Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 2 Issue 3

Simulation Investigation of Novel Membrane Reactors for Catalytic Reactions

Said Salah Eldin Elnashaie1

1Department of Chemical and Biological Engineering, University of British Columbia (UBC), Canada
1Department of Chemical and Biological Engineering, University of British Columbia (UBC), Canada

Correspondence: Said Salah Eldin Elnashaie, Department Chemical and Biological Engineering, University of British Columbia (UBC), Canada

Received: March 28, 2017 | Published: April 10, 2017

Citation: Elnashaie SSE. Simulation investigation of novel membrane reactors for catalytic reactions. Int J Petrochem Sci Eng. 2017;2(3):87-93. DOI: 10.15406/ipcse.2017.02.00037

Download PDF

Abstract

Almost all catalytic reactions in the petrochemical industry are reversible and therefore their conversion is limited by the thermodynamic equilibrium. This conservative limitation can be broken by using selective membranes to remove one of the products. In this paper this revolutionary concept is used for the dehydrogenation reaction where the selective membranes are used for the perm-selective removal of hydrogen.1–3 These membranes have 100% selectivity for the removal of hydrogen. Most efficient configuration is when in the other side of the membrane is a hydrogenation reaction and the flows in the two sides of the membrane are counter-current.

Introduction

Most catalytic reactions are reversible and are therefore controlled by the thermodynamic equilibrium constant of the reaction limiting its conversion. The removal of one, or more , of the products relaxes this limitation and increases the conversion of the reaction, this relaxation increases as the removal of the product(s) is increased. This paper is concentrating on the removal of hydrogen from a dehydrogenation reaction, mainly ethyl-benzene to styrene (1-3), using a hydrogen perm-selective membrane. The rate of hydrogen removal from the reaction side depends upon the type of the membrane and also the hydrogen driving force between the two sides of the membranes. This driving force increases when there is a hydrogenation reaction in the other side of the membrane. In the present study a hydrogenation reaction of nitrobenzene to aniline is taking place on the other side of the membrane. A reliable mathematical model is used to investigate the characteristics of this novel membrane reactor configuration.

Reaction kinetics

The reaction network for the dehydrogenation of ethyl-benzene to styrene is:3–6

C 6 H 5 C H 2 C H 3 C 6 H 5 C H C H 2 + H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaaGOnaaqcfayabaGaamisamaaBaaabaqcLbmacaaI 1aaajuaGbeaacaWGdbGaamisamaaBaaabaqcLbmacaaIYaaajuaGbe aacaWGdbGaamisamaaBaaabaqcLbmacaaIZaaajuaGbeaacqGHuhY2 caWGdbWaaSbaaeaajugWaiaaiAdaaKqbagqaaiaadIeadaWgaaqaaK qzadGaaGynaaqcfayabaGaam4qaiaadIeacaWGdbGaamisamaaBaaa baqcLbmacaaIYaaajuaGbeaacqGHRaWkcaWGibWaaSbaaeaajugWai aaikdaaKqbagqaaaaa@58D9@ Δ H 298 = 117.6 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcaaIXaGaaGymaiaaiEdacaGGUaGaaGOnaiaaykW7daWcaaqaai aadUgacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaaaaaaa@4894@ ……………… (1)
C 6 H 5 C H 2 C H 3 C 6 H 6 + C 2 H 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaaGOnaaqcfayabaGaamisamaaBaaabaqcLbmacaaI 1aaajuaGbeaacaWGdbGaamisamaaBaaabaqcLbmacaaIYaaajuaGbe aacaWGdbGaamisamaaBaaabaqcLbmacaaIZaaajuaGbeaacqGHsgIR caWGdbWaaSbaaeaajugWaiaaiAdaaKqbagqaaiaadIeadaWgaaqaaK qzadGaaGOnaaqcfayabaGaey4kaSIaam4qamaaBaaabaqcLbmacaaI YaaajuaGbeaacaWGibWaaSbaaeaajugWaiaaisdaaKqbagqaaaaa@560B@ Δ H 298 = 105.4 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcaaIXaGaaGimaiaaiwdacaGGUaGaaGinaiaaykW7daWcaaqaai aadUgacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaaaaaaa@488F@ ………………. (2)
C 6 H 5 C H 2 C H 3 + H 2 C 6 H 5 C H 3 + C H 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaaGOnaaqcfayabaGaamisamaaBaaabaqcLbmacaaI 1aaajuaGbeaacaWGdbGaamisamaaBaaabaqcLbmacaaIYaaajuaGbe aacaWGdbGaamisamaaBaaabaqcLbmacaaIZaaajuaGbeaacqGHRaWk caWGibWaaSbaaeaajugWaiaaikdaaKqbagqaaiabgkziUkaadoeada WgaaqaaKqzadGaaGOnaaqcfayabaGaamisamaaBaaabaqcLbmacaaI 1aaajuaGbeaacaWGdbGaamisamaaBaaabaqcLbmacaaIZaaajuaGbe aacqGHRaWkcaWGdbGaamisamaaBaaabaqcLbmacaaI0aaajuaGbeaa aaa@5BE8@ Δ H 298 = 54.6 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcqGHsislcaaI1aGaaGinaiaac6cacaaI2aGaaGPaVpaalaaaba Gaam4AaiaadQeaaeaacaWGTbGaam4BaiaadYgacaWGLbaaaaaa@48C7@ ………………. (3)
2 H 2 O + C 2 H 4 2 C O + 4 H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGibWaaSbaaeaajugWaiaaikdaaKqbagqaaiaad+eacqGHRaWkcaWG dbWaaSbaaeaajugWaiaaikdaaKqbagqaaiaadIeadaWgaaqaaKqzad GaaGinaaqcfayabaGaeyOKH4QaaGOmaiaadoeacaWGpbGaey4kaSIa aGinaiaadIeadaWgaaqaaKqzadGaaGOmaaqcfayabaaaaa@4C65@ Δ H 298 = 210.2 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcaaIYaGaaGymaiaaicdacaGGUaGaaGOmaiaaykW7daWcaaqaai aadUgacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaaaaaaa@488A@ ……………….. (4)
H 2 O + C H 4 C O + 3 H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada WgaaqaaKqzadGaaGOmaaqcfayabaGaam4taiabgUcaRiaadoeacaWG ibWaaSbaaeaajugWaiaaisdaaKqbagqaaiabgkziUkaadoeacaWGpb Gaey4kaSIaaG4maiaadIeadaWgaaqaaKqzadGaaGOmaaqcfayabaaa aa@4853@ Δ H 298 = 206.1 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcaaIYaGaaGimaiaaiAdacaGGUaGaaGymaiaaykW7daWcaaqaai aadUgacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaaaaaaa@488E@ ……………….. (5)
H 2 O + C O C O 2 + H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada WgaaqaaKqzadGaaGOmaaqcfayabaGaam4taiabgUcaRiaadoeacaWG pbGaeyOKH4Qaam4qaiaad+eadaWgaaqaaKqzadGaaGOmaaqcfayaba Gaey4kaSIaamisamaaBaaabaqcLbmacaaIYaaajuaGbeaaaaa@479B@ Δ H 298 = 41.2 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aaajuaGbeaacqGH 9aqpcqGHsislcaaI0aGaaGymaiaac6cacaaIYaGaaGPaVpaalaaaba Gaam4AaiaadQeaaeaacaWGTbGaam4BaiaadYgacaWGLbaaaaaa@48BF@ ……………….. (6)

