Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 4 Issue 1

Vibrational effect on internal heated porous medium in the presence of chaos

Palle Kiran

Department of Mathematics Rayalaseema University Kurnool 518002 Andhra Pradesh India

Correspondence: Palle Kiran, Department of Mathematics, Rayalaseema University, Kurnool-518002, Andhra Pradesh, India

Received: March 01, 2017 | Published: February 15, 2019

Citation: Kiran P. Vibrational effect on internal heated porous medium in the presence of chaos. Int J Petrochem Sci Eng. 2019;4(1):13?23. DOI: 10.15406/ipcse.2019.04.00098

Download PDF

Abstract

The present article investigates a chaotic convection under modulation in the presence of internal heat generation. The viscoelastic fluid saturating porous medium, heated from below is considered; a modified Darcy’s momentum equation and heat generation term used in energy equation. An autonomous system of fourth order differential equations have been deduced by using truncated Galerkin expansions. The asymptotic behavior can be stationary, periodic, or chaotic, depending upon the values of system parameters. It is found that a better combination of values of modulation parameters and scaled Rayleigh, internal Rayleigh numbers provides a way for chaos. Both a temperature and gravity modulation of the medium is to enhance or diminish the behavior of chaotic nature of the system. Due to high internal heat generation there is a chance to devolve a new kind of stable or unstable points in the system. Finally, heat transfer results are presented in terms of Nusselt number.

Keywords: Internal heating, g-jitter effects, chaotic convection, lorentz system

Nomenclature

Latin Symbols

g, Acceleration due to gravity; d, Depth of the porous media; (x, z), Horizontal and vertical co-ordinates; Q, Internal heat source; Ri, Internal Rayleigh number R i = Q d 2 k T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfada WgaaqaaKqzadGaamyAaaqcfayabaGaeyypa0ZaaSaaaeaacaWGrbGa amizaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaqcfayaaiaadUgalm aaBaaajuaGbaqcLbmacaWGubaajuaGbeaaaaaaaa@4462@ ; k, Permeability; PrD, Prandtl-Darcy number P r D = δν d 2 K k T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuaiaadkhadaWgaaqaaSWdamaaBaaajuaGbaqcLbmapeGa amiraaqcfa4daeqaaaWdbeqaaiabg2da98aadaWcaaqaa8qacqaH0o azcqaH9oGBcaWGKbWcpaWaaWbaaKqbagqabaqcLbmapeGaaGOmaaaa aKqba+aabaGaam4saiaaysW7caWGRbWaaSbaaeaajugWaiaadsfaaK qbagqaaaaaaaa@4AE2@ ; p, Reduced pressure; Pr, caled Prandtl-Darcy number Pr= P r D γ π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiuaiaadkhacqGH9aqpdaWcaaqaaiaadcfacaWGYbWaaSba aeaacaWGebaabeaacqaHZoWzaeaacqaHapaClmaaCaaajuaGbeqaaK qzadGaaGOmaaaaaaaaaa@423A@ ; R, Scaled Rayleigh number R= a 2 Ra ( a 2 + π 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOuaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaWGHbWaaWba aeqabaqcLbmacaaIYaaaaKqbakaadkfacaWGHbaabaWaaeWaaeaaca WGHbWcdaahaaqcfayabeaajugWaiaaikdaaaqcfaOaey4kaSIaeqiW da3aaWbaaeqabaqcLbmacaaIYaaaaaqcfaOaayjkaiaawMcaamaaCa aabeqaaKqzadGaaGOmaaaaaaaaaa@4DC4@ ; T, Temperature; ∆T, Temperature difference across the porous layer; Ra, Thermal Rayleigh-Darcy number, Ra= βTgΔTdK vkT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOuaiaadggacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaeqOS diMaamivaiaadEgacqGHuoarcaWGubGaamizaiaadUeaaeaacaWG2b Gaam4Aaiaadsfaaaaaaa@46A9@ ; T, Time; a, Wave number. 

Greek Symbols

δ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGbbaaaaaaa aapeGaeqiTdqwcfa4aaSbaaKqbGfaacaaIYaaabeaaaaa@39F7@ , Amplitude of gravity modulation;

δ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGbbaaaaaaa aapeGaeqiTdqwcfa4aaSbaaKqbGfaacaaIXaaajuaGbeaaaaa@3A84@ , Amplitude of temperature modulation;

α T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqySde2damaaBaaabaWdbiaadsfaa8aabeaaaaa@3960@ ,Coefficient of thermal expansion;

µ, Dynamic viscosity of fluid;

k T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@382E@ ,Effective thermal diffusivity;

ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg8aYb aa@3814@ ,Fluid density;

Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axn aaBaaabaGaaGOmaaqabaaaaa@38E4@ ,Frequency of gravity modulation;

Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfM6axn aaBaaabaGaaGymaaqabaaaaa@38E3@ ,Frequency of temperature modulation;

 ν, Kinematic viscosity,  ;

 Γ, Non-dimensional relaxation time;

 φ, Phase angle;

 δ, Porosity;

 Γ, Ratio of retardation time to relaxation time, ;

ψ, Stream function;

λ ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGafq4UdWMbaebadaWgaaqcfauaaiaaigdaaKqbagqaaaaa@3A1D@ , Stress relaxation time;

λ ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGafq4UdWMbaebadaWgaaqcfauaaiaaikdaaKqbagqaaaaa@3A1E@ , Strain retardation time;

 τ, Time (dimensionless).

Other symbols

2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaey4bIe9aaWbaaeqajuaibaGaaGOmaaaaaaa@392B@ , 2 x 2 + 2 y 2 + 2 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaKqbafaacqGHciITjuaGdaahaaqcfauabKazfa4=baGa aGOmaaaaaKqbafaacqGHciITcaWG4bqcfa4aaWbaaKqbafqajqwba+ FaaiaaikdaaaaaaKqbajabgUcaRKqbaoaalaaajuaqbaGaeyOaIyBc fa4aaWbaaKqbafqajqwba+FaaiaaikdaaaaajuaqbaGaeyOaIyRaam yEaKqbaoaaCaaajuaqbeqcKvaG=haacaaIYaaaaaaajuaqcqGHRaWk juaGdaWcaaqcfauaaiabgkGi2MqbaoaaCaaajuaqbeqcKvaG=haaca aIYaaaaaqcfauaaiabgkGi2kaadQhajuaGdaahaaqcfauabKazfa4= baGaaGOmaaaaaaaaaa@5D79@ Subscripts;

b, Basic state;

c, Critical;

0, Reference value.

Superscripts

*        Dimensionless quantity

‘         Perturbed quantity

Introduction

The study of non-Newtonian fluids attracted tremendous interest in research because of its usage as a working media in many engineering and industrial applications. One of such a non- Newtonian fluids viscoelastic fluids exhibit both solid and liquid properties have applications in the fields as geothermal material processing, energy modeling, cooling of electronic devices, thermal insulation material, transport of chemical substances, crystal growth, solar receivers and injection molding. Other applications are found in the petroleum industry, nuclear and chemical industries, geophysics, bioengineering and so on. The relevant studies of viscoelastic fluids may be found in the studies of Bhadauria et al.,1‒3 the corresponding introduction there in. The concept of chaotic convection in porous medium has received great interest due to its applications in industry and atmospheric sciences. A fundamental characteristic of a chaotic model is its extreme sensitivity to its initial conditions; i.e. small difference in the initial state can lead to extraordinary difference in the system state. Chaotic behaviour is complex, irregular and in mechanical systems, generally this nature is undesirable. For examples, to design electric circuits, mechanical devices, signals, stabilizing the lasers and other industrial systems are governed by chaos in engineering and industry. The thermal insulation, thermal energy utilization and dynamics of satellites are examples of chaos in nature. In other many practical mechanical applications, improved system performance or the avoidance of fatigue failure requires controlling the system, so that chaos is removed or leading the system stable and predictable behaviour. Therefore, within the nonlinear dynamics research area, the control- ling or ordering of chaos is increasing attention. In the field of chaos analysis and control, the Lorentz system is considered a paradigm, since it captures many of the future of the chaotic dynamics. The concept of chaos was first introduced by Poincare4,5 who investigated orbits in celestial mechanics and realized that the dynamical system generated by the three body problem is quite sensitive to the initial conditions exhibiting chaotic behavior. Since the introduction of the chaotic attractors by Lorenz,6 is to study the atmospheric convection. Many chaotic systems have been introduced, such as the Rossler,7 the Chen8 and the Lu9 systems. Related and relevant studies on chaotic convection investigated by numerous authors to see the dynamics of the nonlinear system towards its initial disturbances; some of them are.10‒25 The study of heat transfer with internal heat sources arises at consideration of heat dissipation in porous layers exposed to radioactive radiation at storage of nuclear waste materials or transmitting high energy particle beams. The wide range applications occur in nuclear re- actions, nuclear heat cores, nuclear energy, nuclear waste disposals, oil extractions, and crystal growth. The heat transfer in a window for transmission of high-energy beams with a metal foam porous layer is studied by Hetsroni et al.26 They found that, the high performance of the metal foam heat sinks for cooling such windows. The image processing of thermal maps on the surface of open-cell porous layer revealed that boundary condition with constant heat flux became more relevant for numerical model than those with constant temperature at high values of Reynolds numbers based on the permeability. The studies related to internal heat generation recently investigated.27‒31 In most of the above research papers regarding Lorentz chaos control, it is considered essential to know the Lorentz model parameters for the successful derivation of a control. Further, it is often assumed in many papers that the system is without external disturbances. In a practical most of the situations, the parameters of the Lorentz chaotic system may not be known, may be varying in time and may be undergoing either match or mismatch disturbances. Thus, the derivation of a chaos controller for a Lorentz system in the presence of parameter uncertainty and disturbances is an important problem. Vadasz et al.,32 have investigated the effect of vertical vibrations on chaotic convection in porous medium employing Darcy model. Their results show that periodic and chaotic solutions alternate as the value of the scaled Rayleigh number varies under gravity modulation.33‒37 Further, they also concluded that the neglect of the time derivative in the original Darcy equation is not justified when vibrations and wave effects are being considered. Kiran et al.,38 studied oscillatory and chaotic mode of convection in a magnetic two component fluid layer, and investigated heat, mass transfer and the chaotic nature of the problem. They found that, oscillatory mode of convection enhances heat, mass transfer than the stationary mode of convection due to interaction of oscillatory frequency with amplitude of convection. Also their results of gravity modulation stimulates on the dynamics of the current model and declares that, a suitable combination of the choice of the values of frequency and amplitude of modulation one may have control on chaos. Bhadauria et al.,39 was the first who investigated temperature modulation40‒44 effect on chaotic convection of the problem. Their results show that, the transition from steady to chaotic nature can be controlled by three types of temperature modulation while choosing the suitable values of amplitude and frequency. The present paper investigates (while considering the studies of ([?])) the chaotic convection under temperature and gravity modulations in the presence of internal heat source.

