Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 7 Issue 2

Optimization problem of attitude control of a spacecraft with bounded rotary energy using quaternions

Mikhail Valerevich Levskii

Research Institute of Space Systems, Russia

Correspondence: Mikhail Valerevich Levskii, Research Institute of Space systems, Khrunichev State Space research-andproduction Center Korolev, Russia

Received: July 01, 2021 | Published: August 26, 2021

Citation: Levskii MV. Optimization problem of attitude control of a spacecraft with bounded rotary energy using quaternions. Int Robot Automat J. 2021;7(2):63-73 DOI: 10.15406/iratj.2021.07.00228

Download PDF

Abstract

The original control problem of optimal reorientation from a state of rest to a state of rest is considered and solved. The control function is torque vector. Problem of optimal control is investigated in detail for statement when control is restricted and the used functional of optimality includes kinematical rotary energy and time of maneuver. For solving and synthesis of the optimal control program, the quaternion method and the Pontryagin’s maximum principle are applied. Analytic solution of the proposed problem is presented basing on the differential equation connecting the angular velocity vector and quaternion of spacecraft attitude. It is shown that a chosen criterion of optimality provides a turn of a spacecraft with rotation energy which does not exceed the required value. This property of proposed control increases safety of flight. The time-optimal problem was solved also. The control law is formulated in the form of an explicit dependence of the control variables on the phase coordinates. All key expressions and equations are written in quaternion form which is convenient for onboard realization and implementation. The analysis of the special control regime of the spacecraft was made. Analytical formulas were written for duration of acceleration and braking. For specific cases of spacecraft configurations (dynamically symmetric spacecraft and spheric-symmetrical spacecraft as particular cases), complete solution of optimal control problem in closed form is given. Numerical example and the results of mathematical simulation for spacecraft motion under optimal control are demonstrated. This data supplements the made theoretical descriptions, and illustrates the practical feasibility of the designed algorithm for controlling the spatial orientation of the spacecraft showing reorientation process in visual form.

Keywords: attitude, quaternion, reorientation, optimal control, criterion of optimality, maximum principle

Introduction

The optimal control problem of spacecraft reorientation from arbitrary known initial attitude into the required angular position was solved. Spacecraft motion around the center of mass is given by quaternion of attitude.1 Designing the optimal rotation program is based on quaternion models, Pontryagin’s maximum principle, and universal variables.2 In present time, spacecrafts are used in many areas of industry and scientific occupations. For example, astrophysical researches and other scientific discoveries would be impossible without spacecrafts for which success of mission and duration of performance in a working point of orbit (orbital position) are determined by successful control of motion, by an efficiency of attitude control (an improved system of spacecraft attitude is especially important for the spacecrafts with instruments and devices for astronomy measurements and for satellites of Earth supervision).3–5 In particular, in April 2018, NASA launched the Transiting Exoplanet Survey Satellite (TESS), a space telescope that helps to study the exoplanets, or NASA’s James Webb Space Telescope measuring atmospheric properties and compositions of small planets, and also Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) space telescope of European Space Agency.5

Many works have been dedicated to investigating optimal solutions in problems of controlling the angular position of a rigid body.1,6–26 Most solutions correspond for the case when the spacecraft rotates around a motionless axis1,6–10 (including the use the algorithm of fuzzy logic7 or the method of the inverse dynamic problem),8 time-optimal maneuvers is topical also.1,9–14 Particular solutions were found obtained for axi-symmetric spacecraft.14–16 For the spacecraft with arbitrary mass distribution, an analytical solution to the three-dimensional turn problem with arbitrary boundary conditions for spacecraft’s angular position is not known except some special cases of reorientation problem.1 An analytical solution to the optimal turn problem in a closed form, if it were obtained, is of great practical interest, since it allows the finished laws of programmed control and variation of the optimal trajectory of spacecraft motion to be applied onboard of the spacecraft.11,17 Principal difference of the presented research work consists in use of new minimized index which characterizes consumption of energy and time for spacecraft reorientation and combines the duration of maneuver and integral of kinetic rotation energy. Issues of cost-efficiency also remain relevant for the time being for spacecraft motion control. The method designed in present article is universal control; it does not depend on a ratio (proportion) of moments of inertia or final position of a spacecraft. Also, the developed algorithm is useful for of control of the spacecrafts with inertial actuators (specific features of system with gyrodins were considered earlier).18–21

Formulation of optimization problem

Spacecraft’s angular rotation around the center mass is determined by the dynamic equations:6

J 1 ω ˙ 1 +( J 3 J 2 ) ω 2 ω 3 = M 1 , J 2 ω ˙ 2 +( J 1 J 3 ) ω 1 ω 3 = M 2 , J 3 ω ˙ 3 +( J 2 J 1 ) ω 1 ω 2 = M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiqbeM8a3zaacaWcdaWg aaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRKqbaoaabmaakeaaju gibiaadQealmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeyOeI0Ia amOsaSWaaSbaaeaajugWaiaaikdaaSqabaaakiaawIcacaGLPaaaju gibiabeM8a3TWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacqaHjpWD lmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeyypa0JaamytaSWaaS baaeaajugWaiaaigdaaSqabaGaaiilaKqzGeGaamOsaKqbaoaaBaaa leaajugWaiaaikdaaSqabaqcLbsacuaHjpWDgaGaaKqbaoaaBaaale aajugWaiaaikdaaSqabaqcLbsacqGHRaWkjuaGdaqadaGcbaqcLbsa caWGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgkHiTiaadQ ealmaaBaaabaqcLbmacaaIZaaaleqaaaGccaGLOaGaayzkaaqcLbsa cqaHjpWDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeqyYdC3cda WgaaqaaKqzadGaaG4maaWcbeaajugibiabg2da9iaad2ealmaaBaaa baqcLbmacaaIYaaaleqaaiaacYcajugibiaadQealmaaBaaabaqcLb macaaIZaaaleqaaKqzGeGafqyYdCNbaiaajuaGdaWgaaWcbaqcLbma caaIZaaaleqaaKqzGeGaey4kaSscfa4aaeWaaOqaaKqzGeGaamOsaS WaaSbaaeaajugWaiaaikdaaSqabaqcLbsacqGHsislcaWGkbWcdaWg aaqaaKqzadGaaGymaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeqyYdC 3cdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabeM8a3LqbaoaaBaaa leaajugWaiaaikdaaSqabaqcLbsacqGH9aqpcaWGnbWcdaWgaaqaaK qzadGaaG4maaWcbeaaaaa@9CB8@   (1)

where Ji are the spacecraft’s principal central moments of inertia, Mi are projections of torque M onto the principal central axes of the spacecraft’s inertia ellipsoid (these axes form body basis E), are projections of the absolute angular velocity vector ω onto the axes of the body basis E (i= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaeyymaeJaeyilaWIaaGjbVlabgodaZaaaaaa@3B7F@ ). The mathematical formalism of quaternions (the Euler–Rodrigues parameters) is used for describing the spatial motion of a spacecraft. Angular orientation of the spacecraft coordinate system is defined relative to the reference basis I which we assume inertial coordinate system. Motion of the body basis E relative to the reference basis I will be specified by the quaternion Λ.1 We assume that the quaternion Λ is normalized (||Λ||=1), and the basis I is inertial. Therefore, the following kinematic equation is true

2 Λ ˙ =Λοω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHYa GmcuqHBoatgaGaaiabg2da9iabfU5amjabg+7aVLqzadGaeqyYdCha aa@4026@   (2)

The symbol is a sign of multiplication of quaternions. For simplicity, the quaternion specifying the current spacecraft orientation is assumed the normalized quaternion (||Λ ||= 1). The spacecraft motion control relative to its center of mass is done by changing the torque M (external or internal, if spacecraft orientation control is done with use of inertial actuators, i.e. powered gyroscopes). Region of admissible values for the vector M is determined by the condition

M 1 2 / J 1 + M 2 2 / J 2 + M 3 2 / J 3 u 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamytaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOm aaaaaOqaaKqzGeGaamOsaKqbaoaaBaaaleaajugWaiaaigdaaSqaba aaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaamytaSWaa0baaeaa jugWaiaaikdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbao aaBaaaleaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGb aOqaaKqzGeGaamytaSWaa0baaeaajugWaiaaiodaaSqaaKqzadGaaG OmaaaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaiodaaSqabaaa aKqzGeGaeyizImQaamyDaSWaa0baaeaajugWaiaaicdaaSqaaKqzad GaaGOmaaaaaaa@5E28@   (3)

where u0>0 is positive value specifying power of actuators. Angular positions of the initial and final spacecraft attitude are given by the quaternions Lin & Lf respectively. In many practical modes of reorientation, initial state satisfies condition ω (0)=0 and final angular velocity must be absent ω (T)=0 (these cases occur very frequently, especially if attitude control is done relative to inertial coordinate system). The boundary conditions are:

Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGPbGaaeOBaaWcbeaaaaa@3FCA@ , ω (0)=0  (4)

Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamivaiaacMcacqGH9aqpcqqHBoatjuaGdaWgaaWcbaqc LbmacaqGMbaaleqaaaaa@3F83@ , ω (T)=0  (5)

where T is the time of ending the reorientation process, and the quaternions Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ which specify the orientation of spacecraft-bound axes at the initial and final time instants have arbitrary predefined values satisfying the condition || Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ ||=|| Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ ||=1. We estimate efficiency of control using the index

G=T+ k 0 0 T ( J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb Gaeyypa0JaamivaiabgUcaRiaadUgalmaaBaaabaqcLbmacaaIWaaa leqaaKqbaoaapehakeaajugibiaacIcacaWGkbWcdaWgaaqaaKqzad GaaGymaaWcbeaajugibiabeM8a3TWaa0baaeaajugWaiaaigdaaSqa aKqzadGaaGOmaaaajugibiabgUcaRiaadQeajuaGdaWgaaWcbaqcLb macaaIYaaaleqaaKqzGeGaeqyYdC3cdaqhaaqaaKqzadGaaGOmaaWc baqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOsaSWaaSbaaeaajugWai aaiodaaSqabaqcLbsacqaHjpWDlmaaDaaabaqcLbmacaaIZaaaleaa jugWaiaaikdaaaqcLbsacaGGPaGaamizaiaadshaaSqaaKqzadGaaG imaaWcbaqcLbmacaWGubaajugibiabgUIiYdaaaa@686F@   (6)

where k> 0 is the constant positive coefficient; Т is the time of ending the turn.

The reorientation optimal control problem is formulated in following statement: spacecraft must be transferred from state (4) into state (5) according to equations (1), (2) and restriction (3) with minimal value of the functional (6) (time T, when the spacecraft reorientation maneuver should end, is not fixed, and it is optimized simultaneously with value G). The solution М(t) is sought in the class of piecewise continuous functions. The chosen criterion of optimality guarantees the spacecraft’s motion with a kinetic energy of rotation not exceeding the required value (it provides turn of a spacecraft with the bounded rotation energy because the coefficient k0 ≠ 0). It allows for estimation of an energetically advantageous angular motion trajectory along which the spacecraft will turn from its initial position Lin into the required final angular position Lf, and for finding the corresponding control mode. Presence of time factor in the assumed index (6) limits the duration T of the optimal turn to some finite time Topt.

Solution procedure of the optimal control problem

The formulated control problem (1)–(6) is a classical dynamic problem of the optimal turn,1 and the torques Мi are the control variables, and angular velocity projections ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA5@ are controllable variables (for minimization of index (6)). For solving the formulated problem, we use Pontryagin’s maximum principle.27 The restriction on the phase variables L is insignificant, since it is satisfied during any motions relative to the center of mass; ||Λ(t)||=const due to equation (2); we assumed ||Λ(0)||=||Λin||=1, and therefore ||Λ(t)||=1 at any time tÎ[0, T]. Introduce the conjugate variables ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzjuaGdaWgaaWcbaqcLbmacaWGPbaaleqaaaaa@3B2E@ corresponding to the angular velocities ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA5@ (i= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaeyymaeJaeyilaWIaaGjbVlabgodaZaaaaaa@3B7F@ ). The minimized functional (6) does not include the position coordinates, therefore we use universal variables ri,2 and to introduce the conjugate variables corresponding to the phase variables (components of quaternion Λ) is not obligatory. The Hamiltonian H of problem (1)-(6) looks like the following:

H = j( М+ (J2 - J3 )w2 w) /J1 + j( М+ (J3 - J1 )w1 w) /J2 + j( М+ (J1 - J2 )w1 w) /J3 +
ω 1 r 1 + ω 2 r 2 + ω 3 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaamOCaSWaaSbaaeaa jugWaiaaigdaaSqabaqcLbsacqGHRaWkcqaHjpWDjuaGdaWgaaWcba qcLbmacaaIYaaaleqaaKqzGeGaamOCaKqbaoaaBaaaleaajugWaiaa ikdaaSqabaqcLbsacqGHRaWkcqaHjpWDlmaaBaaabaqcLbmacaaIZa aaleqaaKqzGeGaamOCaSWaaSbaaeaajugWaiaaiodaaSqabaaaaa@5142@ +     (7)

where the functions ri and λj are related by the following relations:2

r 1 =( λ 0 ψ 1 + λ 3 ψ 2 λ 1 ψ 0 λ 2 ψ 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9iaacIcacqaH 7oaBjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaeqiYdK3cda WgaaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiabeU7aSTWaaSba aeaajugWaiaaiodaaSqabaqcLbsacqaHipqElmaaBaaabaqcLbmaca aIYaaaleqaaKqzGeGaeyOeI0Iaeq4UdW2cdaWgaaqaaKqzadGaaGym aaWcbeaajugibiabeI8a5LqbaoaaBaaaleaajugWaiaaicdaaSqaba qcLbsacqGHsislcqaH7oaBlmaaBaaabaqcLbmacaaIYaaaleqaaKqz GeGaeqiYdK3cdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaacMcaca GGVaGaaGOmaaaa@6555@ ,
r 2 =( λ 0 ψ 2 + λ 1 ψ 3 λ 2 ψ 0 λ 3 ψ 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9iaacIca cqaH7oaBlmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaeqiYdK3cda WgaaqaaKqzadGaaGOmaaWcbeaajugibiabgUcaRiabeU7aSTWaaSba aeaajugWaiaaigdaaSqabaqcLbsacqaHipqElmaaBaaabaqcLbmaca aIZaaaleqaaKqzGeGaeyOeI0Iaeq4UdW2cdaWgaaqaaKqzadGaaGOm aaWcbeaajugibiabeI8a5TWaaSbaaeaajugWaiaaicdaaSqabaqcLb sacqGHsislcqaH7oaBlmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGa eqiYdK3cdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaacMcacaGGVa GaaGOmaaaa@64C8@ ,
r 3 =( λ 0 ψ 3 + λ 2 ψ 1 λ 3 ψ 0 λ 1 ψ 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiabg2da9iaacIcacqaH 7oaBjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaeqiYdKxcfa 4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabgUcaRiabeU7aSLqb aoaaBaaaleaajugWaiaaikdaaSqabaqcLbsacqaHipqElmaaBaaaba qcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Iaeq4UdW2cdaWgaaqaaKqz adGaaG4maaWcbeaajugibiabeI8a5LqbaoaaBaaaleaajugWaiaaic daaSqabaqcLbsacqGHsislcqaH7oaBjuaGdaWgaaWcbaqcLbmacaaI XaaaleqaaKqzGeGaeqiYdKxcfa4aaSbaaSqaaKqzadGaaGOmaaWcbe aajugibiaacMcacaGGVaGaaGOmaaaa@678F@

and ψ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHip qEjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaaa@3B35@ are the conjugate variables corresponding to components of quaternion λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBjuaGdaWgaaWcbaqcLbmacaWGQbaaleqaaaaa@3B1B@ (j= 0,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaaO qaaKqzGeGaeyimaaJaeyilaWIaaGjbVlabgodaZaaaaaa@3B7D@ ).