In this network, all side reactions are irreversible with the only reversible reaction being the main reaction which produces styrene. The corresponding rate equations, expressed as functions of component partial pressure in bars, are:3–6

r 1 = k 1 ( p E B p S T p H 2 K A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaGymaaqcfayabaGaeyypa0Jaam4AaSWaaSbaaKqb agaajugWaiaaigdaaKqbagqaamaabmaabaGaamiCamaaBaaabaGaam yraiaadkeaaeqaaiabgkHiTiaadchadaWgaaqaaiaadofacaWGubaa beaadaWcaaqaaiaadchadaWgaaqaaiaadIeadaWgaaqaaKqzadGaaG OmaaqcfayabaaabeaaaeaacaWGlbWaaSbaaeaajugWaiaadgeaaKqb agqaaaaaaiaawIcacaGLPaaaaaa@4F12@ …………………. (7)
r 2 = k 2 p E B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaGOmaaqcfayabaGaeyypa0Jaam4AamaaBaaabaqc LbmacaaIYaaajuaGbeaacaWGWbWaaSbaaeaacaWGfbGaamOqaaqaba aaaa@413F@ ......................... (8)
r 3 = k 3 p E B p H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaG4maaqcfayabaGaeyypa0Jaam4AaSWaaSbaaKqb agaajugWaiaaiodaaKqbagqaaiaadchadaWgaaqaaiaadweacaWGcb aabeaacaWGWbWaaSbaaeaacaWGibWaaSbaaeaajugWaiaaikdaaKqb agqaaaqabaaaaa@4656@ ................................ (9)
r 4 = k 4 p H 2 O p C 2 H 4 1 / 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaGinaaqcfayabaGaeyypa0Jaam4AamaaBaaabaqc LbmacaaI0aaajuaGbeaacaWGWbWaaSbaaeaacaWGibWaaSbaaeaaju gWaiaaikdaaKqbagqaaiaad+eaaeqaaiaadchadaqhaaqaaiaadoea daWgaaqaaKqzadGaaGOmaaqcfayabaGaamisamaaBaaabaqcLbmaca aI0aaajuaGbeaaaeaajugWaiaaigdacaGGVaGaaGOmaaaaaaa@4F24@ ........................... (10)
r 5 = k 5 p H 2 O p C H 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaGynaaqcfayabaGaeyypa0Jaam4AamaaBaaabaqc LbmacaaI1aaajuaGbeaacaWGWbWaaSbaaeaacaWGibWaaSbaaeaaju gWaiaaikdaaKqbagqaaiaad+eaaeqaaiaadchadaWgaaqaaiaadoea caWGibWaaSbaaeaajugWaiaaisdaaKqbagqaaaqabaaaaa@4934@ ................................. (11)
r 6 = k 6 ( P T 3 ) p H 2 O p C O MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhada WgaaqaaKqzadGaaGOnaaqcfayabaGaeyypa0Jaam4AamaaBaaabaqc LbmacaaI2aaajuaGbeaadaqadaqaamaalaaabaGaamiuaaqaaiaads fadaahaaqabeaajugWaiaaiodaaaaaaaqcfaOaayjkaiaawMcaaiaa dchadaWgaaqaaiaadIeadaWgaaqaaKqzadGaaGOmaaqcfayabaGaam 4taaqabaGaamiCamaaBaaabaGaam4qaiaad+eaaeqaaaaa@4C84@ ........................... (12)

with rate constants defined as:

k i = exp ( A i E i R T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqaaKqzadGaamyAaaqcfayabaGaeyypa0JaciyzaiaacIhacaGG WbWaaeWaaeaacaWGbbWaaSbaaeaajugWaiaadMgaaKqbagqaaiabgk HiTmaalaaabaGaamyramaaBaaabaqcLbmacaWGPbaajuaGbeaaaeaa caWGsbGaamivaaaaaiaawIcacaGLPaaaaaa@4971@ ……………. (13)

The numerical values of Ai and Ei given in Table 1 are used to calculate the rate of reactions in kmol/kg cat/h. To change the units of partial pressures from bars to Pascal and the reaction rates from kmol/kg cat/h to mol/kgcat/s, the above rate equations (1-6) have to be multiplied by the constants in Table 2. On the tube side, the hydrogenation reaction of nitrobenzene to aniline is given7 by:

C 6 H 5 N O 2 + 3 H 2 C 6 H 5 N H 2 + 2 H 2 O MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaaGOnaaqcfayabaGaamisamaaBaaabaqcLbmacaaI 1aaajuaGbeaacaWGobGaam4tamaaBaaabaqcLbmacaaIYaaajuaGbe aacqGHRaWkcaaIZaGaamisamaaBaaabaqcLbmacaaIYaaajuaGbeaa cqGHsgIRcaWGdbWaaSbaaeaajugWaiaaiAdaaKqbagqaaiaadIeada WgaaqaaKqzadGaaGynaaqcfayabaGaamOtaiaadIeadaWgaaqaaKqz adGaaGOmaaqcfayabaGaey4kaSIaaGOmaiaadIeadaWgaaqaaKqzad GaaGOmaaqcfayabaGaam4taaaa@5958@ Δ H 298 K = 443.0 k J m o l e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadIeadaWgaaqaaKqzadGaaGOmaiaaiMdacaaI4aGaaGPaVlaadUea aKqbagqaaiabg2da9iabgkHiTiaaisdacaaI0aGaaG4maiaac6caca aIWaGaaGPaVpaalaaabaGaam4AaiaadQeaaeaacaWGTbGaam4Baiaa dYgacaWGLbaaaaaa@4BD8@ ………….. (14)

Reaction No

Frequency Factor a

Activation Energy a,
(kJ/mole)

