Submit manuscript...
Journal of
eISSN: 2473-0831

Analytical & Pharmaceutical Research

Research Article Volume 10 Issue 5

Evaluation of viscosity in binary mixtures of dimethyl sulphoxide at 298.15K

Shipra Baluja

Department of Chemistry, Saurashtra University, India

Correspondence: Shipra Baluja, Department of Chemistry, Saurashtra University, Rajkot-360005 (Gujarat) India

Received: June 18, 2021 | Published: September 30, 2021

Citation: Baluja S. Evaluation of viscosity in binary mixtures of dimethyl sulphoxide at 298.15K. J Anal Pharm Res. 2021;10(5):169-175. DOI: 10.15406/japlr.2021.10.00383

Download PDF

Abstract

The viscosity of binary mixtures of dimethyl sulphoxide with different alcohols such as methanol, ethanol, 1-propanol, iso-propanol, 1-butanol, iso-butanol, tertiary butanol has been determined at 298.15K. The experimental values are compared with theoretical values evaluated by different theories. It is observed that for some theories, values are in agreement with the experimental values. Further, an attempt has been made to study the intermolecular interactions in studied solutions in terms of excess free energy of mixing, strength of interaction parameters and interaction energy. The viscosity data of pure liquids and their mixtures are needed to design various chemical processes where heat and mass transfer are important.

Introduction

Transport properties of binary solution have proven to be a useful tool in elucidating the interactions occurring in solutions. Viscosity is an important transport property.1 The determination of viscosity of liquid mixtures are of interest in chemical industries and chemical engineering involving fluid transportation, process design, pump operations, heat exchange, mixing agitation etc.2-9

In the present work, densities and viscosities of binary mixtures of dimethyl sulphoxide with some alcohols such as methanol, ethanol, 1-propanol, iso-propanol, 1-butanol, iso-butanol, ter-butanol have been measured at 298.15 K. For binary and non-electrolytic solutions, vvarious theories have been developed such as Bingham, Kendall-Munroe, Arrhenius- Eyring, Katti and Chaudhari, Grunberg-Nissan etc. These theories are tested for these studied binary mixtures using experimental data of viscosities. Further, some excess parameters such as excess volume and excess viscosities have also been evaluated.

Experimental

The studied liquids used in the present study were of analytical grade and were supplied by S. D. Fine Chemicals Pvt. Mumbai. These liquids were purified by standard method.10 The purified liquids were stored in air tight bottles over 0.4 nm molecular sieves.

All the binary mixtures were prepared by volume and were stored in stoppered bottles to minimize the error due to evaporation. The densities of all the pure liquids and their binary solutions were measured by Anton Paar densitometer (model No. DSA 5000) at 298.15 K with accuracy of ±0.005 kg/m3. The viscosities of pure liquids and solutions were measured by Ubbleohde viscometer at 298.15 K. An electronic digital stop watch was used for the flow time measurements. The flow time measurements were done at least three times so that each data reproducible to ±0.05 s was obtained, and the results were averaged. The uncertainties in dynamic viscosities are of the order of ±0.003 mPa.s.

Theory

 The viscosity deviations (Δη) are obtained by the equation:

Δη= η 12 x 1 η 1 + x 2 η 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaae4Tdiabg2da9iaabE7apaWaaSbaaSqaa8qacaaIXaGa aGOmaaWdaeqaaOWdbiabgkHiTiaabIhapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaae4Td8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHRaWkcaqG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaabE 7apaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@48E4@

where η12 is the viscosity of the mixture and x1, η1, x2 and η2 are the mole fraction and viscosity of pure components 1 and 2 respectively. Figure 1 shows the variation of viscosity deviation in studied solutions. It is evident from Figure 1 that as CH2 group in alcohol series increases, deviation increases and deviation is more in branched alcohols.

Figure 1 The variation of viscosity deviation for different binary solutions of DMSO with alcohols at 298.15K.

For binary liquid mixtures, ideal viscosity can be evaluated by the following equation proposed by Bingham:11

η=  x i η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyypa0JaaiiOa8aadaqfGaqabSqabeaacaaMb8oaneaa peGaeyyeIuoaaOGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqaH3oaApaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@4405@

where xi and ηi are the mole fraction and viscosity of the i-component respectively.