The first terms (they contains the conjugate variables ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA0@ ) comprise the dynamical part of the Hamiltonian H, the second terms (they contains universal variables ri) comprise the kinematical part of the Hamiltonian H which is responsible for the geometric properties of optimal motion. Other terms corresponds to the chosen optimality criterion. The function H does not take into account the phase constraint ||Λ||=1, since || Λ(0)||=1. For the universal variables ri, the following system of equations are true:2

r ˙ 1 = ω 3 r 2 ω 2 r 3 , r ˙ 2 = ω 1 r 3 ω 3 r 1 , r ˙ 3 = ω 2 r 1 ω 1 r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGYb GbaiaalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JaeqyY dCxcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaadkhajuaGda WgaaWcbaqcLbmacaaIYaaaleqaaKqzGeGaeyOeI0IaeqyYdC3cdaWg aaqaaKqzadGaaGOmaaWcbeaajugibiaadkhalmaaBaaabaqcLbmaca aIZaaaleqaaiaacYcajugibiqadkhagaGaaSWaaSbaaeaajugWaiaa ikdaaSqabaqcLbsacqGH9aqpcqaHjpWDlmaaBaaabaqcLbmacaaIXa aaleqaaKqzGeGaamOCaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqc LbsacqGHsislcqaHjpWDjuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaK qzGeGaamOCaSWaaSbaaeaajugWaiaaigdaaSqabaGaaiilaKqzGeGa bmOCayaacaqcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabg2 da9iabeM8a3TWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWGYbWc daWgaaqaaKqzadGaaGymaaWcbeaajugibiabgkHiTiabeM8a3Lqbao aaBaaaleaajugWaiaaigdaaSqabaqcLbsacaWGYbWcdaWgaaqaaKqz adGaaGOmaaWcbeaaaaa@7C6B@   (8)

Change in vector r formed by the universal variables ri is solution of the following equation

r ˙ =ω×r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWHYb GbaiaacqGH9aqpcqGHsislcqaHjpWDcqGHxdaTcaWHYbaaaa@3E5B@

(it is vector form of the equations (8) if variables ri is assumed as assume projections of vector r on the axes of the body basis E. The symbol × denotes the vector product of two vectors. It is know that the vector r turns out to be motionless relative to the inertial basis I, and |r|=const¹0.2 The equations for conjugate variables ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA0@  have the form

ϕ ˙ i = H ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHvp GzgaGaaSWaaSbaaeaajugWaiaadMgaaSqabaqcLbsacqGH9aqpcqGH sisljuaGdaWcaaGcbaqcLbsacqGHciITcaWGibaakeaajugibiabgk Gi2kabeM8a3TWaaSbaaeaajugWaiaadMgaaSqabaaaaaaa@46B4@

The conjugate system of equations is

ϕ ˙ 1 =2 k 0 J 1 ω 1 ω 3 n 2 ϕ 2 ω 2 n 3 ϕ 3 r 1 , ϕ ˙ 2 =2 k 0 J 2 ω 2 ω 3 n 1 ϕ 1 ω 1 n 3 ϕ 3 r 2 , ϕ ˙ 3 =2 k 0 J 3 ω 3 ω 2 n 1 ϕ 1 ω 1 n 2 ϕ 2 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi qbew9aMzaacaWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da 9iaaikdacaWGRbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibi aadQealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeqyYdC3cdaWg aaqaaKqzadGaaGymaaWcbeaajugibiabgkHiTiabeM8a3TWaaSbaae aajugWaiaaiodaaSqabaqcLbsacaWGUbWcdaWgaaqaaKqzadGaaGOm aaWcbeaajugibiabew9aMTWaaSbaaeaajugWaiaaikdaaSqabaqcLb sacqGHsislcqaHjpWDlmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGa amOBaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqaHvpGzlmaaBa aabaqcLbmacaaIZaaaleqaaKqzGeGaeyOeI0IaamOCaSWaaSbaaeaa jugWaiaaigdaaSqabaGaaiilaaGcbaqcLbsacuaHvpGzgaGaaSWaaS baaeaajugWaiaaikdaaSqabaqcLbsacqGH9aqpcaaIYaGaam4AaSWa aSbaaeaajugWaiaaicdaaSqabaqcLbsacaWGkbWcdaWgaaqaaKqzad GaaGOmaaWcbeaajugibiabeM8a3LqbaoaaBaaaleaajugWaiaaikda aSqabaqcLbsacqGHsislcqaHjpWDlmaaBaaabaqcLbmacaaIZaaale qaaKqzGeGaamOBaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqaH vpGzlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0IaeqyYdC 3cdaWgaaqaaKqzadGaaGymaaWcbeaajugibiaad6galmaaBaaabaqc LbmacaaIZaaaleqaaKqzGeGaeqy1dy2cdaWgaaqaaKqzadGaaG4maa WcbeaajugibiabgkHiTiaadkhalmaaBaaabaqcLbmacaaIYaaaleqa aiaacYcaaOqaaKqzGeGafqy1dyMbaiaalmaaBaaabaqcLbmacaaIZa aaleqaaKqzGeGaeyypa0JaaGOmaiaadUgajuaGdaWgaaWcbaqcLbma caaIWaaaleqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaiodaaSqaba qcLbsacqaHjpWDlmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeyOe I0IaeqyYdC3cdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiaad6gaju aGdaWgaaWcbaqcLbmacaaIXaaaleqaaKqzGeGaeqy1dy2cdaWgaaqa aKqzadGaaGymaaWcbeaajugibiabgkHiTiabeM8a3TWaaSbaaeaaju gWaiaaigdaaSqabaqcLbsacaWGUbWcdaWgaaqaaKqzadGaaGOmaaWc beaajugibiabew9aMLqbaoaaBaaaleaajugWaiaaikdaaSqabaqcLb sacqGHsislcaWGYbWcdaWgaaqaaKqzadGaaG4maaWcbeaaaaaa@CEA9@    (9)

where n1 = (J2 – J3 )/J1 , n2 = (J3 – J1 )/J2 , n3 = (J1 – J2 )/J3 are the constant coefficients.

Thus, the problem of finding an optimal control is reduced to solving the system of equations of spacecraft’s angular motion (1), (2), and equations (8), (9) under the condition that the control itself is chosen by maximizing the Hamiltonian. The optimal function r(t) is calculated through the quaternion (t) using the formula:1,2

r= Λ ˜ c E Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHYb Gaeyypa0Jafu4MdWKbaGaacqWIyiYBcaWHJbqcfa4aaSbaaSqaaKqz adGaamyraaWcbeaajugibiablIHiVjabfU5ambaa@422B@ , where cE= Λ in r(0) Λ ˜ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaajugibiablIHiVjaa hkhacaGGOaGaaGimaiaacMcacqWIyiYBcuqHBoatgaacaSWaaSbaae aajugWaiaabMgacaqGUbaaleqaaaaa@4613@ =const

( Λ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHBo atgaacaaaa@3809@ is the quaternion conjugate to quaternion Λ). The direction of vector cE depends on the initial and final spacecraft positions. In order for the spacecraft to have the required orientation at the right-hand end Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamivaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGMbaaleqaaaaa@3EF5@ , the vector cE (or the value of vector r at the initial instant) by the corresponding solution of equation (2) should be determined. The system of differential equations (8), (9), together with the maximality condition of the Hamiltonian H, is necessary conditions of optimality. Constraint equations are given by the system of equation (2) which describes the spacecraft’s motion relative to its center of mass. The maximum conditions of function H determine sought solution M(t). Boundary position conditions Λ(0) and Λ(T) determine solutions Λ(t) and r(t). The boundary problem of the maximum principle is to find the value of the vector r(0) for which the solution of the system of differential equations (1), (2), (8), (9) together with simultaneous maximization, at every current moment of time, of the Hamiltonian H satisfies reorientation conditions (4), (5).

In the problem being solved, the time of the spatial turn is not fixed; therefore, the following transversality condition H=0 must be satisfied28 (since the Hamiltonian H does not explicitly depend on time). The system of to equations (8), (9), together with the requirement of maximality of the Hamiltonian H and the conditions r(0)≠0, H=0, are the necessary conditions of optimality. To find the control function M(t) (the optimal control program) and the optimal vector r, we define the conditions for the maximality of the Hamiltonian H, which we rewrite in the form

H = φ1М/J1 + φ2М/J2 + φ3М/J3 + Hinv

where Hinv does not explicitly depend on the control functions Mi . Let φ be the vector with components φi. If φ=;0, the maximum of the function H for the controls Мi (t) under restriction (3) is achieved when

Mi = u 0 ϕ i ϕ 1 2 / J 1 + ϕ 2 2 / J 2 + ϕ 3 2 / J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamyDaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacqaH vpGzlmaaBaaabaqcLbmacaWGPbaaleqaaaGcbaqcfa4aaOaaaOqaaK qzGeGaeqy1dy2cdaqhaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaa aKqzGeGaai4laiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGe Gaey4kaSIaeqy1dy2cdaqhaaqaaKqzadGaaGOmaaWcbaqcLbmacaaI YaaaaKqzGeGaai4laiaadQeajuaGdaWgaaWcbaqcLbmacaaIYaaale qaaKqzGeGaey4kaSIaeqy1dy2cdaqhaaqaaKqzadGaaG4maaWcbaqc LbmacaaIYaaaaKqzGeGaai4laiaadQeajuaGdaWgaaWcbaqcLbmaca aIZaaaleqaaaqabaaaaaaa@6241@    (10)

(the case of φ=0, in which the Hamiltonian does not explicitly depend on the control M, requires additional consideration). Further we will demonstrate that M=0 if Φ=0 (and φ = 0). The optimal solution is determined by the closed system of equations (1), (2), and (8)-(10) considering the conditions (4) and (5). Let us find the characteristic properties of the optimal motion using the normalized vector р = r/|r|, |p|=1 (due to the fact that |r| =const=|r(0)|¹0). For the vector p, we have p ˙ =ω×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWHWb GbaiaacqGH9aqpcqGHsislcqaHjpWDcqGHxdaTcaWHWbaaaa@3E57@ , or

p ˙ 1 = ω 3 p 2 ω 2 p 3 , p ˙ 2 = ω 1 p 3 ω 3 p 1 , p ˙ 3 = ω 2 p 1 ω 1 p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGWb GbaiaalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JaeqyY dCxcfa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiaadchalmaaBa aabaqcLbmacaaIYaaaleqaaKqzGeGaeyOeI0IaeqyYdC3cdaWgaaqa aKqzadGaaGOmaaWcbeaajugibiaadchalmaaBaaabaqcLbmacaaIZa aaleqaaiaacYcajugibiqadchagaGaaSWaaSbaaeaajugWaiaaikda aSqabaqcLbsacqGH9aqpcqaHjpWDlmaaBaaabaqcLbmacaaIXaaale qaaKqzGeGaamiCaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGH sislcqaHjpWDlmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaamiCaS WaaSbaaeaajugWaiaaigdaaSqabaGaaiilaKqzGeGabmiCayaacaqc fa4aaSbaaSqaaKqzadGaaG4maaWcbeaajugibiabg2da9iabeM8a3T WaaSbaaeaajugWaiaaikdaaSqabaqcLbsacaWGWbWcdaWgaaqaaKqz adGaaGymaaWcbeaajugibiabgkHiTiabeM8a3TWaaSbaaeaajugWai aaigdaaSqabaqcLbsacaWGWbWcdaWgaaqaaKqzadGaaGOmaaWcbeaa aaa@7A21@   (11)

In what follows, the components pi of the vector p will be used. Note that ri=|r(0)|pi. The solution to the system of equations (1) and (8)-(10) (under the requirement ω (0) =  ω (Т) = 0) has the form

ϕ i =a(t) p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0Jaamyyaiaa cIcacaWG0bGaaiykaiaadchalmaaBaaabaqcLbmacaWGPbaaleqaaa aa@42B5@   (12)

J i ω i =b p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabeM8a3TWaaSba aeaajugWaiaadMgaaSqabaqcLbsacqGH9aqpcaWGIbGaamiCaSWaaS baaeaajugWaiaadMgaaSqabaaaaa@44A8@   (13)

where b is a scalar value; а(t) is scalar function of time with £0 (b³0 for optimal motion ω (t)).

After substituting solution (12), (13) into system (9) and considering the equations (11) for the derivatives , we obtain the identity expressions if p=(2k0b  r0)p, where r0=|r(0)|. Therefore, the optimal functions а(t) and b(t) satisfy the condition =2k0b  r0 (since |p|¹0), from which two features follow: a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ (0)= a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ (T)= r0 and b(0)=b(T)=0 (due to the requirement ω (0) =  ω (Т) = 0). At initial instant t=0, а(0)>0; otherwise M×p<0 and b<0 due to the equations (1), (10), (12), and <0, a<0 for any t>0. However, in such a scenario (when а (0)£0), the switching is absent (since b<0 and a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaca aaaa@36E6@ <0); the torque М acts in one direction, spinning the spacecraft until ω→∞. Accordingly, at end of reorientation maneuver, condition M×L<0 is necessary (and M×p<0 also) and а (T)<0. The scalar function a(t) is the continuous function of time. Therefore, moment of time when a(t)=0 exists. If a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ =0 then a(t)=0,Φ=0, φ=0 (otherwise the value a(t) does not change a sign, i.e. a(t)>0 and M×L>0 during interval of control [0, T], but such rotation does not satisfy the condition ω (T)=0); L is angular momentum of a spacecraft (the multiplication sign × means the scalar product of vectors).

From (1) and (13), we have b ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGIb Gbaiaaaaa@3775@ = M×p. If a(t)>0, we have acceleration process. If a(t)<0, we have braking. For acceleration phase [0, t1], we have a ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbamaaaaa@3775@ >0; for braking [t2T], we have a ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbamaaaaa@3775@ <0 (since a ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbamaaaaa@3775@ =2 b ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGIb Gbaiaaaaa@3775@ ). For functions a(t) and b(t), we have the following properties: a(Т-t)= -a(t) and b(Т-t)=b(t).