12

0.85

90.9

13

14

208.1

14

0.56

91.5

15

0.12

104

16

-3.21

65.7

17

21.24

73.6

Equilibrium constant K A = exp ( Δ F R T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUeada WgaaqaaKqzadGaamyqaaqcfayabaGaeyypa0JaciyzaiaacIhacaGG WbWaaeWaaeaacqGHsisldaWcaaqaaiabfs5aejaadAeaaeaacaWGsb GaamivaaaaaiaawIcacaGLPaaaaaa@4434@
Δ F = a + b b T + c T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej aadAeacqGH9aqpcaWGHbGaey4kaSIaamOyaiaadkgacaWGubGaey4k aSIaam4yaiaadsfadaahaaqabeaajugWaiaaikdaaaaaaa@42CE@

a = 122725 .157 kJ/kmole MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabggacq GH9aqpcaqGXaGaaeOmaiaabkdacaqG3aGaaeOmaiaabwdacaqGUaGa aeymaiaabwdacaqG3aGaaGPaVlaaykW7caqGRbGaaeOsaiaab+caca qGRbGaaeyBaiaab+gacaqGSbGaaeyzaaaa@49A9@
bb = 126 .2674 kJ/kmole × K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabkgaca qGIbGaeyypa0JaeyOeI0IaaeymaiaabkdacaqG2aGaaeOlaiaabkda caqG2aGaae4naiaabsdacaaMc8UaaGPaVlaabUgacaqGkbGaae4lai aabUgacaqGTbGaae4BaiaabYgacaqGLbGaey41aqRaae4saaaa@4CF7@
c = 2 .194 × 10 3 kJ/kmole × K 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabogacq GH9aqpcqGHsislcaqGYaGaaeOlaiaabgdacaqG5aGaaeinaiabgEna 0kaabgdacaqGWaWaaWbaaeqabaqcLbmacqGHsislcaqGZaaaaKqbak aaykW7caaMc8Uaae4AaiaabQeacaqGVaGaae4Aaiaab2gacaqGVbGa aeiBaiaabwgacqGHxdaTcaqGlbWaaWbaaeqabaqcLbmacaqGYaaaaa aa@52F2@

Table 1 Arrhenius equation and equilibrium constants for ethyl-benzene reactions.

aobtained from references,4-6 and13.

Reaction Rate equation No

Constant to be Multiplied by

7

1/100

8

1/100

9

1/107

10

1/104.5

11

1/107

12

1/1012

Table 2 Unit conversion constants for reaction rates of dehydrogenation network.

The rate equation of this reaction is estimated7 by:

r = k K N B K H 2 p N B p H 2 ( 1 + K N B p N B + K H 2 p H 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadkhaga qbaiabg2da9maalaaabaGabm4AayaafaGaam4samaaBaaabaqcLbma caWGobGaamOqaaqcfayabaGaam4samaaBaaabaGaamisamaaBaaaba qcLbmacaaIYaaajuaGbeaaaeqaaiqadchagaqbamaaBaaabaGaamOt aiaadkeaaeqaamaakaaabaGabmiCayaafaWaaSbaaeaacaWGibWaaS baaeaajugWaiaaikdaaKqbagqaaaqabaaabeaaaeaadaqadaqaaiaa igdacqGHRaWkcaWGlbWaaSbaaeaajugWaiaad6eacaWGcbaajuaGbe aaceWGWbGbauaadaWgaaqaaiaad6eacaWGcbaabeaacqGHRaWkcaWG lbWaaSbaaeaacaWGibWaaSbaaeaajugWaiaaikdaaKqbagqaaaqaba WaaOaaaeaaceWGWbGbauaadaWgaaqaaiaadIeadaWgaaqaaKqzadGa aGOmaaqcfayabaaabeaaaeqaaaGaayjkaiaawMcaamaaCaaabeqaaK qzadGaaGOmaaaaaaaaaa@5F86@ ……………………. (15)

with reaction rate constant defined as:

k = 10 3 exp ( A E R T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadUgaga qbaiabg2da9iaaigdacaaIWaWaaWbaaeqabaqcLbmacaaIZaaaaKqb akGacwgacaGG4bGaaiiCamaabmaabaGabmyqayaafaGaeyOeI0YaaS aaaeaaceWGfbGbauaaaeaacaWGsbGabmivayaafaaaaaGaayjkaiaa wMcaaaaa@4550@ …………….. (16)

Figure 1 Schematic diagram showing integrated reactor configuration.

where:

A’=0.186, E’=10.0×103 J/mole, K H 2 = 4.427 × 10 3 Pa 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabUeada WgaaqaaKqzadGaaeisaSWaaSbaaKqbagaajugWaiaabkdaaKqbagqa aaqabaGaeyypa0JaaGinaiaac6cacaaI0aGaaGOmaiaaiEdacqGHxd aTcaaIXaGaaGimamaaCaaabeqaaKqzadGaeyOeI0IaaG4maaaajuaG caaMc8UaaeiuaiaabggadaahaaqabeaajugWaiabgkHiTiaabgdaca qGVaGaaeOmaaaaaaa@4FEB@ , K NB = 1.510 × 10 5 Pa 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabUeada WgaaqaaKqzadGaaeOtaiaabkeaaKqbagqaaiabg2da9iaaigdacaGG UaGaaGynaiaaigdacaaIWaGaey41aqRaaGymaiaaicdadaahaaqabe aajugWaiabgkHiTiaaiwdaaaqcfaOaaGPaVlaabcfacaqGHbWaaWba aeqabaqcLbmacqGHsislcaqGXaaaaaaa@4CAA@
(fig 1)

Governing equations for membrane reactor

To obtain the mole balance equation and the energy balance equation, a differential element inside the membrane reactor was considered. After writing the two balances under the steady state assumption, both sides of the resulting equations were divided by the thickness of the differential element, which was then forced to approach zero. The resulting balances equations of the shell side can be expressed as:
Mole balance:

d n i d z = j = 1 6 σ i j r j ( 1 ε ) A c s ρ s 2 π r 3 N a i J i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba Gaamizaiaad6gadaWgaaqaaKqzadGaamyAaaqcfayabaaabaGaamiz aiaadQhaaaGaeyypa0ZaaabmaeaacqaHdpWCdaWgaaqaaKqzadGaam yAaiaadQgaaKqbagqaaiaadkhadaWgaaqaaKqzadGaamOAaaqcfaya baWaaeWaaeaacaaIXaGaeyOeI0IaeqyTdugacaGLOaGaayzkaaaaba qcLbmacaWGQbGaeyypa0JaaGymaaqcfayaaiaaiAdaaiabggHiLdGa amyqamaaBaaabaqcLbmacaWGJbGaam4CaaqcfayabaGaeqyWdi3aaS baaeaajugWaiaadohaaKqbagqaaiabgkHiTiaaikdacqaHapaCcaaM c8UaamOCamaaBaaabaGaaG4maaqabaGaamOtaiaadggadaWgaaqaaK qzadGaamyAaaqcfayabaGaamOsamaaBaaabaqcLbmacaWGPbaajuaG beaaaaa@6B48@
……………….. (17)