The viscosity of binary solution can also be evaluated by an additive relation based on Arrhenius and Eyring model12 as follows:

lnηV=  x i  ln η i   V i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac6gacqaH3oaAcaWGwbGaeyypa0JaaiiOa8aadaqfGaqa bSqabeaacaaMb8oaneaapeGaeyyeIuoaaOGaamiEa8aadaWgaaWcba WdbiaadMgacaGGGcaapaqabaGcpeGaciiBaiaac6gacqaH3oaApaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiiOaiaadAfapaWaaSbaaS qaa8qacaWGPbaapaqabaaaaa@4D2D@

Where Vi is the molar volume of the i-component.

Kendall and Munroe13 gave another equation for multi-component systems which is:

lnη=  x i  ln η i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac6gacqaH3oaAcqGH9aqpcaGGGcWdamaavacabeWcbeqa aiaaygW7a0qaa8qacqGHris5aaGccaWG4bWdamaaBaaaleaapeGaam yAaiaacckaa8aabeaak8qaciGGSbGaaiOBaiabeE7aO9aadaWgaaWc baWdbiaadMgaa8aabeaaaaa@48F1@

The following relation was proposed by Katti and Chaudhari14 for binary solutions:

lnηV=  x i  ln η i   V i +( W vis /RT ) x 1  x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac6gacqaH3oaAcaWGwbGaeyypa0JaaiiOa8aadaqfGaqa bSqabeaacaaMb8oaneaapeGaeyyeIuoaaOGaamiEa8aadaWgaaWcba WdbiaadMgacaGGGcaapaqabaGcpeGaciiBaiaac6gacqaH3oaApaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiiOaiaadAfapaWaaSbaaS qaa8qacaWGPbaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaadEfa paWaaSbaaSqaa8qacaWG2bGaamyAaiaadohaa8aabeaak8qacaGGVa GaamOuaiaadsfaaiaawIcacaGLPaaacaWG4bWdamaaBaaaleaapeGa aGymaiaacckaa8aabeaak8qacaWG4bWdamaaBaaaleaapeGaaGOmaa Wdaeqaaaaa@5BC8@

where Wvis is the interaction energy parameter and is given by:

W vis =( RT/ x 1 x 2 )ln( V/ V i x i )+dRT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadAhacaWGPbGaam4CaaWdaeqaaOWd biabg2da9maabmaapaqaa8qacaWGsbGaamivaiaac+cacaWG4bWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qa caaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamiBaiaad6gadaqada WdaeaapeGaamOvaiaac+capaWaaubiaeqaleqabaGaaGzaVdqdbaWd biabggHiLdaakiaadAfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpe GaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGL PaaacqGHRaWkcaWGKbGaamOuaiaadsfaaaa@55A8@

where V is the molar volume of the mixture and d is the Grunberg-Nissan interaction parameter, which is given by:

d=( α F m / x 1 x 2 RT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiabg2da9iabgkHiTmaabmaapaqaa8qacqaHXoqycaWGgbWd amaaBaaaleaapeGaamyBaaWdaeqaaOWdbiaac+cacaWG4bWdamaaBa aaleaapeGaaGymaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaamOuaiaadsfaaiaawIcacaGLPaaaaaa@463F@

and

F m =RT( ln η exp ln η Bring ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacqGH9aqpcqGH sislcaWGsbGaamivamaabmaapaqaa8qaciGGSbGaaiOBaiabeE7aO9 aadaWgaaWcbaWdbiaadwgacaWG4bGaamiCaaWdaeqaaOWdbiabgkHi TiaadYgacaWGUbGaeq4TdG2damaaBaaaleaapeGaamOqaiaadkhaca WGPbGaamOBaiaadEgaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@4F07@

where ηexp is the experimental viscosity and ηBring is the viscosity calculated by Bringam relation.