The equalities (12), (13) are satisfied together. For spin-up, optimal controlling moment M is calculated by the formula

M i = u 0 J i ω i / J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaamyAaaWcbeaajugibiabg2da9Kqbaoaalyaa keaajugibiaadwhalmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaam OsaSWaaSbaaeaajugWaiaadMgaaSqabaqcLbsacqaHjpWDjuaGdaWg aaWcbaqcLbmacaWGPbaaleqaaaGcbaqcfa4aaOaaaOqaaKqzGeGaam OsaSWaaSbaaOqaaKqzadGaaGymaaGcbeaajugibiabeM8a3TWaa0ba aeaajugWaiaaigdaaSqaaKqzadGaaGOmaaaajugibiabgUcaRiaadQ ealmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaeqyYdC3cdaqhaaqa aKqzadGaaGOmaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOsaS WaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqaHjpWDlmaaDaaabaqc LbmacaaIZaaaleaajugWaiaaikdaaaaaleqaaaaaaaa@68C2@   (14)

Optimal torque M and angular momentum L are parallel during acceleration phase. Differentiation of left and right parts of equalities (14) gives the following differential equations (angular accelerations ω ˙ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHjp WDgaGaaSWaaSbaaeaajugWaiaadMgaaSqabaaaaa@3AAE@  are taken from dynamic equations (1)):

M ˙ 1 = ω 3 M 2 ω 2 M 3 , M ˙ 2 = ω 1 M 3 ω 3 M 1 , M ˙ 3 = ω 2 M 1 ω 1 M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGnb GbaiaalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JaeqyY dC3cdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaad2ealmaaBaaaba qcLbmacaaIYaaaleqaaKqzGeGaeyOeI0IaeqyYdC3cdaWgaaqaaKqz adGaaGOmaaWcbeaajugibiaad2ealmaaBaaabaqcLbmacaaIZaaale qaaiaacYcajugibiqad2eagaGaaSWaaSbaaeaajugWaiaaikdaaSqa baqcLbsacqGH9aqpcqaHjpWDlmaaBaaabaqcLbmacaaIXaaaleqaaK qzGeGaamytaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqGHsisl cqaHjpWDlmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaamytaSWaaS baaeaajugWaiaaigdaaSqabaGaaiilaKqzGeGabmytayaacaWcdaWg aaqaaKqzadGaaG4maaWcbeaajugibiabg2da9iabeM8a3TWaaSbaae aajugWaiaaikdaaSqabaqcLbsacaWGnbWcdaWgaaqaaKqzadGaaGym aaWcbeaajugibiabgkHiTiabeM8a3TWaaSbaaeaajugWaiaaigdaaS qabaqcLbsacaWGnbWcdaWgaaqaaKqzadGaaGOmaaWcbeaaaaa@77CA@   (15)

Rewrite last equations in vector form

Μ ˙ =ω×Μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHCo qtgaGaaiabg2da9iabgkHiTiabeM8a3jabgEna0kabfY5anbaa@3F53@

The obtained differential equation, for the controlling moment M, means its immobility relative to inertial coordinate system. As consequence, |M|=const during acceleration stage. For optimal braking, the torque M is

M i = u 0 J i ω i / J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaKqzadGaamyAaaWcbeaajugibiabg2da9Kqbaoaalyaa keaajugibiabgkHiTiaadwhajuaGdaWgaaWcbaqcLbmacaaIWaaale qaaKqzGeGaamOsaSWaaSbaaeaajugWaiaadMgaaSqabaqcLbsacqaH jpWDlmaaBaaabaqcLbmacaWGPbaaleqaaaGcbaqcfa4aaOaaaOqaaK qzGeGaamOsaKqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqaH jpWDlmaaDaaabaqcLbmacaaIXaaaleaajugWaiaaikdaaaqcLbsacq GHRaWkcaWGkbWcdaWgaaqaaKqzadGaaGOmaaWcbeaajugibiabeM8a 3TWaa0baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaaaajugibiabgU caRiaadQealmaaBaaabaqcLbmacaaIZaaaleqaaKqzGeGaeqyYdC3c daqhaaqaaKqzadGaaG4maaWcbaqcLbmacaaIYaaaaaWcbeaaaaaaaa@6A34@   (16)

After differentiation of equalities (16) we obtain differential equations (15) from which the property |M|=const appears for the entire braking stage. Thus, equality |M|=const is satisfied for optimal rotation during acceleration and braking phases. It is very important property of optimal motion and optimal control. Both at imparting the calculated angular momentum, and at damping of rotation, the torque M has a constant magnitude (direction of vector M is not changed relative to inertial basis I); i.e. within acceleration and braking segments, optimal torque M is the fixed vector relative to inertial coordinate system. If relations (13) are fulfilled, then  p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamiCaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOm aaaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaigdaaSqabaaaaK qzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugW aiaaikdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBa aaleaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqa aKqzGeGaamiCaSWaa0baaeaajugWaiaaiodaaSqaaKqzadGaaGOmaa aaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaiodaaSqabaaaaKqz GeGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@5D06@

To be certain of this, we differentiate the left-hand part of the given equality with respect to time considering the equations (11) for pi and the dependences (13) for components wi of angular velocity.

p 1 p ˙ 1 / J 1 + p 2 p ˙ 2 / J 2 + p 3 p ˙ 3 / J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaajugibiqadchagaGaaSWa aSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGVaGaamOsaKqbaoaaBa aaleaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWGWbqcfa4aaSba aSqaaKqzadGaaGOmaaWcbeaajugibiqadchagaGaaKqbaoaaBaaale aajugWaiaaikdaaSqabaqcLbsacaGGVaGaamOsaSWaaSbaaeaajugW aiaaikdaaSqabaqcLbsacqGHRaWkcaWGWbWcdaWgaaqaaKqzadGaaG 4maaWcbeaajugibiqadchagaGaaSWaaSbaaeaajugWaiaaiodaaSqa baqcLbsacaGGVaGaamOsaSWaaSbaaeaajugWaiaaiodaaSqabaaaaa@5C81@ = w1p2p3 /J3 - w1p2p3 /J2 + w1p2p3 /J2 - w2p1p3 /J3 + w2p1p3 /J3 - w1p2p3 /J3 º 0

For optimal solution (12), the dependences (10) can be rewritten in the form

Mi = u 0 signa(t) p i p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamyDaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaqG ZbGaaeyAaiaabEgacaqGUbGaamyyaiaacIcacaWG0bGaaiykaiaadc halmaaBaaabaqcLbmacaWGPbaaleqaaaGcbaqcfa4aaOaaaOqaaKqz GeGaamiCaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOmaaaaju gibiaac+cacaWGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiab gUcaRiaadchalmaaDaaabaqcLbmacaaIYaaaleaajugWaiaaikdaaa qcLbsacaGGVaGaamOsaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsa cqGHRaWkcaWGWbWcdaqhaaqaaKqzadGaaG4maaWcbaqcLbmacaaIYa aaaKqzGeGaai4laiaadQeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqa aaqabaaaaaaa@655C@

Thus, when a(t)≠0 and j≠0, the statement |M|=const≠0 is true, and, therefore, b ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGIb Gbaiaaaaa@3775@ =const, as well. The torque M satisfies the condition (3). Therefore, we can write the following relation

M=m0signa(t)p , where m0=u0/C C= p 1 2 (0)/ J 1 + p 2 2 (0)/ J 2 + p 3 2 (0)/ J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadoeacqGH9aqpjuaGpaWaaOaaaOqaaKqbaoaalyaakeaa jugibiaadchalmaaDaaabaqcLbmacaaIXaaaleaajugWaiaaikdaaa qcLbsacaGGOaGaaGimaiaacMcaaOqaaKqzGeGaamOsaSWaaSbaaeaa jugWaiaaigdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqzGe GaamiCaSWaa0baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaaaajugi biaacIcacaaIWaGaaiykaaGcbaqcLbsacaWGkbWcdaWgaaqaaKqzad GaaGOmaaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcgaGcbaqcLbsacaWG WbWcdaqhaaqaaKqzadGaaG4maaWcbaqcLbmacaaIYaaaaKqzGeGaai ikaiaaicdacaGGPaaakeaajugibiaadQeajuaGdaWgaaWcbaqcLbma caaIZaaaleqaaaaaaeqaaaaa@61D5@ ,

For time interval when a(t)=const=0, the system (9) is transformed to the equations 2 k 0 J i ω i r i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa Gaam4AaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaWGkbWcdaWg aaqaaKqzadGaamyAaaWcbeaajugibiabeM8a3TWaaSbaaeaajugWai aadMgaaSqabaqcLbsacqGHsislcaWGYbWcdaWgaaqaaKqzadGaamyA aaWcbeaajugibiabg2da9iaaicdaaaa@49C5@ , and the relations

ω i = r i /(2 k 0 J i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0JaamOCaKqb aoaaBaaaleaajugWaiaadMgaaSqabaqcLbsacaGGVaGaaiikaiaaik dacaWGRbWcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiaadQealmaa BaaabaqcLbmacaWGPbaaleqaaKqzGeGaaiykaaaa@4AB8@   (17)

are satisfied. Let us find the controlling moments necessary to support the spacecraft’s optimal rotation mode in time interval t1<t<t2 during the rotation with a(t)=const=0. This situation is named special control regime, since the Hamiltonian does not explicitly depend on the controlling moments, and control functions Mi cannot be found from the condition of maximality for function H when a(t)=const=0 and φ=const=0. But we can calculate optimal values Mi using (17). Let us substitute the functions ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA5@ (t) computed by expressions (17) into dynamic equations (1) with taking into account the fact |r| =const¹0. As result, all components of torque M are Mi=0. Thus, between acceleration phase and braking of spacecraft rotation, we have M=0 and b(t)=r0/(2k0). This follows from the analysis of equations (17) that show a relation between the angular momentum L and the vector r of universal variables. The fact that L=r/(2k0) and |L|=const, keeping in mind the immobility of vector r in the inertial basis I, implies that the spacecraft’s angular momentum vector is constant relative to inertial coordinate system during the reorientation. The kinetic energy Ek is constant also ( E ˙ k =ωΜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGfb GbaiaalmaaBaaabaqcLbmacaWGRbaaleqaaKqzGeGaeyypa0JaeqyY dCNaeyyXICTaeuiNd0eaaa@40D0@ since M=0).

From formula (13), we see that b=|L|. Left-hand sides of equations (13) are projections of the spacecraft’s angular momentum vector onto the axes of the body basis E. Expressions (13) lead to the conclusion that spacecraft rotation during optimal motion is done with a constant direction of angular momentum relative to the inertial coordinate system. The value of b equals the modulus of the spacecraft’s angular momentum L. The triple p1, p2, p3 represents directional cosines of the vector L relative to the axes of the basis E. Equations (13) clearly demonstrate that in the geometric representation, the vector p is simply the unit vector of the spacecraft’s angular momentum vector L in the spacecraft’s coordinate system. Thus, the optimal (in the sense of minimizing the functional (6)) spacecraft reorientation is performed along the “trajectory of free motion”. Equations (11), together with equalities (13), form a closed system of equations which determine unique properties of optimal motion. The optimal function b(t) is a non-negative piecewise-linear function of time. At t=0 and t=T, b(t)=0; at t=t1 and t=t2, b(t)=r0/(2k0). The time T equals T=t2+t1 (since |M|=m0 for acceleration segment and segment of braking, and t1=r/(2k0m0). Concrete solution is determined by close this system of equations (11), (13) by equation (2) with conditions (4), (5) for solution Λ(t).

Here and in what follows, it is assumed that the “trajectory of free motion” is a multitude of angular positions (the values of L) that a rigid body occupies during its rotation by inertia. In the geometric interpretation, the “trajectory of free motion” is a trace of the representing point Λ (t), where Λ (t) is a solution of the system of differential equations (1), (2) when M1=M2=M3=0 and ω ι MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacqaH5oqAaSqabaaaaa@3B66@ ≠0. Let us find the proportion between the kinetic energy Ek and angular momentum L during optimal slew maneuver. The kinetic energy Ek and the value b are related by expression

E k = b 2 ( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaKqzadGaam4AaaWcbeaajugibiabg2da9iaadkgalmaa CaaabeqaaKqzadGaaGOmaaaajuaGdaWcgaGcbaqcLbsacaGGOaGaam iCaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOmaaaaaOqaaKqz GeGaamOsaKqbaoaaBaaaleaajugibiaaigdaaSqabaaaaKqzGeGaey 4kaSscfa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugWaiaaikda aSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBaaaleaaju gibiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGa amiCaSWaa0baaeaajugWaiaaiodaaSqaaKqzadGaaGOmaaaaaOqaaK qzGeGaamOsaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaaaKqzGeGa aiykaiaac+cacaaIYaaaaa@6231@

Therefore, the proportion E k / | L | 2 = ( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaKqzadGaam4AaaWcbeaajugibiaac+cajuaGdaabdaGc baqcLbsacaWHmbaakiaawEa7caGLiWoalmaaCaaabeqaaKqzadGaaG Omaaaajugibiabg2da9KqbaoaalyaakeaajugibiaacIcacaWGWbWc daqhaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaaaaGcbaqcLbsaca WGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaaaaqcLbsacqGHRaWkjuaG daWcgaGcbaqcLbsacaWGWbWcdaqhaaqaaKqzadGaaGOmaaWcbaqcLb macaaIYaaaaaGcbaqcLbsacaWGkbWcdaWgaaqaaKqzadGaaGOmaaWc beaaaaqcLbsacqGHRaWkjuaGdaWcgaGcbaqcLbsacaWGWbWcdaqhaa qaaKqzadGaaG4maaWcbaqcLbmacaaIYaaaaaGcbaqcLbsacaWGkbWc daWgaaqaaKqzadGaaG4maaWcbeaaaaqcLbsacaGGPaGaai4laiaaik daaaa@6748@ =const.

For segments when a(t)≠0 and M≠0, we have | M | 2 = u 0 2 | L | 2 /(2 E k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaaCytaaGccaGLhWUaayjcSdqcfa4aaWbaaSqabeaajugW aiaaikdaaaqcLbsacqGH9aqpcaWG1bWcdaqhaaqaaKqzadGaaGimaa WcbaqcLbmacaaIYaaaaKqbaoaaemaakeaajugibiaahYeaaOGaay5b SlaawIa7aSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaai4laiaacI cacaaIYaGaamyraSWaaSbaaeaajugWaiaadUgaaSqabaqcLbsacaGG Paaaaa@52A1@  (see formulas (14), (16)), i.e. E k / | L | 2 = u 0 2 /(2 | M | 2 )=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzadGaam4AaaWcbeaajugibiaac+cajuaGdaab daGcbaqcLbsacaWHmbaakiaawEa7caGLiWoalmaaCaaabeqaaKqzad GaaGOmaaaajugibiabg2da9iaadwhalmaaDaaabaqcLbmacaaIWaaa leaajugWaiaaikdaaaqcLbsacaGGVaGaaiikaiaaikdajuaGdaabda GcbaqcLbsacaWHnbaakiaawEa7caGLiWoalmaaCaaabeqaaKqzadGa aGOmaaaajugibiaacMcacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZb GaaeiDaaaa@5A2E@ (since |M|=const=m0 if a(t)≠0). If a(t)=0, then M=0, |L|=const and Ek=const. The quantities |L| and Ek are the continuous functions, therefore, Ek/|L|2 is continuous function of time, and it is constant within all three segments of control. Thus, it is shown that this proportion Ek/|L|2 is constant on the entire motion interval 0≤t≤T. It is key property of optimal motion for criterion (6), Ek/|L|2=const.

