5b Gaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGcqqaa aaaaOpGqSvxza8GabaqcLbsacaWGqbWcdaWgaaqaaKqzadGaaiikai aad2gacaWGTbGaamisaiaadEgacaGGPaGaamiCaiaadwhacaWGSbGa amyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaajugib8 aacqGH9aqpjuaGdaWcaaGcpeqaaKqbaoaalaaakeaajugibiaadEfa juaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yaaWcbeaaaOqaaKqzGeGaamOvaSWaaSbaaeaa jugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgaca WGJbaaleqaaaaaaOWdceaajuaGdaWcaaGcbaqcLbsacaWGxbqcfa4a aSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUb GaamyyaiaadkhacaWG5baaleqaaaGcbaqcLbsacaWGwbqcfa4aaSba aSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaam yyaiaadkhacaWG5baaleqaaaaaaaqcLbsapaGaeyypa0tcfa4aaSaa aOWdbeaajuaGdaWcaaGcbaqcLbsacaWGgbWcdaWgaaqaaKqzadGaam 4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaSqa baqcLbsacqGHflY1caWGZbqcfa4aaSbaaSqaaKqzadGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaSqabaaakeaa jugibiaadAfajuaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadohaca WG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaaaak8Gabaqcfa4a aSaaaOqaaKqzGeGaamOraSWaaSbaaeaajugWaiaadchacaWG1bGaam iBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaajugi biabgwSixlaadohalmaaBaaabaqcLbmacaWGWbGaamyDaiaadYgaca WGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqabaaakeaajugi biaadAfajuaGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgacaWGTb Gaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqabaaaaaaajugib8aa cqGH9aqpjuaGdaWcaaGcpeqaaKqbaoaalaaakeaajugibiaad2galm aaBaaabaqcLbmacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2ga caWGPbGaam4yaaWcbeaajugibiabgwSix=aacaWGNbWdbiabgwSixl aadohalmaaBaaabaqcLbmacaWGZbGaamyEaiaadohacaWG0bGaamyz aiaad2gacaWGPbGaam4yaaWcbeaaaOqaaKqzGeGaamOvaSWaaSbaae aajugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMga caWGJbaaleqaaaaaaOWdceaajuaGdaWcaaGcbaqcLbsacaWGTbqcfa 4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+gacaWG UbGaamyyaiaadkhacaWG5baaleqaaKqzGeGaeyyXIC9daiaadEgapi GaeyyXICTaam4CaKqbaoaaBaaaleaajugWaiaadchacaWG1bGaamiB aiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaaOqaaK qzGeGaamOvaKqbaoaaBaaaleaajugWaiaadchacaWG1bGaamiBaiaa d2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaaaaaaKqzGe Wdaiabg2da9Kqbaoaalaaak8qabaqcfa4aaSaaaOqaaKqzGeGaamyB aSWaaSbaaeaajugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGaam yBaiaadMgacaWGJbaaleqaaKqzGeGaeyyXIC9daiaadEgapeGaeyyX ICTaam4CaKqbaoaaBaaaleaajugWaiaadohacaWG5bGaam4Caiaads hacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGcbaqcLbsacaWGTbWc daWgaaqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTb GaamyAaiaadogaaSqabaaaaaGcpiqaaKqbaoaalaaakeaajugibiaa d2galmaaBaaabaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Bai aad6gacaWGHbGaamOCaiaadMhaaSqabaqcLbsacqGHflY1paGaam4z a8GacqGHflY1caWGZbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhaca WGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaGc baqcLbsacaWGTbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSb GaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaaaaqc LbsapaGaeyypa0dakeaajugibiabg2da9Kqbaoaalaaak8qabaqcLb sacaWGZbqcfa4aaSbaaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiD aiaadwgacaWGTbGaamyAaiaadogaaSqabaaak8GabaqcLbsacaWGZb qcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+ga caWGUbGaamyyaiaadkhacaWG5baaleqaaaaajugib8aacqGH9aqpju aGdaWcaaGcpeqaaKqzGeGaaGymaiaac6cacaaIZaGaamyBaaGcpiqa aKqzGeGaaGimaiaac6cacaaIYaGaamyBaaaapaGaeyypa0JaaGOnai aac6cacaaI1aaaaaa@A55E@   (43)

By decomposing the volumes (V) in the formula into the product of the cross-sectional surface area (A) and the length of the tube (s) and then simplifying with A, g and s, only the ratio of the mass (m) of the two blood flow circuits remains:

P (mmHg)systemic P (mmHg)pulmonary = W systemic V systemic W pulmonary V pulmonary = F systemic s systemic V systemic F pulmonary s pulmonary V pulmonary = m systemic g s systemic A s systemic m pulmonary g s pulmonary A s pulmonary = m systemic m pulmonary = 1.82kg 0.28kg =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO aeeG+aaaaaaivzKbWdbeaajugibiaadcfajuaGdaWgaaWcbaqcLbma caGGOaGaamyBaiaad2gacaWGibGaam4zaiaacMcacaWGZbGaamyEai aadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaOaeeaaa aaa6dieB1vgapiqaaKqzGeGaamiuaSWaaSbaaeaajugWaiaacIcaca WGTbGaamyBaiaadIeacaWGNbGaaiykaiaadchacaWG1bGaamiBaiaa d2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaaaqcLbsapa Gaeyypa0tcfa4aaSaaaOWdbeaajuaGdaWcaaGcbaqcLbsacaWGxbqc fa4aaSbaaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgaca WGTbGaamyAaiaadogaaSqabaaakeaajugibiaadAfalmaaBaaabaqc LbmacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam 4yaaWcbeaaaaaak8Gabaqcfa4aaSaaaOqaaKqzGeGaam4vaKqbaoaa BaaaleaajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBai aadggacaWGYbGaamyEaaWcbeaaaOqaaKqzGeGaamOvaKqbaoaaBaaa leaajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadg gacaWGYbGaamyEaaWcbeaaaaaaaKqzGeWdaiabg2da9Kqbaoaalaaa k8qabaqcfa4aaSaaaOqaaKqzGeGaamOraKqbaoaaBaaaleaajugWai aadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaa leqaaKqzGeGaeyyXICTaam4CaKqbaoaaBaaaleaajugWaiaadohaca WG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGc baqcLbsacaWGwbWcdaWgaaqaaKqzadGaam4CaiaadMhacaWGZbGaam iDaiaadwgacaWGTbGaamyAaiaadogaaSqabaaaaaGcpiqaaKqbaoaa laaakeaajugibiaadAeajuaGdaWgaaWcbaqcLbmacaWGWbGaamyDai aadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqabaqc LbsacqGHflY1caWGZbWcdaWgaaqaaKqzadGaamiCaiaadwhacaWGSb GaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaGcbaqc LbsacaWGwbWcdaWgaaqaaKqzadGaamiCaiaadwhacaWGSbGaamyBai aad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaaaaqcLbsapaGa eyypa0tcfa4aaSaaaOWdbeaajuaGdaWcaaGcbaqcLbsacaWGTbqcfa 4aaSbaaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWG TbGaamyAaiaadogaaSqabaqcLbsacqGHflY1paGaam4za8qacqGHfl Y1caWGZbWcdaWgaaqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaa dwgacaWGTbGaamyAaiaadogaaSqabaaakeaajugib8aacaWGbbWdbi abgwSixlaadohajuaGdaWgaaWcbaqcLbsacaWGZbGaamyEaiaadoha caWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaaaak8Gabaqcfa 4aaSaaaOqaaKqzGeGaamyBaSWaaSbaaeaajugWaiaadchacaWG1bGa amiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaju gibiabgwSix=aacaWGNbWdciabgwSixlaadohajuaGdaWgaaWcbaqc LbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaam OCaiaadMhaaSqabaaakeaajugib8aacaWGbbWdciabgwSixlaadoha juaGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Bai aad6gacaWGHbGaamOCaiaadMhaaSqabaaaaaaajugib8aacqGH9aqp juaGdaWcaaGcpeqaaKqzGeGaamyBaSWaaSbaaeaajugWaiaadohaca WG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGc piqaaKqzGeGaamyBaKqbaoaaBaaaleaajugWaiaadchacaWG1bGaam iBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaaaqc LbsapaGaeyypa0tcfa4aaSaaaOWdbeaajugibiaaigdacaGGUaGaaG ioaiaaikdacaWGRbGaam4zaaGcpiqaaKqzGeGaaGimaiaac6cacaaI YaGaaGioaiaadUgacaWGNbaaa8aacqGH9aqpcaaI2aGaaiOlaiaaiw daaaa@5AD0@   (44)

By comparing the relationships in Bernoulli's law with those in the present model, we can make the following observations. Bernoulli's law states that for the same flow intensity (I=A∙v), the product of the flow tube cross-sectional area and the flow velocity is constant. For a varying flow cross sectional area (A), the flow velocities (v) vary (A1∙v1=A2∙v2). With a larger flow cross sectional area (A↑), the flow velocity is smaller (v↓) and vice versa, with a smaller flow cross sectional area (A↓) the velocity increases (v↑). The equality of flow intensities also corresponds to the law of conservation of energy, since the same volumes (V) pass through for the same periods of time (t) for any section of varying pipe cross-sectional area (A).