The Grunberg-Nissan relation15 for viscosity of non-ideal mixture is given as:

lnη=  x i  ln η i + x 1  x 2 d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac6gacqaH3oaAcqGH9aqpcaGGGcWdamaavacabeWcbeqa aiaaygW7a0qaa8qacqGHris5aaGccaWG4bWdamaaBaaaleaapeGaam yAaiaacckaa8aabeaak8qaciGGSbGaaiOBaiabeE7aO9aadaWgaaWc baWdbiaadMgaa8aabeaak8qacqGHRaWkcaWG4bWdamaaBaaaleaape GaaGymaiaacckaa8aabeaak8qacaWG4bWdamaaBaaaleaapeGaaGOm aaWdaeqaaOWdbiaadsgaaaa@5053@

Results and discussion

The purity of the samples and accuracy of data were checked by comparing the measured densities and viscosities of the pure compounds with the literature values, which are given in Table 1. The experimental values are in agreement with literature values.

Liquid

Density

Viscosity

Dimethyl sulphoxide

1.0959 (1.0960)16

1.991 (1.991)10

Methanol

0.7868 (0.7867)17

0.557 (0.553)19

Ethanol

0.7854 (0.7855)18

1.074 (1.0825)20

Prop-1-ol

0.7996 (0.7998)18

1.934 (1.943)10

Prop-2-ol

0.7816 (0.78126)10

2.049 (2.0436)10

But-1-ol

0.8067 (0.8059)18

2.568 (2.571)20

But-2-ol

0.7987 (0.7998)10

3.333 (3.333)10

Ter-Butanol

0.7809 (0.7812)10

4.439 (4.438)10

Table 1 Experimental Density and viscosity of pure liquids at 298.15 K along with literature values in parenthesis

The experimental values of viscosities for the studied binary solutions are given in Table 2.

x1

ηexp

ΗBing

ηArr

ΗKen

ΗKatti

ΗGrun

DMSO+Methanol

         

0.0473

0.5853

0.6248

0.5886

0.5916

0.5492

0.5542

0.1114

0.6297

0.7167

0.6349

0.6419

0.5536

0.564

0.1528

0.6611

0.7761

0.6665

0.6767

0.5629

0.5765

0.2119

0.7065

0.8609

0.7173

0.7296

0.5813

0.5988

0.3098

0.8114

1.0013

0.8079

0.8265

0.6459

0.6698

0.4014

0.9114

1.1326

0.9042

0.9288

0.7185

0.7474

0.4824

1.0196

1.2487

1.0017

1.0298

0.808

0.8408

0.5949

1.2114

1.4101

1.1565

1.1885

0.984

1.0209

0.6956

1.3956

1.5545

1.3188

1.3512

1.1754

1.2129

0.8072

1.6052

1.7145

1.5314

1.5576

1.4256

1.458

0.8995

1.7828

1.8469

1.7356

1.752

1.6689

1.6908

0.932

1.8507

1.8935

1.8139

1.8261

1.7679

1.7844

DMSO+Ethanol

         

0.0668

1.0155

1.1353

1.1197

1.1192

0.9991

1.0011

0.1009

1.0185

1.1665

1.1434

1.1431

0.9954

0.998

0.153

1.0213

1.2143

1.1809

1.1804

0.9895

0.9928

0.2062

1.0239

1.2631

1.2205

1.2198

0.9848

0.9888

0.3164

1.0792

1.3641

1.3064

1.3057

1.0278

1.0329

0.3926

1.1302

1.434

1.3692

1.3686

1.0728

1.0786

0.4913

1.2088

1.5245

1.4549

1.4546

1.1469

1.1532

0.5898

1.3088

1.6148

1.5459

1.5458

1.246

1.2527

0.6921

1.4408

1.7086

1.6472

1.6466

1.3817

1.3882

0.7894

1.5801

1.7978

1.7484

1.7485

1.5305

1.5364

0.9044

1.7904

1.9033

1.8765

1.8772

1.7612

1.7654

0.9518

1.8903

1.9468

1.932

1.9329

1.8733

1.8763

DMSO+Prop-1-ol

         