The Hamiltonian H is independent of time in explicit form, therefore, H=const inside the entire interval of control 0≤t≤T.28 From the formula (7), the equality

ω 1 r 1 + ω 2 r 2 + ω 3 r 3 k 0 ( J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaamOCaSWaaSbaaeaa jugWaiaaigdaaSqabaqcLbsacqGHRaWkcqaHjpWDlmaaBaaabaqcLb macaaIYaaaleqaaKqzGeGaamOCaSWaaSbaaeaajugWaiaaikdaaSqa baqcLbsacqGHRaWkcqaHjpWDjuaGdaWgaaWcbaqcLbmacaaIZaaale qaaKqzGeGaamOCaKqbaoaaBaaaleaajugWaiaaiodaaSqabaqcLbsa cqGHsislcaWGRbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibi aacIcacaWGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabeM8a 3TWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOmaaaajugibiabgU caRiaadQealmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaeqyYdC3c daqhaaqaaKqzadGaaGOmaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaS IaamOsaSWaaSbaaeaajugWaiaaiodaaSqabaqcLbsacqaHjpWDlmaa DaaabaqcLbmacaaIZaaaleaajugWaiaaikdaaaqcLbsacaGGPaGaey OeI0IaaGymaaaa@7964@ =const

is obtained for time interval when φ=0 (i.e. in special control regime). After substitution the values ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3AA5@ calculated by equations (17) in this equality (taking into account the equalities ri=r0pi), the conditions

r 1 2 / J 1 + r 2 2 / J 2 + r 3 2 / J 3 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamOCaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOm aaaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaigdaaSqabaaaaK qzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaamOCaSWaa0baaeaajugW aiaaikdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaSWaaSbaae aajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqz GeGaamOCaSWaa0baaeaajugWaiaaiodaaSqaaKqzadGaaGOmaaaaaO qaaKqzGeGaamOsaKqbaoaaBaaaleaajugWaiaaiodaaSqabaaaaKqz GeGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@5D0C@ , and p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamiCaSWaa0baaeaajugWaiaaigdaaSqaaKqzadGaaGOm aaaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaigdaaSqabaaaaK qzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugW aiaaikdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBa aaleaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqa aKqzGeGaamiCaSWaa0baaeaajugWaiaaiodaaSqaaKqzadGaaGOmaa aaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaiodaaSqabaaaaKqz GeGaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@5D06@

are satisfied for the moments of time when a(t)=0 because |r| =const (at segments of acceleration and braking, the above mentioned conditions are satisfied automatically, it follows from the equations (14), (15), (16)).

Thus, the problem of constructing the optimal control ω(t) has been mainly reduced to finding such a value of vector p(0) that as a result of the spacecraft’s motion, according to equations (2), (11), and (13) with initial conditions (4), the equalities (5) will be satisfied. It is virtually impossible to find a general solution of this system of equations. The problem is to find boundary conditions on p(0) and p(T) which are related by expression

Λ f p(T) Λ ˜ f = Λ in p(0) Λ ˜ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atjuaGdaWgaaWcbaqcLbmacaqGMbaaleqaaKqzGeGaeSigI8MaaCiC aiaacIcacaWGubGaaiykaiablIHiVjqbfU5amzaaiaWcdaWgaaqaaK qzadGaaeOzaaWcbeaajugibiabg2da9iabfU5amLqbaoaaBaaaleaa jugWaiaabMgacaqGUbaaleqaaKqzGeGaeSigI8MaaCiCaiaacIcaca aIWaGaaiykaiablIHiVjqbfU5amzaaiaWcdaWgaaqaaKqzadGaaeyA aiaab6gaaSqabaaaaa@5685@   (18)

The time of ending the reorientation process is not fixed, therefore H(T)=0; the Hamiltonian H is independent of time in explicit form, hence, H=0 inside the entire interval of control 0≤t≤T.28 Maximum value of the kinetic energy Ek and modulus of angular momentum (and values a(0) and r0) are determined by condition H=0. At instant t=0, angular velocity is zero, the function H is equal to

m 0 a(0)( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb WcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiaadggacaGGOaGaaGim aiaacMcacaGGOaqcfa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaaju gWaiaaigdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaSWaaSba aeaajugWaiaaigdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaK qzGeGaamiCaSWaa0baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaaaa aOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqzGe Gaey4kaSscfa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugWaiaa iodaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBaaale aajugWaiaaiodaaSqabaaaaKqzGeGaaiykaiabgkHiTiaaigdacqGH 9aqpcaaIWaaaaa@6333@

Hence, the value a(0) for optimal function a(t) is a(0)= 1/(u0C). Accordingly, a(T) is a(T)= –1/(u0C). At instants when a(t)=0, the function H is

r 0 b( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 ) k 0 b 2 ( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaadkgacaGGOaqc fa4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugWaiaaigdaaSqaaK qzadGaaGOmaaaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaigda aSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqzGeGaamiCaSWaa0 baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOs aKqbaoaaBaaaleaajugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa 4aaSGbaOqaaKqzGeGaamiCaSWaa0baaeaajugWaiaaiodaaSqaaKqz adGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBaaaleaajugWaiaaio daaSqabaaaaKqzGeGaaiykaiabgkHiTiaadUgalmaaBaaabaqcLbma caaIWaaaleqaaKqzGeGaamOyaSWaaWbaaeqabaqcLbmacaaIYaaaaK qzGeGaaiikaKqbaoaalyaakeaajugibiaadchalmaaDaaabaqcLbma caaIXaaaleaajugWaiaaikdaaaaakeaajugibiaadQeajuaGdaWgaa WcbaqcLbmacaaIXaaaleqaaaaajugibiabgUcaRKqbaoaalyaakeaa jugibiaadchalmaaDaaabaqcLbmacaaIYaaaleaajugWaiaaikdaaa aakeaajugibiaadQealmaaBaaabaqcLbmacaaIYaaaleqaaaaajugi biabgUcaRKqbaoaalyaakeaajugibiaadchalmaaDaaabaqcLbmaca aIZaaaleaajugWaiaaikdaaaaakeaajugibiaadQeajuaGdaWgaaWc baqcLbmacaaIZaaaleqaaaaajugibiaacMcacqGHsislcaaIXaGaey ypa0JaaGimaaaa@8D95@

and b=r0/(2k0) if a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaca aaaa@36E6@ =0 (this follows from (17)). From last equation, we find the optimal value r 0 =2 k 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqcbawaaKqzadGaaGimaaqcbawabaqcLbsacqGH9aqpcaaI Yaqcfa4aaOaaaKaaGfaajugibiaadUgalmaaBaaajeaybaqcLbmaca aIWaaajeaybeaaaeqaaKqzGeGaai4laiaadoeaaaa@442D@ . It is obvious that modulus of angular momentum |L| has maximal value Lmax between acceleration and braking.

Thus, Lmax is determined unambiguously L max =1/(C k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaSqaaKqzadGaciyBaiaacggacaGG4baaleqaaKqzGeGa eyypa0JaaGymaiaac+cacaGGOaGaam4qaKqbaoaakaaakeaajugibi aadUgajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaaiykaaWc beaaaaa@46AF@ . The found magnitude Lmax corresponds to the maximal kinetic rotation energy Emax= 1 /(2k0). Respectively, t 1 =1/ ( u 0 k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqbaoaalyaa keaajugibiaaigdaaOqaaKqzGeGaaiikaiaadwhalmaaBaaabaqcLb macaaIWaaaleqaaKqbaoaakaaakeaajugibiaadUgalmaaBaaabaqc LbmacaaIWaaaleqaaaqabaqcLbsacaGGPaaaaaaa@470B@ if phase of uncontrolled motion (when M=0) is not absent.

Note, the vectors ω and p are related as

ω i = 2 E k p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 p i J i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqbaoaakaaakeaajugibiaaikdacaWGfbqcfa4aaSbaaSqaaK qzadGaam4AaaWcbeaaaeqaaaGcbaqcfa4aaOaaaOqaaKqbaoaalyaa keaajugibiaadchalmaaDaaabaqcLbmacaaIXaaaleaajugWaiaaik daaaaakeaajugibiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaaaa jugibiabgUcaRKqbaoaalyaakeaajugibiaadchalmaaDaaabaqcLb macaaIYaaaleaajugWaiaaikdaaaaakeaajugibiaadQealmaaBaaa baqcLbmacaaIYaaaleqaaaaajugibiabgUcaRKqbaoaalyaakeaaju gibiaadchalmaaDaaabaqcLbmacaaIZaaaleaajugWaiaaikdaaaaa keaajugibiaadQealmaaBaaabaqcLbmacaaIZaaaleqaaaaaaeqaaa aajugibiabgwSixNqbaoaalaaakeaajugibiaadchalmaaBaaabaqc LbmacaWGPbaaleqaaaGcbaqcLbsacaWGkbWcdaWgaaqaaKqzadGaam yAaaWcbeaaaaaaaa@6E7E@   (19)

The task of the onboard control system for realization of optimal control is to impart the initial motion conditions to the spacecraft (namely the calculated angular velocity at time moment t=0) and to suppress the kinetic energy to zero at time moment t=T, when Λ(t)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamiDaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGMbaaleqaaaaa@3F15@ (after the spacecraft reaches its final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ ).

From the moment of reaching the necessary initial angular velocity ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3C70@ and until the reorientation is finished, when the spacecraft will be in the neighborhood of the required position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ , there is no torque M acting on the spacecraft’s body; the spacecraft performs uncontrolled rotation (M=0), i.e. free motion. Creating the initial angular velocity and damping the final rotation happens in an impulse (as fast as the spacecraft’s actuators will allow). Between the imparting of angular momentum and the suppressing of angular momentum we have (if special control regime is present):

J 1 2 ω 1 2 + J 2 2 ω 2 2 + J 3 2 ω 3 2 = const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaqhaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaaaKqzGeGaeqyY dC3cdaqhaaqaaKqzadGaaGymaaWcbaqcLbmacaaIYaaaaKqzGeGaey 4kaSIaamOsaSWaa0baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaaaa jugibiabeM8a3TWaa0baaeaajugWaiaaikdaaSqaaKqzadGaaGOmaa aajugibiabgUcaRiaadQealmaaDaaabaqcLbmacaaIZaaaleaajugW aiaaikdaaaqcLbsacqaHjpWDlmaaDaaabaqcLbmacaaIZaaaleaaju gWaiaaikdaaaqcLbsacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGa aeiDaKqbaoaaBaaaleaaaeqaaaaa@6235@ = 1 /(k0C) ,  = 1 / k0   (20)

(these equalities (20) follow from condition Н=0 and dependences (7), (17)).

Main types of optimal control

In many practical tasks, reorientation is made in situation when initial state satisfies condition (0)=0 and final angular velocity must be absent ω(T)=0 (these cases occur very frequently, especially if attitude control is done relative to inertial coordinate system). It is obvious, in moments of time t=0 and t=T, angular velocity calculated according to the formula (19), corresponding to nominal rotation (when Ek= 1/(2k0)), is not equal to zero. Therefore, segments of acceleration and braking at the beginning and the ending of turn maneuver are inevitable. But segment of special control regime can be absent. Presence of this regime is determined by the values of Λin , Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ for known J, J, J. The most important characteristic is the integral

S= 0 T J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaeyypa0tcfa4aa8qCaOqaaKqbaoaakaaakeaajugibiaadQealmaa BaaabaqcLbmacaaIXaaaleqaaKqzGeGaeqyYdC3cdaqhaaqaaKqzad GaaGymaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOsaSWaaSba aeaajugWaiaaikdaaSqabaqcLbsacqaHjpWDlmaaDaaabaqcLbmaca aIYaaaleaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGkbWcdaWgaaqa aKqzadGaaG4maaWcbeaajugibiabeM8a3TWaa0baaeaajugWaiaaio daaSqaaKqzadGaaGOmaaaaaSqabaqcLbsacaWGKbGaamiDaaWcbaqc LbmacaaIWaaaleaajugWaiaadsfaaKqzGeGaey4kIipaaaa@627D@   (21)

which we name path functional, and it is minimum for motion according to the law (11), (13)22 (the integral S depends exclusively on the values of Λin , Λf and the moments of inertia J, J, J3). The value S specifies type of optimal control and number of switching points for concrete values of J, J, J, Λin and Λf).

Let Lmax be the maximum value of the angular momentum modulus within the control interval [ 0 T ]; Lnom is the module of the angular momentum in the interval of time with a special control regime (between acceleration and braking); Limp and Timp are the modulus of the angular momentum and the optimal time under impulse control (when the angular momentum at times t=0 and t=T changes abruptly from çL½= 0 to çL½= Lnom and from çL½= Lnom to çL½= 0, respectively). If special control regime is present during the optimal turn then the following equations must be satisfied:

t1 = 1/ k 0 / u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaaGymaiaac+cacaWGRbWcdaWgaaqaaKqzadGaaGimaaWc beaaaeqaaKqzGeGaai4laiaadwhajuaGdaWgaaWcbaqcLbmacaaIWa aaleqaaaaa@4093@ , tLnom = S/C , t1 < t, t1 + t2 = Т, where Lnom = mt1 = 1/ k 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqbaoaakaaakeaajugibiaaigdacaGGVaGaam4AaSWaaSbaaeaa jugWaiaaicdaaSqabaaabeaaaOqaaKqzGeGaam4qaaaaaaa@3DB9@

From this system of equations we obtain t2 = S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaSWaaSbaaeaajugWaiaaicdaaSqa baaabeaaaaa@3BA3@ Timp. From the requirement t1 < t2 we find the condition for the existence of a special control regime: k0u0S > 1. Thus, taking into account the prominence value of integral (21) we arrive at the following conclusion:

(а) if k0u0S > 1, then the optimal value is r 0 =2 K 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GcdaWgaaWcbaGaaGimaaqabaqcLbsacqGH9aqpcqGHYaGmjuaGdaGc aaGcbaGaam4saaWcbeaajuaGdaWgaaqaaiaaicdaaeqaaKqzGeGaey 4la8Iaam4qaaaa@4231@ , and maximal energy is Emax = 1/(2k0) (see (20)), relay control with two switching points is optimum;

(b) if k0u0S £ 1, then ❘M❘= const > 0, the special control regime is absent, and t1 = S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bWcdaWgaaqaaKqzadGaaGimaaWc beaaaeqaaaaa@3BD1@ ; the function b (t) has a derivative b ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGIb Gbaiaaaaa@3775@ ≠0, the constant r0 satisfies the condition r 0 2 k 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb WcdaWgaaqaaKqzadGaaGimaaWcbeaajugibiabgwMiZkaaikdajuaG daGcaaGcbaqcLbsacaWGRbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbe aaaeqaaKqzGeGaai4laGqaciaa=neaaaa@4391@ , and the optimal value of r0 is r0 =   ( k 0 u 0 S + u 0 /S / u 0 )/C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa Gaam4AaSWaaSbaaeaajugWaiaaicdaaSqabaqcfa4aaOaaaOqaaKqz GeGaamyDaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaWGtbaale qaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqbaoaakaaakeaajugibiaa dwhalmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaai4laiaadofaaS qabaaakeaajugibiaadwhalmaaBaaabaqcLbmacaaIWaaaleqaaKqz GeGaaiykaiaac+cacaWGdbaaaaaa@4EFF@ ; maximal energy is E max = u 0 2 t 1 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaSbaaSqaaKqzadGaciyBaiaacggacaGG4baaleqaaKqzGeGa eyypa0JaamyDaSWaa0baaeaajugWaiaaicdaaSqaaKqzadGaaGOmaa aajugibiaadshalmaaDaaabaqcLbmacaaIXaaaleaajugWaiaaikda aaqcLbsacaGGVaGaaGOmaaaa@4A40@ ≤1/(2k0); relay control with one switching points is optimum.