Mathematical equations

A viscoelastic fluid saturated horizontal porous medium, confined between two parallel infinitely extended horizontal planes at z=0 and z=d, a distance‘d’ apart, has been considered. A Cartesian frame of reference is chosen in such a way that the origin lies on the lower plane and the z-axis as vertical upward. Oberbeck-Boussinesq approximation is applied to account the effect of density variations. The non-Newtonian behavior of the viscoelastic fluid is characterized using the Oldroyd model. Under these conditions the governing equations for thermal convection in a viscoelastic fluid saturated porous medium are given by:

. q =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEGirl aac6caceWGXbGbaSaacaaMe8Uaeyypa0JaaGjbVlaaicdajyaycaGG Saaaaa@3FB2@     (2.1)

( 1+ λ ¯ 1 t )( ρ 0 δ q t +Pρ g )+ μ K ( 1+ λ ¯ 2 t ) q =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaaGymaiabgUcaRiqbeU7aSzaaraWaaSbaaeaacaaIXaaabeaadaWc aaqaaiabgkGi2cqaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaGaaG jbVpaabmaabaWaaSaaaeaacqaHbpGCdaWgaaqaaiaaicdaaeqaaaqa aiabes7aKbaacaaMe8+aaSaaaeaacqGHciITceWGXbGbaSaaaeaacq GHciITcaWG0baaaiaaysW7cqGHRaWkcaaMe8Uaey4bIeTaamiuaiaa ysW7cqGHsislcaaMe8UaeqyWdiNabm4zayaalaaacaGLOaGaayzkaa GaaGjbVlabgUcaRiaaysW7daWcaaqaaiabeY7aTbqaaiaadUeaaaGa aGjbVpaabmaabaGaaGymaiabgUcaRiaaysW7cuaH7oaBgaqeamaaBa aabaGaaGOmaaqabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa aaGaayjkaiaawMcaaiaaysW7ceWGXbGbaSaacaaMe8Uaeyypa0JaaG jbVlaaicdaaaa@75C7@     (2.2)

T t +( q . )T= K T 2 T+Q( T T 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaamivaaqaaiabgkGi2kaadshaaaGaaGjbVlabgUcaRiaa ysW7daqadaqaaiqadghagaWcaiaac6cacqGHhis0aiaawIcacaGLPa aacaaMe8UaamivaiaaysW7cqGH9aqpcaaMb8UaaGjbVlaadUeadaWg aaqcfauaaiaadsfaaKqbagqaaiabgEGirpaaCaaabeqcfauaaiaaik daaaqcfaOaamivaiaaysW7cqGHRaWkcaaMe8UaamyuamaabmaabaGa amivaiabgkHiTiaadsfadaWgaaqcfauaaiaaicdaaKqbagqaaaGaay jkaiaawMcaaaaa@5D6C@     (2.3)

ρ= ρ 0 [ 1 α T ( T T 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYj aaysW7cqGH9aqpcaaMe8UaeqyWdi3aaSbaaKqbGfaajuaqcaaIWaaa juaGbeaadaWadaqaaiaaigdacaaMe8UaeyOeI0IaaGjbVlabeg7aHn aaBaaajuaybaqcfaKaamivaaqcfayabaWaaeWaaeaacaWGubGaaGjb VlabgkHiTiaaysW7caWGubWaaSbaaKqbafaacaaIWaaajuaGbeaaai aawIcacaGLPaaaaiaawUfacaGLDbaacaaMe8oaaa@555B@     (2.4)

Where, the physical variables have their usual meanings and are given in Nomenclature. The externally considered thermal boundary conditions are given by Venezian40:

T= T 0 + ΔT 2 [ 1+ δ 1 cos( Ωt ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacsfaca aMe8Uaeyypa0JaaGjbVlaacsfadaWgaaqcfauaaiaaicdaaKqbagqa aiaaysW7cqGHRaWkcaaMe8+aaSaaaeaacqGHuoarcaWGubaabaGaaG OmaaaadaWadaqaaiaaigdacaaMe8Uaey4kaSIaaGjbVlabes7aKnaa BaaajuaqbaGaaGymaaqabaqcfaOaaGjbVlGacogacaGGVbGaai4Cam aabmaabaGaeuyQdCLaamiDaaGaayjkaiaawMcaaaGaay5waiaaw2fa aaaa@577E@ ,at z = 0

= T 0 ΔT 2 [ 1 δ 1 cos( Ωt+θ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i aaysW7caWGubWaaSbaaeaajuaqcaaIWaaajuaGbeaacaaMe8UaeyOe I0IaaGjbVpaalaaabaGaeyiLdqKaamivaaqaaiaaikdaaaWaamWaae aacaaIXaGaaGjbVlabgkHiTiaaysW7cqaH0oazdaWgaaqcfawaaKqb ajaaigdaaKqbagqaaiaaysW7ciGGJbGaai4Baiaacohadaqadaqaai abfM6axjaadshacaaMe8Uaey4kaSIaaGjbVlabeI7aXbGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@5B50@ , at z = d     (2.5)

Where ∆T is the temperature difference across the porous medium, δ1, Ω1 are the amplitude and frequency, θ is the phase angle of temperature modulation. The externally imposed gravitational field is given by Gresho et al.33:

g = g 0 [ 1 +  δ 2  cos( Ω 2 t ) ] k ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabm4zayaalaGaeyypa0Jaam4zamaaBaaajuaqbaGaaGimaaqc fayabaGaaGjbV=aadaWadaqaa8qacaaIXaGaaeiiaiabgUcaRiaabc cacqaH0oazdaWgaaqcfawaaKqbajaaikdaaKqbagqaaiaabccacaWG JbGaam4BaiaadohapaWaaeWaaeaapeGaeuyQdC1aaSbaaKqbafaaca aIYaaajuaGbeaacaWG0baapaGaayjkaiaawMcaaaGaay5waiaaw2fa a8qaceWGRbGbaKaaaaa@500B@     (2.6)

Where δ2, Ω2 are the amplitude and frequency of gravity modulation

Basic state

The basic state is assumed to be quiescent and the physical variable in this state are given by:

q b =0,p= p b ( z,t ),T= T b ( z,t ),ρ= ρ b ( z,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadghaga WcamaaBaaabaWaaSbaaKqbGfaacaWGIbaajuaGbeaaaeqaaiaaysW7 cqGH9aqpcaaMe8UaaGimaiaacYcacaaMe8UaamiCaiaaysW7cqGH9a qpcaaMe8UaamiCamaaBaaabaWaaSbaaKqbGfaacaWGIbaabeaaaKqb agqaamaabmaabaGaamOEaiaacYcacaaMe8UaamiDaaGaayjkaiaawM caaiaacYcacaaMe8UaaGjbVlaaysW7caaMe8UaamivaiaaysW7cqGH 9aqpcaaMe8UaamivamaaBaaajuaybaqcfa4aaSbaaKqbGfaacaWGIb aabeaaaKqbagqaamaabmaabaGaamOEaiaacYcacaaMe8UaamiDaaGa ayjkaiaawMcaaiaacYcacaaMe8UaaGjbVlabeg8aYjaaysW7cqGH9a qpcaaMe8UaeqyWdi3aaSbaaeaadaWgaaqcfawaaiaadkgaaKqbagqa aaqabaWaaeWaaeaacaWG6bGaaiilaiaaysW7caWG0baacaGLOaGaay zkaaaaaa@778C@     (3.1)

Substituting Equation (3.1) in Equations (2.1)-(2.4), we get the following equations which are used to determine the basic state pressure and temperature:

p b z = ρ b g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaamiCamaaBaaajuaybaqcfa4aaSbaaKqbGfaacaWGIbaa juaGbeaaaeqaaaqaaiabgkGi2kaadQhaaaGaaGjbVlabg2da9iaays W7cqGHsislcqaHbpGCdaWgaaqcfawaaKqbaoaaBaaajuaybaGaamOy aaqabaaajuaGbeaaceWGNbGbaSaaaaa@4956@     (3.2)

T b t = K T 2 T b z 2 +Q( T b T 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaamivamaaBaaajuaqbiqaaG3ccaWGIbaajuaGbeaaaeaa cqGHciITcaWG0baaaiaaysW7cqGH9aqpcaaMe8Uaam4samaaBaaaju aqbaGaamivaaqcfayabaWaaSaaaeaacqGHciITdaahaaqabKqbafaa caaIYaaaaKqbakaadsfadaWgaaqcfauaaiaadkgaaKqbagqaaaqaai abgkGi2kaadQhadaahaaqabKqbafaacaaIYaaaaaaajuaGcaaMe8Ua ey4kaSIaaGjbVlaadgfadaqadaqaaiaadsfadaWgaaqcfauaaiaadk gaaKqbagqaaiaaysW7cqGHsislcaaMe8UaamivamaaBaaajuaqbaGa aGimaaqcfayabaaacaGLOaGaayzkaaaaaa@5E12@     (3.3)

ρ b = ρ 0 [ 1 α T ( TbT0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg8aYn aaBaaabaWaaSbaaKqbafaacaGGIbaajuaGbeaaaeqaaiaaysW7cqGH 9aqpcaaMe8UaeqyWdi3aaSbaaKqbafaacaaIWaaajuaGbeaacaaMe8 +aamWaaeaacaaIXaGaaGjbVlabgkHiTiaaysW7cqaHXoqydaWgaaqc fauaaiaadsfaaKqbagqaaiaaysW7daqadaqaaiaadsfajuaqcaWGIb qcfaOaaGjbVlabgkHiTiaaysW7caWGubqcfaKaaGimaaqcfaOaayjk aiaawMcaaaGaay5waiaaw2faaiaaysW7aaa@5B3F@     (3.4)

The solution of the Equation (3.3), subjected to the thermal boundary conditions given in Equation (2.5), is given by

T b  ( z, t ) =  T s  ( z ) +  δ 1 Re[ T 1 ( z, t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamivamaaBaaajuaqbaGaamOyaaqcfayabaGaaeiia8aadaqa daqaa8qacaWG6bGaaiilaiaabccacaWG0baapaGaayjkaiaawMcaa8 qacaqGGaGaeyypa0JaaeiiaiaadsfadaWgaaqcfauaaiaadohaaKqb agqaaiaabccapaWaaeWaaeaapeGaamOEaaWdaiaawIcacaGLPaaape GaaeiiaiabgUcaRiaabccacqaH0oazdaWgaaqcfauaaiaaigdaaKqb agqaaiaadkfacaWGLbWdamaadmaabaWdbiaadsfadaWgaaqcfauaai aaigdaaKqbagqaa8aadaqadaqaa8qacaWG6bGaaiilaiaabccacaWG 0baapaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@5878@     (3.5)