0.0505

1.8161

1.9369

1.8926

1.9366

1.8143

1.8159

0.1049

1.7185

1.94

1.8971

1.9397

1.7167

1.7183

0.2086

1.6125

1.9459

1.9059

1.9455

1.6106

1.6122

0.2908

1.5593

1.9506

1.9133

1.9502

1.5574

1.559

0.4128

1.5396

1.9575

1.9254

1.9571

1.5376

1.5393

0.4932

1.5532

1.9621

1.9335

1.9617

1.5512

1.5529

0.6126

1.6192

1.9689

1.9457

1.9685

1.6171

1.6189

0.6914

1.6825

1.9734

1.9544

1.973

1.6804

1.6822

0.8277

1.8277

1.9812

1.9699

1.9808

1.8256

1.8274

0.9123

1.8896

1.986

1.9796

1.9857

1.8877

1.8893

0.962

1.9471

1.9888

1.9855

1.9886

1.9053

1.9068

DMSO+Prop-2-ol

         

0.0516

1.848

2.046

2.0428

2.0463

1.8461

1.8478

0.1282

1.6498

2.0415

2.4266

2.0418

1.6478

1.6496

0.2124

1.5202

2.0366

2.031

2.0369

1.5181

1.52

0.3389

1.475

2.0293

2.0227

2.0295

1.4727

1.4748

0.4183

1.4551

2.0247

2.0181

2.0248

1.4527

1.4549

0.4989

1.4831

2.0201

2.0135

2.0202

1.4807

1.4828

0.618

1.5753

2.0131

2.0072

2.0133

1.5728

1.575

0.7156

1.6505

2.0075

2.0024

2.0077

1.648

1.6502

0.8309

1.7745

2.0008

1.9972

2.001

1.7721

1.7742

0.9141

1.8801

1.9959

1.9936

1.9962

1.878

1.8798

DMSO+But-1-ol

         

0.1008

2.2114

2.5097

1.7351

2.5025

1.5283

2.205

0.192

2.017

2.457

1.75598

2.4451

1.4405

2.0072

0.3117

1.7572

2.3878

1.7538

2.3718

1.3867

1.8446

0.4075

1.7783

2.3325

1.8086

2.3147

1.3775

1.7645

0.5031

1.7721

2.2772

1.8328

2.2591

1.4256

1.7577

0.6021

1.7738

2.2199

1.8623

2.2029

1.4858

1.7597

0.7144

1.8117

2.1551

1.8939

2.1408

1.5912

1.7992

0.8032

1.8648

2.1038

1.9247

2.093

1.7025

1.8546

0.9174

1.9295

2.0377

1.9628

2.033

1.8548

1.9242

DMSO+But-2-ol

         

0.1017

2.7536

3.1965

3.1498

3.1638

2.7139

2.7241

0.1917

2.366

3.0757

2.9998

3.0203

2.3088

2.3224

0.3048

2.0366

2.9239

2.8241

2.8494

1.9683

1.9839

0.4099

1.9219

2.7829

2.6724

2.6991

1.8467

1.8634

0.5056

1.874

2.6545

2.5426

2.5692

1.7962

1.8132

0.6044

1.8538

2.5218

2.4175

2.4416

1.7779

1.7942

0.6946

1.8599

2.4008

2.3102

2.3308

1.79

1.805

0.8047

1.8945

2.2531

2.1877

2.2022

1.8391

1.8511

0.9181

1.934

2.1009

2.0706

2.0772

1.9048

1.9116

DMSO+Ter-Butanol

         

0.1038

3.5097

4.1847

4.065

4.086

3.41

3.4248

0.2023

2.9199

3.9435

3.7448

3.7756

2.7744

2.7939

0.3096

2.4754

3.6807

3.4236

3.4643

2.3072

2.3285

0.4154

2.2247

3.4216

3.1385

3.1825

2.0464

2.068

0.5113

2.073

3.1868

2.9029

2.9469

1.895

1.9159

0.6098

1.9855

2.9455

2.6845

2.723

1.815

1.8344

0.6994

1.9155

2.7261

2.5017

2.5342

1.7625

1.7796

0.8082

1.9131

2.4597

2.3003

2.3225

1.7918

1.8052

0.9198

1.9755

2.1864

2.1128

2.1236

1.9097

1.9174

Table 2 Experimental and theoretical viscosities in different binary solutions at 298.15 K

In Figure 1, deviation plots of excess viscosity are given for all the studied solutions. It is evident from Figure 1 that for all the solutions, values are negative. Further, at equimolar concentrations of studied solutions, the order is: methanol > ethanol > prop-1-ol > butan-1-ol > prop-2-ol > butan-2-ol > tertiary butanol. Thus, as CH2 group increases, interactions decrease which causes more negative values with higher or branched alcohols.