Essentially, the requirement of optimality (minimization of index (6)) is equivalent to restriction

J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabeM8a3TWaa0baaeaa jugWaiaaigdaaSqaaKqzadGaaGOmaaaajugibiabgUcaRiaadQealm aaBaaabaqcLbmacaaIYaaaleqaaKqzGeGaeqyYdC3cdaqhaaqaaKqz adGaaGOmaaWcbaqcLbmacaaIYaaaaKqzGeGaey4kaSIaamOsaSWaaS baaeaajugWaiaaiodaaSqabaqcLbsacqaHjpWDlmaaDaaabaqcLbma caaIZaaaleaajugWaiaaikdaaaaaaa@556F@  ≤ 2Eadd =1 / k0  (22)

where Eadd is the maximum allowable energy of spacecraft rotation.

For the optimal turn (regardless of the presence or absence of a special control regime) t1 ≤ t, t1 + t2 = Т, t2 LmaxS/C, Lmaxm0t, and therefore t1 ≤ S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bWcdaWgaaqaaKqzadGaaGimaaWc beaaaeqaaaaa@3BD1@  always. If a segment with a special control regime occurs, then t 2=Timp= S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaSWaaSbaaeaajugWaiaaicdaaSqa baaabeaaaaa@3BA3@ , and Lmax=Lnom=Limp= 1/ k 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqbaoaakaaakeaajugibiaaigdacaGGVaGaam4AaKqbaoaaBaaa leaajugWaiaaicdaaSqabaaabeaaaOqaaKqzGeGaam4qaaaaaaa@3E47@ ; braking duration τ= t1, since at the stages of acceleration and braking ❘M❘= m0 and М || MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGG8b GaaiiFaaaa@3885@ L. If k0uS ≤ 1, then there is no segment with a special control regime and t2=t1= S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bqcfa4aaSbaaSqaaKqzadGaaGim aaWcbeaaaeqaaaaa@3C5F@ , Lmax= u 0 s /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqbaoaakaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaOGaam4C aaWcbeaaaKqbagaacaWGdbaaaaaa@3B8F@ . Regardless of u, we have bmaxLimp , so Emax≤1/(2k0), and if u0uкр , then bmax=Limp and Тopt=Timp+Limp /m0 , and if u0 < uкр , then bmax < Limp and Тopt=Тfast ; the critical value of uкр is uкр=1/(k0S ). If u0 = uкр, then Тopt=2Timp, G= 8S k 0 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaMbjuaGda WcgaGcbaqcLbsacaaI4aGaam4uaKqbaoaakaaakeaajugibiaadUga lmaaBaaabaqcLbmacaaIWaaaleqaaaqabaaakeaajugibiaaiodaaa aaaa@3ED2@ , and the relative loss in optimality (the growth of the functional (6)) is δG=G/Gimp‑ 1=1/ 3.

If time of reaching the calculated angular velocity which is equal

ω i nom = 1 J i C k 0 p i0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbGaaeiiaiaab6gacaqGVbGaaeyBaaWc beaajugibiabg2da9KqbaoaalaaakeaajugibiaaigdaaOqaaKqzGe GaamOsaSWaaSbaaeaajugWaiaadMgaaSqabaqcLbsacaWGdbqcfa4a aOaaaOqaaKqzGeGaam4AaSWaaSbaaeaajugWaiaaicdaaSqabaaabe aaaaqcLbsacaWGWbWcdaWgaaqaaKqzadGaamyAaiaaicdaaSqabaaa aa@4F8B@

and duration of suppressing the angular velocity to zero are infinitesimal, then duration of reorientation is T= S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaSWaaSbaaeaajugWaiaaicdaaSqa baaabeaaaaa@3BA3@ because modulus of angular momentum during uncontrolled motion (between acceleration and braking) is |L|= (C k 0 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa acbiGaa83qaKqbaoaakaaakeaajugibiaadUgalmaaBaaabaqcLbma caaIWaaaleqaaaqabaqcLbsacaGGPaWcdaahaaqabeaajugWaiabgk HiTiaaigdaaaaaaa@4085@ , where the integral (21) is calculated by the formula

S= t pr J 1 ω 1cal 2 + J 2 ω 2cal 2 + J 3 ω 3cal 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaeyypa0JaamiDaKqbaoaaBaaaleaajugWaiaabchacaqGYbaaleqa aKqbaoaakaaakeaajugibiaadQealmaaDaaabaqcLbmacaaIXaaale aaaaqcLbsacqaHjpWDlmaaDaaabaqcLbmacaaIXaGaae4yaiaabgga caqGSbaaleaajugWaiaabkdaaaqcLbsacqGHRaWkcaWGkbqcfa4aa0 baaSqaaKqzadGaaGOmaaWcbaaaaKqzGeGaeqyYdC3cdaqhaaqaaKqz adGaaGOmaiaabogacaqGHbGaaeiBaaWcbaqcLbmacaqGYaaaaKqzGe Gaey4kaSIaamOsaSWaa0baaeaajugWaiaaiodaaSqaaaaajugibiab eM8a3TWaa0baaeaajugWaiaaiodacaqGJbGaaeyyaiaabYgaaSqaaK qzadGaaeOmaaaaaSqabaaaaa@660A@

where tpr is the predicted time of achieving the condition Λ( t pr )= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamiDaSWaaSbaaeaajugWaiaabchacaqGYbaaleqaaKqz GeGaaiykaiabg2da9iabfU5amTWaaSbaaeaajugWaiaabAgaaSqaba aaaa@42F1@ during free rotation from the position Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGPbGaaeOBaaWcbeaaaaa@3FCA@ with initial angular velocity ω(0)= ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3C70@ ≠ 0 (according to the equations (1), (2) in which all values Mi=0). Note, the value S and the vector p0, which satisfy optimal motion, are computed together. Remind

C= p 10 2 / J 1 + p 20 2 / J 2 + p 30 2 / J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaeyypa0tcfa4aaOaaaOqaaKqbaoaalyaakeaajugibiaadchalmaa DaaabaqcLbmacaaIXaGaaGimaaWcbaqcLbmacaaIYaaaaaGcbaqcLb sacaWGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaaaaqcLbsacqGHRaWk juaGdaWcgaGcbaqcLbsacaWGWbWcdaqhaaqaaKqzadGaaGOmaiaaic daaSqaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOsaKqbaoaaBaaaleaa jugWaiaaikdaaSqabaaaaKqzGeGaey4kaSscfa4aaSGbaOqaaKqzGe GaamiCaSWaa0baaeaajugWaiaaiodacaaIWaaaleaajugWaiaaikda aaaakeaajugibiaadQealmaaBaaabaqcLbmacaaIZaaaleqaaaaaae qaaaaa@5BEE@

For a spherically symmetric spacecraft and for a dynamically symmetric spacecraft, key characteristics and the constants of control law are determined straightforwardly, without integration of motion equations (1), (2). For a spherically symmetric spacecraft, the integral S is calculated as

S=2 J 1 arccos ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaeyypa0JaaGOmaiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaKqz GeGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaeqyVd42cda WgaaqaaKqzadGaaeimaaWcbeaaaaa@4602@

Accordingly, optimal modulus of angular momentum during uncontrolled rotation is

L opt =2 J 1 arccos ν 0 /T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb WcdaWgaaqaaKqzadGaae4BaiaabchacaqG0baaleqaaKqzGeGaeyyp a0JaaGOmaiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaci yyaiaackhacaGGJbGaai4yaiaac+gacaGGZbGaeqyVd42cdaWgaaqa aKqzadGaaeimaaWcbeaajugibiaac+cacaWGubaaaa@4CE6@

and kinetic energy is

E k =2 J 1 arccos 2 ν 0 / T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaKqzadGaam4AaaWcbeaajugibiabg2da9iaaikdacaWG kbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiGacggacaGGYbGaai 4yaiaacogacaGGVbGaai4CaKqbaoaaCaaaleqabaqcLbmacaaIYaaa aKqzGeGaeqyVd42cdaWgaaqaaKqzadGaaeimaaWcbeaajugibiaac+ cacaWGubqcfa4aaWbaaSqabeaajugWaiaaikdaaaaaaa@50CC@

For an axially symmetric spacecraft (when J2=J3), the integral S is equal

S= J 2 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaeyypa0JaamOsaSWaaSbaaeaajugWaiaaikdaaSqabaqcLbsacqaH YoGyaaa@3D83@

optimal modulus of angular momentum during uncontrolled rotation is

and kinetic energy is

E k = J 2 2 β 2 ( cos 2 ϑ/ J 1 + sin 2 ϑ/ J 2 )/(2 T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaKqzadGaam4AaaWcbeaajugibiabg2da9iaadQealmaa DaaabaqcLbmacaaIYaaaleaajugWaiaaikdaaaqcLbsacqaHYoGyju aGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaacIcaciGGJbGaai4B aiaacohalmaaCaaabeqaaKqzadGaaGOmaaaajugibiabeg9akjaac+ cacaWGkbWcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgUcaRiGa cohacaGGPbGaaiOBaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaeq y0dOKaai4laiaadQealmaaBaaabaqcLbmacaaIYaaaleqaaKqzGeGa aiykaiaac+cacaGGOaGaaGOmaiaadsfajuaGdaahaaWcbeqaaKqzad GaaGOmaaaajugibiaacMcaaaa@6532@

The optimal controls Mi and angular velocities wi change according to the following laws:

Mi=0.5m[sign (tt) + sign (t2t)]pi   (23)

Jiwi=0.5m(Ttt1½–çtt2½)pi  (24)

where t 1 = min(1/ k 0 , u 0 S) / u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamiDaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH 9aqpjuaGdaGcaaGcbaqcLbsaciGGTbGaaiyAaiaac6gacaGGOaGaaG ymaiaac+cacaWGRbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugi biaacYcacaWG1bqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibi aadofacaGGPaaaleqaaaGcbaqcLbsacaWG1bWcdaWgaaqaaKqzadGa aGimaaWcbeaaaaaaaa@5058@ ; t2=max( S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaSWaaSbaaeaajugWaiaaicdaaSqa baaabeaaaaa@3BA3@ , S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bqcfa4aaSbaaSqaaKqzadGaaGim aaWcbeaaaeqaaaaa@3C5F@ ); Т=t1+t; t1 is moment of acceleration ending; t2 is moment of the beginning of braking. If t2>t1 (i.e. when k0>1/(u0S), then we have control with two points of switching when phase of rotation with M=0 (between acceleration and braking) is not absent, t0=t1 also. If t1=t2 (i.e. when k0≤1/(u0S), then moments of time when M=0, are absent, we have control with one switching (braking follows acceleration at once). In section 3, we demonstrated earlier that kinetic energy Ek= 1 /(2k0) if =0. It is obvious, Ek< 1 /(2k0) at acceleration and braking. Hence, Ek 1 /(2k0) during the entire interval of time [0, T] (if u0< 1/(k0S), then Emax=u0S/2< 1 /(2k0) also). Thus, for optimal control (in sense (6)), the property Emax 1 /(2k0) is satisfied always.

Key properties and features of optimal solution

We can show that the found control (12), (13) is indeed optimum (since the functions and wi calculated by formulas (12), (13) are single solution of the system (1), (9), (10), (11) if ω(0)= ω (Т)=0 and ri=r0pi). For zero boundary conditions ω (0)= ω (Т)=0, in general case, slew maneuver includes two phases during which magnitude of the torque М is maximal possible: acceleration and braking, and phase of uncontrolled motion at which equations (20) are satisfied. This type of control is called as control with two points of switching (t1 is moment of time when kinetic energy Ek achieves level k0/2, and t2 is moment of beginning of braking). A detailed analysis of the main reorientation stages: speedup, braking, and uncontrolled spacecraft rotation with the constant kinetic energy and angular momentum (relative to inertial coordinate system), shows that all three stages have a common property, namely, spacecraft rotates along the “trajectory of free motion”. It is characteristic for the “trajectory of free motion” that the direction of spacecraft’s angular momentum remains constant in inertial coordinate system. Taking into account that during the entire reorientation (on the entire time interval [0, T]) the torque M is parallel to the angular momentum vector L (i.e., the controlling moment acts in the same direction as L, or in the opposite direction, or equals zero), we can conclude that M×L=0, and, therefore, there are no reasons for a rotation of the angular momentum L in inertial coordinate system. Also, the integral (21) does not depend on the character of variation of the function |L(t)|,22 and S is equal to the value (21) for ideal mode (for motion according to (11), (17), (20)). However, there are such situations (under certain values S, u, k0) when the stage of uncontrolled motion is absent and M¹0 within the entire interval of control 0≤t≤T (braking replaces acceleration at once). This type of control is named control with one switching.

If k 0 u 0 S   >   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaaicdaaSWdaeqa aKqzGeWdbiaadwhal8aadaWgaaqaaKqzadWdbiaaicdaaSWdaeqaaK qzGeWdbiaadofajuaGpaWaaSbaaSqaaKqzGeWdbiaacckaaSWdaeqa aKqzGeWdbiabg6da+Kqba+aadaWgaaWcbaqcLbsapeGaaiiOaaWcpa qabaqcLbsapeGaaGymaaaa@481A@ , then t2>t1 (t2t1), optimal motion includes regime of special control; time of optimal reorientation is T=S k 0 +1/( u 0 k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0Jaam4uaKqbaoaakaaakeaajugibiaadUgajuaGdaWgaaWc baqcLbmacaaIWaaaleqaaaqabaqcLbsacqGHRaWkcaaIXaGaai4lai aacIcacaWG1bqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajuaGdaGc aaGcbaqcLbsacaWGRbWcdaWgaaqaaKqzadGaaGimaaWcbeaaaeqaaK qzGeGaaiykaaaa@4AC4@ ; a ˙ ( T/2 )=const=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb GbaiaajuaGdaqadaGcbaqcLbsaqaaaaaaaaaWdbiaadsfacaGGVaGa aGOmaaGcpaGaayjkaiaawMcaaKqzGeWdbiabg2da9iaadogacaWGVb GaamOBaiaadohacaWG0bGaeyypa0JaaGimaaaa@44CA@

If k0u0S =1, then t2=t1, time of optimal reorientation is T=2/ ( u 0 k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamivaiabg2da9iaaikdaaOqaaKqzGeGaaiikaiaadwha lmaaBaaabaqcLbmacaaIWaaaleqaaKqbaoaakaaakeaajugibiaadU gajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaqabaaaaKqzGeGaaiyk aaaa@443C@ ; the derivative a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ (T/2)=0 but a ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbamaaaaa@3775@ (T/2)=0.