Energy balance:

d T d z = j = 1 6 [ Δ H ( T ) ] j r j ( 1 ε ) A c s ρ s + Q i = 1 10 n i C p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiaadsfaaeaacaWGKbGaamOEaaaacqGH9aqpdaWcaaqaamaa qadabaWaamWaaeaacqGHsislcqqHuoarcaWGibWaaeWaaeaacaWGub aacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaSbaaeaajugWaiaadQga aKqbagqaaaqaaKqzadGaamOAaiabg2da9iaaigdaaKqbagaajugWai aaiAdaaKqbakabggHiLdGaamOCamaaBaaabaqcLbmacaWGQbaajuaG beaadaqadaqaaiaaigdacqGHsislcqaH1oqzaiaawIcacaGLPaaaca WGbbWaaSbaaeaajugWaiaadogacaWGZbaajuaGbeaacqaHbpGCdaWg aaqaaKqzadGaam4CaaqcfayabaGaey4kaSIaamyuaaqaamaaqadaba GaamOBamaaBaaabaqcLbmacaWGPbaajuaGbeaacaWGdbGaamiCamaa BaaabaqcLbmacaWGPbaajuaGbeaaaeaajugWaiaadMgacqGH9aqpca aIXaaajuaGbaqcLbmacaaIXaGaaGimaaqcfaOaeyyeIuoaaaaaaa@7392@ ……………………. (18)

Pressure drop:

d P d z = G ρ g g c D p ( 1 ε ε 3 ) [ 150 ( 1 ε ) μ g D p + 1.75 G ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiaadcfaaeaacaWGKbGaamOEaaaacqGH9aqpcqGHsisldaWc aaqaaiaadEeaaeaacqaHbpGCdaWgaaqaaKqzadGaam4zaaqcfayaba Gaam4zamaaBaaabaqcLbmacaWGJbaajuaGbeaacaWGebWaaSbaaeaa jugWaiaadchaaKqbagqaaaaadaqadaqaamaalaaabaGaaGymaiabgk HiTiabew7aLbqaaiabew7aLnaaCaaabeqaaKqzadGaaG4maaaaaaaa juaGcaGLOaGaayzkaaGaaGPaVpaadmaabaWaaSaaaeaacaaIXaGaaG ynaiaaicdadaqadaqaaiaaigdacqGHsislcqaH1oqzaiaawIcacaGL PaaacqaH8oqBdaWgaaqaaKqzadGaam4zaaqcfayabaaabaGaamiram aaBaaabaqcLbmacaWGWbaajuaGbeaaaaGaey4kaSIaaGymaiaac6ca caaI3aGaaGynaiaadEeaaiaawUfacaGLDbaaaaa@694B@ ………………….. (19)

The corresponding balance equations for the tube side can be expressed as:
Mole balance:

d n i d z = ( 1 ) b [ σ i r ( 1 ε ) A c s ρ s + 2 π r 3 a i J i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba Gaamizaiqad6gagaqbamaaBaaabaqcLbmacaWGPbaajuaGbeaaaeaa caWGKbGaamOEaaaacqGH9aqpdaqadaqaaiabgkHiTiaaigdaaiaawI cacaGLPaaadaahaaqabeaajugWaiaadkgaaaqcfa4aamWaaeaacqaH dpWCdaWgaaqaaKqzadGaamyAaaqcfayabaGabmOCayaafaWaaeWaae aacaaIXaGaeyOeI0IafqyTduMbauaaaiaawIcacaGLPaaaceWGbbGb auaadaWgaaqaaKqzadGaam4yaiaadohaaKqbagqaaiqbeg8aYzaafa WaaSbaaeaajugWaiaadohaaKqbagqaaiabgUcaRiaaikdacqaHapaC caaMc8UaamOCamaaBaaabaqcLbmacaaIZaaajuaGbeaacaWGHbWaaS baaeaajugWaiaadMgaaKqbagqaaiaadQeadaWgaaqaaKqzadGaamyA aaqcfayabaaacaGLBbGaayzxaaaaaa@6979@ ………………………… (20)

Energy balance:

d T d z = ( 1 ) b [ ( 2 π r 3 ) i = 1 i a i J i T T C p i d T + [ Δ H ( T ) ] r ( 1 ε ) A c s ρ s Q i = 1 4 n i C p i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiqadsfagaqbaaqaaiaadsgacaWG6baaaiabg2da9maabmaa baGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaam OyaaaajuaGdaWadaqaamaalaaabaWaaeWaaeaacaaIYaGaeqiWdaNa aGPaVlaadkhadaWgaaqaaKqzadGaaG4maaqcfayabaaacaGLOaGaay zkaaWaaabmaeaacaWGHbWaaSbaaeaajugWaiaadMgaaKqbagqaaiaa dQeadaWgaaqaaKqzadGaamyAaaqcfayabaWaa8qCaeaacaWGdbGaam iCamaaBaaabaqcLbmacaWGPbaajuaGbeaacaWGKbGaamivaiabgUca RmaadmaabaGaeyOeI0IaeuiLdqKabmisayaafaWaaeWaaeaaceWGub GbauaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8UabmOCayaa faWaaeWaaeaacaaIXaGaeyOeI0IafqyTduMbauaaaiaawIcacaGLPa aaceWGbbGbauaadaWgaaqaaKqzadGaam4yaiaadohaaKqbagqaaiqb eg8aYzaafaWaaSbaaeaajugWaiaadohaaKqbagqaaiabgkHiTiaadg faaeaaceWGubGbauaaaeaacaWGubaacqGHRiI8aaqaaKqzadGaamyA aiabg2da9iaaigdaaKqbagaacaWGPbaacqGHris5aaqaamaaqadaba GabmOBayaafaWaaSbaaeaajugWaiaadMgaaKqbagqaaiaadoeaceWG WbGbauaadaWgaaqaaKqzadGaamyAaaqcfayabaaabaqcLbmacaWGPb Gaeyypa0JaaGymaaqcfayaaiaaisdaaiabggHiLdaaaaGaay5waiaa w2faaaaa@8F86@ ………………… (21)

Pressure drop:

d P d z = ( 1 ) b G ρ g g c D p ( 1 ε ε 3 ) [ 150 ( 1 ε ) μ g D p + 1.75 G ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiqadcfagaqbaaqaaiaadsgacaWG6baaaiabg2da9maabmaa baGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaam OyaaaajuaGdaWcaaqaaiqadEeagaqbaaqaaiqbeg8aYzaafaWaaSba aeaajugWaiaadEgaaKqbagqaaiaadEgadaWgaaqaaKqzadGaam4yaa qcfayabaGabmirayaafaWaaSbaaeaajugWaiaadchaaKqbagqaaaaa daqadaqaamaalaaabaGaaGymaiabgkHiTiqbew7aLzaafaaabaGafq yTduMbauaadaahaaqabeaajugWaiaaiodaaaaaaaqcfaOaayjkaiaa wMcaaiaaykW7daWadaqaamaalaaabaGaaGymaiaaiwdacaaIWaWaae WaaeaacaaIXaGaeyOeI0IafqyTduMbauaaaiaawIcacaGLPaaacuaH 8oqBgaqbamaaBaaabaqcLbmacaWGNbaajuaGbeaaaeaaceWGebGbau aadaWgaaqaaKqzadGaamiCaaqcfayabaaaaiabgUcaRiaaigdacaGG UaGaaG4naiaaiwdaceWGhbGbauaaaiaawUfacaGLDbaaaaa@6ECC@ …………. (22)

The hydrogen flux across the membrane surface obeys Sievert’s law,8 i.e.