Using above relations, the theoretical viscosities and some thermodynamic parameters such as excess free energy of mixing, strength of interaction parameter and interaction energy etc., have been evaluated for all the studied binary mixtures. The theoretical velocities evaluated by Bingham, Arrhenius and Eyring model, Kendall and Munroe, Katti and Chaudhari and Grunberg-Nissan relations are also given in Table 1. The validity of these relations has been checked by calculating percentage deviations for all the studied binary liquid mixtures and the results are shown in Table 3. It is observed that for some binary solutions, some of the relations give better results than others. Further, in most of the solutions, deviations are higher in intermediate compositions. The limitations and approximations incorporated in these theories are responsible for the deviations. The deviations are different for different solutions for different theories. In DMSO + methanol system, there is good agreement between experimental and theoretical values evaluated by Arrhenius and Kendell relations. In all the other solutions except DMSO + But-1-ol, values evaluated by Katti and Grunberg relations are close to experimental values. In DMSO + But-1-ol solutions, experimental values are in good agreement with those evaluated by Grunberg relation. Additive property is considered in some theories, which gives better results in ideal solutions which is not the case in studied solutions. This is one of the reasons for discrepancy between experimental and theoretical values.

x1

ΗBing

ηArr

ΗKen

ΗKatti

ΗGrun

DMSO+Methanol

       

0.0473

-6.75

-0.56

-1.06

6.17

5.31

0.1114

-13.82

-0.82

-1.93

12.09

10.43

0.1528

-17.4

-0.81

-2.35

14.85

12.8

0.2119

-21.85

-1.53

-3.26

17.72

15.24

0.3098

-23.4

0.43

-1.86

20.4

17.45

0.4014

-24.27

0.79

-1.91

21.16

17.99

0.4824

-22.48

1.76

-1

20.75

17.54

0.5949

-16.4

4.53

1.89

18.77

15.72

0.6956

-11.39

5.51

3.18

15.78

13.09

0.8072

-6.81

4.6

2.96

11.19

9.17

0.8995

-3.59

2.65

1.73

6.39

5.16

0.932

-2.31

1.99

1.33

4.47

3.58

DMSO+Ethanol

       

0.0668

-11.79

-10.22

-10.26

1.61

1.41

0.1009

-14.53

-12.23

-12.26

2.27

2.02

0.153

-18.9

-15.58

-15.63

3.12

2.79

0.2062

-23.36

-19.14

-19.2

3.81

3.43

0.3164

-26.4

-20.99

-21.05

4.77

4.29

0.3926

-26.88

-21.1

-21.15

5.08

4.57

0.4913

-26.12

-20.34

-20.36

5.12

4.6

0.5898

-23.38

-18.11

-18.12

4.8

4.29

0.6921

-18.59

-14.28

-14.32

4.11

3.65

0.7894

-13.78

-10.66

-10.65

3.14

2.77

0.9044

-6.31

-4.85

-4.81

1.63

1.4

0.9518

-2.99

-2.26

-2.21

0.9

0.74

DMSO+Prop-1-ol

       

0.0505

-6.65

-4.22

-6.64

0.1

0.01

0.1049

-12.89

-10.39

-12.87

0.1

0.01

0.2086

-20.68

-18.2

-20.65

0.12

0.02

0.2908

-25.09

-22.7

-25.07

0.12

0.02

0.4128

-27.15

-25.06

-27.12

0.13

0.02

0.4932

-26.33

-24.49

-26.3

0.13

0.02

0.6126

-21.6

-20.17

-21.57

0.13

0.02

0.6914

-17.29

-16.16

-17.27

0.12

0.02

0.8277

-8.4

-7.78

-8.38

0.11

0.02

0.9123

-5.1

-4.77

-5.09

0.1

0.01

0.962

-4.29

-4.11

-4.27

0.1

0.01

DMSO+Prop-2-ol

       