If k0u0S ≤ 1, then we have control with one switching when maximal energy of rotation Emax< 1 /(2k0), and duration of optimal reorientation is T=2 S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bWcdaWgaaqaaKqzadGaaGimaaWc beaaaeqaaaaa@3BD1@ ; point of switching is t0= S/ u 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4uaiaac+cacaWG1bWcdaWgaaqaaKqzadGaaGimaaWc beaaaeqaaaaa@3BD1@ , maximal energy of rotation is Emax=u0S/2, maximal modulus of angular momentum is L max  = u 0 S /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYeajuaGpaWaaSbaaSqaaKqzadWdbiaad2gacaWGHbGa amiEaaWcpaqabaqcLbsapeGaaiiOa8aacqGH9aqpjuaGdaWcgaGcba qcfa4aaOaaaOqaaKqzGeGaamyDaSWaaSbaaeaajugWaiaaicdaaSqa baqcLbsacaWGtbaaleqaaaGcbaGaam4qaaaaaaa@4899@ , therefore, the derivative a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ (T/2)<0 ( a ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGHb Gbaiaaaaa@3774@ <0 on the entire interval of time 0≤t≤T).

For spacecraft reorientation with limited control (by restriction (3)), key property of optimal motion remains valid is independent of number of switching, the proportion Ek/|L|2 between the kinetic energy Ek and angular momentum L is constant on the entire interval of time 0≤t≤T, independently of duration of acceleration and braking (independently of presence or absence of the uncontrolled stage with M=0). Angular momentum L and rotation energy Ek are continuous functions of time. Therefore, the proportion ρ=Ek/|L|2 is continuous function. For acceleration (or braking), the equalities (14) (or (16)) and |M|=const are satisfied. Therefore, the proportion ρ is constant within acceleration and braking. Between acceleration and braking, the equations (20) are satisfied; as result, ρ=const during free rotation. Hence, the proportion ρ=Ek/|L|2=const within time interval [0, T] because of a continuity of functionr. As consequence, modulus of torque M is identical for acceleration and braking, and it is equal to same magnitude

m 0 = u 0 / 2ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaamyBaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacqGH 9aqpcaWG1bWcdaWgaaqaaKqzadGaaGimaaWcbeaaaOqaaKqbaoaaka aakeaajugibiaaikdacqaHbpGCaSqabaaaaaaa@42BA@ =u0 /C

Angular momentum L does not change the direction relative to inertial coordinate system during acceleration, braking and at rotation between acceleration and braking (when spacecraft rotates by inertia), so, a direction of angular momentum in inertial coordinate system invariably on the entire interval of time [0, T]. Hence, in the presence of restriction (3), the equations (11) and (13) are satisfied at the entire interval of rotation from t=0 to t=Т. At acceleration and braking |М|=const=m0, where m0 > 0 is maximal admissible magnitude of the torque М in direction of angular momentum L. Since on entire interval of control Ji /|L|=pi , the value m0 is identical during both phases of acceleration and braking, and it is equal u0 /C, where C is the earlier introduced constant which is unambiguously specified by the vector p0 and moments of inertia J1, J, J3. The condition |M|≤m0 is satisfied within the entire interval of control, where m0=u0/C. Optimal torque M is parallel to motionless line relative to inertial coordinate system. Direction of this motionless line is determined by direction of the vector p (since the directions of angular momentum L and the vector p coincide). Hence, M=m(t)p. The scalar function m(t) is specified as m(t)=(M1L1+M2L2+M3L3)/|L| or m(t)=M1p1+M2p2+M3p3. Control function m(t) is three-positional relay or two-positional relay if optimum is control with one switching. The function m(t) can be written in the following form: m(t)=m0 if |L|<Lopt and t<T/2; m(t)= m0 if tTτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyyzImRaamivaiabgkHiTiabes8a0baa@3CCF@ ; m(t)=0 if τt<Tτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGHKjYOcaWG0bGaeyipaWJaamivaiabgkHiTiabes8a0baa@3F87@ (it is obvious that situation m(t)=0 is absent if τ=T/2, because the condition τt<Tτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGHKjYOcaWG0bGaeyipaWJaamivaiabgkHiTiabes8a0baa@3F87@ is not satisfied). Here, L opt = m 0 τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaSqaaKqzadGaae4BaiaabchacaqG0baaleqaaKqzGeGa eyypa0JaamyBaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacqaHep aDaaa@431F@ , and Lopt is modulus of angular momentum at moment of time t=T/2 (or during free rotation if phase of uncontrolled motion takes place); τ is duration of acceleration (braking). Note the spacecraft’s angular momentum satisfies the inequality |L|≤Lopt for any time t. If optimal control program has two points of switching Lopt= 1/ (C k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaaGymaaGcbaqcLbsacaGGOaacbiGaa83qaKqbaoaakaaa keaajugibiaadUgajuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaaqaba qcLbsacaGGPaaaaaaa@4012@ ; if optimum is control with one switching Lopt= u 0 S/C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaamyDaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaWG tbGaai4laiaadoeaaSqabaaaaa@3D33@ . For optimal control, spacecraft acceleration continues until angular momentum equals the target level

L tag = L opt Λ ˜ Λ in p(0) Λ ˜ in Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHmb WcdaWgaaqaaKqzadGaaeiDaiaabggacaqGNbaaleqaaKqzGeGaeyyp a0JaamitaSWaaSbaaeaajugWaiaab+gacaqGWbGaaeiDaaWcbeaaju gibiablIHiVjqbfU5amzaaiaGaeSigI8Maeu4MdW0cdaWgaaqaaKqz adGaaeyAaiaab6gaaSqabaqcLbsacqWIyiYBcaWHWbGaaiikaiaaic dacaGGPaGaeSigI8Mafu4MdWKbaGaalmaaBaaabaqcLbmacaqGPbGa aeOBaaWcbeaajugibiablIHiVjabfU5ambaa@597C@

Thus, it is proven the following conclusion: spacecraft’s reorientation occurs with the minimal value of the index (6) if and only if the spacecraft rotates according to the law (11), (23), (24). If allow a step like change of the angular velocity vector , then the proposed optimal control problem (the kinematic reorientation problem) can be considered solved: equations (2), (11), and (19) completely define the necessary motion (t), the main moment of forces is zero (i.e., the spacecraft’s rotation is an Euler–Poinsot motion of rigid body) within interval 0<t<T in which Ek=1 /(2k0).

Topicality of the solved problem consists in the fact that by minimizing functional (6) the energy spent to perform spacecraft reorientation from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ is bounded and maneuver time T is minimum. Narrow-mindedness of rotation energy was proven earlier (in section 4). If u0→∞, then the value of integral (6) is G=2T, consequently, the time of the optimal turn is T=G/2, and, minimizing integral (6), we obtain the turn of the spacecraft for the minimum time. If the moment M is limited, some non-zero time is required for imparting the required angular momentum to the spacecraft and for suppressing the existing angular momentum to zero. A restriction on the magnitude of feasible controlling moment leads to the appearance of intervals with non-zero duration when spacecraft increases and decreases its angular velocity. Duration of optimal maneuver is

T=S k 0 +1/( u 0 k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0Jaam4uaKqbaoaakaaakeaajugibiaadUgalmaaBaaabaqc LbmacaaIWaaaleqaaaqabaqcLbsacqGHRaWkcaaIXaGaai4laiaacI cacaWG1bWcdaWgaaqaaKqzadGaaGimaaWcbeaajuaGdaGcaaGcbaqc LbsacaWGRbqcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaaaeqaaKqzGe Gaaiykaaaa@4A36@   (25)

if the special control regime is present (when k0u0S > 1). The first term is duration of so-called kinematic control (or ideal maneuver) when u0→∞, t1→0, and the equalities (17), (20) are satisfied within entire interval of time 0<t<T. This duration is minimal since S is minimal possible value since optimal maneuver (in sense (6)) satisfies equations (11), (13). Second term is duration of braking under restriction (3) (when u0<¥ and u0¹0). This time is minimal for control (16).23 Hence, the value (25) is minimal possible value of reorientation's time with restriction (3) and condition Ek 1 /(2k0) for kinetic energy Ek during spacecraft maneuver. If optimum is control with one switching (because k0u0S  1), then energy Ek do not achieve the level Eadd=1/(2k0) under time-optimal control.13 Optimization in accordance with criterion (6) minimizes the time of spacecraft’s rotation from the position Λ(0)=Lin to the position Λ(T)=Λf in the presence of restrictions (3) and (22).

If 1/ ( u 0 k 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaaGymaaGcbaqcLbsacaGGOaGaamyDaSWaaSbaaeaajugW aiaaicdaaSqabaqcfa4aaOaaaOqaaKqzGeGaam4AaKqbaoaaBaaale aajugWaiaaicdaaSqabaaabeaaaaqcLbsacaGGPaaaaa@425C@  is much less than S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaKqbaoaaBaaaleaajugWaiaaicda aSqabaaabeaaaaa@3C31@ , the beginning of braking will be determined from the fact that the angular momentum magnitude |L(t)| changes linearly when angular velocity is reduced to zero. During braking, the modulus of the controlling moment is constant, and the time moment from which braking will be started is specified by the following condition:

4arcsin K δ 2 2 + δ 3 2 ( J 2 ω 2 ) 2 + ( J 3 ω 3 ) 2 = K 2 ω 2 2 + ω 3 2 m 0 ( J 2 ω 2 ) 2 + ( J 3 ω 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI0a GaaeyyaiaabkhacaqGJbGaae4CaiaabMgacaqGUbqcfa4aaSaaaOqa aKqzGeGaam4saKqbaoaakaaakeaajugibiabes7aKTWaa0baaeaaju gWaiaaikdaaSqaaKqzadGaaGOmaaaajugibiabgUcaRiabes7aKTWa a0baaeaajugWaiaaiodaaSqaaKqzadGaaGOmaaaaaSqabaaakeaaju aGdaGcaaGcbaqcLbsacaGGOaGaamOsaSWaaSbaaeaajugWaiaaikda aSqabaqcLbsacqaHjpWDlmaaBaaabaqcLbmacaaIYaaaleqaaKqzGe GaaiykaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaiik aiaadQeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGaeqyYdC 3cdaWgaaqaaKqzadGaaG4maaWcbeaajugibiaacMcajuaGdaahaaWc beqaaKqzadGaaGOmaaaaaSqabaaaaKqzGeGaeyypa0tcfa4aaSaaaO qaaKqzGeGaam4saKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqbaoaa kaaakeaajugibiabeM8a3TWaa0baaeaajugWaiaaikdaaSqaaKqzad GaaGOmaaaajugibiabgUcaRiabeM8a3TWaa0baaeaajugWaiaaioda aSqaaKqzadGaaGOmaaaaaSqabaaakeaajugibiaad2galmaaBaaaba qcLbmacaaIWaaaleqaaKqbaoaakaaakeaajugibiaacIcacaWGkbWc daWgaaqaaKqzadGaaGOmaaWcbeaajugibiabeM8a3LqbaoaaBaaale aajugWaiaaikdaaSqabaqcLbsacaGGPaqcfa4aaWbaaSqabeaajugW aiaaikdaaaqcLbsacqGHRaWkcaGGOaGaamOsaKqbaoaaBaaaleaaju gWaiaaiodaaSqabaqcLbsacqaHjpWDlmaaBaaabaqcLbmacaaIZaaa leqaaKqzGeGaaiykaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaaWcbe aaaaaaaa@9BBB@

where m0 is the maximal controlling moment magnitude that can be provided by the actuators of attitude control system; δj are the components of the discrepancy quaternion Λ ˜ (t) Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHBo atgaacaiaacIcacaWG0bGaaiykaiablIHiVjabfU5amLqbaoaaBaaa leaajugWaiaabAgaaSqabaaaaa@3FE6@ ; К=|L(t)| is the current magnitude of the angular momentum. The said condition for finding the start moment of braking phase allows the onboard control system to form a signal of angular velocity reduction based on the information on current spacecraft orientation and measurements of angular velocity. Use of this condition increases the precision of the spacecraft reorientation into final position Λ.

Construction of optimal control in specific cases

We assume that the control non-limited by any restrictions is ideal mode (in this case, u0→∞ and t1→0, the braking is momentary process also). For the optimal motion, spacecraft reorientation from one angular position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ to another position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ is done by impulsive imparting the necessary angular velocity (the nominal value of the angular momentum vector) to the spacecraft, rotation of the spacecraft with the constant kinetic energy and modulus of angular momentum, and short-term (impulse) reduction of the rotation energy to zero. In ideal motion optimal with respect to criterion (6), the spacecraft’s reorientation between impulsive acceleration and impulsive braking is carried out with zero controlling moment M=0. Constructing the optimal reorientation regime with minimal value of functional (6) is non-trivial task. In the optimal reorientation problem (in constructing the optimal programmed motion ω(t)), it is crucial to find the initial vector ω(0) and the corresponding angular velocity ω(0+) (the angular velocity (0+) is calculated by formulas (19)). The vector p(0) depends on reorientation parameters Λ t = Λ ˜ in Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atjuaGdaWgaaWcbaqcLbmacaqG0baaleqaaKqzGeGaeyypa0Jafu4M dWKbaGaalmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaajugibiablI HiVjabfU5amTWaaSbaaeaajugWaiaabAgaaSqabaaaaa@46CB@ and the spacecraft characteristics J1, J2, J3. For arbitrary values J1J2J3, it is hard to find the solution of the considered problem of spacecraft’s three-dimensional reorientation for arbitrary values Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqmcjugibi abfU5amTWaaSbaaeaajugWaiaabMgacaqGUbaaleqaaaaa@3C0B@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ . The difficulty is to find the vectors p(0) and p(T) which are related by (18). Analytical solution of the system of equations (2), (11), and (19) exists for dynamically spherical and dynamically symmetric bodies only. For a spherically symmetric spacecraft (when J1=J2=J3), the solution p(t), ω(t) have elementary form: p(t)=const and ω(t)=const, or in detail

p i = ν i / ν 1 + ν 2 + ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb qcfa4aaSbaaSqaaKqzadGaamyAaaWcbeaajugibiabg2da9Kqbaoaa lyaakeaajugibiabe27aUTWaaSbaaeaajugWaiaadMgaaSqabaaake aajuaGdaGcaaGcbaqcLbsacqaH9oGBlmaaBaaabaqcLbmacaaIXaaa leqaaKqzGeGaey4kaSIaeqyVd4wcfa4aaSbaaSqaaKqzadGaaGOmaa WcbeaajugibiabgUcaRiabe27aUTWaaSbaaeaajugWaiaaiodaaSqa baaabeaaaaaaaa@5174@ , and ω i = 2 ν i arccos ν 0 T ν 1 + ν 2 + ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWGPbaaleqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeGaaGOmaiabe27aULqbaoaaBaaaleaajugWaiaadMgaaS qabaqcLbsaciGGHbGaaiOCaiaacogacaGGJbGaai4BaiaacohajuaG daWgaaWcbaaabeaajugibiabe27aULqbaoaaBaaaleaajugWaiaaic daaSqabaaakeaajugibiaadsfajuaGdaGcaaGcbaqcLbsacqaH9oGB lmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaeqyVd42cda WgaaqaaKqzadGaaGOmaaWcbeaajugibiabgUcaRiabe27aULqbaoaa BaaaleaajugWaiaaiodaaSqabaaabeaaaaaaaa@603C@

where ν 0 , ν 1 , ν 2 , ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH9o GBjuaGdaWgaaWcbaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiabe27a UTWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaGGSaGaeqyVd4wcfa 4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiaacYcacqaH9oGBlmaa BaaabaqcLbmacaaIZaaaleqaaaaa@4AC0@ are components of the reorientation quaternion Λ t = Λ ˜ in Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqG0baaleqaaKqzGeGaeyypa0Jafu4MdWKb aGaalmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaajugibiablIHiVj abfU5amLqbaoaaBaaaleaajugWaiaabAgaaSqabaaaaa@46CB@ .