J H 2 = Q o exp ( E H 2 , P R T ) δ H 2 ( P H 2 P H 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqaaKqzadGaamisaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqa aaqabaGaeyypa0ZaaSaaaeaacaWGrbWaaSbaaeaajugWaiaad+gaaK qbagqaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa caWGfbWaaSbaaeaacaWGibWaaSbaaeaajugWaiaaikdaaKqbagqaai aacYcacaWGqbaabeaaaeaacaWGsbGaamivaaaaaiaawIcacaGLPaaa aeaacqaH0oazdaWgaaqaaKqzadGaamisaSWaaSbaaKqbagaajugWai aaikdaaKqbagqaaaqabaaaamaabmaabaWaaOaaaeaacaWGqbWaaSba aeaajugWaiaadIealmaaBaaajuaGbaqcLbmacaaIYaaajuaGbeaaae qaaaqabaGaeyOeI0YaaOaaaeaaceWGqbGbauaadaWgaaqaaKqzadGa amisaSWaaSbaaKqbagaajugWaiaaikdaaKqbagqaaaqabaaabeaaai aawIcacaGLPaaaaaa@6415@ ………………… (23)

The pre-exponential constant, permeation activation energy, and the thickness of the hydrogen permeation membrane are taken as 6.33×10-7 mol/m/sec/Pa0.5, 15700 J/mole, and 1~2×10-5 m, respectively.8 Heat transfer across the membrane involves both convection from the gas mixture to the membrane, conduction across the membrane layer, and finally convection from the membrane to the second gas mixture. Radiation of heat is neglected. The membrane tube is considered to be a composite wall having a stainless steel layer coated by a thin layer of palladium. The thermal conductivities of the stainless steal layer and the palladium are taken to be 24.5 W/m×K and 93.3 W/m×K, average values over a temperature range of 200-1800 K.9,10 The heat transferred per unit length from each tube is obtained from:

Q = 2 π r 1 ( T T ) [ 1 h + r 1 k s s ln ( r 2 r 1 ) + r 1 k P d ln ( r 3 r 2 ) + r 1 r 2 h ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgfacq GH9aqpdaWcaaqaaiaaikdacqaHapaCcaaMc8UaamOCamaaBaaabaqc LbmacaaIXaaajuaGbeaadaqadaqaaiqadsfagaqbaiabgkHiTiaads faaiaawIcacaGLPaaaaeaadaWadaqaamaalaaabaGaaGymaaqaaiqa dIgagaqbaaaacqGHRaWkdaWcaaqaaiaadkhadaWgaaqaaKqzadGaaG ymaaqcfayabaaabaGaam4AamaaBaaabaqcLbmacaWGZbGaam4Caaqc fayabaaaaiGacYgacaGGUbWaaeWaaeaadaWcaaqaaiaadkhadaWgaa qaaKqzadGaaGOmaaqcfayabaaabaGaamOCamaaBaaabaqcLbmacaaI XaaajuaGbeaaaaaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaWGYb WaaSbaaeaajugWaiaaigdaaKqbagqaaaqaaiaadUgadaWgaaqaaKqz adGaamiuaiaadsgaaKqbagqaaaaaciGGSbGaaiOBamaabmaabaWaaS aaaeaacaWGYbWaaSbaaeaajugWaiaaiodaaKqbagqaaaqaaiaadkha daWgaaqaaKqzadGaaGOmaaqcfayabaaaaaGaayjkaiaawMcaaiabgU caRmaalaaabaGaamOCamaaBaaabaqcLbmacaaIXaaajuaGbeaaaeaa caWGYbWaaSbaaeaajugWaiaaikdaaKqbagqaaiaadIgaaaaacaGLBb Gaayzxaaaaaaaa@7864@ …………………. (24)

The convective heat transfer coefficients in equation (24) are calculated using Leva’s correlation (1949).11 For the shell side in which the reacting mixture is heated up, the convective heat transfer coefficient is calculated by [11]:

h D t k g = 0.813 ( D p G μ g ) 0.9 exp ( 6 D p D t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamiAaiaadseadaWgaaqaaKqzadGaamiDaaqcfayabaaabaGaam4A amaaBaaabaqcLbmacaWGNbaajuaGbeaaaaGaeyypa0JaaGimaiaac6 cacaaI4aGaaGymaiaaiodadaqadaqaamaalaaabaGaamiramaaBaaa baqcLbmacaWGWbaajuaGbeaacaWGhbaabaGaeqiVd02aaSbaaeaaju gWaiaadEgaaKqbagqaaaaaaiaawIcacaGLPaaadaahaaqabeaacaaI WaGaaiOlaiaaiMdaaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsi sldaWcaaqaaiaaiAdacaWGebWaaSbaaeaajugWaiaadchaaKqbagqa aaqaaiaadseadaWgaaqaaKqzadGaamiDaaqcfayabaaaaaGaayjkai aawMcaaaaa@5DA5@ …………………… (25)

In contrast, the reacting mixture in the tube side is cooled and consequently the convective heat transfer coefficient is calculated by:11

h D t k g = 3.50 ( D p G μ g ) 0.7 exp ( 4.6 D p D t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GabmiAayaafaGabmirayaafaWaaSbaaeaajugWaiaadshaaKqbagqa aaqaaiqadUgagaqbamaaBaaabaqcLbmacaWGNbaajuaGbeaaaaGaey ypa0JaaG4maiaac6cacaaI1aGaaGimamaabmaabaWaaSaaaeaaceWG ebGbauaadaWgaaqaaKqzadGaamiCaaqcfayabaGabm4rayaafaaaba GafqiVd0MbauaadaWgaaqaaKqzadGaam4zaaqcfayabaaaaaGaayjk aiaawMcaamaaCaaabeqaaKqzadGaaGimaiaac6cacaaI3aaaaKqbak GacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaaI0aGa aiOlaiaaiAdaceWGebGbauaadaWgaaqaaKqzadGaamiCaaqcfayaba aabaGabmirayaafaWaaSbaaeaajugWaiaadshaaKqbagqaaaaaaiaa wIcacaGLPaaaaaa@6071@ ………………. (26)

Physical properties such as, thermal conductivity, gas density and viscosity, and heat capacities are taken as functions of temperature from Yaws.9

