Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 5 Issue 1

Logarithm-type position control of robot manipulators

Fernando Reyes Cortes,1 Oswaldo Tepatl Nieto,2 Tania Ortiz2

1Benemerita Universidad Autonoma de Puebla, Mexcio
2Universidad Tecnologica de Queretao, Mexcio

Correspondence: Fernando Reyes Cortes, Benemerita Universidad Autonoma de Puebla, Mexcio

Received: April 19, 2018 | Published: January 17, 2019

Citation: Cortes FR, Nieto OT, Ortiz T. Logarithm-type position control of robot manipulators. Int Rob Auto J. 2019;5(1):16-17. DOI: 10.15406/iratj.2019.05.00165

Download PDF

Abstract

This paper deals with the global regulation problem for robot manipulators, a new logarithm-type control scheme is presented. The proposed control drives position error and derivative action terms plus gravity compensation. To ensure global asymptotic stability of closed-loop system equilibrium point, we propose an energy-shaping based Lyapunov function. Experimental results on a three-degree-of-freedom direct-drive robot manipulator are presented.

Introduction

Today, robot manipulators are important tools in society, they carry out many tasks such as pick- and-place operations, paintings, circuit-board as- sembly, drilling, palletizing until space operations, physiotherapy, robotic operating rooms, and so on. These tasks require high-performance control algorithms with high performance.1-3 The topic on control of robot manipulators (so-called regulation) is an area for research and with potential applications. It consists in to move freely in its workspace the manipulator end-effectors from any initial condition to a fixed de- sired position, which is assumed to be constant, regardless of its initial joint position.3 The proportional derivative (PD) and proportional integral derivative (PID) control algorithms are the most simplest regulators to achieve regulation of robot manipulators. We can cite several works using PID-Like control schemes and their versions with saturating structures, for example.1-3

In this paper, we propose a new logarithm- type control scheme with gravity compensation for the global regulation problem of robot manipulators. The proposed control scheme is un- like other cited previously works; it is composed of logarithm functions, obtained by a suitable potential functions to drive both the position error and damping injection on the proportional and derivative terms, respectively. The proposed control scheme performance resulting is experimentally evaluated. This paper is organized as follows. Section 2 describes the dynamics of rigid robots. In Section 3, states the proposed control scheme and its global asymptotic stability proof is presented. Experimental results are analyzed in Section 4. Finally, conclusions are given in Section 5.

Robot dynamics

The dynamics of a serial n-link rigid robot with viscous friction and n degrees of freedom can be written as3

τ = M(q) q ¨ +C(q, q ˙ ) q ˙  +g(q)+B q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDcaGGGcGaeyypa0JaaiiOaiaad2eapaGaaiika8qa caWGXbWdaiaacMcapeGabmyCayaadaGaey4kaSIaam4qa8aacaGGOa WdbiaadghacaGGSaGabmyCayaacaWdaiaacMcapeGabmyCayaacaGa aiiOaiabgUcaRiaadEgapaGaaiika8qacaWGXbWdaiaacMcapeGaey 4kaSIaamOqaiqadghagaGaaaaa@4F22@ (1)

where q, q ˙ , q ¨ IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaiilaiqadghagaGaaiaacYcaceWGXbGbamaacqGH iiIZpaGaaeysaiaabkfadaahaaqcfasabeaacaqGUbaaaaaa@3F6E@ are the position, velocity and acceleration joint vectors, respectively; τ  IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDcaGGGcGaeyicI48daiaabMeacaqGsbWaaWbaaKqb GeqabaGaaeOBaaaaaaa@3E02@ is the vector of input torques, M(q)  IR n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWdaiaacIcapeGaamyCa8aacaGGPaWdbiaacckacqGH iiIZpaGaaeysaiaabkfadaahaaqcfasabeaacaqGUbGaey41aqRaae OBaaaaaaa@42A4@ is the symmetric positive definite manipulator inertia matrix, C(q, q ˙ )  IR n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbWdaiaacIcapeGaamyCaiaacYcaceWGXbGbaiaapaGa aiyka8qacaGGGcGaeyicI48daiaabMeacaqGsbWaaWbaaKqbGeqaba GaaeOBaiabgEna0kaab6gaaaaaaa@4449@ is the matrix of centripetal and Coriolis torques, g(q)  IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWdaiaacIcapeGaamyCa8aacaGGPaWdbiaacckacqGH iiIZpaGaaeysaiaabkfadaahaaqcfasabeaacaqGUbaaaaaa@3FB6@ is the vector of gravitational torques obtained as the gradient of the robot potential energy due to gravity and B IR n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaa baaaaaaaaapeGaeyicI48daiaabMeacaqGsbWaaWbaaKqbGeqabaGa aeOBaiabgEna0kaab6gaaaaaaa@3EE8@ is the positive definite diagonal matrix for the viscous friction torques. The dynamics model has several fundamental properties which can be exploited to facilitate control system design (see3).