0.0516

-10.71

-10.55

-10.73

0.1

0.01

0.1282

-23.75

-47.08

-23.76

0.12

0.01

0.2124

-33.97

-33.6

-33.99

0.14

0.01

0.3389

-37.58

-37.14

-37.59

0.16

0.02

0.4183

-39.15

-38.69

-39.16

0.16

0.02

0.4989

-36.21

-35.77

-36.22

0.16

0.02

0.618

-27.8

-27.42

-27.81

0.16

0.02

0.7156

-21.63

-21.32

-21.64

0.15

0.02

0.8309

-12.75

-12.55

-12.77

0.13

0.02

0.9141

-6.16

-6.04

-6.18

0.11

0.01

DMSO+But-1-ol

       

0.1008

-13.49

21.54

-13.17

30.89

0.29

0.192

-21.82

12.94

-21.23

28.58

0.49

0.3117

-35.89

5.57

-27.71

25.34

0.68

0.4075

-31.16

-1.7

-30.16

22.54

0.77

0.5031

-28.5

-3.42

-27.48

19.55

0.81

0.6021

-25.15

-4.99

-24.19

16.24

0.79

0.7144

-18.95

-4.54

-18.17

12.17

0.69

0.8032

-12.81

-3.21

-12.24

8.7

0.55

0.9174

-5.61

-1.73

-5.37

3.87

0.27

DMSO+But-2-ol

       

0.1017

-16.09

-14.39

-14.9

1.44

1.07

0.1917

-30

-26.79

-27.66

2.42

1.84

0.3048

-43.57

-38.67

-39.91

3.35

2.59

0.4099

-44.8

-39.05

-40.44

3.91

3.05

0.5056

-41.65

-35.68

-37.1

4.15

3.25

0.6044

-36.04

-30.41

-31.71

4.1

3.21

0.6946

-29.08

-24.21

-25.32

3.76

2.95

0.8047

-18.93

-15.48

-16.24

2.92

2.29

0.9181

-8.63

-7.06

-7.4

1.51

1.16

DMSO+Ter-Butanol

       

0.1038

-19.24

-15.82

-16.42

2.84

2.42

0.2023

-35.06

-28.25

-29.31

4.98

4.31

0.3096

-48.69

-38.31

-39.95

6.79

5.93

0.4154

-53.8

-41.08

-43.05

8.01

7.04

0.5113

-53.73

-40.03

-42.16

8.59

7.58

0.6098

-48.36

-35.21

-37.15

8.59

7.61

0.6994

-42.32

-30.61

-32.3

7.99

7.1

0.8082

-28.57

-20.24

-21.4

6.34

5.64

0.9198

-10.68

-6.95

-7.5

3.33

2.94

Table 3 Deviation between experimental and theoretical values of viscosity in studied binary solutions

Further, in studied binary solutions, some thermodynamic parameters such as interaction parameter d, interaction energy (WVis) and excess free energy of mixing (αFm) have also been evaluated for quantitative estimation of interactions in solutions. The evaluated values are listed in Table 4.

x1

d

WVis

αFm

DMSO+Methanol

   

0.0473

-1.4503

-3806.76

161.9963

0.1114

-1.308

-3431.43

320.9581

0.1528

-1.239

-3232.61

397.5923

0.2119

-1.1833

-3121.24

489.8494

0.3098

-0.9833

-2595.82

521.1631

0.4014

-0.9044

-2371.6

538.6374

0.4824

-0.812

-2133

502.5606

0.5949

-0.6302

-1661.76

376.4692

0.6956

-0.5092

-1347.45

267.2746

0.8072

-0.4234

-1139.85

163.3234

0.8995

-0.3906

-1073.08

87.53749

0.932

-0.3607

-1004.54

56.65759

DMSO+Ethanol

   