In the present model, in contrast to the above, the flow velocity is the same in both continuous blood circuits and the flow cross-sectional area does not change in them. In accordance with the conservation of energy, in this representation the mass and the associated volume, i.e., size, of the two blood circuits change with their associated pressures. The ratio is 6.5 according to the above formula. This means that the small mass moved by the right side of the heart is associated with a small force, which generates a small pressure for the same cross-sectional diameter. To move the larger mass of blood in the systemic circulation, the left side of the heart must exert a greater force, which is associated with a greater pressure for the same average cross-sectional area. This explains the difference in size and pressure between the two blood circuits. Accordingly, the pulmonary circulation is a low-pressure system, whereas the systemic circulation is a high-pressure system. The kinetic energy (Ekinetic=1/2 ρ∙v2) in Bernoulli's law is neglected in the model because of the low blood flow velocity (5cm/s). The difference in pressure due to the potential energy (Epotential=ρ∙g∙s) lies in the pressure due to the weight of the vertical blood column, calculated by the value of g, in both blood circuits that can be paralleled.

In the event of a positive or negative change in the above-mentioned size and pressure ratios, disturbances in the normal human circulation occur, physiological mechanisms become abnormal, and this leads to the development of various cardiovascular diseases.

Under physiological pressure conditions (P), the forces (F) driving the different masses (m) of the systemic and pulmonary circulation are proportional to each other:

P (mmHg)systemic P (mmHg)pulmonary = F 1systemic A F pulmonary A = F 1systemic F pulmonary = 14 .4158 N 2 .74586 N =5.25 , or F 2syst. A F pulm. A = F 2systemic F pulmonary = 17 .8481 N 2 .74586 N = 6.5 , moreover: P (mmHg)systemic P (mmHg)pulmonary = F 1systemic A F pulmonary A = m 1systemic g A m pulmonary g A = m 1syst. m pulm. = 1.47 kg 0.28kg =5.25 , or m 2syst. m pulm. = 1.82 kg 0.28kg =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcqqa6daaaaaGuLrgapeqaaKqzGeGaamiuaSWaaSbaaeaajugW aiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiykaiaadohacaWG5b Gaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGcqqaa aaaaOpGqSvxza8GabaqcLbsacaWGqbWcdaWgaaqaaKqzadGaaiikai aad2gacaWGTbGaamisaiaadEgacaGGPaGaamiCaiaadwhacaWGSbGa amyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaajugib8 aacqGH9aqpjuaGdaWcaaGcbaqcfa4aaSaaaOWdbeaajugibiaadAea juaGdaWgaaWcbaqcLbmacaaIXaGaam4CaiaadMhacaWGZbGaamiDai aadwgacaWGTbGaamyAaiaadogaaSqabaaak8aabaqcLbsacaWGbbaa aaGcbaqcfa4aaSaaaOWdceaajugibiaadAeajuaGdaWgaaWcbaqcLb macaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOC aiaadMhaaSqabaaak8aabaqcLbsacaWGbbaaaaaacqGH9aqpjuaGda WcaaGcpeqaaKqzGeGaamOraKqbaoaaBaaaleaajugWaiaaigdacaWG ZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbe aaaOWdceaajugibiaadAeajuaGdaWgaaWcbaqcLbmacaWGWbGaamyD aiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqaba aaaKqzGeWdaiabg2da9Kqbaoaalaaak8qabaqcLbsacaqGXaGaaein aiaab6cacaqG0aGaaeymaiaabwdacaqG4aqcfa4aaSbaaSqaaaqaba qcLbsacaWGobaak8GabaqcLbsacaqGYaGaaeOlaiaabEdacaqG0aGa aeynaiaabIdacaqG2aqcfa4aaSbaaSqaaaqabaqcLbsacaWGobaaa8 aacqGH9aqpcaaI1aGaaiOlaiaaikdacaaI1aqcfa4aaubeaOqabSqa aaqab0qaaaaajugibiaacYcajuaGdaWgaaWcbaaabeaajugibiaad+ gacaWGYbqcfa4aaubeaOqabSqaaaqab0qaaaaajuaGdaWcaaGcbaqc fa4aaSaaaOqaaKqzGeGaamOraKqbaoaaBaaaleaajugWaiaaikdaca WGZbGaamyEaiaadohacaWG0bGaaiOlaaWcbeaaaOqaaKqzGeGaamyq aaaaaOqaaKqbaoaalaaakeaajugibiaadAeajuaGdaWgaaWcbaqcLb macaWGWbGaamyDaiaadYgacaWGTbGaaiOlaaWcbeaaaOqaaKqzGeGa amyqaaaaaaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamOraKqbaoaaBa aaleaajugWaiaaikdacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaa d2gacaWGPbGaam4yaaWcbeaaaOqaaKqzGeGaamOraKqbaoaaBaaale aajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadgga caWGYbGaamyEaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLb sacaqGXaGaae4naiaab6cacaqG4aGaaeinaiaabIdacaqGXaqcfa4a aSbaaSqaaaqabaqcLbsacaWGobaakeaajugibiaabkdacaqGUaGaae 4naiaabsdacaqG1aGaaeioaiaabAdajuaGdaWgaaWcbaaabeaajugi biaad6eaaaGaeyypa0JaaGOnaiaac6cacaaI1aqcfa4aaSbaaSqaaa qabaqcLbsacaGGSaaakeaajugibiaad2gacaWGVbGaamOCaiaadwga caWGVbGaamODaiaadwgacaWGYbGaaiOoaaGcbaqcfa4aaSaaaOWdbe aajugibiaadcfajuaGdaWgaaWcbaqcLbmacaGGOaGaamyBaiaad2ga caWGibGaam4zaiaacMcacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yaaWcbeaaaOWdceaajugibiaadcfajuaGdaWg aaWcbaqcLbmacaGGOaGaamyBaiaad2gacaWGibGaam4zaiaacMcaca WGWbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaa dMhaaSqabaaaaKqzGeWdaiabg2da9KqbaoaalaaakeaajuaGdaWcaa GcpeqaaKqzGeGaamOraKqbaoaaBaaaleaajugWaiaaigdacaWGZbGa amyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaO WdaeaajugibiaadgeaaaaakeaajuaGdaWcaaGcpiqaaKqzGeGaamOr aKqbaoaaBaaaleaajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVb GaamOBaiaadggacaWGYbGaamyEaaWcbeaaaOWdaeaajugibiaadgea aaaaaiabg2da9KqbaoaalaaakeaajuaGdaWcaaGcbaqcLbsapeGaam yBaKqbaoaaBaaaleaajugWaiaaigdacaWGZbGaamyEaiaadohacaWG 0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaajugib8aacqGHflY1ca WGNbaakeaajugibiaadgeaaaaakeaajuaGdaWcaaGcbaqcLbsapiGa amyBaKqbaoaaBaaaleaajugWaiaadchacaWG1bGaamiBaiaad2gaca WGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaajugib8aacqGHflY1 caWGNbaakeaajugibiaadgeaaaaaaiabg2da9Kqbaoaalaaak8qaba qcLbsacaWGTbqcfa4aaSbaaSqaaKqzadGaaGymaiaadohacaWG5bGa am4CaiaadshacaGGUaaaleqaaaGcpiqaaKqzGeGaamyBaKqbaoaaBa aaleaajugWaiaadchacaWG1bGaamiBaiaad2gacaGGUaaaleqaaaaa jugib8aacqGH9aqpjuaGdaWcaaGcpeqaaKqzGeGaaGymaiaac6caca aI0aGaaG4naKqbaoaaBaaaleaaaeqaaKqzGeGaam4AaiaadEgaaOWd ceaajugibiaaicdacaGGUaGaaGOmaiaaiIdacaWGRbGaam4zaaaapa Gaeyypa0JaaGynaiaac6cacaaIYaGaaGynaKqbaoaavabakeqaleaa aeqaneaaaaqcLbsacaGGSaqcfa4aaubeaOqabSqaaaqab0qaaaaaju gibiaad+gacaWGYbqcfa4aaubeaOqabSqaaaqab0qaaaaajuaGdaWc aaGcbaqcLbsacaWGTbqcfa4aaSbaaSqaaKqzadGaaGOmaiaadohaca WG5bGaam4CaiaadshacaGGUaaaleqaaaGcbaqcLbsacaWGTbqcfa4a aSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaac6caaSqaba aaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaiaac6cacaaI 4aGaaGOmaKqbaoaaBaaaleaaaeqaaKqzGeGaam4AaiaadEgaaOqaaK qzGeGaaGimaiaac6cacaaIYaGaaGioaiaadUgacaWGNbaaaiabg2da 9iaaiAdacaGGUaGaaGynaaaaaa@B02A@   (45)