Boundary conditions

In the case of the co-current operation ( b = 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOyaiabg2da9iaaikdaaiaawIcacaGLPaaaaaa@3AAB@ , the above system of differential equations gives an initial value problem which can be solved by a Runge-Kutta Verner fifth and sixth order method with an automatic step size, double precision calculation, and a relative error of 1×10-12 to ensure high accuracy. The initial conditions are:
At: z = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQhacq GH9aqpcaaIWaaaaa@3938@                                

S h e l l C o m p a r t m e n t = { n i = n i f T = T f P = P f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGObGaamyzaiaadYgacaWGSbGaaGPaVlaadoeacaWGVbGaamyBaiaa dchacaWGHbGaamOCaiaadshacaWGTbGaamyzaiaad6gacaWG0bGaey ypa0Zaaiqaaqaabeqaaiaad6gadaWgaaqaaKqzadGaamyAaaqcfaya baGaeyypa0JaamOBamaaBaaabaqcLbmacaWGPbGaamOzaaqcfayaba aabaGaamivaiabg2da9iaadsfadaWgaaqaaKqzadGaamOzaaqcfaya baaabaGaamiuaiabg2da9iaadcfadaWgaaqaaKqzadGaamOzaaqcfa yabaaaaiaawUhaaaaa@5D63@ …………………. (27)

T u b e C o m p a r t m e n t = { n i = n i f T = T f P = P f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca WG1bGaamOyaiaadwgacaaMc8Uaam4qaiaad+gacaWGTbGaamiCaiaa dggacaWGYbGaamiDaiaad2gacaWGLbGaamOBaiaadshacqGH9aqpda GabaabaeqabaGabmOBayaafaWaaSbaaeaajugWaiaadMgaaKqbagqa aiabg2da9iqad6gagaqbamaaBaaabaqcLbmacaWGPbGaamOzaaqcfa yabaaabaGabmivayaafaGaeyypa0JabmivayaafaWaaSbaaeaajugW aiaadAgaaKqbagqaaaqaaiqadcfagaqbaiabg2da9iqadcfagaqbam aaBaaabaqcLbmacaWGMbaajuaGbeaaaaGaay5Eaaaaaa@5CBE@ ………………….. (28)

For the counter-current operation case ( b = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOyaiabg2da9iaaigdaaiaawIcacaGLPaaaaaa@3AAA@ , the above system of differential equations results in a split two-point boundary value problem which can be solved by an orthogonal collocation technique [12,13]. The boundary conditions are:

At z = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQhacq GH9aqpcaaIWaaaaa@3938@ inlet condition of dehydrogenation compartment

S h e l l C o m p a r t m e n t = { n i = n i f T = T f P = P f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGObGaamyzaiaadYgacaWGSbGaaGPaVlaadoeacaWGVbGaamyBaiaa dchacaWGHbGaamOCaiaadshacaWGTbGaamyzaiaad6gacaWG0bGaey ypa0Zaaiqaaqaabeqaaiaad6gadaWgaaqaaKqzadGaamyAaaqcfaya baGaeyypa0JaamOBamaaBaaabaqcLbmacaWGPbGaamOzaaqcfayaba aabaGaamivaiabg2da9iaadsfadaWgaaqaaKqzadGaamOzaaqcfaya baaabaGaamiuaiabg2da9iaadcfadaWgaaqaaKqzadGaamOzaaqcfa yabaaaaiaawUhaaaaa@5D63@ …………………. (29)

At z = L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQhacq GH9aqpcaWGmbaaaa@394F@ inlet condition of hydrogenation compartment

T u b e C o m p a r t m e n t = { n i = n i f T = T f P = P f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfaca WG1bGaamOyaiaadwgacaaMc8Uaam4qaiaad+gacaWGTbGaamiCaiaa dggacaWGYbGaamiDaiaad2gacaWGLbGaamOBaiaadshacqGH9aqpda GabaabaeqabaGabmOBayaafaWaaSbaaeaajugWaiaadMgaaKqbagqa aiabg2da9iqad6gagaqbamaaBaaabaqcLbmacaWGPbGaamOzaaqcfa yabaaabaGabmivayaafaGaeyypa0JabmivayaafaWaaSbaaeaajugW aiaadAgaaKqbagqaaaqaaiqadcfagaqbaiabg2da9iqadcfagaqbam aaBaaabaqcLbmacaWGMbaajuaGbeaaaaGaay5Eaaaaaa@5CBE@ …………………….. (39)

Operating conditions on both sides of the reactor

The operating conditions for both sides of the reactor are given in Table 3 & Table 4. For the dehydrogenation reaction of ethyl-benzene to styrene, the feed molar flow rates are the same as those presented by Elnashaie et al.4,6 whereas the molar flow rate of nitrobenzene is based on stoichiometry. Excess steam is provided in the feed line to prevent the formation of coke on the catalyst.

Parameter

Value and Dimension

Length of the reactor

3.0 m

Cross-sectional area of the shell side

3.0 m2

Feed molar flow rates of a:

Ethyl-benzene

30.0 mol/s

Styrene

0.1861 mol/s

Hydrogen

0.0 mol/s

Benzene

0.03056 mol/s

Ethylene

0.0 mol/s

Toluene

0.2444 mol/s

Methane

0.0 mol/s

Carbon monoxide

0.0 mol/s

Carbon dioxide

0.0 mol/s

Steam

140.0 mol/s

Inlet temperature

850 K

Inlet pressure

4.5×105 Pa

Catalyst density b

1500 kg/m3

Diameter of catalyst particle

4.7×10-3 m

Void fraction

0.48

Table 3 Operating conditions for dehydrogenation (shell side) reaction of ethyl-benzene to styrene

a obtained from reference [4-6].

Parameter

Value and Dimension

No. of hydrogenation tubes

1270

Outer radius of a hydrogenation tube

0.0318 m

Thickness of the stainless hydrogenation tube

0.0030 m

Total Cross-sectional area of the tube side available for flow

3.310 m2

Feed molar flow rates of:

Nitrobenzene

10.0 mol/s

Hydrogen

0.0 mole/s

Aniline

0.0 mole/s

Steam

100.0 mole/s

Inlet temperature

860 K

inlet pressure

1.1×105 Pa

Catalyst density

1400 Kg/m3

Diameter of catalyst particle

4.7×103 m

Void fraction

0.46

Table 4 Operating condition for hydrogenation (tube side) reaction of nitrobenzene to aniline.