The finite amplitude perturbations on the basic state are superposed in the form:

q = q b + q ,ρ= ρ b + ρ ,p= p b + p ,T= T b + T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabiyCayaalaGaaGjbVlabg2da9iaaysW7ceGGXbGbaSaadaWg aaqcfauaaiaackgaaKqbagqaaiaaysW7cqGHRaWkcaaMc8UaaGjbVl qadghagaqbaiaaysW7caGGSaGaaGjbVlabeg8aYjaaysW7cqGH9aqp caaMe8UaeqyWdi3aaSbaaKqbafaacaWGIbaajuaGbeaacaaMe8Uaey 4kaSIaaGjbVlqbeg8aYzaafaGaaiilaiaaysW7caWGWbGaaGjbVlab g2da9iaaysW7caWGWbWaaSbaaKqbafaacaWGIbaajuaGbeaacaaMe8 Uaey4kaSIaaGjbVlqadchagaqbaiaacYcacaaMe8UaamivaiaaysW7 cqGH9aqpcaaMe8UaamivamaaBaaajuaqbaGaamOyaaqcfayabaGaaG jbVlabgUcaRiaaysW7ceWGubGbauaaaaa@7645@     (3.6)

Introducing the Equation (3.6), the basic state temperature field in Equation (2.1)-(2.4), and then use the stream function ψ as u = ψ z , w = ψ x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabiyDayaafaGaaGjbVlabg2da9iaaysW7daWcaaqaaiabgkGi 2kabeI8a5bqaaiabgkGi2kaadQhaaaGaaiilaiaaysW7caaMe8Uabm 4DayaafaGaaGjbVlabg2da9iaaysW7cqGHsisldaWcaaqaaiabgkGi 2kabeI8a5bqaaiabgkGi2kaadIhaaaGaaiilaaaa@519D@ for two dimensional flow. The equations are then non-dimensionalized using the physical variables;

( x,y,z )=d( x ,  y , z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWG4bGaaiilaiaaysW7caWG5bGaaiilaiaaysW7 caWG6baapaGaayjkaiaawMcaaiaaysW7peGaeyypa0JaaGjbVlaads gapaGaaiika8qacaWG4bWdamaaCaaabeqaa8qacqGHxiIkaaGaaiil aiaabccacaWG5bWdamaaCaaabeqaa8qacqGHxiIkaaGaaiilaiaadQ hapaWaaWbaaeqabaWdbiabgEHiQaaapaGaaiykaaaa@4ED2@ , t= d 2 K T t* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGabaaaaaaa aapeGaaiiDaiaaysW7cqGH9aqpcaaMe8Ecfa4aaSaaaKqbGeaacaWG Kbqcfa4aaWbaaKqbGeqabaGaaGOmaaaaaeaacaWGlbqcfa4aaSbaaK qbGeaacaWGubaabeaaaaGaamiDaiaacQcaaaa@42CD@ , ψ= K T ψ* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiYdKNaaGjbVlabg2da9iaaysW7caGGlbWaaSbaaKqbafaa caGGubaajuaGbeaacqaHipqEcaGGQaaaaa@41A7@ , T =ΔTT* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabiivayaafaGaaGjbVlabg2da9iaaysW7cqGHuoarcaGGubGa aGjbVlaacsfacaGGQaaaaa@40EF@ , λ 2 = K T λ ¯ 2 d 2 , p = μ K T L p* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSn aaBaaabaGaaGOmaaqabaGaaGjbVlabg2da9iaaysW7daWcaaqaaiaa dUeadaWgaaqaaiaadsfaaeqaaiqbeU7aSzaaraWaaSbaaeaacaaIYa aabeaaaeaacaWGKbWaaWbaaeqabaGaaGOmaaaaaaGaaiilaiaaysW7 ceWGWbGbauaacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaeqiVd0Maam 4samaaBaaabaGaamivaaqabaaabaGaamitaaaacaWGWbGaaiOkaaaa @50D6@ λ 1 = K T λ ¯ 1 d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbabbaaaaaaa aapeGaeq4UdWwcfa4aaSbaaKqbafaacaaIXaaabeaacaaMe8Uaeyyp a0JaaGjbVNqbaoaalaaajuaqbaGaam4saKqbaoaaBaaajuaqbaGaam ivaaqabaGafq4UdWMbaebajuaGdaWgaaqcfauaaiaaigdaaeqaaaqa aiaadsgajuaGdaahaaqcfauabeaacaaIYaaaaaaaaaa@479E@ ,and Ω= K T d 2 Ω* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGjabfM6axj aaysW7cqGH9aqpcaaMe8Ecfa4aaSaaaKqbGfaacaWGlbqcfa4aaSba aKqbGfaacaWGubaabeaaaeaacaWGKbqcfa4aaWbaaKqbGfqabaGaaG OmaaaaaaGaeuyQdCLaaiOkaaaa@44D8@ . The resulting non-dimensionalized system of equations can be expressed as (dropping the asterisk)

[ 1 Va ( 1+ λ 1 t ) t +( 1+ λ 2 t ) ] 2 ψ=Ra( 1+ λ 1 t ) T x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaaIXaaabaGaamOvaiaadggaaaWaaeWaaeaacaaIXaGa aGjbVlabgUcaRiaaysW7cqaH7oaBdaWgaaqaaiaaigdaaeqaamaala aabaGaeyOaIylabaGaeyOaIyRaamiDaaaaaiaawIcacaGLPaaacaaM e8+aaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaaysW7cqGHRa WkcaaMe8+aaeWaaeaacaaIXaGaaGjbVlabgUcaRiaaysW7cqaH7oaB daWgaaqaaiaaikdaaeqaamaalaaabaGaeyOaIylabaGaeyOaIyRaam iDaaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMe8Uaey4bIe9a aWbaaeqabaGaaGOmaaaacqaHipqEcaaMe8Uaeyypa0JaaGjbVlabgk HiTiaadkfacaWGHbGaaGjbVpaabmaabaGaaGymaiaaysW7cqGHRaWk caaMe8Uaeq4UdW2aaSbaaeaacaaIXaaabeaadaWcaaqaaiabgkGi2c qaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaGaaGjbVpaalaaabaGa eyOaIyRaamivaaqaaiabgkGi2kaadIhaaaaaaa@7E9A@     (3.7)

T b z ψ x +( t 2 R i )T= ( ψ,T ) ( x,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTm aalaaabaGaeyOaIyRaamivamaaBaaabaGaamOyaaqabaaabaGaeyOa Iy7aaSbaaeaacaWG6baabeaaaaWaaSaaaeaacqGHciITcqaHipqEae aacqGHciITcaWG4baaaiaaysW7cqGHRaWkcaaMe8+aaeWaaeaadaWc aaqaaiabgkGi2cqaaiabgkGi2kaadshaaaGaaGjbVlabgkHiTiaays W7cqGHhis0daahaaqabKqbGfaacaaIYaaaaKqbakaaysW7cqGHsisl caaMe8UaamOuamaaBaaajuaybaGaamyAaaqcfayabaaacaGLOaGaay zkaaGaaGjbVlaadsfacqGH9aqpcaaMe8+aaSaaaeaacqGHciITdaqa daqaaiabeI8a5jaacYcacaaMe8UaamivaaGaayjkaiaawMcaaaqaai abgkGi2oaabmaabaGaamiEaiaacYcacaaMe8UaamOEaaGaayjkaiaa wMcaaaaaaaa@6E98@     (3.8)

Where, R a = α T gΔTKd vKT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaackfada WgaaqcfawaaiaacggaaKqbagqaaiabg2da9iaaysW7caaMe8+aaSaa aeaacqaHXoqydaWgaaqaaiaadsfaaeqaaiaadEgacqGHuoarcaWGub Gaam4saiaadsgaaeaacaWG2bGaam4saiaadsfaaaaaaa@47A3@ is thermal Darcy-Rayleigh number, v= μ ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAhaca aMe8Uaeyypa0JaaGjbVpaalaaabaGaeqiVd0gabaGaeqyWdi3aaSba aeaacaaIWaaabeaaaaaaaa@3FF5@ is kinematic viscosity. The basic state temperature which appears in Equation (3.8) is given by:

T b ( z,t ) z = f 1 ( z )+ δ 1 R e [ f 2 ( z,t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeyOaIyRaamivamaaBaaajuaybaGaamOyaaqcfayabaWaaeWaaeaa caWG6bGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaaabaGaeyOaIy RaamOEaaaacaaMe8Uaeyypa0JaaGjbVlaadAgadaWgaaqcfawaaiaa igdaaKqbagqaamaabmaabaGaamOEaaGaayjkaiaawMcaaiaaysW7cq GHRaWkcaaMe8UaeqiTdq2aaSbaaKqbGfaacaaIXaaajuaGbeaaciGG sbWaaSbaaKqbGfaacaGGLbaajuaGbeaadaWadaqaaiaadAgadaWgaa qcfawaaiaaikdaaKqbagqaamaabmaabaGaamOEaiaacYcacaaMe8Ua amiDaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@6125@     (3.9)

Where,

f 1 ( z )= R i 2sin R i ( cos R i ( 1z )+cos R i ( z ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacAgada WgaaqaaiaaigdaaeqaamaabmaabaGaamOEaaGaayjkaiaawMcaaiaa ysW7cqGH9aqpcaaMe8UaeyOeI0IaaGjbVpaalaaabaWaaOaaaeaaca WGsbWaaSbaaeaacaWGPbaabeaaaeqaaaqaaiaaikdaciGGZbGaaiyA aiaac6gadaGcaaqaaiaadkfadaWgaaqaaiaadMgaaeqaaaqabaaaai aaysW7daqadaqaaiGacogacaGGVbGaai4CamaakaaabaGaamOuamaa BaaabaGaamyAaaqabaaabeaadaqadaqaaiaaigdacaaMe8UaeyOeI0 IaaGjbVlaadQhaaiaawIcacaGLPaaacaaMe8Uaey4kaSIaaGjbVlGa cogacaGGVbGaai4CamaakaaabaGaamOuamaaBaaabaGaamyAaaqaba aabeaadaqadaqaaiaadQhaaiaawIcacaGLPaaaaiaawIcacaGLPaaa aaa@6367@     (3.10)

f 2 ( z,t )=( { a 1 ( ζ ) e ζz + a 1 ( ζ )e ζz } e iΩt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada WgaaqcfauaaiaaikdaaKqbagqaamaabmaabaGaamOEaiaacYcacaaM e8UaamiDaaGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8+aaeWaae aadaGadaqaaiaadggadaWgaaqcfauaaiaaigdaaKqbagqaamaabmaa baGaeqOTdOhacaGLOaGaayzkaaGaamyzamaaCaaajuaqbeqcKvaG=h aacqaH2oGEcaWG6baaaKqbakaaysW7cqGHRaWkcaaMe8Uaamyyamaa BaaajuaqbaGaaGymaaqcfayabaWaaeWaaeaacqGHsislcqaH2oGEai aawIcacaGLPaaacaWGLbGaeyOeI0YaaWbaaeqajuaibaGaeqOTdONa amOEaaaaaKqbakaawUhacaGL9baacaWGLbWaaWbaaeqajuaqbaqcfa IaeyOeI0IaamyAaiabfM6axjaadshaaaaajuaGcaGLOaGaayzkaaaa aa@69E4@     (3.11)