The pressure (P) established by the work of the heart (W) in the systemic and pulmonary blood circulation can be broken down into its components in the following steps. Since the flow cross-sectional areas (A) and flow velocities (v) are equal in both blood circuits, they drop out together with g. In this way, the formula is simplified and reduced to their blood volumes (masses; m), their dimensions (s), and their flow time (t):

P (mmHg)systemic P (mmHg)pulmonary = W systemic V systemic W pulmonary V pulmonary = F systemic s systemic A systemic v systemic t systemic F pulmonary s pulmonary A pulmonary v pulmonary t pulmonary = m systemic g s systemic A systemic v systemic t systemic m pulmonary g s pulmonary A pulmonary v pulmonary t pulmonary = m systemic s systemic t systemic m pulmonary s pulmonary t pulmonary = m systemic s systemic t systemic m pulmonary s pulmonary t pulmonary = 1.82kg 1.5m 30s 0.28kg 0.2m 4s = 1.82kg0.05 m s 0.28kg0.05 m s = 1.82kg 0.28kg =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcqqa6daaaaaGuLrgapeqaaKqzGeGaamiuaKqbaoaaBaaaleaa jugWaiaacIcacaWGTbGaamyBaiaadIeacaWGNbGaaiykaiaadohaca WG5bGaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGc qqaaaaaaOpGqSvxza8GabaqcLbsacaWGqbqcfa4aaSbaaSqaaKqzad Gaaiikaiaad2gacaWGTbGaamisaiaadEgacaGGPaGaamiCaiaadwha caWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaa aajugib8aacqGH9aqpjuaGdaWcaaGcpeqaaKqbaoaalaaakeaajugi biaadEfajuaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadohacaWG0b Gaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaOqaaKqzGeGaamOvaKqb aoaaBaaaleaajugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGaam yBaiaadMgacaWGJbaaleqaaaaaaOWdceaajuaGdaWcaaGcbaqcLbsa caWGxbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBai aad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaGcbaqcLbsacaWG wbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBaiaad+ gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaaaaqcLbsapaGaeyyp a0tcfa4aaSaaaOWdbeaajuaGdaWcaaGcbaqcLbsacaWGgbqcfa4aaS baaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGa amyAaiaadogaaSqabaqcLbsacqGHflY1caWGZbqcfa4aaSbaaSqaaK qzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaa dogaaSqabaaakeaajugib8aacaWGbbqcfa4aaSbaaSqaaKqzadGaam 4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaSqa baqcLbsacqGHflY1caWG2bqcfa4aaSbaaSqaaKqzadGaam4CaiaadM hacaWGZbGaamiDaiaadwgacaWGTbGaamyAaiaadogaaSqabaqcLbsa peGaeyyXICTaamiDaKqbaoaaBaaaleaajugWaiaadohacaWG5bGaam 4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaaaaOWdceaa juaGdaWcaaGcbaqcLbsacaWGgbqcfa4aaSbaaSqaaKqzadGaamiCai aadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baa leqaaKqzGeGaeyyXICTaam4CaKqbaoaaBaaaleaajugWaiaadchaca WG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWc beaaaOqaaKqzGeWdaiaadgeajuaGdaWgaaWcbaqcLbmacaWGWbGaam yDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqa baqcLbsacqGHflY1caWG2bqcfa4aaSbaaSqaaKqzadGaamiCaiaadw hacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqa aKqzGeWdciabgwSixlaadshajuaGdaWgaaWcbaqcLbmacaWGWbGaam yDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqa baaaaaaajugib8aacqGH9aqpjuaGdaWcaaGcpeqaaKqbaoaalaaake aajugibiaad2gajuaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadoha caWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaajugibiabgwSix= aacaWGNbWdbiabgwSixlaadohajuaGdaWgaaWcbaqcLbmacaWGZbGa amyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaO qaaKqzGeWdaiaadgeajuaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaa dohacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaajugibiabgw SixlaadAhajuaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadohacaWG 0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaajugib8qacqGHflY1ca WG0bqcfa4aaSbaaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaa dwgacaWGTbGaamyAaiaadogaaSqabaaaaaGcpiqaaKqbaoaalaaake aajugibiaad2gajuaGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYga caWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqabaqcLbsacq GHflY1paGaam4za8GacqGHflY1caWGZbqcfa4aaSbaaSqaaKqzadGa amiCaiaadwhacaWGSbGaamyBaiaad+gacaWGUbGaamyyaiaadkhaca WG5baaleqaaaGcbaqcLbsapaGaamyqaKqbaoaaBaaaleaajugWaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaWcbeaajugibiabgwSixlaadAhajuaGdaWgaaWcbaqcLbmacaWG WbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadM haaSqabaqcLbsapiGaeyyXICTaamiDaKqbaoaaBaaaleaajugWaiaa dchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWGYbGaam yEaaWcbeaaaaaaaKqzGeWdaiabg2da9Kqbaoaalaaak8qabaqcfa4a aSaaaOqaaKqzGeGaamyBaKqbaoaaBaaaleaajugWaiaadohacaWG5b Gaam4CaiaadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaKqzGeGa eyyXICTaam4CaKqbaoaaBaaaleaajugWaiaadohacaWG5bGaam4Cai aadshacaWGLbGaamyBaiaadMgacaWGJbaaleqaaaGcbaqcLbsacaWG 0bqcfa4aaSbaaSqaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadw gacaWGTbGaamyAaiaadogaaSqabaaaaaGcpiqaaKqbaoaalaaakeaa jugibiaad2gajuaGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgaca WGTbGaam4Baiaad6gacaWGHbGaamOCaiaadMhaaSqabaqcLbsacqGH flY1caWGZbqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaam yBaiaad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaGcbaqcLbsa caWG0bqcfa4aaSbaaSqaaKqzadGaamiCaiaadwhacaWGSbGaamyBai aad+gacaWGUbGaamyyaiaadkhacaWG5baaleqaaaaaaaaak8aabaqc LbsacqGH9aqpjuaGdaWcaaGcpeqaaKqzGeGaamyBaKqbaoaaBaaale aajugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGaamyBaiaadMga caWGJbaaleqaaKqzGeGaeyyXICDcfa4aaSaaaOqaaKqzGeGaam4CaK qbaoaaBaaaleaajugWaiaadohacaWG5bGaam4CaiaadshacaWGLbGa amyBaiaadMgacaWGJbaaleqaaaGcbaqcLbsacaWG0bqcfa4aaSbaaS qaaKqzadGaam4CaiaadMhacaWGZbGaamiDaiaadwgacaWGTbGaamyA aiaadogaaSqabaaaaaGcpiqaaKqzGeGaamyBaKqbaoaaBaaaleaaju gWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadggacaWG YbGaamyEaaWcbeaajugibiabgwSixNqbaoaalaaakeaajugibiaado hajuaGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4B aiaad6gacaWGHbGaamOCaiaadMhaaSqabaaakeaajugibiaadshaju aGdaWgaaWcbaqcLbmacaWGWbGaamyDaiaadYgacaWGTbGaam4Baiaa d6gacaWGHbGaamOCaiaadMhaaSqabaaaaaaajugib8aacqGH9aqpju aGdaWcaaGcpeqaaKqzGeGaaGymaiaac6cacaaI4aGaaGOmaiaadUga caWGNbGaeyyXICDcfa4aaSaaaOqaaKqzGeGaaGymaiaac6cacaaI1a GaamyBaaGcbaqcLbsacaaIZaGaaGimaiaadohaaaaak8GabaqcLbsa caaIWaGaaiOlaiaaikdacaaI4aGaam4AaiaadEgacqGHflY1juaGda WcaaGcbaqcLbsacaaIWaGaaiOlaiaaikdacaWGTbaakeaajugibiaa isdacaWGZbaaaaaapaGaeyypa0tcfa4aaSaaaOWdbeaajugibiaaig dacaGGUaGaaGioaiaaikdacaWGRbGaam4zaiabgwSixlaaicdacaGG UaGaaGimaiaaiwdajuaGdaWcaaGcbaqcLbsacaWGTbaakeaajugibi aadohaaaaak8GabaqcLbsacaaIWaGaaiOlaiaaikdacaaI4aGaam4A aiaadEgacqGHflY1caaIWaGaaiOlaiaaicdacaaI1aqcfa4aaSaaaO qaaKqzGeGaamyBaaGcbaqcLbsacaWGZbaaaaaapaGaeyypa0tcfa4a aSaaaOWdbeaajugibiaaigdacaGGUaGaaGioaiaaikdacaWGRbGaam 4zaaGcpiqaaKqzGeGaaGimaiaac6cacaaIYaGaaGioaiaadUgacaWG Nbaaa8aacqGH9aqpcaaI2aGaaiOlaiaaiwdaaaaa@8910@   (46)