0.0668

-1.7883

-4530.75

276.3306

0.1009

-1.4958

-3787.71

336.3721

0.153

-1.3357

-3383.97

429.0644

0.2062

-1.2826

-3248.79

520.3998

0.3164

-1.0833

-2749.76

580.7955

0.3926

-0.9984

-2536.73

590.1648

0.4913

-0.9285

-2360.01

575.217

0.5898

-0.8685

-2210.03

520.8725

0.6921

-0.8001

-2044.95

422.6595

0.7894

-0.7767

-1984.54

320.065

0.9044

-0.7075

-1817.91

151.6255

0.9518

-0.642

-1667.05

73.00559

DMSO+Prop-1-ol

   

0.0505

-1.3428

-2185.26

159.602

0.1049

-1.2911

-2637.89

300.496

0.2086

-1.1384

-2528.24

465.8539

0.2908

-1.0856

-2474.09

554.9766

0.4128

-0.9908

-2300.44

595.3148

0.4932

-0.935

-2185.38

579.3108

0.6126

-0.824

-1932.64

484.7382

0.6914

-0.7475

-1755.28

395.3273

0.8277

-0.5654

-1322.63

199.8764

0.9123

-0.6219

-1475.11

123.341

0.962

-1.148

-2798.29

104.0231

DMSO+Prop-2-ol

   

0.0516

-2.0799

-5132.61

-1778.19

0.1282

-1.9063

-8585.42

252.3096

0.2124

-1.7484

-4313.93

528.1429

0.3389

-1.4241

-3511.91

725.0038

0.4183

-1.3577

-3349.25

790.8784

0.4989

-1.236

-3048.65

818.9175

0.618

-1.0389

-2561.89

765.9417

0.7156

-0.9621

-2373.26

607.95

0.8309

-0.8543

-2109.58

485.3763

0.9141

-0.7617

-1887.21

297.5384

DMSO+But-1-ol

   

0.1008

-1.39666

-3472.25

313.8001

0.192

-1.27255

-3165.29

489.3629

0.3117

-1.17202

-2714.69

623.2957

0.4075

-1.12425

-2795.98

672.8568

0.5031

-1.00406

-2491.83

622.1981

0.6021

-0.93769

-2337.45

556.8618

0.7144

-0.85228

-2116.81

431.0472

0.8032

-0.76517

-1924.26

299.8121

0.9174

-0.72623

-1852.42

136.4142

DMSO+But-2-ol

   

0.1017

-1.6326

-4042.72

369.7236

0.1917

-1.6931

-4189.18

650.3041

0.3048

-1.7068

-4223.87

896.4812

0.4099

-1.5304

-3788.31

917.6201

0.5056

-1.3929

-3446.85

863.0638

0.6044

-1.2872

-3186.68

762.9138

0.6946

-1.2035

-2981.62

632.8395

0.8047

-1.103

-2738.01

429.7003

0.9181

-1.1009

-2752.25

205.1969

DMSO+Ter-Butanol

   

0.1038

-1.89143

-4683.2

436.1524

0.2023

-1.86267

-4607.98

745.1024

0.3096

-1.85644

-4577.46

983.6187

0.4154

-1.7733

-4366.07

1067.46

0.5113

-1.72164

-4231.91

1066.361

0.6098

-1.65858

-4078.38

978.2627

0.6994

-1.67987

-4130.68

875.4577

0.8082

-1.62342

-3996.29

623.7957

0.9198

-1.38082

-3397.3

252.4923

 Table 4 Evaluated thermodynamic parameters for the studied binary solutions at 298.15K

It is evident from Table 4 that for all the studied solutions, interaction parameter (d) values are negative which suggest weak interactions in these solutions.21 This is further supported by interaction energy which is again negative for these solutions. αFm is a measure of excess free energy of mixing. For studied solutions, these values are positive. Thus, excess free energy of mixing is reverse of interaction parameter and interaction energy. The negative αFm suggests strong interaction between molecules whereas positive values are due to weak interactions. Thus, in the studied solutions, weak interactions exist. This is further confirmed by negative excess viscosity which is shown in Figure 1.