Where, a 1 = ζ 2 ( e iθ e ζ ) ( e ζ e ζ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadggada WgaaqaaiaaigdaaeqaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacqaH 2oGEaeaacaaIYaaaamaalaaabaWaaeWaaeaacaWGLbWaaWbaaeqaba GaeyOeI0IaamyAaiabeI7aXbaacaaMe8UaeyOeI0IaamyzamaaCaaa beqaaiabgkHiTiabeA7a6baaaiaawIcacaGLPaaaaeaadaqadaqaai aadwgadaahaaqabeaacqaH2oGEaaGaaGjbVlabgkHiTiaadwgadaah aaqabeaacqGHsislcqaH2oGEaaaacaGLOaGaayzkaaaaaaaa@55CC@ and ζ= IΩ R i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeA7a6j aaysW7cqGH9aqpcaaMe8+aaOaaaeaacqGHsislcaWGjbGaeuyQdCLa aGjbVlabgkHiTiaaysW7caWGsbWaaSbaaKqbafaacaWGPbaajuaGbe aaaeqaaaaa@4678@ Here f1 is the steady part, and f2 is an oscillatory part of the basic state temperature Tb. The effect of temperature modulation and internal heating enters through the factor T b z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaju aybaGaeyOaIyRaamivaKqbaoaaBaaajuaibaGaamOyaaqcfawabaaa baGaeyOaIyRaamOEaaaaaaa@3DCD@ which is obtained from the Equation (3.9). To obtain the solution of the nonlinear coupled system of partial differential Equations (3.7-3.8), we represent the stream function and temperature in the following Fourier series expressions.13,32,39,45,46:

ψ= A 11 sin( ax )sin( πz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI8a5j aaysW7cqGH9aqpcaaMe8UaamyqamaaBaaajuaybaGaaGymaiaaigda aKqbagqaaiaaysW7ciGGZbGaaiyAaiaac6gadaqadaqaaiaadggaca WG4baacaGLOaGaayzkaaGaaGjbVlGacohacaGGPbGaaiOBaiaaysW7 daqadaqaaiabec8aWjaadQhaaiaawIcacaGLPaaaaaa@51C8@     (3.12)

T= T b + B 11 cos( ax )sin( πz )+ B 02 sin( 2πz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca aMe8Uaeyypa0JaaGjbVlaadsfadaWgaaqcfawaaiaadkgaaKqbagqa aiaaysW7cqGHRaWkcaaMe8UaamOqamaaBaaajuaybaGaaGymaiaaig daaKqbagqaaiaaysW7ciGGJbGaai4Baiaacohadaqadaqaaiaadgga caWG4baacaGLOaGaayzkaaGaaGjbVlGacohacaGGPbGaaiOBamaabm aabaGaeqiWdaNaamOEaaGaayjkaiaawMcaaiaaysW7cqGHRaWkcaaM e8UaamOqamaaBaaajuaybaGaaGimaiaaikdaaKqbagqaaiGacohaca GGPbGaaiOBamaabmaabaGaaGOmaiabec8aWjaadQhaaiaawIcacaGL Paaaaaa@654A@     (3.13)

Where, the unknown amplitudes A11 (t), B11 (t), B02 (t) are the functions of time t. Substituting the expressions (3.12) - (3.13) in equations (3.7) - (3.8), taking the orthogonality condition with the eigenfunctions associated with the Eqs. (3.12-3.13), and integrating them over the domain yields a set of three ordinary differential equations for the time evolution of the amplitudes, in the form:

( ( 1+Γ t )+Va( 1+ΓΛ t ) ) A 11 = aVaRa π 2 + a 2 ( 1+Γ t ) B 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba WaaeWaaeaacaaIXaGaey4kaSceaaaaaaaaa8qacqqHtoWrdaWcaaqa aiabgkGi2cqaaiabgkGi2kaadshaaaaapaGaayjkaiaawMcaaiaays W7cqGHRaWkcaaMe8UaamOvaiaadggadaqadaqaaiaaigdacaaMe8Ua ey4kaSIaaGjbV=qacqqHtoWrcqqHBoatdaWcaaqaaiabgkGi2cqaai abgkGi2kaadshaaaaapaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaa ysW7caWGbbWaaSbaaKqbGfaacaaIXaGaaGymaaqcfayabaGaaGPaVl aaysW7cqGH9aqpcaaMe8UaaGjbVpaalaaabaGaamyyaiaadAfacaWG HbGaamOuaiaadggaaeaacqaHapaCdaahaaqabKqbGeaacaaIYaaaaK qbakaaysW7cqGHRaWkcaaMe8UaamyyamaaCaaabeqcfasaaiaaikda aaaaaKqbaoaabmaabaGaaGymaiaaysW7cqGHRaWkcaaMe8+dbiabfo 5ahnaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaaa8aacaGLOaGa ayzkaaGaaGjbVlaadkeadaWgaaqcfauaaiaaigdacaaIXaaajuaGbe aaaaa@7E2A@     (3.14)

( π 2 + a 2 ) d B 11 dt 2a I 1 A 11 =aπ A 11 B 02 +( R i ( π 2 + a 2 ) ) B 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqiWda3aaWbaaeqajuaibaGaaGOmaaaajuaGcaaMe8Uaey4kaSIa aGjbVlaadggadaahaaqabKqbGeaacaaIYaaaaaqcfaOaayjkaiaawM caamaalaaabaGaamizaiaadkeadaWgaaqcfauaaiaaigdacaaIXaaa juaGbeaaaeaacaWGKbGaamiDaaaacaaMe8UaeyOeI0IaaGjbVlaaik dacaWGHbGaamysamaaBaaajuaqbaGaaGymaaqcfayabaGaamyqamaa BaaajuaqbaGaaGymaiaaigdaaKqbagqaaiaaysW7caaMe8Uaeyypa0 JaaGjbVlaaysW7caWGHbGaeqiWdaNaamyqamaaBaaajuaqbaGaaGym aiaaigdaaKqbagqaaiaadkeadaWgaaqcfauaaiaaicdacaaIYaaaju aGbeaacaaMe8Uaey4kaSIaaGjbVpaabmaabaGaamOuamaaBaaajuaq baGaamyAaaqcfayabaGaaGjbVlabgkHiTiaaysW7daqadaqaaiabec 8aWnaaCaaabeqcfauaaiaaikdaaaqcfaOaaGjbVlabgUcaRiaaysW7 caWGHbWaaWbaaeqajuaqbaGaaGOmaaaaaKqbakaawIcacaGLPaaaai aawIcacaGLPaaacaaMe8UaamOqamaaBaaajuaibaGaaGymaiaaigda aKqbagqaaaaa@8033@     (3.15)

( π 2 + a 2 ) d B 02 dt =( 4 π 2 Ri ) B 02 aπ 2 A 11 B 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqiWda3aaWbaaeqajuaibaGaaGOmaaaajuaGcaaMe8Uaey4kaSIa aGjbVlaadggadaahaaqabKqbGeaacaaIYaaaaaqcfaOaayjkaiaawM caamaalaaabaGaamizaiaadkeadaWgaaqcfauaaiaaicdacaaIYaaa juaGbeaaaeaacaWGKbGaamiDaaaacaaMe8UaaGjbVlabg2da9iaays W7caaMe8UaeyOeI0IaaGjbVpaabmaabaGaaGinaiabec8aWnaaCaaa beqcfasaaiaaikdaaaqcfaOaaGjbVlabgkHiTiaaysW7caWGsbGaam yAaaGaayjkaiaawMcaaiaadkeadaWgaaqcfasaaiaaicdacaaIYaaa juaGbeaacaaMe8UaeyOeI0IaaGjbVpaalaaabaGaamyyaiabec8aWb qaaiaaikdaaaGaamyqamaaBaaajuaqbaGaaGymaiaaigdaaKqbagqa aiaadkeadaWgaaqcfauaaiaaigdacaaIXaaajuaGbeaaaaa@6E0B@     (3.16)

Where, the time has been re-scaled and the following notations are introduced t = ( a 2 + π 2 )τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiDaiaabccacqGH9aqpcaqGGaWdamaabmaabaWdbiaadgga daahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiabec8aWnaaCaaabe qcfasaaiaaikdaaaaajuaGpaGaayjkaiaawMcaa8qacqaHepaDaaa@4423@ , I 1 = 0 1 T b z sin 2 ( πz )dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGjaacMeaju aGdaWgaaqcKvaG=haacaaIXaaajuaybeaacaaMe8Uaeyypa0JaaGjb VNqbaoaapehajuaybaqcfa4aaSaaaKqbGfaacqGHciITcaWGubqcfa 4aaSbaaKazfa4=baGaamOyaaqcfawabaaabaGaeyOaIyRaamOEaaaa aeaacaaIWaaabaGaaGymaaGaey4kIipaciGGZbGaaiyAaiaac6gaju aGdaahaaqcfawabKazfa4=baGaaGOmaaaajuaGdaqadaqcfawaaiab ec8aWjaadQhaaiaawIcacaGLPaaacaWGKbGaamOEaaaa@5B42@ and Ω 1 = 1 ( a 2 + π 2 ) Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGjabfM6axL qbaoaaBaaajuaybaGaaGymaaqabaGaaGjbVlabg2da9iaaysW7juaG daWcaaqcfawaaiaaigdaaeaajuaGdaqadaqcfawaaiaadggajuaGda ahaaqcfawabeaacaaIYaaaaiabgUcaRiabec8aWLqbaoaaCaaajuay beqaaiaaikdaaaaacaGLOaGaayzkaaaaaiabfM6axbaa@4AF2@ . It is convenient to introduce the following further notations: R =  a 2 Ra ( a 2 + π 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOuaiaabccacqGH9aqpcaqGGaWaaSaaaeaacaWGHbWaaWba aeqabaGaaGOmaaaacaWGsbGaamyyaaqaamaabmaabaGaamyyamaaCa aabeqaaiaaikdaaaGaey4kaSIaeqiWda3aaWbaaeqabaGaaGOmaaaa aiaawIcacaGLPaaadaahaaqabeaacaaIYaaaaaaaaaa@44F5@ , Pr= Va ( a 2 + π 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGiGaccfaca GGYbGaaGjbVlabg2da9iaaysW7kmaalaaajaaibaGaamOvaiaadgga aeaakmaabmaajaaibaGaamyyaOWaaWbaaKqaGeqajqwaa+Faaiaaik daaaqcaaIaey4kaSIaeqiWdaNcdaahaaqcbasabKazba4=baGaaGOm aaaaaKaaGiaawIcacaGLPaaaaaGaaiilaaaa@4A45@ X= aπ A 11 ( a 2 + π 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIfaca aMe8Uaeyypa0JaaGjbVpaalaaabaGaamyyaiabec8aWjaadgeadaWg aaqaaiaaigdacaaIXaaabeaaaeaadaqadaqaaiaadggadaahaaqabe aacaaIYaaaaiabgUcaRiabec8aWnaaCaaabeqaaiaaikdaaaaacaGL OaGaayzkaaWaaOaaaeaacaaIYaaabeaaaaGaaiilaaaa@48CC@ Y= πR B 11 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaacMfaca aMe8Uaeyypa0JaaGjbVpaalaaabaGaeqiWdaNaamOuaiaadkeadaWg aaqaaiaaigdacaaIXaaabeaaaeaadaGcaaqaaiaaikdaaeqaaaaaca GGSaaaaa@41F4@ and Z=πR B 02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfacaaMe8 Uaeyypa0JaaGjbVlabgkHiTiabec8aWjaadkfacaWGcbWaaSbaaKqa GfaacaaIWaGaaGOmaaWcbeaaaaa@413E@ to get the following set of scaled equations which are equivalent to Eqs. (3.14-3.16):