Moreover, based on the relationship v=s/t, knowing the flow distance and flow time, these can be converted into flow speed. In this way, the ratio of the pressures of the systemic and pulmonary circulations (Psystemic and Ppulmonary) is proportional to the product of their volume (mass) occupied in their circulation (msystemic and mpulmonary) and their velocity (vsystemic and vpulmonary):

P (mmHg)systemic P (mmHg)pulmonary = m systemic m pulmonary v systemic v pulmonary = 1.82kg 0.28kg =6.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO aeeG+aaaaaaivzKbWdbeaajugibiaadcfalmaaBaaabaqcLbmacaGG OaGaamyBaiaad2gacaWGibGaam4zaiaacMcacaWGZbGaamyEaiaado hacaWG0bGaamyzaiaad2gacaWGPbGaam4yaaWcbeaaaOaeeaaaaaa6 dieB1vgapiqaaKqzGeGaamiuaKqbaoaaBaaaleaajugWaiaacIcaca WGTbGaamyBaiaadIeacaWGNbGaaiykaiaadchacaWG1bGaamiBaiaa d2gacaWGVbGaamOBaiaadggacaWGYbGaamyEaaWcbeaaaaqcLbsapa Gaeyypa0tcfa4aaSaaaOWdbeaajugibiaad2gajuaGdaWgaaWcbaqc LbmacaWGZbGaamyEaiaadohacaWG0bGaamyzaiaad2gacaWGPbGaam 4yaaWcbeaaaOWdceaajugibiaad2gajuaGdaWgaaWcbaqcLbmacaWG WbGaamyDaiaadYgacaWGTbGaam4Baiaad6gacaWGHbGaamOCaiaadM haaSqabaaaaKqzGeWdaiabgwSixNqbaoaalaaakeaajugibiaadAha juaGdaWgaaWcbaqcLbmacaWGZbGaamyEaiaadohacaWG0bGaamyzai aad2gacaWGPbGaam4yaaWcbeaaaOqaaKqzGeGaamODaKqbaoaaBaaa leaajugWaiaadchacaWG1bGaamiBaiaad2gacaWGVbGaamOBaiaadg gacaWGYbGaamyEaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcpeqa aKqzGeGaaGymaiaac6cacaaI4aGaaGOmaiaadUgacaWGNbaak8Gaba qcLbsacaaIWaGaaiOlaiaaikdacaaI4aGaam4AaiaadEgaaaWdaiab g2da9iaaiAdacaGGUaGaaGynaaaa@A04A@   (47)

Taking into account the velocities (v), which are the same in the two circulations, they drop out and only the mass (m) ratio remains.

As can be seen from Formulas 43 and 44, the pressure in both blood flow circuits of the model is directly proportional to the masses occupying them, which also determines their size. By applying the laws of flow, including the laws of intensity and continuity (I=V/t and I=A∙v), the diverse processes taking place in the human body can be simplified. However, for this, two flow factors (A and v) must be considered unchanged. As a result, the variable parameters culminate only in the mass (m) and its inseparable dimensions (s, C and r) located in the torus. In this way, the complex system of human blood circulation becomes more transparent by creating a model of the average human blood circulation.