Results and discussion

The simulation results for the coupled membrane reactor system can confirm the potential of coupling the two reactions. In general, the achievable performance as far as conversion of ethyl-benzene and yield of styrene are concerned is much better than that of the corresponding uncoupled industrial fixed bed reactors operated at the same conditions. The coupled membrane reactor also has the potential to give better conversion of ethyl-benzene and yield of styrene by increasing the length of the reactor since the two profiles continue to evolve with distance:

Hydrogen molar flow rate

Hydrogen molar flow rates for an uncoupled fixed bed reactor and for coupled co-current and countercurrent cases membrane reactors are shown in Figure 2. Hydrogen is generated in the uncoupled fixed bed reactor case while producing styrene, which is the key component, is low. For the coupled co-current case, on the other hand, hydrogen produced on the dehydrogenation side diffuses immediately through the membrane walls of the hydrogenation tubes where it meets nitrobenzene to react and produce aniline. The comparable rates of the net production of hydrogen on the dehydrogenation side and the rate of diffusion of hydrogen through the palladium membrane prevent the hydrogen from accumulating on the dehydrogenation side where it reduces the net reaction rate. The coupled countercurrent case is of special interest due to the presence of a maximum where the flow rate of hydrogen reaches a maximum and then decreases. At the feed end of the dehydrogenation side ( z = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQhacq GH9aqpcaaIWaaaaa@3938@ ), the rate of production of hydrogen by reactions (1), (4), (5), and (6) surpasses both the rate of consumption of hydrogen by reaction (3) and the rate of diffusion of hydrogen through the palladium membrane. This leads to an increase in the number of moles of hydrogen until a point is reached where the hydrogen flow rate has reached its maximum value, i.e. when the rate of change of molar flow rate of hydrogen at that point with respect to the length of the reactor is zero. At this point, the rate of the production of hydrogen is balanced by both the rate of consumption of hydrogen by reaction (3) and the rate of diffusion of hydrogen through the membrane. Beyond that point, the process is dominated by consumption of hydrogen by reaction (3) and diffusion of hydrogen through the membrane. Consequently, the molar flow rate of hydrogen decreases along the reactor. This trend induces similar behavior in the hydrogenation tubes. As nitrobenzene moves from its feed point, located at z = 3 .0 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabQhacq GH9aqpcaqGZaGaaeOlaiaabcdacaaMc8UaaeyBaaaa@3D11@ , it reacts with the permeate hydrogen. Another maximum is reached where the rate of diffusion of hydrogen through the membrane is balanced by its rate of consumption by the hydrogenation reaction. This point is located to the left Figure 2 of that on the dehydrogenation side. After passing this maximum, the rate of consumption of hydrogen dominates causing the amount of hydrogen in the hydrogenation tubes to drop quickly.

Figure 2 molar flow of hydrogen on uncoupled adiabatic fixed bed and coupled co-current and countercurrent cases of the novel membrane reactor. For operating conditions see Tables 3 & 4. For counter-current case, feed is from the right for the hydrogenation compartment; otherwise all feeds are from the left.

Conversion of ethyl-benzene

The predicted conversion of ethyl-benzene on the dehydrogenation side is shown in Figure 3 for the same three cases. For the operating conditions chosen, the conversion reaches 23.4% for the uncoupled adiabatic fixed bed case, 54.6% for the membrane reactor with co-current flow, and 61.7% for the membrane reactor in the countercurrent flow configuration. Again, coupling of the two reactions has the potential to provide significant improvement in reactor performance. Moreover, the heat generated by the exothermic hydrogenation reaction is put to good use, rather than being simply rejected to cooling water.

Figure 3 Comparison of ethyl-benzene conversions on dehydrogenation side for uncoupled adiabatic fixed bed and for coupled co-current and counter-current cases. For operating condition, see Tables 3 & 4.

Yield of styrene

Three cases are investigated: uncoupled fixed bed case corresponding to the classical industrial operation, co-current coupled case, and countercurrent coupled case. Results for the three cases are shown in Figure 4. The lowest yield by a considerable margin is predicted for the uncoupled adiabatic fixed bed where the maximum yield is 18.9%. For the membrane reactor, the predicted yield increases to 52.5% for the co-current flow configuration and 57.7% for the counter-current case.

Figure 4 Comparison of styrene yields on dehydrogenation side for uncoupled adiabatic fixed bed and for coupled co-current and counter-current cases. For operating condition, see Tables 3 & 4.

Conversion of nitrobenzene

Figure 5 plots the predicted conversion of nitrobenzene as a function of distance along the reactor for the hydrogenation reaction to aniline. The counter-current membrane reactor is seen to give higher conversion than the co-current case because of the large driving forces. The conversion for the co-current case is predicted to reach 51.1%, while 57.9% is calculated for the counter-current case.

Figure 5 Conversion of nitrobenzene on the hydrogenation side for the co-current, and counter-current membrane reactor configurations. For operating conditions, see Tables 3 & 4.

Temperature profiles

Temperature profiles for the adiabatic fixed bed reactor and both the co-current and countercurrent membrane reactors are plotted in Figure 6 & 7 for different number of membrane tubes. Heat is continuously supplied from the exothermic hydrogenation nitrobenzene-to-aniline reaction on the tube side to the endothermic dehydrogenation reaction of ethyl-benzene on the shell side. The temperature variation is larger at the inlet of the membrane reactor in the coupled counter-current case than for coupled co-current flow. The fall in temperature for both cases of the coupled membrane reactor is much less than that for the uncoupled fixed bed reactor. In the counter-current case of the coupled reactor, the temperature on the dehydrogenation side drops because the heat transferred from the nitrobenzene side is decreased due to the low driving force, i.e. temperatures on both sides becomes comparable.

Figure 6 Effect of number of hydrogenation tubes on temperature profiles in the dehydrogenation and hydrogenation compartments for the co-current case. For operating conditions see Tables 3 & 4.

Figure 7 Effect of number of hydrogenation tubes on temperature profiles in the dehydrogenation and hydrogenation compartments for the coupled counter-current case. For operating conditions see Table 3 & 4.

Predicted temperature profiles on the hydrogenation side where the nitrobenzene to aniline reaction occurs are also plotted Figure 6 & 7 for different number of membrane tubes. The temperature rises from 860 K at the feed point to slightly more than 920 K for the coupled co-current flow case and slightly more than 945 K for the coupled counter-current flow configuration. The large temperature rise for the coupled counter-current coupled case is due to the large driving force causing higher diffusion rate of hydrogen and consequently increasing the nitrobenzene conversion. However, the temperature reaches a peak where both heat generated on the nitrobenzene side due to the reaction and energy carried by the permeating hydrogen is balanced by heat transfer through the membrane to the ethyl-benzene side. Later, it decreases because of the dominance of the heat transferred through the membrane.

Practical considerations

Coupling the exothermic hydrogenation reaction with the endothermic dehydrogenation reaction is predicted to be capable of providing a significant improvement in reactor performance and energy integration. However, it must be noted that palladium membranes are currently limited to temperatures of ~ 900 K. The maximum temperature can be reduced by increasing the number of the membranes, giving more surface area permitting more heat transfer rate across the membrane. This is illustrated in Figure 6 & 7 where the axial temperature profiles in both compartments of the coupled membrane reactor are plotted with flow rate kept unaltered. Note that the maximum temperature can be maintained below 880 K, with countercurrent operation giving higher maximum temperature than the co-current case. We also note that the counter-current configuration is likely to be very difficult to start up in practice. Hence, co-current operation Process control and safety aspects are also expected to be easier to provide for the co-current configuration despite the advantages of counter-current operation, which is more likely to be practical for the foreseeable future. Finally, while homogeneous one-dimensional models, like that used here, provide a good initial sense of what could be achieved in coupled fixed bed reactors, more comprehensive heterogeneous models with fewer simplifying assumptions are needed prior to proof-of-concept experiments on such reactors.