Logarithm-type control

We define the position control problem. The problem of position control for robot manipulators consists of to propose a control scheme such that, the applied torque τ  IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDcaGGGcGaeyicI48daiaabMeacaqGsbWaaWbaaKqb GeqabaGaaeOBaaaaaaa@3E02@ to robot joints q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aacIcacaWG0bGaaiykaaaa@39CC@ tend asymptotically to a constant desired joint position q d IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCam aaBaaabaGaamizaaqabaaeaaaaaaaaa8qacqGHiiIZpaGaaeysaiaa bkfadaahaaqcfasabeaacaqGUbaaaaaa@3D19@ , regardless the initial conditions [q(0), q ˙ (0)] T IR 2n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4wai aacghacaGGOaGaaGimaiaacMcacaGGSaaeaaaaaaaaa8qaceWGXbGb aiaacaGGOaGaaGimaiaacMcapaGaaiyxamaaCaaabeqcfasaaiaads faaaqcfa4dbiabgIGio=aacaqGjbGaaeOuamaaCaaajuaibeqaaiaa bkdacaqGUbaaaaaa@462E@ , this is: limt[q-(t)q(t.)] 0 IR 2n ,t0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOKH4 QaaGimaabaaaaaaaaapeGaeyicI48daiaabMeacaqGsbWaaWbaaKqb GeqabaGaaeOmaiaab6gaaaqcfaOaaiilaiabgcGiIiaadshacqGHLj YScaaIWaGaaiilaaaa@44AC@ where q ˜ IR n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyCay aaiaaeaaaaaaaaa8qacqGHiiIZpaGaaeysaiaabkfadaahaaqcfasa beaacaqGUbaaaaaa@3C1E@ is the joint position error, which is defined as q ˜ = q d q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyCay aaiaGaeyypa0JaamyCamaaBaaajuaibaGaamizaaqcfayabaGaeyOe I0IaamyCaiaacIcacaGG0bGaaiykaaaa@3F7F@ . To resolve the position control problem, we propose a control structure τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDaaa@3869@ composed by a Logarithm function to drive both the position error and derivative action terms, plus a component of gravity compensation:

τ= k p [ In( q ˜ + 1+ q ˜ 2 )+ 2 q ˜ [ 1+ q ˜ 2 ] 2 ] K v [ ln( q ˙ + 1+ q ˙ 2 )+ 2 q ˙ [ 1+ q ˙ 2 ] 2 ]+g(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDcqGH9aqpcaWGRbWaaSbaaKqbGeaacaWGWbaajuaG beaapaWaamWaaeaapeGaamysaiaad6gapaWaaeWaaeaaceWGXbGbaG aacqGHRaWkdaGcaaqaaiaaigdacqGHRaWkceWGXbGbaGaadaahaaqa bKazfa4=baGaaGOmaaaaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRm aalaaabaGaaGOmaiqadghagaacaaqaamaadmaabaGaaGymaiabgUca RiqadghagaacamaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLBbGaay zxaaWaaWbaaeqajuaibaGaaGOmaaaaaaaajuaGcaGLBbGaayzxaaGa eyOeI0Iaam4samaaBaaajuaibaGaamODaaqcfayabaWaamWaaeaaci GGSbGaaiOBamaabmaabaWdbiqadghagaGaaiabgUcaR8aadaGcaaqa aiaaigdacqGHRaWkceWGXbGbaiaadaahaaqabKazfa4=baGaaGOmaa aaaKqbagqaaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGOma8qa ceWGXbGbaiaaa8aabaWaamWaaeaacaaIXaGaey4kaSYdbiqadghaga Gaa8aadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay5waiaaw2faamaa CaaabeqcfasaaiaaikdaaaaaaaqcfaOaay5waiaaw2faaiabgUcaR8 qacaWGNbWdaiaacIcapeGaamyCa8aacaGGPaaaaa@7411@ (2)