For a dynamically symmetric spacecraft (for example, when J2=J3), the optimal control problem can be solved completely also. For this distribution of spacecraft’s mass, the following differential equations

J 2 ω ˙ 2 =( J 3 J 1 ) ω 1 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiqbeM8a3zaacaWc daWgaaqaaKqzadGaaGOmaaWcbeaajugibiabg2da9Kqbaoaabmaake aajugibiaadQeajuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaKqzGeGa eyOeI0IaamOsaSWaaSbaaeaajugWaiaaigdaaSqabaaakiaawIcaca GLPaaajugibiabeM8a3TWaaSbaaeaajugWaiaaigdaaSqabaqcLbsa cqaHjpWDlmaaBaaabaqcLbmacaaIZaaaleqaaaaa@53BC@ , J 3 ω ˙ 3 =( J 1 J 2 ) ω 1 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaG4maaWcbeaajugibiqbeM8a3zaacaWcdaWg aaqaaKqzadGaaG4maaWcbeaajugibiabg2da9Kqbaoaabmaakeaaju gibiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyOeI0Ia amOsaSWaaSbaaeaajugWaiaaikdaaSqabaaakiaawIcacaGLPaaaju gibiabeM8a3LqbaoaaBaaaleaajugWaiaaigdaaSqabaqcLbsacqaH jpWDjuaGdaWgaaWcbaqcLbmacaaIYaaaleqaaaaa@53BC@

are satisfied under condition . Last system of differential equations describes the oscillator (with the parameter ω 1 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0Jaae4yaiaa b+gacaqGUbGaae4Caiaabshaaaa@40BD@ ), for which ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3A73@ and ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaaIZaaaleqaaaaa@3B02@ are harmonic functions of time. Therefore, р1=const=р10 and harmonic oscillations of the functions р2 and р3 are observed. In this special case, the optimal motion is the simultaneous rotation of the spacecraft as a rigid body around its axial axis OX and around spacecraft’s angular momentum L which is constant in the inertial space and which constitutes a certain constant angle with the spacecraft’s axial axis. Angular velocities with respect to OX and p axises have a constant ratio (as is shown above, the vectors L and p are parallel). The solution of system (2), (11), (19), necessary for solving the control problem, is regular precession. For the regular precession case

Λ f = Λ in е p o β/2 e e 1 α/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaKqzGeGaeyypa0Jaeu4MdW0c daWgaaqaaKqzadGaaeyAaiaab6gaaSqabaqcLbsacqWIyiYBcaWG1q qcfa4aaWbaaSqabeaajugWaiaahchalmaaBaaameaajugWaiaab+ga aWqabaqcLbmacqaHYoGycaGGVaGaaGOmaaaajugibiablIHiVjaadw gajuaGdaahaaWcbeqaaKqzadGaaCyzaSWaaSbaaWqaaKqzadGaaeym aaadbeaajugWaiabeg7aHjaac+cacaaIYaaaaaaa@588B@

where p0=p(0); e1 is the unit vector of the spacecraft’s axial axis; α is the spacecraft’s rotation angle around its axial axis; β is the spacecraft’s rotation angle around the vector p, e is the quaternion exponential.1 It is assumed that |α|≤ π, 0β π. For a spacecraft with moments of inertia J 1 J 2 = J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaaGymaaWcbeaajugibiabgcMi5kaadQealmaa BaaabaqcLbmacaaIYaaaleqaaKqzGeGaeyypa0JaamOsaSWaaSbaae aajugWaiaaiodaaSqabaaaaa@4340@ , the solution p(t) is written as follows:

p 1 = p 10 =const=cosϑ, p 2 = p 20 cosκ+ p 30 sinκ p 3 = p 20 sinκ+ p 30 cosκ,κ= J 3 J 1 J 2 0 t ω 1 (t)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadchalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JaamiC aSWaaSbaaeaajugWaiaaigdacaaIWaaaleqaaKqzGeGaeyypa0Jaae 4yaiaab+gacaqGUbGaae4CaiaabshacqGH9aqpciGGJbGaai4Baiaa cohacqaHrpGscaGGSaGaamiCaSWaaSbaaeaajugWaiaaikdaaSqaba qcLbsacqGH9aqpcaWGWbWcdaWgaaqaaKqzadGaaGOmaiaaicdaaSqa baqcLbsaciGGJbGaai4BaiaacohacqaH6oWAcqGHRaWkcaWGWbWcda WgaaqaaKqzadGaaG4maiaaicdaaSqabaqcLbsaciGGZbGaaiyAaiaa c6gacqaH6oWAaOqaaKqzGeGaamiCaKqbaoaaBaaaleaajugWaiaaio daaSqabaqcLbsacqGH9aqpcqGHsislcaWGWbqcfa4aaSbaaSqaaKqz adGaaGOmaiaaicdaaSqabaqcLbsaciGGZbGaaiyAaiaac6gacqaH6o WAcqGHRaWkcaWGWbqcfa4aaSbaaSqaaKqzGeGaaG4maiaaicdaaSqa baqcLbsaciGGJbGaai4BaiaacohacqaH6oWAcaGGSaGaeqOUdSMaey ypa0tcfa4aaSaaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaioda aSqabaqcLbsacqGHsislcaWGkbWcdaWgaaqaaKqzadGaaGymaaWcbe aaaOqaaKqzGeGaamOsaSWaaSbaaeaajugWaiaaikdaaSqabaaaaKqb aoaapehakeaajugibiabeM8a3LqbaoaaBaaaleaajugWaiaaigdaaS qabaqcLbsacaGGOaGaamiDaiaacMcacaWGKbGaamiDaaWcbaqcLbma caaIWaaaleaajugWaiaadshaaKqzGeGaey4kIipaaaaa@9DB7@   (26)

In this case, dependences (26), together with equalities (19), form a solution of the system of equations (2), (11) under condition (13). At the same time, the vector p also generates a cone around the axial axis OX in the spacecraft’s coordinate system. The specific value of р0 is determined exclusively by the requirement that, according to equations (2), (11), (19), boundary conditions (4) and (5) must be satisfied. In this type of control, the spacecraft’s angular momentum preserves a constant direction in the inertial reference basis I, while the axially symmetric body moves along a “conic trajectory”. To move the spacecraft from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ , it rotates simultaneously around the vector cE, which is constant relative to the inertial basis I, by the angle β, and around its own longitudinal axis by the angle α. Using the mathematical formalism of quaternions to describe rotations of rigid body about the center of mass, relations reflecting a dependence between the values p0, α, and β are written. The dependence of parameters p0, α, and β on the boundary angular positions Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ is given by the following system of equations:

cos β 2 cos α 2 p 10 sin β 2 sin α 2 = ν 0 , p 20 sin β 2 cos α 2 + p 30 sin β 2 sin α 2 = ν 2 , cos β 2 sin α 2 + p 10 sin β 2 cos α 2 = ν 1 , р 20 sin β 2 cos α 2 + p 30 sin β 2 cos α 2 = ν 3 , α= J 2 J 1 J 1 p 10 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi GacogacaGGVbGaai4CaKqbaoaalaaakeaajugibiabek7aIbGcbaqc LbsacaaIYaaaaiGacogacaGGVbGaai4CaKqbaoaalaaakeaajugibi abeg7aHbGcbaqcLbsacaaIYaaaaiabgkHiTiaadchalmaaBaaabaqc LbmacaaIXaGaaGimaaWcbeaajugibiGacohacaGGPbGaaiOBaKqbao aalaaakeaajugibiabek7aIbGcbaqcLbsacaaIYaaaaiGacohacaGG PbGaaiOBaKqbaoaalaaakeaajugibiabeg7aHbGcbaqcLbsacaaIYa aaaiabg2da9iabe27aUTWaaSbaaeaajugWaiaaicdaaSqabaGaaiil aKqzGeGaamiCaSWaaSbaaeaajugWaiaaikdacaaIWaaaleqaaKqzGe Gaci4CaiaacMgacaGGUbqcfa4aaSaaaOqaaKqzGeGaeqOSdigakeaa jugibiaaikdaaaGaci4yaiaac+gacaGGZbqcfa4aaSaaaOqaaKqzGe GaeqySdegakeaajugibiaaikdaaaGaey4kaSIaamiCaKqbaoaaBaaa leaajugWaiaaiodacaaIWaaaleqaaKqzGeGaci4CaiaacMgacaGGUb qcfa4aaSaaaOqaaKqzGeGaeqOSdigakeaajugibiaaikdaaaGaci4C aiaacMgacaGGUbqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibi aaikdaaaGaeyypa0JaeqyVd42cdaWgaaqaaKqzadGaaGOmaaWcbeaa caGGSaaakeaajugibiGacogacaGGVbGaai4CaKqbaoaalaaakeaaju gibiabek7aIbGcbaqcLbsacaaIYaaaaiGacohacaGGPbGaaiOBaKqb aoaalaaakeaajugibiabeg7aHbGcbaqcLbsacaaIYaaaaiabgUcaRi aadchalmaaBaaabaqcLbmacaaIXaGaaGimaaWcbeaajugibiGacoha caGGPbGaaiOBaKqbaoaalaaakeaajugibiabek7aIbGcbaqcLbsaca aIYaaaaiGacogacaGGVbGaai4CaKqbaoaalaaakeaajugibiabeg7a HbGcbaqcLbsacaaIYaaaaiabg2da9iabe27aUTWaaSbaaeaajugWai aaigdaaSqabaGaaiilaKqzGeGaeyOeI0IaamiqeKqbaoaaBaaaleaa jugWaiaaikdacaaIWaaaleqaaKqzGeGaci4CaiaacMgacaGGUbqcfa 4aaSaaaOqaaKqzGeGaeqOSdigakeaajugibiaaikdaaaGaci4yaiaa c+gacaGGZbqcfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibiaaik daaaGaey4kaSIaamiCaSWaaSbaaeaajugWaiaaiodacaaIWaaaleqa aKqzGeGaci4CaiaacMgacaGGUbqcfa4aaSaaaOqaaKqzGeGaeqOSdi gakeaajugibiaaikdaaaGaci4yaiaac+gacaGGZbqcfa4aaSaaaOqa aKqzGeGaeqySdegakeaajugibiaaikdaaaGaeyypa0JaeqyVd42cda WgaaqaaKqzadGaaG4maaWcbeaacaGGSaaakeaajugibiabeg7aHjab g2da9KqbaoaalaaakeaajugibiaadQealmaaBaaabaqcLbmacaaIYa aaleqaaKqzGeGaeyOeI0IaamOsaKqbaoaaBaaaleaajugWaiaaigda aSqabaaakeaajugibiaadQealmaaBaaabaqcLbmacaaIXaaaleqaaa aajugibiaadchajuaGdaWgaaWcbaqcLbmacaaIXaGaaGimaaWcbeaa jugibiabek7aIbaaaa@F547@

For a known reorientation time T, angular rotation velocities around the OX and p axises are equal to α ˙ =α/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHXo qygaGaaiabg2da9iabeg7aHjaac+cacaWGubaaaa@3C5E@ , and β ˙ =β/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHYo GygaGaaiabg2da9iabek7aIjaac+cacaWGubaaaa@3C62@ (for ideal mode T=S k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaeyypa0Jaam4uaKqbaoaakaaakeaajugibiaadUgalmaaBaaabaqc LbmacaaIWaaaleqaaaqabaaaaa@3D82@ ). The magnitude of angular momentum during optimal rotation is |L|=J2 β/T. The programmed values of controllable functions ωi (projections of the angular velocity vector ω) have the following form:

ω 1 = α ˙ + β ˙ p 10 , ω 2 = β ˙ 1 p 10 2 sin( α ˙ t+ σ 0 ), ω 3 = β ˙ 1 p 10 2 cos( α ˙ t+ σ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyypa0JafqySdeMb aiaacqGHRaWkcuaHYoGygaGaaiaadchalmaaBaaabaqcLbmacaaIXa GaaGimaaWcbeaacaGGSaqcLbsacqaHjpWDjuaGdaWgaaWcbaqcLbma caaIYaaaleqaaKqzGeGaeyypa0JafqOSdiMbaiaajuaGdaGcaaGcba qcLbsacaaIXaGaeyOeI0IaamiCaSWaa0baaeaajugWaiaaigdacaaI WaaaleaajugWaiaaikdaaaaaleqaaKqzGeGaci4CaiaacMgacaGGUb Gaaiikaiqbeg7aHzaacaGaamiDaiabgUcaRiabeo8aZTWaaSbaaeaa jugWaiaaicdaaSqabaqcLbsacaGGPaGaaiilaiabeM8a3LqbaoaaBa aaleaajugWaiaaiodaaSqabaqcLbsacqGH9aqpcuaHYoGygaGaaKqb aoaakaaakeaajugibiaaigdacqGHsislcaWGWbWcdaqhaaqaaKqzad GaaGymaiaaicdaaSqaaKqzadGaaGOmaaaaaSqabaqcLbsaciGGJbGa ai4BaiaacohacaGGOaGafqySdeMbaiaacaWG0bGaey4kaSIaeq4Wdm xcfa4aaSbaaSqaaKqzadGaaGimaaWcbeaajugibiaacMcaaaa@80A9@

where σ 0 = arctg ( p 20 / p 30 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WClmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaeyypa0Jaaeyyaiaa bkhacaqGJbGaaeiDaiaabEgajuaGdaWgaaWcbaaabeaajugibiaacI cacaWGWbWcdaWgaaqaaKqzadGaaGOmaiaaicdaaSqabaqcLbsacaGG VaGaamiCaKqbaoaaBaaaleaajugWaiaaiodacaaIWaaaleqaaKqzGe Gaaiykaaaa@4D3E@ . Optimal values p0, α, and β corresponding to solution of last system of five transcendent equations and which correspond to free motion from position Λin into position Λf can be determined with using the device.29

For an asymmetric spacecraft (when J1J2J3), the system (2), (11), (19) can be solved by numerical methods only (e.g., using the method of successive approximations or iterations methods with consecutive approach to true solution). To find the vector p0, it is necessary the solving the boundary problem Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGPbGaaeOBaaWcbeaaaaa@3FCA@ , Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamivaiaacMcacqGH9aqpcqqHBoatjuaGdaWgaaWcbaqc LbmacaqGMbaaleqaaaaa@3F83@ , taking into account the equations (1), (2) imposed upon the motion, in which Mi=0. As a result, the value of the angular velocity vector at the initial time moment ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3CFE@ , for which the spacecraft is moved by its free rotation with respect to the center of mass (M=0) from the state Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGPbGaaeOBaaWcbeaaaaa@3FCA@ , ω(0)= ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3CFE@ into the state Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ , will be found (ω(T) is arbitrary here). In particular, the method of solving the boundary problem and determining the vector p0 was described in detail in the article.13 The value of vector p0 relates to ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3CFE@ as

p i0 = J i ω ical ( J 1 ω 1cal ) 2 + ( J 2 ω 2cal ) 2 + ( J 3 ω 3cal ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWGWbWaaS baaeaajugWaiaadMgacaaMe8UaaGimaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaadQealmaaBaaabaqcLbmacaWGPbaaleqaaK qzGeGaeqyYdC3cdaWgaaqaaKqzadGaamyAaiaaysW7caqGJbGaaeyy aiaabYgaaSqabaaakeaajuaGdaGcaaGcbaqcfa4aaeWaaOqaaKqzGe GaamOsaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqaHjpWDlmaa BaaabaqcLbmacaaIXaGaae4yaiaabggacaqGSbaaleqaaaGccaGLOa GaayzkaaWcdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkjuaG daqadaGcbaqcLbsacaWGkbWcdaWgaaqaaKqzadGaaGOmaaWcbeaaju gibiabeM8a3TWaaSbaaeaajugWaiaaikdacaqGJbGaaeyyaiaabYga aSqabaaakiaawIcacaGLPaaalmaaCaaabeqaaKqzadGaaGOmaaaaju gibiabgUcaRKqbaoaabmaakeaajugibiaadQealmaaBaaabaqcLbma caaIZaaaleqaaKqzGeGaeqyYdC3cdaWgaaqaaKqzadGaaG4maiaabo gacaqGHbGaaeiBaaWcbeaaaOGaayjkaiaawMcaaSWaaWbaaeqabaqc LbmacaaIYaaaaaWcbeaaaaaaaa@7AEC@

The known algorithms presented in patent24 and system25 can be used for finding calculated values ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaqGJbGaaeyyaiaabYgaaSqabaaaaa@3CFE@ and p0 also. These algorithms13,24,25 are reliable and provide asymptotic approaching for sought value p0. Other calculation schemes30,31 can be useful only in some specific cases.