Thus, it concluded that in studied binary solutions, some theories require modifications to give better results. Further, in studied solutions, weak interactions between molecules exist.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. L Lee, Y Lee. The application of the equations of state incorporated with mixing rules for viscosity estimations of binary mixtures. Fluid Phase Equilib. 2001;181:47‒58.
  2. A Hemmati-Sarapardeh, A Varamesh, MM Husein, et al. On the evaluation of the viscosity of nanofluid systems: Modelling and data assessment. Renewable and Sustainable Energy Rev. 2018;81(Part 1):313‒329.
  3. DS Viswanath, TK Ghosh, DHL Prasad, et al. Viscosity of Liquids: Theory, Estimation, Experiment, and Data. 2007.
  4. A Aminian. Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the process industries. J Mol Liqds. 2007;229:300‒308.
  5. N Parashar, N Aslfattahi, S Mohd. An artificial neural network approach for the prediction of dynamic viscosity of MXene-palm oil nanofluid using experimental data. J Thermal Ana. Calori. 2021;144:175–186.
  6. A Saasen, JD Ytrehus. Viscosity Models for Drilling Fluids—Herschel-Bulkley Parameters and Their Use, 2020;13:5271.
  7. T Inada, H Tomita, F Takemura. Crystallization temperature, vapor pressure, density and viscosity of lithium bromide + lithium iodide + ethylene glycol + water system for absorption refrigerators for automotive use. Int J Refrigeration. 2019;100:274‒283.
  8. A Martini, US Ramasamy, M Len. Review of Viscosity Modifier Lubricant Additives. Tribology Lett. 2018;66:58.
  9. SK Nayak, S Mondal. Viscosity correction in convective heat transfer correlation of non-Newtonian fluid pipe flow: Revis. Chem Eng Sci. 2021;235:116472.
  10. JA Riddick, WB Bunger, T Sakano. Organic solvents-physical properties and methods of purification. Tech of Chem, New York, 1986.
  11. EC Bingham. “Fluidity and Plasticity”. MsGraw-Hill, New York 1922.
  12. S Arrhenius. Medd Vetenskapsakad Nobelinst. 2, 25, 1913.
  13. J Kandell, KP Munroe. The viscosity of liquids. II. The viscosity composition the viscosity of liquids. ii. the viscosity- composition curve for ideal liquid mixtures. J Am Chem Soc. 1917;39:1787‒1802.
  14. PK Katti, MM Chaudhari, O Prakash. Viscosities of Binary Mixtures Involving Benzene, Carbon Tetrachloride, and Cyclohexane. J Chem Eng Data. 1966;11:593‒594.
  15. L Grunberg, AH Nissam. Mixture law for viscosity. Nature (London). 1949;164:779.
  16. TM Aminabhavi, B Gopalakrishna. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N, N/-Dimethylformamide, Dimethyl Sulfoxide, N, N/--Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J Chem Eng Data. 1995;40:856–861.
  17. K Noda, M Ohashl, K Ida. Viscosities and Densities at 298.15 K for Mixtures of Methanol, Acetone, and Water Table 2: Values of Experimental and theoretical viscosities of binary solutions od DMSO with different alcohols. J Chem Eng Data. 1982;27:326‒328.
  18. TM Aminabhavi, VB Patil. Density, Viscosity, and Speed of Sound in Binary Mixtures of 1-Chloronaphthalene with Methanol, Ethanol, Propan-1-ol, Butan-1-ol, Pentan-1-ol, and Hexan-1-ol in the Temperature Range (298.15−308.15) K. J Chem Eng Data. 1998;43,504–508.
  19. TRC Databases for Chemistry and Engineering, SOURCE Database. Version 1998-2; Thermodynamic Research Center, Texas A & M University System:  College Station, TX, 1998.
  20. RP Danner, TE. Daubert. Data compilation tables of properties of pure compounds. Design Institute for Physical Property Data; American Institute of Chemical Engineers:  New York, 1985.
  21. RK Nigam, MS Dhillon. Viscosities of binary liquid mixtures of nonelectrolytes. J Chem Eng Data. 1972;17:35–37.
Creative Commons Attribution License

©2021 Baluja. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.