X ˙ =W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaajqadIfaga GaaiaaysW7cqGH9aqpcaaMe8Uaam4vaaaa@3C16@     (3.17)

Y ˙ =dX+eYXZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaajqadMfaga GaaiaaysW7cqGH9aqpcaaMe8UaamizaiaadIfacaaMe8Uaey4kaSIa aGjbVlaadwgacaWGzbGaaGjbVlabgkHiTiaaysW7caWGybGaamOwaa aa@4888@     (3.18)

Z ˙ = ( R i 4 π 2 ) ( a 2 + π 2 ) Z+XY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaajqadQfaga GaaiaaysW7cqGH9aqpcaaMe8UcdaWcaaqcaauaaOWaaeWaaKaaafaa caWGsbGcdaWgaaqcbasaaiaadMgaaKqaafqaaKaaajabgkHiTiaais dacqaHapaCkmaaCaaajeaqbeqcKfaG=haacaaIYaaaaaqcaaKaayjk aiaawMcaaaqaaOWaaeWaaKaaafaacaWGHbGcdaahaaqcbauabKazba 4=baGaaGOmaaaajaaqcqGHRaWkcqaHapaCkmaaCaaajeaqbeqcKfaG =haacaaIYaaaaaqcaaKaayjkaiaawMcaaaaacaWGAbGaaGjbVlabgU caRiaaysW7caWGybGaamywaaaa@59BF@     (3.19)

W ˙ =Pr( ( d+ Γ 1 )X+( e+ Γ 1 )YXZ( Λ+ 1 PrΓ )W ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaajqadEfaga GaaiaaysW7cqGH9aqpcaaMe8UaciiuaiaackhacaaMe8Ucdaqadaqc aauaaOWaaeWaaKaaafaacaWGKbGaey4kaSceaaaaaaaaa8qacqqHto WrkmaaCaaajeaqbeqcKfaG=haacqGHsislcaaIXaaaaaqcaa0daiaa wIcacaGLPaaacaWGybGaaGjbVlabgUcaRiaaysW7kmaabmaajaaqba GaamyzaiabgUcaR8qacqqHtoWrkmaaCaaajeaqbeqcKfaG=haacqGH sislcaaIXaaaaaqcaa0daiaawIcacaGLPaaacaWGzbGaaGjbVlabgk HiTiaadIfacaWGAbGaaGjbVlabgkHiTiaaysW7kmaabmaajaaqbaWd biabfU5amjabgUcaROWaaSaaaKaaafaacaaIXaaabaGaciiuaiaack hacqqHtoWraaaapaGaayjkaiaawMcaaiaadEfaaiaawIcacaGLPaaa aaa@6AF7@     (3.20)

Where, d=R I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamizaiabg2da9iabgkHiTiaadkfacaWGjbWdamaaBaaabaWd biaaigdaa8aabeaaaaa@3C24@ . Now substituting U=YΛX W Pr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyvaiabg2da9iaadMfacqGHsislcqqHBoatcaWGybGaai4e GmaalaaabaGaam4vaaqaaiGaccfacaGGYbaaaaaa@4005@ in the above system of Eqs.(3.17-3.20), then obtain the following equations:

X ˙ =Pr( YΛXU ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIfaga GaaiaaysW7cqGH9aqpcaaMe8UaciiuaiaackhadaqadaqaaiaadMfa cqGHsislqaaaaaaaaaWdbiabfU5amjaadIfacqGHsislcaWGvbaapa GaayjkaiaawMcaaaaa@44E7@ (    3.21)

Y ˙ =dX+eYXZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadMfaga GaaiaaysW7cqGH9aqpcaaMe8UaamizaiaadIfacqGHRaWkcaWGLbGa amywaiabgkHiTiaadIfacaWGAbaaaa@4299@     (3.22)

Z ˙ = ( R i 4 π 2 ) ( a 2 + π 2 ) Z+XY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadQfaga GaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaadaqadaqaaiaadkfadaWg aaqaaiaadMgaaeqaaiaaysW7cqGHsislcaaMe8UaaGinaiabec8aWn aaCaaabeqaaiaaikdaaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWG HbWaaWbaaeqabaGaaGOmaaaacaaMe8Uaey4kaSIaeqiWda3aaWbaae qabaGaaGOmaaaaaiaawIcacaGLPaaaaaGaamOwaiabgUcaRiaadIfa caWGzbaaaa@5233@     (3.23)

U ˙ = Γ 1 [ ( 1Λ )XU ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwfaga GaaiaaysW7cqGH9aqpcaaMe8oeaaaaaaaaa8qacqqHtoWrdaahaaqa beaacqGHsislcaaIXaaaamaadmaabaWaaeWaaeaacaaIXaGaeyOeI0 Iaeu4MdWeacaGLOaGaayzkaaGaamiwaiabgkHiTiaadwfaaiaawUfa caGLDbaaaaa@480A@     (3.24)

Suppose for Newtonian fluids while taking Γ → 0, Λ → 0 and Ri → 0 in the system of Equations (3.17-3.20), the famous Lorenz6 problem is obtained. In addition, for the above case if one let Pr → ∞, then Akhatov et al.,47 system will be arrived. 

Stability analysis

Equilibrium points setting the time derivatives of the system Equations (3.17-3.20) to vanish, obtain the equilibrium points for velocity and temperature fields as (for un-modulated case)

X 1 = Y 1 = Z 1 = W 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiwamaaBaaajuaqbaGaaGymaaqabaqcfaOaeyypa0Jaamyw amaaBaaajuaqbaGaaGymaaqcfayabaGaeyypa0JaamOwamaaBaaaju aqbaGaaGymaaqabaqcfaOaeyypa0Jaam4vamaaBaaajuaqbaGaaGym aaqcfayabaGaeyypa0JaaGimaaaa@45C1@     (4.1)

Which corresponds to the motionless solution or pure heat conduction solution, the other two equilibrium points (corresponding to the convection solution) are

[ X 2,3 ,  Y 2,3 ,  Z 2,3 ,  W 2,3 ]=[ ±c, ±c, ( e  d ), 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba aeaaaaaaaaa8qacaWGybWaaSbaaeaacaaIYaGaaiilaiaaiodaaeqa aiaacYcacaqGGaGaamywamaaBaaabaGaaGOmaiaacYcacaaIZaaabe aacaGGSaGaaeiiaiaadQfadaWgaaqaaiaaikdacaGGSaGaaG4maaqa baGaaiilaiaabccacaWGxbWaaSbaaeaacaaIYaGaaiilaiaaiodaae qaaaWdaiaawUfacaGLDbaapeGaeyypa0ZdamaadmaabaWdbiabggla XkaadogacaGGSaGaaeiiaiabgglaXkaadogacaGGSaGaaeiia8aada qadaqaa8qacaWGLbGaaeiiaiabgkHiTiaabccacaWGKbaapaGaayjk aiaawMcaa8qacaGGSaGaaeiiaiaaicdaa8aacaGLBbGaayzxaaaaaa@5C93@     (4.2)

Where C= ( R i 4 π 2 ) ( a 2 + π 2 ) ( de ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeaca aMe8Uaeyypa0JaaGjbVpaakaaabaWaaSaaaeaadaqadaqaaabaaaaa aaaapeGaamOuamaaBaaabaGaamyAaaqabaGaeyOeI0IaaGinaiabec 8aW9aadaahaaqabeaapeGaaGOmaaaaa8aacaGLOaGaayzkaaaabaWa aeWaaeaacaWGHbWaaWbaaeqabaGaaGOmaaaacqGHRaWkcqaHapaCda ahaaqabeaacaaIYaaaaaGaayjkaiaawMcaaaaadaqadaqaaiaadsga cqGHsislcaWGLbaacaGLOaGaayzkaaaabeaaaaa@4E97@ .

The stability of the fixed points corresponding motionless solution is governed by the roots of the following characteristic polynomial equation (obtained from the Jacobian matrix of system Equations (3.17-3.20)) for the Eigen values of:

( c  λ )[ λ 3 + ( ( PrΛ +  Γ 1 )  e )  λ 2 + ( Pr ( d +  Γ 1 )  e ( PrΛ +  Γ 1 ) )λ + Pr( 2ed + ( e + d ) Γ 1 ) ] = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWGJbGaaeiiaiabgkHiTiaabccacqaH7oaBa8aa caGLOaGaayzkaaWaamWaaeaapeGaeq4UdW2damaaCaaajuaqbeqaa8 qacaaIZaaaaKqbakabgUcaRiaabccapaWaaeWaaeaadaqadaqaa8qa caWGqbGaamOCaiabfU5amjaabccacqGHRaWkcaqGGaGaeu4KdC0dam aaCaaabeqcfauaa8qacqGHsislcaaIXaaaaaqcfa4daiaawIcacaGL PaaapeGaaeiiaiabgkHiTiaabccacaWGLbaapaGaayjkaiaawMcaa8 qacaqGGaGaeq4UdW2damaaCaaabeqcfauaa8qacaaIYaaaaKqbakab gUcaRiaabccapaWaaeWaaeaapeGaamiuaiaadkhacaqGGaWdamaabm aabaWdbiaadsgacaqGGaGaey4kaSIaaeiiaiabfo5ah9aadaahaaqc fauabeaapeGaeyOeI0IaaGymaaaaaKqba+aacaGLOaGaayzkaaWdbi aabccacaGGtaIaaeiiaiaadwgacaqGGaWdamaabmaabaWdbiaadcfa caWGYbGaeu4MdWKaaeiiaiabgUcaRiaabccacqqHtoWrpaWaaWbaae qajuaqbaWdbiabgkHiTiaaigdaaaaajuaGpaGaayjkaiaawMcaaaGa ayjkaiaawMcaa8qacqaH7oaBcaqGGaGaey4kaSIaaeiiaiaadcfaca WGYbWdamaabmaabaWdbiaaikdacaWGLbGaamizaiaabccacqGHRaWk caqGGaWdamaabmaabaWdbiaadwgacaqGGaGaey4kaSIaaeiiaiaads gaa8aacaGLOaGaayzkaaWdbiabfo5ah9aadaahaaqabKqbafaapeGa eyOeI0IaaGymaaaaaKqba+aacaGLOaGaayzkaaaacaGLBbGaayzxaa WdbiaabccacqGH9aqpcaqGGaGaaGimaaaa@8F0A@     (4.3)