Where q ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyCay aaiaaaaa@3789@ is the n×1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgEna0kaaigdaaaa@3A49@ vector of joint position error; k p , k v IR n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWaaSbaaKqbGeaacaWGWbaajuaGbeaacaGGSaWdaiaa dUgadaWgaaqcfasaaiaadAhaaKqbagqaa8qacqGHiiIZpaGaaeysai aabkfadaahaaqcfasabeaacaqGUbGaey41aqRaaeOBaaaaaaa@447A@ are positive definite diagonal matrices, which are called proportional and derivative gains, respectively. We use the notation [ In( q ˜ + 1+ q ˜ 2 )+ 2 q ˜ [ 1+ q ˜ 2 ] 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aaqaaaaaaaaaWdbiaadMeacaWGUbWdamaabmaabaGabmyCayaaiaGa ey4kaSYaaOaaaeaacaaIXaGaey4kaSIabmyCayaaiaWaaWbaaeqajq wba+FaaiaaikdaaaaajuaGbeaaaiaawIcacaGLPaaacqGHRaWkdaWc aaqaaiaaikdaceWGXbGbaGaaaeaadaWadaqaaiaaigdacqGHRaWkce WGXbGbaGaadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay5waiaaw2fa amaaCaaabeqcfasaaiaaikdaaaaaaaqcfaOaay5waiaaw2faaaaa@4E60@ to represent the vector of the proportional term, this is, each component of this vector has the same mathematical structure. This is the same idea for the derivative term. The close-loop system equation is obtained by combining the robot dynamics model (1) and the control law (2) as follows:

ddt[q~q~]=[q˙Mq-1[kp(In(q~+1+q~2+2q~[1+q~2]2)Kv(In(q˙+1+q˙2)+2q˙[1+q˙2]2)Bq˙C(q,q˙)q˙] (3)

Which is an autonomous nonlinear differential equation, and the state origin [ q ˜ , q ˙ ] T =0 IR 2n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaqaa8aaceWGXbGbaGaacaGGSaWdbiqadghagaGaaaGa ay5waiaaw2faamaaCaaabeqcfasaaiaadsfaaaqcfaOaeyypa0JaaG imaiabgIGio=aacaqGjbGaaeOuamaaCaaajuaibeqaaiaabkdacaqG Ubaaaaaa@440A@ is the unique equilibrium point of the dynamics system (3).

Proposition

Consider the robot dynamics model (1) together with the control structure (2), then equilibrium point [ q ˜ , q ˙ ] T =0 IR 2n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaqaa8aaceWGXbGbaGaacaGGSaWdbiqadghagaGaaaGa ay5waiaaw2faamaaCaaabeqcfasaaiaadsfaaaqcfaOaeyypa0JaaG imaiabgIGio=aacaqGjbGaaeOuamaaCaaajuaibeqaaiaabkdacaqG Ubaaaaaa@440A@ of the close-loop system (3) is globally asymptotically stable.

Proof

To carry out the stability analysis, we propose the following Lyapunov function candidate composed by the sum of the robot manipulator kinetic energy plus arti_cial potential energy:

v( q ˙ , q ˜ )= 1 2 q ˙ T M(q) q ˙ + [ q ˜ In( q ˜ + q ˜ 2 +1 ) q ˜ 2 +1 1 1+ q ˜ 2 +2 ] T k p q ˜ In( q ˜ + q ˜ 2 +1 ) q ˜ 2 +1 1 1+ q ˜ 2 +2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WG2bGaaiikaabaaaaaaaaapeGabmyCayaacaGaaiila8aaceWGXbGb aGaacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaapeGabm yCayaacaWaaWbaaeqajuaibaGaamivaaaajuaGcaWGnbGaaiikaiaa cghacaGGPaGabmyCayaacaGaey4kaSYaamWaaeaapaWaaOaaaeaace WGXbGbaGaacaWGjbGaamOBaiaacIcaceWGXbGbaGaacqGHRaWkdaGc aaqaaiqadghagaacamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaS IaaGymaaqabaGaaiykaiabgkHiTmaakaaabaGabmyCayaaiaWaaWba aeqajuaibaGaaGOmaaaajuaGcqGHRaWkcaaIXaaabeaacqGHsislda WcaaqaaiaaigdaaeaacaaIXaGaey4kaSIabmyCayaaiaWaaWbaaeqa juaibaGaaGOmaaaaaaqcfaOaey4kaSIaaGOmaaqabaaapeGaay5wai aaw2faamaaCaaabeqcfasaaiaadsfaaaqcfaOaam4AamaaBaaajuai baGaamiCaaqcfayabaWdamaakaaabaGabmyCayaaiaGaamysaiaad6 gadaqadaqaaiqadghagaacaiabgUcaRmaakaaabaGabmyCayaaiaWa aWbaaeqajuaibaGaaGOmaaaajuaGcqGHRaWkcaaIXaaabeaaaiaawI cacaGLPaaacqGHsisldaGcaaqaaiqadghagaacamaaCaaabeqcfasa aiaaikdaaaqcfaOaey4kaSIaaGymaaqabaGaeyOeI0YaaSaaaeaaca aIXaaabaGaaGymaiabgUcaRiqadghagaacamaaCaaabeqcfasaaiaa ikdaaaaaaKqbakabgUcaRiaaikdaaeqaaaWdbeaaaaaa@7B49@ (4)

The time derivative of the Lyapunov function candidate (4) along the trajectories of the closed loop equation (3) is given by: v ˙ ( q ˙ , q ˜ )= q ˙ T B q ˙ q ˙ T k v [ In( q ˙ + 1+ q ˙ 2 )+ 2 q ˙ [1+ q ˙ 2 ] 2 ]0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmODay aacaGaaiikaabaaaaaaaaapeGabmyCayaacaGaaiila8aaceWGXbGb aGaacaGGPaGaeyypa0JaeyOeI0YdbiqadghagaGaamaaCaaabeqcfa saaiaadsfaaaqcfaOaamOqaiqadghagaGaaiabgkHiTiqadghagaGa amaaCaaabeqcfasaaiaadsfaaaqcfaOaam4AamaaBaaajuaibaGaam ODaaqabaqcfa4aamWaaeaacaWGjbGaamOBamaabmaabaGabmyCayaa caGaey4kaSYaaOaaaeaacaaIXaGaey4kaSIabmyCayaacaWdamaaCa aabeqcfasaaiaaikdaaaaajuaGpeqabaaacaGLOaGaayzkaaGaey4k aSYaaSaaaeaacaaIYaGabmyCayaacaaabaGaai4waiaaigdacqGHRa WkceWGXbGbaiaapaWaaWbaaeqajuaibaGaaGOmaaaajuaGpeGaaiyx amaaCaaabeqcfasaa8aacaaIYaaaaaaaaKqba+qacaGLBbGaayzxaa GaeyizImQaaGimaaaa@611A@

Now, we use LaSalle's invariance principle in the region Ω={ q ˜ =0 IR n Λ q ˙ =0 IR n :V( q ˜ , q ˙ )=0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHPoWvcqGH9aqpdaGadaqaa8aaceWGXbGbaGaacqGH9aqp caaIWaWdbiabgIGio=aacaqGjbGaaeOuamaaCaaajuaibeqaaiaab6 gaaaqcfaOaeu4MdW0dbiqadghagaGaaiabg2da9iaaicdacqGHiiIZ paGaaeysaiaabkfadaahaaqcfasabeaacaqGUbaaaKqbakaacQdaca WGwbGaaiikaiqadghagaacaiaacYcapeGabmyCayaacaWdaiaacMca cqGH9aqpcaaIWaaapeGaay5Eaiaaw2haaaaa@542C@ , then it is concluded that origin of state space is globally asymptotically stable.