Conclusion

Our basic goal in this article was to whether it is possible to establish a flow model for the entire human blood circulation, which is related to the weight of bodies due to gravity and the flow laws of physical fluids. Furthermore, by using or supplementing certain parameters of the intensity and continuity laws, is it possible to depict the entire human blood circulation, which reflects the objective data determined by medical examination procedures. The novelty in this flow system is a mass determined based on the weight of the blood column, which can be related to the gravity of the earth's surface and which provides a basis for determining the force that maintains blood circulation. The other pivotal point is the determination of an average blood flow velocity value in the human body, which can be used to calculate the size and cross-sectional area of the average blood circulation. In this way, a torus-shaped model can be set up and operated. By further refining the method, it is possible to create a double torus that passes into each other, or a geometric formation similar to a folded figure of eight. Each of its parameters confirms and satisfies the conditions for the functioning of the pulmonary and systemic circulation. Based on all of this, it is likely that the sophisticated, physically oriented systems of biology (Hagen–Poiseuille’s low, Frank–Starling law, Fick’s low, Laplace’s low, etc.) will merge into these flow-based physical laws.

Acknowledgments

None.

Conflicts of interest

The author declares that the publication was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

None.

References

  1. Faber TE. Physics, Fluid mechanics. Britannica; 2023.
  2. Allsager CM, Swanevelder J. Measuring cardiac output. BJA CEPD Reviews. 2003;3(1):15–19.
  3. Juncker M. How to Calculate Fluid Pressure. wikiHow; 2022.
  4. Klabunde RE. Stroke Work and Cardiac Work. Cardiovascular Physiology Concepts; 2017.
  5. Nordtvedt KL, Cook AH. Newton’s law of gravity. Encyclopedia Britannica; 2023.
  6. Urone PP, Hinrichs R, Dirks K, et al. College Physics: OpenStax.  Flow Rate and Its Relation to Velocity. 2016.
  7. Lund Johansen P. The dye dilution method for measurement of cardiac output. Eur Heart J. 1990;(Suppl I):6–12. 
  8. Conway J, Lund Johansen P. Thermodilution method for measuring cardiac output. Eur Heart J. 1990;1(Suppl I):17–20.
  9. Seldon WA, Hickie JB, George EP. Measurement of Cardiac Output Using a Radioisotope and a Scintillation Counter. Br Heart J. 1959;21(3):401–406.
  10. Fouad Tarazi FM, MacIntyre WJ. Radionuclide methods for cardiac output determination. Eur Heart J. 1990;11(Suppl_I):3–40.   
  11. Bruss ZS, Raja A. Physiology, Stroke Volume. National Library of Medicine; 2022.
  12. Laskowski ER. What's a normal resting heart rate? Mayo Clinic; 2022.
  13. Smith M. What Is Cardiac Output? WebMD; 2022.
  14. Libby P, Zipes DP, Bonow RO, et al. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 6th ed; 1980.
  15. Rakshitha C. Blood Circulation Time: Definition and Importance, Humans, Biology. Biology Discussion.
  16. Ohnishi Y, Fujisawa K, Ishibashi T, et al. Capillary blood flow velocity measurements in cystoid macular edema with the scanning laser ophthalmoscope. Am J Ophthalmol.1994;117(1):24–29.
  17. Merrikh AA, Lage José L. Effect of blood flow on gas transport in a pulmonary capillary. J Biomech Eng. 2005;127(3):432–439.
  18. Hudetz AG. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation. 1997;4(2):233–252.
  19. Gardin JM, Burn CS, Childs WJ, et al. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. Am Heart J. 1984;107(2):310–319.
  20. Garcia J, Roel LF, Bollache E, et al. Distribution of blood Flow velocity in the normal aorta: Effect of age and gender. J Magn Reson Imaging. 2018;47(2):487–498.
  21. Fauci AS, Braunwald E, Kasper DL, et al. Harrison's Principles of Internal Medicine. 17th ed. New York: McGraw-Hill; 2011.
  22. He Zhao, Jiaywei Tsauo, Xiaowu Zhang, et al. Pulmonary transit time derived from pulmonary angiography for the diagnosis of hepatopulmonary syndrome. Liver Int. 2018;38(11):1974–1981.
  23. Slutsky RA, Bhargava V, Higgins CB. Pulmonary circulation time: comparison of mean, median, peak, and onset (appearance) values using indocyanine green and first-transit radionuclide techniques. Am Heart J. 1983;106(1 Pt 1):41–45.
  24. Lau EMT, Godinas L, Sitbon O, et al. Resting pulmonary artery pressure of 21–24 mmHg predicts abnormal exercise haemodynamics. Eur Res J. 2016;47:1436–1444.
Creative Commons Attribution License

©2023 Nagy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.

Citations