Where, e= ( R i ( π 2 + a 2 ) ) ( π 2 + a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGbbaaaaaaa aapeGaaiyzaiaaysW7cqGH9aqpcaaMe8Ecfa4aaSaaaKqbGfaajuaG daqadaqcfawaaiaadkfajuaGdaWgaaqcfasaaiaadMgaaKqbGfqaai abgkHiTKqbaoaabmaajuaybaGaeqiWdaxcfa4aaWbaaKqbGfqajuai baGaaGOmaaaajuaycqGHRaWkcaWGHbqcfa4aaWbaaKqbGfqajuaiba GaaGOmaaaaaKqbGjaawIcacaGLPaaaaiaawIcacaGLPaaaaeaajuaG daqadaqcfawaaiabec8aWLqbaoaaCaaajuaybeqcfasaaiaaikdaaa qcfaMaey4kaSIaamyyaKqbaoaaCaaajuaybeqcfasaaiaaikdaaaaa juaycaGLOaGaayzkaaaaaaaa@58FC@ Stability depends on the values of Γ, for Γ< Pre Pre( Λ1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4KdCKaaGjbVlabgYda8iaaysW7daWcaaqaaiGaccfacaGG YbGaeyOeI0IaamyzaaqaaiGaccfacaGGYbGaamyzamaabmaabaGaeu 4MdWKaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaaa@472E@ there is an exchange of stability, and for other two steady state solutions origin loses its stability. When Γ> Pre Pre( Λ1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeu4KdCKaaGjbVlabg6da+iaaysW7daWcaaqaaiGaccfacaGG YbGaeyOeI0IaamyzaaqaaiGaccfacaGGYbGaamyzamaabmaabaGaeu 4MdWKaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaaa@4732@ , there is a pair of pure imaginary roots of Equation 4.3. The oscillatory or over stable solutions are arises at a critical value of Rayleigh number given by

R osc = ( a 2 + π 2 ) 2  ( 4 π 2   R i   )( 1+PrΓΛ )[ e( 1+PrΓΛ )  Pr( 1+eΓ )   e 2 Γ 2  ( PrΛe ) ] 4 π 2 a 2 Pr( 1+eΓ )( PrΛe ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOua8aadaahaaqabeaapeGaam4BaiaadohacaWGJbaaa8aa caaMe8+dbiabg2da9iaaysW7daWcaaqaa8aadaqadaqaa8qacaWGHb WaaWbaaeqajuaqbaGaaGOmaaaajuaGcqGHRaWkcqaHapaCdaahaaqa bKqbafaacaaIYaaaaaqcfa4daiaawIcacaGLPaaapeWaaWbaaeqaju aqbaGaaGOmaaaajuaGcaqGGaWdamaabmaabaWdbiaaisdacqaHapaC daahaaqabKqbafaacaaIYaaaaKqbakabgkHiTiaabccacaWGsbWaaS baaKqbafaacaWGPbaajuaGbeaacaqGGaaapaGaayjkaiaawMcaamaa bmaabaWdbiaaigdacqGHRaWkcaWGqbGaamOCaiabfo5ahjabfU5amb WdaiaawIcacaGLPaaadaWadaqaa8qacaWGLbWdamaabmaabaWdbiaa igdacqGHRaWkcaWGqbGaamOCaiabfo5ahjabfU5ambWdaiaawIcaca GLPaaapeGaaeiiaiabgkHiTiaabccacaWGqbGaamOCa8aadaqadaqa a8qacaaIXaGaey4kaSIaamyzaiabfo5ahbWdaiaawIcacaGLPaaape GaaeiiaiaacobicaqGGaGaamyzamaaCaaabeqcfauaaiaaikdaaaqc faOaeu4KdC0aaWbaaeqajuaqbaGaaGOmaaaajuaGcaqGGaWdamaabm aabaWdbiaadcfacaWGYbGaeu4MdWKaeyOeI0IaamyzaaWdaiaawIca caGLPaaaaiaawUfacaGLDbaaa8qabaGaaGinaiabec8aWnaaCaaabe qcfauaaiaaikdaaaqcfaOaamyyamaaCaaabeqcfauaaiaaikdaaaqc faOaamiuaiaadkhapaWaaeWaaeaapeGaaGymaiabgUcaRiaadwgacq qHtoWra8aacaGLOaGaayzkaaWaaeWaaeaapeGaamiuaiaadkhacqqH BoatcqGHsislcaWGLbaapaGaayjkaiaawMcaaaaaaaa@95BA@     (4.4)

The stability of the fixed point corresponding to convection solution is governed by the roots of the following characteristic polynomial equation for the eigen values,

λ 4 + [ ( PrΛ +  Γ 1 )  ( e +  c 1 ) ] λ 3 + [ c 1 d  ( e +  c 1 )( PrΛ +  Γ 1 ) + Pr( e +  Γ 1 ) ] λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeq4UdW2damaaCaaajuaqbeqaa8qacaaI0aaaaKqbakabgUca RiaabccapaWaamWaaeaadaqadaqaa8qacaWGqbGaamOCaiabfU5amj aabccacqGHRaWkcaqGGaGaeu4KdC0damaaCaaabeqcfauaa8qacqGH sislcaaIXaaaaaqcfa4daiaawIcacaGLPaaapeGaaeiiaiabgkHiTi aabccapaWaaeWaaeaapeGaamyzaiaabccacqGHRaWkcaqGGaGaam4y a8aadaWgaaqcfauaa8qacaaIXaaapaqabaaajuaGcaGLOaGaayzkaa aacaGLBbGaayzxaaWdbiabeU7aS9aadaahaaqabKqbafaapeGaaG4m aaaajuaGcqGHRaWkcaqGGaWdamaadmaabaWdbiaadogapaWaaSbaaK qbafaapeGaaGymaaWdaeqaaKqba+qacaWGKbGaaeiiaiabgkHiTiaa bccapaWaaeWaaeaapeGaamyzaiaabccacqGHRaWkcaqGGaGaam4ya8 aadaWgaaqcfauaa8qacaaIXaaapaqabaaajuaGcaGLOaGaayzkaaWa aeWaaeaapeGaamiuaiaadkhacqqHBoatcaqGGaGaey4kaSIaaeiiai abfo5ah9aadaahaaqabKqbafaapeGaeyOeI0IaaGymaaaaaKqba+aa caGLOaGaayzkaaWdbiaabccacqGHRaWkcaqGGaGaamiuaiaadkhapa WaaeWaaeaapeGaamyzaiaabccacqGHRaWkcaqGGaGaeu4KdC0damaa Caaabeqcfauaa8qacqGHsislcaaIXaaaaaqcfa4daiaawIcacaGLPa aaaiaawUfacaGLDbaapeGaeq4UdW2damaaCaaabeqcfauaa8qacaaI Yaaaaaaa@82B4@     (4.5)

+[ c 1 d(PrΛ+ Γ 1 )  Pr(e+ Γ 1 )(2e+  c 1 ) + Pr c 1 ( d  e )]λ+2 c 1 ePe(e +  Γ 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaey4kaSYdaiaacUfapeGaam4ya8aadaWgaaqcfauaa8qacaaI XaaajuaGpaqabaWdbiaadsgapaGaaiika8qacaWGqbGaamOCaiabfU 5amjabgUcaRiabfo5ah9aadaahaaqabKqbafaapeGaeyOeI0IaaGym aaaajuaGpaGaaiyka8qacaqGGaGaeyOeI0IaaeiiaiaadcfacaWGYb WdaiaacIcapeGaamyzaiabgUcaRiabfo5ah9aadaahaaqcfauabeaa peGaeyOeI0IaaGymaaaajuaGpaGaaiykaiaacIcapeGaaGOmaiaadw gacqGHRaWkcaqGGaGaam4ya8aadaWgaaqcfauaa8qacaaIXaaajuaG paqabaGaaiyka8qacaqGGaGaey4kaSIaaeiiaiaadcfacaWGYbGaam 4ya8aadaWgaaqcfauaa8qacaaIXaaajuaGpaqabaWaaeWaaeaapeGa amizaiaabccacqGHsislcaqGGaGaamyzaaWdaiaawIcacaGLPaaaca GGDbWdbiabeU7aSjabgUcaRiaaikdacaWGJbWdamaaBaaajuaqbaWd biaaigdaaKqba+aabeaapeGaamyzaiaadcfacaWGLbWdaiaacIcape GaamyzaiaabccacqGHRaWkcaqGGaGaeu4KdC0damaaCaaabeqcfaua a8qacqGHsislcaaIXaaaaKqba+aacaGGPaWdbiabg2da9iaaicdaaa a@79E8@     (4.6)

Where c 1  =  R i 4 π 2 ( a 2 + π 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbGbbaaaaaaa aapeGaam4yaKqbaoaaBaaajqwba+FaaiaaigdaaKqbGfqaaiaabcca cqGH9aqpcaqGGaqcfa4damaalaaajuaybaWdbiaadkfajuaGpaWaaS baaKazfa4=baWdbiaadMgaaKqbG9aabeaapeGaeyOeI0IaaGinaiab ec8aWLqba+aadaahaaqcfawabKazfa4=baWdbiaaikdaaaaajuaqpa qaaKqbaoaabmaajuaqbaGaamyyaKqbaoaaCaaajuaqbeqaaKazfa2= caaIYaaaaKqbajabgUcaRiabec8aWLqbaoaaCaaajuaqbeqcKvay=h aacaaIYaaaaaqcfaKaayjkaiaawMcaaaaaaaa@58FD@ . The steady state solutions are useful because they predict that a finite amplitude solution to the system is possible for subcritical values of the Rayleigh number and that the minimum values of R for which a steady solution is possible lies below the critical values for instability to either a marginal state or an over stable infinitesimal perturbation. The above Equation (4.6) yields four eigen values, and all the roots are real and negative at slightly supercritical value of R, such that the convection fixed points are stable, that is simple nodes. These roots move on the real axis towards the origin as the value of R increases. The motionless solution loses stability and convection solution takes over when eigen values and become equal and complex conjugate when R=10.423452 (for thermal modulation) and R=14.2324567 (for gravity modulation) (these values evaluated numerically using the equation above Equation (4.6) with Mathematica). At this point the convection fixed points lose their stability and other (periodic or chaotic) solutions take over. The loss of stability of the convection fixed points for the corresponding system parameter values observed in the figures.