Experimental results

To support our theoretical developments, we use the three degrees-of-freedom direct-drive robot manipulator shown in Figure 1. The experimental results consist of moving the manipulator end-effectors from its initial position to a fixed desired target. The initial positions and velocities were set to zero (at home position). The gains k p =diag{ 15.75,35.3,12.5 }Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWaaSbaaKqbGeaacaWGWbaajuaGbeaacqGH9aqpcaWG KbGaamyAaiaadggacaWGNbWaaiWaaeaacaaIXaGaaGynaiaac6caca aI3aGaaGynaiaacYcacaaIZaGaaGynaiaac6cacaaIZaGaaiilaiaa igdacaaIYaGaaiOlaiaaiwdaaiaawUhacaGL9baacaWGobGaamyBaa aa@4CEA@ ,and k v =diag{ 0.225 k p1 ,0.14 k p2 ,0.2 k p3 }Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbWaaSbaaKqbGeaacaWG2baajuaGbeaacqGH9aqpcaWG KbGaamyAaiaadggacaWGNbWaaiWaaeaacaaIWaGaaiOlaiaaikdaca aIYaGaaGynaiaadUgadaWgaaqcfasaaiaadchacaaIXaaajuaGbeaa caGGSaGaaGimaiaac6cacaaIXaGaaGinaiaadUgadaWgaaqcfasaai aadchacaaIYaaajuaGbeaacaGGSaGaaGimaiaac6cacaaIYaGaam4A amaaBaaajuaibaGaamiCaiaaiodaaKqbagqaaaGaay5Eaiaaw2haai aad6eacaWGTbaaaa@569B@ ; they were tuned to prevent saturation of the actuators, which deteriorate the control system performance and leads the thermal and mechanical problems. Several trials were necessary in order to ensure a fast response of transient state, no oscillations, a minimum overshoot and smaller steady-state error, and keep the actuators within their torque capabilities.

Figure 1 Experimental robot manipulator.

Figure 2 contains the experimental results of position errors corresponding to three joints for the control ln(). Observe that, each profile converges asymptotically to zero, after a smooth transient, all the components tend asymptotically to a small neighborhood of equilibrium point. The transient response of position errors not has oscillating, neither peak values nor overshoot; in addition the robot's response achieving stationary-state times shorter than 1.7 seconds. The position errors in steady-state have small values [ q ˜ 1 (t), q ˜ 2 (t), q ˜ 3 (t) ] T = [ 1.40,0.37,1.77 ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWadaqaa8aaceWGXbGbaGaadaWgaaqcfasaaiaaigdaaeqa aKqbakaacIcacaGG0bGaaiykaKqbGiaacYcajuaGceWGXbGbaGaada WgaaqcfasaaiaaikdaaeqaaKqbakaacIcacaWG0bGaaiykaiaacYca ceWGXbGbaGaadaWgaaqcfasaaiaaiodaaeqaaKqbakaacIcacaWG0b GaaiykaaWdbiaawUfacaGLDbaapaWaaWbaaeqajuaibaGaamivaaaa juaGpeGaeyypa0ZaamWaaeaacaaIXaGaaiOlaiaaisdacaaIWaGaai ilaiaaicdacaGGUaGaaG4maiaaiEdacaGGSaGaaGymaiaac6cacaaI 3aGaaG4naaGaay5waiaaw2faa8aadaahaaqabKqbGeaacaWGubaaaa aa@59C4@ degrees; therefore its Euclidean norm for this time is q ˜ (t) =2.2869 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aaceWGXbGbaGaacaGGOaGaamiDaiaacMcaaiaawMa7caGLkWoacqGH 9aqpcaaIYaGaaiOlaiaaikdacaaI4aGaaGOnaiaaiMdaaaa@4277@ degrees. The errors are present due to presence of static friction at the servomotors; however, they are acceptably small.

Figure 2 Experimental results of position errors.

Conclusion

In this paper, we have presented a new logarithm type control algorithm to solve the position control problem. The proposed control drives the position error to zero; this feature is due to its logarithmic structure. Our propose is supported by an asymptomatically stability analysis in sense Lyapunov's stability, and therefore, the global regulation objective is proved. The proposed control scheme permits the implementation of large number of hyperbolic-type control structures with potential applications at the industrial sector; and opening new control design possibilities to improve their closed-loop behavior.

Acknowledgment

None.

Conflicts of interest

The author declares there are no conflicts of interest.

References

Creative Commons Attribution License

©2019 Cortes, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.