Thus, key results are the following: optimal control program of spacecraft reorientation was found; it was demonstrated that two-impulse control when spacecraft rotates by inertia between acceleration and braking is optimum in general case. Key characteristic properties of the obtained optimal motion are determined. All conclusions are absolutely true since well-known mathematical methods were used, and all mathematical formulas are based on the checked theories. For a dynamic symmetric spacecraft, a complete solution of the reorientation problem in closed form is presented; optimal values of control law parameters can be found by the device.29 The obtained control method is differs from all other known solutions. Main difference consists in new form of minimized functional which allows to turn a spacecraft with the bounded rotation energy (maneuver time is minimized also). This useful quality is advantage of presented control mode because it significantly saves the controlling resources and increases the possibilities of spacecraft control. Furthermore, rotation with energy not exceeding the given value allows us to stop rotation of a spacecraft within known time what is very important in safety sense in critical situations.

Example and results of mathematical simulation

Spacecraft reorientation with minimal functional (6) is performed along the “trajectory of free motion”, on which the direction of the spacecraft’s angular momentum remains constant in inertial coordinate system on the entire time interval from t=0 to t=T. Optimal torque M is collinear to the vector p which is unit vector of angular momentum L. For cases when τ<<T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDcqGH8aapcqGH8aapcaWGubaaaa@3B2B@ , the strategy “acceleration of rotation, uncontrolled rotation, damping of rotation” is optimum for optimal control problem (1)-(6) if ω(0)=ω (T)=0 in slew maneuver. The assumed criterion of optimality supports motion of a spacecraft with the bounded kinetic energy of rotation during reorientation maneuver. The universality of the designed control method is proved by the following factors: it does not depend from actuators type, mass and size of spacecraft, spacecraft’s moments of inertia, altitude of working orbit (and from others, for example, from periodicity of reorientation, angle of a turn). Let us give a numerical example of solving the optimal control problem for spacecraft reorientation with minimal value of the integral (6). As an example, let us consider spacecraft reorientation for 180 degree from initial position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ , when body axes coincide with the axes of reference basis I, into the target position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ . It is assumed that initial and final angular velocities are zero, ω(0)= ω(T)=0. Values of the elements of quaternion Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ that characterizes the target attitude of a spacecraft are:

λ0=0, λ1=0.707107, λ2=0.5, λ3=0.5

Let us find the optimal control program for angular velocity ω(t) for transferring the spacecraft from the state Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGPbGaaeOBaaWcbeaaaaa@3FCA@ , ω(0)=0 to the state Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamivaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGMbaaleqaaaaa@3EF5@ , ω(T)=0 if the coefficient k0 is equal to k0=0.5 joules–1. The constant u0 which characterizes power of actuators is u0=0.05 N kg–1/2. The spacecraft’s mass-inertial characteristics are as follows:

J1=12801.6 kg m2 , J2=45747.3 kg m2 , J3=40331.1 kg m2

As a result of solving the turn boundary problem from position Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaaGimaiaacMcacqGH9aqpcqqHBoatjuaGdaWgaaWcbaqc LbmacaqGPbGaaeOBaaWcbeaaaaa@4058@ into position Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atcaGGOaGaamivaiaacMcacqGH9aqpcqqHBoatlmaaBaaabaqcLbma caqGMbaaleqaaaaa@3EF5@ (the optimal reorientation problem in the impulse setting), we obtained the calculated value of the vector p0= {0.4469347; -0.1861273; 0.8749891} and integral S=471.1 m kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaK aaGfaajugibiaabUgacaqGNbaajeaybeaaaaa@39CE@ . Iterations method guaranteeing successive approach to true value p0 was used13 (in most cases, this method provides asymptotic approaching). The maximal value of the control torque is m0=8.41 N m. The obtained value S shows that k0u0S > 1 and optimal program is control with phase of uncontrolled rotation. The durations of speedup and braking are the same and equal to τ=28.3 s, the angular momentum magnitude within stage of rotation by inertia equals Lopt=238 N m s. Optimal changing the controlling moment M is described by the law

М=u[sign ( 1/ ( u 0 k 0 )t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaaGymaaGcbaqcLbsacaGGOaGaamyDaKqbaoaaBaaaleaa jugWaiaaicdaaSqabaqcfa4aaOaaaOqaaKqzGeGaam4AaSWaaSbaae aajugWaiaaicdaaSqabaaabeaaaaqcLbsacaGGPaGaeyOeI0IaamiD aaaa@4442@ ) + sign ( S k 0 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaOaaaOqaaKqzGeGaam4AaKqbaoaaBaaaleaajugWaiaaicda aSqabaaabeaajugibiabgkHiTiaadshaaaa@3EA6@ )] Λ ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHBo atgaacaiablIHiVbaa@3943@ Λin  p0 Λ ˜ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIyi YBcuqHBoatgaacaSWaaSbaaeaajugWaiaabMgacaqGUbaaleqaaaaa @3C85@ L / (2C)

Results of the mathematical modeling of the reorientation process under optimal control are given on Figures 1–3. Figure 1 shows the character of changing the angular velocities ω1(t), ω2(t), ω3(t) with respect to time. The reorientation time is T=361.4 s. Between acceleration and braking, the spacecraft rotates with a constant energy equal to Ek=1 joules. The value of index (6), which characterizes the cost-efficiency of the rotation trajectory Λ(t), ω(t) after spacecraft’s angular motion from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGPbGaaeOBaaWcbeaaaaa@3B3C@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHBo atlmaaBaaabaqcLbmacaqGMbaaleqaaaaa@3A48@ , equal to G=685 s. Figure 2 shows the changes in the components of quaternion Λ(t) that defines current attitude of a spacecraft in process of rotation maneuver: λ0(t), λ1(t), λ2(t), λ3(t). Finally, Figure 3 shows the dynamics of the components p1(t), p2(t), p3(t) of the unit vector p during optimal maneuver. The variables λj and pi are dimensionless quantities. It is characteristic that the change in the projection p1 is very small in comparison with changes in the projections p2 and p3 (the angular velocity component ω1 also changes a lot less on the interval of free rotation than angular velocity components ω2 and ω3). This confirms the fact that the OX axis is longitudinal axis. Unlike variables ωi, variables pi and λj are smooth functions of time.

Figure 1 Changing the angular velocities during optimal reorientation maneuver.

Figure 2 Changing the components of orientation quaternion Λ(t) during optimal reorientation.

Figure 3 Changing the components of unit vector p under optimal control.

Conclusion

Control algorithm of angular motion is very significant element of control system of spacecraft attitude, booster units and orbital stations. Designing optimal algorithm of controlling a spacecraft motion increases efficiency of onboard control system of a spacecraft and originates more economical performance of spacecraft during flight on orbit. In this paper, the optimal control problem for spatial reorientation of a spacecraft from a position of rest to a position of rest is considered and solved. The optimization has been performed for case when rotation energy integral should be minimized together with turn duration. Finding the optimal mode of spacecraft reorientation with a minimal value of energy’s “expenditure” is quite topical. An analytic solution of the proposed problem is presented. Formal equations and computational expressions for constructing optimal reorientation program were obtained. To solve the formulated problem, the maximum principle is applied, and use of quaternions significantly simplifies computational procedures and reduces the computational costs of the control algorithm, which makes it suitable for onboard realization. Mathematical expressions, which provide for obtaining final equations and relations describing the variation of control functions and behavior of a spacecraft during optimal maneuver, is based on universal variables which were introduced earlier.2 The main characteristic properties of optimal motion and the type of trajectory optimal with respect to the chosen criterion were determined. The reorientation problem has been solved completely in dynamic statement. Necessary optimality conditions were found, and the optimal control structure was determined; the formalized relations to determine the spacecraft’s optimal motion are obtained. The spacecraft reorientation control problem with regard to the constraints on the controlling torque is studied. For a specific form of these constraints, the problem of optimal reorientation was solved.

Minimization of the adopted index of quality is very important problem in practice of spacecraft flight, it limits rotary energy during maneuver, and therefore the spacecraft rotation can be damped for a time not exceeding the known value. The main results are the following: it was demonstrated that two-impulse control is optimum (with one or two switching), and, in many cases, spacecraft rotates by inertia between acceleration and braking. Ideal optimal solution is two-impulse control when spacecraft rotates by inertia between jump-like acceleration and jump-like braking. If the controlling torque is limited, analytical formulas were written for duration of acceleration and braking, and turn's time also. We have shown that direction of spacecraft’s angular momentum is constant in inertial coordinate system within the entire reorientation interval. Expressions for computing the temporal characteristics of the reorientation maneuver and the condition for finding the deceleration start moment based on factual kinematic motion parameters with use of terminal control principles are presented; it leads to high orientation precision. Example and results of mathematical modeling for spacecraft motion under optimal control are given. The obtained results demonstrate that the designed control method of spacecraft's three-dimensional reorientation is feasible in practice.

The made investigation concerns the theory of the controlled motion of a rigid body, and the obtained results are very important and can be used in practice of spacecraft flight, in particular. Importance of the proposed method of reorientation consists not only in energy aspects but in safety sense, since this rotation mode provides, at any time, a damping to zero angular velocity within a known duration non exceeding the given value (it is very topical in different critical situations). Presence of ready formulas, for synthesis of optimal motion program during a slew maneuver, does the carried out research as practically significant and suitable for direct use in practice of spaceflights.

Acknowledgments

None.

Conflicts of interest

The author declares that there is no conflict of inertest.

Funding

None.

References

  1. Branets, VN, Shmyglevskii, IP. Use of quaternions in problems of orientation of solid bodies, Nauka, Moscow, 1973.
  2. Levskii MV. Use of universal variables in problems of optimal control concerning spacecrafts orientation. Mechatronics Automation Control. 2014;1:53–59.
  3. Wells KC, Millet DB, Fuentes JD. Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature. 2020;585(7824):225–233.
  4. Parsons S. Planet discovered transiting a dead star. Nature. 2020;585(7825):354–355.
  5. Kempton E. First exoplanet found around a sun-like star. Nature. 2019;575(7784):43–44.
  6. Raushenbakh BV, Tokar EN. Spacecraft orientation control. Moscow: Nauka, 1974.
  7. Alekseev KB, Malyavin AA, Shadyan AV. Extensive control of spacecraft orientation based on fuzzy logic. Flight. 2009;47–53.
  8. Velishchanskii MA, Krishchenko AP, Tkachev SB. Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem. Journal of Computer and System Sciences International. 2003;42(5):811–818.
  9. Li F, Bainum PM. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers. Journal of Guidance, Control, and Dynamics. 1990;13(1):38–45.
  10. Scrivener S, Thompson R. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics. 1994;17(2):225–233.
  11. Liu S, Singh T. Fuel/time optimal control of spacecraft maneuvers. Journal of Guidance, 1996;20(2):394–397.
  12. Byers R, Vadali S. Quasi-closed-form solution to the time-optimal rigid spacecraft reorientation problem. Journal of Guidance, Control, and Dynamics. 1993;16(3):453–461.
  13. Levskii MV. Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft. Control Systems for Moving Objects. 2008;47(6):974–986.
  14. Shen H, Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls. Journal of Guidance, Control, and Dynamics. 1999;22(5):682–694.
  15. Molodenkov AV, Sapunkov Ya G. A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions. Journal of Computer and System Sciences International. 2007;46(2):310–323.
  16. Molodenkov AV, Sapunkov Ya G. Special control regime in the problem of optimal turn of an axially symmetric spacecraft. Journal of Computer and System Sciences International, 2010;49(6).
  17. Junkins JL, Turner JD. Optimal spacecraft rotational maneuvers. Elsevier, USA, 1986.
  18. Kovtun VS, Mitrikas VV, Platonov VN, et al. Mathematical support for conducting experiments with attitude control of space astrophysical module Gamma. Technical Cybernetics. 1990;3:144–157.
  19. Platonov VN, Kovtun VS. Method for spacecraft control using reactive actuators during execution of a programmed turn. Inventions. Applications and Patents. 1997.
  20. Levskii MV. Features of attitude control of a spacecraft, equipped with inertial actuators. Mechatronics, Automation, Control. 2015;16(3):188–195.
  21. Levskii MV. Special aspects in attitude control of a spacecraft, equipped with inertial actuators. Journal of Computer Science Applications and Information Technology. 2017;2(4):1–9.
  22. Levskii MV. Optimal spacecraft terminal attitude control synthesis by the quaternion method. Mechanics of Solids. 2009;44(2):169–183.
  23. Levskii MV. On optimal spacecraft damping. Journal of Computer and System Sciences International. 2011;50(1):144–157.
  24. Levskii MV. Method of spacecraft turn control and the system for its realization. Inventions. Applications and Patents. 1998.
  25. Levskii MV. Control system for spacecraft spatial turn. Inventions. Applications and Patents. 1994:49–50.
  26. Zubov NE, Li MV, Mikrin EA, et al. Terminal synthesis of orbital orientation for a spacecraft. Journal of Computer and Systems Sciences International, 2017;56(4):154–173.
  27. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, et al. The mathematical theory of optimal processes. Gordon and Breach, USA, 1986.
  28. Young LC. Lectures on the calculus of variations and optimal control theory. EA: Saunders, USA, 1969.
  29. Levskii MV. Device for regular rigid body precession parameters formation. Inventions. Applications and Patents. 2000.
  30. Bertolazzi E, Biral F, Da Lio M. Symbolic-numeric efficient solution of optimal control problems for multibody systems. Journal of Computational and Applied Mathematics. 2006;185(2):404–421.
  31. Kumar S, Kanwar V, Singh S. Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations. Journal of Applied Mathematics. 2010;1(3):153–158.
Creative Commons Attribution License

©2021 Levskii. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.