Gravity modulation

The non-dimensional governing equation takes the following form:

X ˙ = P r [ ( 1+ δ 2 sin Ω 2 T )YΛXU ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmiwayaacaGaaGjbVlabg2da9iaaysW7ciGGqbWaaSbaaKqb afaacaGGYbaajuaGbeaadaWadaqaamaabmaabaGaaGymaiaaysW7cq GHRaWkcaaMe8UaeqiTdq2aaSbaaKqbafaacaaIYaaajuaGbeaacaaM e8Uaci4CaiaacMgacaGGUbGaaGjbVlabfM6axnaaBaaajuaqbaGaaG OmaaqcfayabaGaamivaaGaayjkaiaawMcaaiaaysW7caWGzbGaaGjb VlabgkHiTiaaysW7cqqHBoatcaWGybGaaGjbVlabgkHiTiaaysW7ca WGvbaacaGLBbGaayzxaaaaaa@61AF@     (5.1)

Y ˙ =R 4 π 2 ( 4 π 2 R i ) X+eYXZ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmywayaacaGaaGjbVlabg2da9iaaysW7caWGsbWaaSaaaeaa caaI0aGaeqiWda3aaWbaaeqajuaqbaGaaGOmaaaaaKqbagaadaqada qaaiaaisdacqaHapaCdaahaaqabKqbafaacaaIYaaaaKqbakaaysW7 cqGHsislcaaMe8UaamOuamaaBaaajuaqbaGaamyAaaqcfayabaaaca GLOaGaayzkaaaaaiaaysW7caWGybGaaGjbVlabgUcaRiaaysW7caWG LbGaamywaiaaysW7cqGHsislcaaMe8UaamiwaiaadQfaaaa@5B34@     (5.2)

Z ˙ = ( R i 4 π 2 ) ( a 2 + π 2 ) Z+XY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmOwayaacaGaaGjbVlabg2da9iaaysW7daWcaaqaamaabmaa baGaamOuamaaBaaajuaqbaGaamyAaaqcfayabaGaaGjbVlabgkHiTi aaysW7caaI0aGaeqiWda3aaWbaaeqajuaqbaGaaGOmaaaaaKqbakaa wIcacaGLPaaaaeaadaqadaqaaiaadggadaahaaqabKqbafaacaaIYa aaaKqbakabgUcaRiabec8aWnaaCaaabeqcfauaaiaaikdaaaaajuaG caGLOaGaayzkaaaaaiaaysW7caWGAbGaaGjbVlabgUcaRiaaysW7ca WGybGaamywaaaa@58DD@     (5.3)

U ˙ = Γ 1 [ ( 1Λ )XU ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmyvayaacaGaaGjbVlabg2da9iaaysW7cqqHtoWrdaahaaqa bKqbafaacqGHsislcaaIXaaaaKqbaoaadmaabaWaaeWaaeaacaaIXa GaaGjbVlabgkHiTiaaysW7cqqHBoataiaawIcacaGLPaaacaaMe8Ua amiwaiabgkHiTiaaysW7caWGvbaacaGLBbGaayzxaaaaaa@4F1A@     (5.4)

Where δ2 is the frequency and Ω2 is the amplitude of gravity modulation.

Heat transfer

In the study of non-linear realm of convection in porous medium, the analysis of heat transport is important. Heat transfer is significant due to interaction of stream line flow with thermal diffusion which is raised due the Jacobian term in energy equation. In the steady state, heat transport takes place through conduction alone. Later on as time passes heat transfer becomes in the form of convection. The heat transfer coefficient Nusselt number (Nu) is defined as24,39

Nu = 1  2π B 02 = 1 +  2 R  Z ( τ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiaadwhacaqGGaGaeyypa0JaaeiiaiaaigdacaqGGaGa eyOeI0IaaeiiaiaaikdacqaHapaCcaWGcbWdamaaBaaabaWdbmaaBa aabaGaaGimaiaaikdaaeqaaaWdaeqaa8qacqGH9aqpcaqGGaGaaGym aiaabccacqGHRaWkcaqGGaWaaSaaaeaacaaIYaaabaGaamOuaaaaca qGGaGaamOwaiaabccapaWaaeWaaeaapeGaeqiXdqhapaGaayjkaiaa wMcaaaaa@4EA6@

The above system of Equations (3.17-3.20) are equivalent to Lorenz equations; Lorenz6 Sparrow15 with different coefficients. The demonstration of this equivalence was provided by Vadasz & Olek12,13 and Kiran et al.39 for unmodulated system.

Results and discussion

Applying the constitutive equations of the Oldroyd model, we deduced the system (3.17-3.20) to describe the dynamics of thermal convection in a viscoelastic fluid-saturated porous medium. The above systems (3.17-3.20) of equations are solved using NDSolve Mathematica 8. The initial conditions used for all numerical solutions are τ = 0: X = Y = Z = 0.8 and W = 0.1. The parameter values for all numerical solutions are varied to observe the impact of each individual parameter under temperature and gravity modulation. This paper demonstrate the effect of modulation and internal heat source on the dynamic of the problem, in the form of space projections of trajectories onto the YX, ZX, ZY planes, as the value of various parameters varies for a particular range of time. Though numerous studies are available on chaotic convection, there is no study which deals with chaotic convection under the effect of internal hating under modulation. The results are presented here have been obtained numerically for a set of suitable parameter values and initial conditions Figure 1. The effect of modulations is investigated just before or after the critical values of R. The important concept is that, how this modulation has control over the transition from steady to chaos in the presence of internal heat source. Study of heat transfer is also investigated in the system in terms of Nusselt number.

Figure 1 Physical configuration of the problem.

At first the results corresponding to temperature modulation is discussed when both plates are in OPM case. The evolution of trajectories over time in the state space for increasing the values of scaled Rayleigh number R is presented in Figure 2, in terms of the projections of trajectories onto the plane. From the Figure 2 it is observed that, the trajectory moves to the steady convection point on a straight line for R slightly above the loss of stability of the motionless solution. As the value of R varies from 2 to 9 the trajectories approach the fixed point on a spiral as given in Figure 2b,2c. We observe in Figure 2d that, the transition to chaos at a critical value of R=10.364367, where it is the value after a solitary limit cycle indicating the loss of stability of the convection fixed points. In fact the detailed study of the behaviour of transition from steady to chaos due to the variation of R near its critical value investigated by Vadasz14,47 and Sheu et al.20 Vadasz et al.32 and Vadasz et al.45 In Figure 3a for the critical value of R=10.364367 where the system loses its stable solution to convection solution under modulation, the effect of internal heating Ri=0.4223 is to encourage the system where the convection fixed points lose their stability and a chaotic solution takes over in the presence of modulation. But, when δ1=0 (Figure 3b) for Ri=0.4223 and R=10.364367 (transition point under modulation), the system achieves its transition state. The effect of internal heating given Figure 4 for modulated system, as Ri varies positively from 0.1 to 0.6, the trajectories more vibrant spiral towards motionless solution and suddenly when Ri=0.8 the transition to chaotic solution occur. In Figure 5 the effect of internal heating is presented for unmodulated system and for lower values of R (steady state). This case is quite interest to see where, as internal heating varies positively from 0 to 4, the transition from steady state solution to un-steady chaotic solutions obtained though the system is under un-modulated. It is to be noted that for Ri>0 heat source and Ri<0 heat sink, i.e. for negative values of Ri=4 the achieves its steady state solution. With this one can conclude that, effect of internal heat source or sink may use to control chaotic nature of the solution of the system. The effect of Ω1 fixing δ1=1.5 presented in Figure 6. For the values of Ω1=0.0 and 1.4, the solutions show steady behaviour towards one of the fixed point. Further, for higher values such as Ω1=1.5, the chaotic behaviour of the solution is observed, the solution exhibits chaotic behaviour in time domain as well. This reveals the results of Kiran et al.,39 according to them, a better or suitable choice of values of modulation parameters one can get control over the dynamic of the problem.

Figure 2 Phase portraits for evolution of trajectories over time in the state space for different values (R) Ω1= 0.245, δ1=0.02, Ri=0.1, Pr=10, A=0.6, Γ=0.3.

Figure 3 Phase portraits for evolution of trajectories over time in the state space: The amplitude solution in the time domain for Ω1=0.245, δ1=0.02, R=10.364367, Ri=0.4223, A=0.6, Γ= 0.3 b:Projections and evolution of trajectories over the planes X-Y,Y-Z,Z-X and a time domain of solutions for Ω1=0.245, δ1=0.0, Ri=0.4223, A=0.6, Γ=0.3(Ω2=0, δ2=0.02).

Figure 4 Projections and evolution of trajectories over the planes X-Y Y-Z Z-X for Ω1=10, δ1=0.3, R=8, A=0.6, Γ=0.3.

Figure 5 Projections and evolutions of trajectories over the planes X-Y,Y-Z,Z-X and a time domain of solutions for φ=π, Ω1=0, δ1=0, R=9, A=0.6, Γ=0.3.

Figure 6 Projections and evolution of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for δ1=1.5, Ri=0.1, R=8, A=0.6, Γ=0.3.

The effect of the ratio of retardation to relaxation times for Λ=2, the chaotic behavior becomes particularly obvious from the phase portrait and in time domain given in Figure 7. The effect of Λ is of similar results for unmodulated case obtained by Sheu et al.20 The comparison among three types of thermal modulation is similar to the results of Kiran et al.39 The results corresponding to gravity modulation is presented in Figures 8-11. All solutions were obtained using the same initial conditions which were used for thermal modulation, selected to be in the neighborhood of the positive convection fixed point, i.e., at τ=0 : X=Y=Z=0.9, W=0.1. In Figure 8 for corresponding set of parameter values (Ω2=0.2, δ2=0.01, R=14.496324567), where the system loses its stability at Ri=0 (non internal heating case). Which means for gravity modulation R=14.496324567 is the critical Rayleigh number where the solution of the corresponding system loses its stability. As varying the values of Ri positively, the transition to chaotic solution occurs at Ri=0.5 given in Fig. 9. For gravity modulated system, for lower values of amplitude and frequency of modulation, internal heating effect has a good influence on the dynamic of the system. For the set of values Ω2=10, δ2=0.1, Ri=0.0, and R=14.496324567, where the effect of frequency of modulation for low amplitude and non-internal heating system is observed in Figure 10, and found the chaotic behaviour of the solutions of the system. The effect of frequency of gravity modulation extensively analyzed by Vadasz et al.,32 and Bhadauria et al.,38 the present results conforms their results. Consider the Darcy-Rayleigh number R<Rc=9.496324567 in order to reduce the effect of R on the solution of the system. For the values of Ω2=0.15, δ2=1, Ri=0.1 the solutions exhibit suddenly a typical chaotic behaviour around the two fixed points (figures represent the projection of the solution data points onto the corresponding planes), the amplitude solutions exhibit the chaotic behaviour in the time domain given in Figure 11.

Figure 7 Projections of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for Ω1=0.243, δ1=0.02, Ri=0.1, R=10.423452, A=0.2, Γ=0.3.

Figure 8 Projections of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for Ω2=0.2, δ2=0.01, Ri=0.0, R = 14.496324567, A=0.7, Γ=0.2.

Figure 9 Projections of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for Ω2= 0.2, δ2=0.01, Ri=0.5, R=14.496324567, A=0.7, Γ=0.2.

Figure 10 Projections of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for Ω2= 10, δ2=0.1, Ri=0.1, R=14.496324567, A=0.7, Γ=0.2.

Figure 11 Projections of trajectories over the planes X-Y Y-Z Z-X and a time domain of solutions for Ω2=0.15, δ2=1, Ri=0.0, R=9.496324567, A=0.7, Γ=0.2.

Hence it is observed that, the amplitude of gravity modulation also play a critical role on the dynamic of the problem as δ2 varies along with Ω2, the transition from steady state solution moved to chaotic nature. The heat transfer results of the system presented in Figure 12A. The effect of internal Rayleigh Darcy number Ri, as usual, and it is found to enhance the heat transfer in the system. Similarly the modulation effect as followed by Venezian,40 and Bhadauria et al.,41‒43 where amplitude of modulation enhances (Figure 12B) the heat transfer and frequency of modulation is to diminish (Figure 12C) the heat transfer. The comparison among three types of temperature modulation is presented in Figure 12D, and conform the results of Bhadauria et al.,38 and Kiran et al.39 The dynamic of the problem for three types of temperature modulation is obtained from Kiran et al.39 The comparison between modulated and unmodulated system is presented in Figure 12E. It is quite interest to see that, for temperature modulation the modulated case enhances the heat transfer than unmodulated case. The comparison between thermal and gravity modulation is presented in Figure 12E. It is found that, for gravity modulation these results are quite opposite given by Srivastava et al.,48 where modulated flows transport less heat than their corresponding unmodulated flows conforms the results of Gresho et al.,33 and Kiran et al.,39 and Davis.49 The following relation can generalize the heat transfer

Figure 12 Results of heat transfer Ω2=1, δ2=0.1, Ri=0.02, R=15, A=0.7, Γ=0.2.

N u Tmp mod > N u unmod > N u gvty mod MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiaadwhapaWaaSbaaeaapeGaamivaiaad2gacaWGWbaa paqabaWdbiaad2gacaWGVbGaamizaiaabccacqGH+aGpcaqGGaGaam OtaiaadwhapaWaaSbaaeaapeGaamyDaiaad6gacqGHsislcaWGTbGa am4Baiaadsgaa8aabeaapeGaeyOpa4Jaaeiiaiaad6eacaWG1bWdam aaBaaabaWdbiaadEgacaWG2bGaamiDaiaadMhacaqGGaGaamyBaiaa d+gacaWGKbaapaqabaaaaa@538E@     (7.1)

Conclusion

A study of nonlinear thermal convection in a porous medium with non-Newtonian fluid for two-dimensional spatial case is investigated, in particular derived a set of ordinary nonlinear differential equations, which describe as a minimal model for the complex dynamic behavior in the presence of internal heat source and under temperature and gravity modulations. Without modulation, and internal heat source a classical Lorenz model will be recovered. The parameter regions were obtained where the stationary states or those with chaotic or regular dynamics will occur under modulations.50 while performing a numerical simulation using Mathematica8 and found that, the system has multiple transitions between regular and chaotic behavior under modulation and internal heat source. The following conclusions are drawn.

  1. The effect of Ri, for heat source Ri>0 advances the chaotic nature of the system under modulation, opposite results i.e. steady state solutions obtained for heat sink Ri<0.
  2. Taking the suitable ranges of Ω1, δ1 and R, the chaotic behaviour of the solution of the system is controlled.
  3. Thermal modulation inhabits and gravity modulation delays the chaotic convection.
  4. Heat transfer is more for temperature modulation than gravity modulation.
  5. The results corresponding to gravity modulation may be compared with Vadasz et al.,32 for temperature modulation with Kiran et al.39

Acknowledgements

The author Dr. Palle Kiran is grateful to the Department of Atomic Energy, Government of India, for providing him financial assistance in the form of NBHM-Post-doctoral Fellowship (Lett. No: 2/40(27)/2015/R&D-II/9470). The authors are grateful to the unknown referees for their useful comments that helped to refine the paper in its current form.

Conflicts of interest

The author declares that there are no conflicts of interest.

References

  1. Bhadauria S, Kiran P. Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation. Int J of Heat Mass Transf. 2014;77:843−851.
  2. Bhadauria BS, Kiran P. Heat and mass transfer for oscillatory convection in a bi- nary viscoelastic fluid layer subjected to temperature modulation at the boundaries. Int Communi in Heat and Mass Transf. 2014;58:166−175.
  3. Bhadauria BS, Kiran P. Weak nonlinear double diffusive magneto convection in a Newto- nian liquid under temperature modulation. Int J Eng Math. 2014;204:01−14.
  4. Poincar´e JH. Les m´ethodesnouvelles de la m´echaniquec´eleste. Paris: Boston Public Library; 1892. 412 p.
  5. Poincare JH. Les m´ethodesnouvelles de la m´echaniquec´eleste. Paris: Gauthier-Villars et fils; 1899. 429 p.
  6. Poincar´e JH. Sur le probl´eme des trois corps et les´equations de la dynamique. Acta Mathematica. 1890;13:1–270.
  7. Lorenz EN. Deterministic non-periodic flow. J Atmos Sci. 1963;20(2):130−148.
  8. Ro¨ssler OE. An equation for continuious chaos. Phys Lett A. 1976;57(5):397−398.
  9. Chen GR, Ueta T. Yet another chaotic attractor. Internat J Bifur Chaos. 1999;9(7):1465−1466.
  10. Lu¨ JH, Chen GR. A new chaotic attractor conined. Int J Bifur Chaos. 2002;12(3):659−661
  11. Adomian G. A review of the decomposition method in applied mathematics. J Math Anal Appl. 1988;135(2):501−544.
  12. Adomian G. Solving frontier problems in physics: The decomposition method. Dordrecht: Kluwer Academic Publishers. 1994.
  13. Vadasz P, Olek S. Transitions and chaos for free convection in a rotating porous layer. Int J of Heat and Mass Transf. 1998;41(11):1417−1435.
  14. Vadasz P, Olek S. Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp Porous Media. 1999;37(1):69−91.
  15. Vadasz P. Local and global solutions for transitions to chaos and hysteresis in a porous layer heated from below. Transp Porous Media. 1999;37(2):213−245.
  16. Sparrow C. The Lorenz Equations: Bifurcations, chaos and strange attractors. New York: Springer Verlag; 1982. p. 1–12.
  17. Wang Y, Singer J, Bau HH. Controlling chaos in a thermal convection loop. J Fluid Mech. 1992;237:479–497.
  18. Yuen P, Bau HH. Rendering a subcritical Hopf bifurcation supercritical. J Fluid Mech. 1996;317:91−109.
  19. Feki M. An adaptive feedback control of linearizable chaotic systems. Chaos Solitons and Fractals. 2003;15(5):883−890.
  20. Yau HT, Chen CL. Chaos control of Lorenz systems using adaptive controller with input saturation. Chaos Solitons Fractals. 2007;34(5):1567−1574.
  21. Sheu LJ, Tam LM, Chen JH, et al. Chaotic convection of viscoelastic fluids in porous media. Chaos, Solitons and Fractals. 2008;37(1):113−124.
  22. Yau HT, Chen CK, Chen CL. Sliding mode control of chaotic systems with uncertainties. Int J Bifurcation Chaos. 2000;10(5):1139−1147.
  23. Peng CC, Chen Chaos CL. Robust chaotic control of Lorenz system by backstepping design. Solitons Fractals. 2008;37(2):598−608.
  24. Vadasz P. Analytical prediction of the transition to chaos in Lorenz equations. Appl Math Lett. 2010;23(5):503−507.
  25. Narayana M, Gaikwad SN, Sibanda P, et al. Double diffusive magneto-convection in viscoelastic fluids. Int J of Heat Mass Transf. 2013;67:194−201.
  26. Narayana M, Sibanda P, Siddheshwar PG, et al. Linear and nonlinear stability analysis of binary viscoelastic fluid convection. Appl Math Model. 2013;37(16-17):8162−8178.
  27. Hetsroni G, Gurevich M, Rozenblit R. Natural convection in metal foam strips with internal heat generation. Expe Thermal Fluid Science. 2008;32(8):1740−1747.
  28. Saravanan S. Thermal non-Equilibrium porous convection with heat generation and den- sity maximum. Transp. Porous Media. 2009;76(1):35−43.
  29. Bhadauria BS, Kumar A, Kumar J, et al. Natural convection in a rotating anisotropic porous layer with internal heat. Transp Porous Media. 2011;90:687−705.
  30. Bhadauria BS. Double diffusive convection in a saturated anisotropic porous layer with internal heat source. Transp Porous Media. 2012;92(2):299−320.
  31. Bhadauria BS, Hashim I, Siddheshwar PG. Study of heat transport in a porous medium under G-jitter and internal heating effects. Transp Porous Media. 2013;96(1):21−37.
  32. Bhadauria BS, Hashim I, Siddheshwar PG. Effects of time-periodic thermal boundary conditions and internal heating on heat transport in a porous medium. Transp Porous Media. 2013;97(2):185−200.
  33. Vadasz JJ, Meyer JP, Saneshan G. Chaotic and periodic natural convection for moderate and high Prandtl numbers in a porous layer subject to vibrations. Transp Porous Media. 2014;103(2):279−294.
  34. Gresho PM, Sani RL. The effects of gravity modulation on the stability of a heated fluid layer. J Fluid Mech. 1970;40:783−806.
  35. Bhadauria BS, Kiran P. Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation. Advanced Science Letters. 2014;20:903−910.
  36. Bhadauria BS, Kiran P. Nonlinear thermal convection in a layer of nanofluid under G- jitter and internal heating effects. MATEC-Web of Conferences. 2014;16:7.
  37. Kiran P. Throughflow and g-jitter effects on binary fluid saturated porous medium. Applied Math Mech Accepted. 2015;36(10):1285–1304.
  38. Kiran P. Nonlinear thermal convection in a viscoelactic nanofluid saturated porous medium under gravity modulation. Ain Shams Eng J. 2016;7(2):639–651.
  39. Bhadauria BS, Kiran P. Chaotic and oscillatory magneto−convection in a binary vis- coelastic fluid under G-jitter. Int J of Heat Mass Transf. 2015;84:610−624.
  40. Kiran P, Bhadauria BS. Chaotic convection in a porous medium under temperature mod- ulation. Transp Porous Media. 2015;107(3);745−763.
  41. Venezian G. Effect of modulation on the onset of thermal convection. J Fluid Mech. 1969;35(2):243−254.
  42. Bhadauria BS, Kiran P. Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation. Transp Porous Media. 2013;100(2):279−295.
  43. Kiran P. Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium. Ain Shams Eng J. 2016;7(1):453–462.
  44. Bhadauria BS, Kiran P. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source. Ain Shams Eng J. 2014;5(4):1287−1297.
  45. Kiran P, Bhadauria BS. Nonlinear throughow effects on thermally modulated porous medium. Ain Shams Eng J. 2015.
  46. Vadasz P, Olek S. Route to chaos for moderate Prandtl number convection in a porous layer heated form below. Transp Porous Media. 2000;41(2):211−239.
  47. Magyari E. The butterfly effect in a porous slab. Transp. Porous Media. 2010;84(3):711−715.
  48. Vadasz P. Subcritical transitions to chaos and hysteresis in a fluid layer heated from below. Int J of Heat and Mass Transf. 1999;43(5):705−724.
  49. Srivastava A, Bhadauria BS, Siddheshwar PG, et al. Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under G-jitter and internal heating effects. Transp Porous Media. 2013;99(2):359−376.
  50. Davis SH. The stability of time periodic flows. Annual Review of Fluid Mech. 1976;8:57−74.
Creative Commons Attribution License

©2019 Kiran. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.