Conclusion

The performance of a newly configured membrane reactor with two reactions, an exothermic hydrogenation and an endothermic dehydrogenation reaction in parallel, has been modeled and evaluated for: co-current and counter-current operation. Pseudo homogeneous models have been used to describe the behavior of the system. In the range of the parameters used to investigate the performance of the membrane reactor, the simulation predicts a considerable increase in the conversion of ethyl-benzene and yield of styrene when the dehydrogenation reaction of ethyl-benzene to styrene is coupled with the hydrogenation reaction of nitrobenzene. The results from the counter-current mode of operation were in all cases higher than those from the co-current mode of operation due to the large driving forces. The simulation results suggest that coupling may be feasible in this case with promising performance. However, the performance of the reactor needs to be proven experimentally and tested over a range of parameters under practical operating conditions.

Nomenclature

ai:                   Constant, 1 for hydrogen, 0 otherwise, [-]
Acs, A’cs: Cross sectional area of shell and tube side, [m2]
b: Constant, 2 for co-current, 1 for counter-current flow,[-]
Cpi, Cp’i: Heat capacity of component i on shell and tube side, [ J m o l e × K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaiabgEna 0kaadUeaaaaacaGLBbGaayzxaaaaaa@3FF2@
Dp, D’p: Diameter of catalyst particle on shell and tube side, [m]
Dt:           Diameter of tube, [m]
Ej:            Activation energy of reaction j on shell side, [ J m o l e × K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaiabgEna 0kaadUeaaaaacaGLBbGaayzxaaaaaa@3FF2@
E’:            Activation energy of the hydrogenation reaction on tube side, [ J m o l e × K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaiabgEna 0kaadUeaaaaacaGLBbGaayzxaaaaaa@3FF2@
Hi, H’i:     Enthalpy of component i on shell and tube side, [ J m o l e ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGkbaabaGaamyBaiaad+gacaWGSbGaamyzaaaaaiaa wUfacaGLDbaaaaa@3D0B@
L:  Total length of reactor, [m].
N:            Number of tubes in hybrid reactor, [-]
ni, n’I:      Molar flow rate of component i on shell and tube side, [ m o l e s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGTbGaam4BaiaadYgacaWGLbaabaGaam4Caaaaaiaa wUfacaGLDbaaaaa@3D34@
Ji:             Molar flux of component i, [ m o l e m 2 × s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGTbGaam4BaiaadYgacaWGLbaabaGaamyBamaaCaaa beqaaKqzadGaaGOmaaaajuaGcqGHxdaTcaWGZbaaaaGaay5waiaaw2 faaaaa@42D7@
pi, p’i:      Partial pressure of component i on shell and tube side, [Pa]
P:             Total pressure on shell side of reactor, [Pa]
P’:            Total pressure on tube side of reactor, [Pa]
Q:            Heat transferred from tube side to shell side, [ J m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGkbaabaGaamyBaaaaaiaawUfacaGLDbaaaaa@3A3C@
Qo:           Pre-exponential constant of the hydrogen membrane, [ m o l e m × s × P a 0.5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGTbGaam4BaiaadYgacaWGLbaabaGaamyBaiabgEna 0kaadohacqGHxdaTcaWGqbGaamyyamaaCaaabeqaaKqzadGaaGimai aac6cacaaI1aaaaaaaaKqbakaawUfacaGLDbaaaaa@4818@
rj:             Rate of reaction j on shell side, [ m o l e k g c a t × s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaajuaGba WaaSaaaeaacaWGTbGaam4BaiaadYgacaWGLbaabaGaam4AaiaadEga caaMc8Uaam4yaiaadggacaWG0bGaey41aqRaam4CaaaaaOGaay5wai aaw2faaaaa@4583@
r’:            Rate of reaction on tube side, [ m o l e k g c a t × s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGTbGaam4BaiaadYgacaWGLbaabaGaam4AaiaadEga caaMc8Uaam4yaiaadggacaWG0bGaey41aqRaam4CaaaaaiaawUfaca GLDbaaaaa@4579@
r1:            Inner radius of the hydrogenation tube, [m]
r2:            Outer radius of the hydrogenation tube, [m]
r3-r2:        Thickness of palladium membrane, [m]
T, T’:       Temperature on shell and tube side of reactor, [K]
Z:             Axial coordinate inside reactor, [m].
[ Δ H ( T ) ] j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaeuiLdqKaamisamaabmaabaGaamivaaGaayjkaiaawMcaaaGaay5w aiaaw2faamaaBaaabaqcLbmacaWGQbaajuaGbeaaaaa@3FCC@ : Heat of reaction j at temperature T on shell side, [J/mole].
[ Δ H ( T ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GaeuiLdqKabmisayaafaWaaeWaaeaaceWGubGbauaaaiaawIcacaGL PaaaaiaawUfacaGLDbaaaaa@3D18@ Heat of reaction at temperature T’ on tube side, [J/mole].
Δz:          Thickness of differential element, [m]
ρs, ρ’s: Catalyst solid density on shell and tube side, [ k g m 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGRbGaam4zaaqaaiaad2gadaahaaqabeaacaaIZaaa aaaaaiaawUfacaGLDbaaaaa@3C28@
σij:           Stoichiometric coefficient of reactant i in reaction j, [-]
δ H 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabs7ada WgaaqaaKqzadGaaeisaSWaaSbaaKqbagaajugWaiaabkdaaKqbagqa aaqabaaaaa@3CF8@ :       Thickness of hydrogen permeation membrane, [m]

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Y She, J Han, YH Ma. Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene. Catal Today. 2001;67(1-3):43–53.
  2. Ch Hermann, P Quicker, R Dittmeyer. Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor. J Membr Sci. 1997;136:161.
  3. MEE Abashar. Coupling of ethylbenzene dehydrogenation and benzene hydrogenation reactions in fixed bed catalytic reactors. Chem Eng Pro. 2003;43:1195–1202.
  4. TM Moustafa, SSEH Elnashaie. Simultaneous production of styrene and cyclohexane in an integrated membrane reactor. J Membr Sci. 2000;178:171.
  5. SSEH Elnashaie, T Moustafa, T Alsoudani, et al. Modeling and basic characteristics of novel integrated dehydrogenation-hydrogenation membrane catalytic reactors. Com Chem Eng. 2000;24:1293–1300.
  6. Abdulla BK, Elnashaie SSHE. A membrane reactor for the production of styrene from ethylbenzene. J Membr Sci. 1993;85:229.
  7. B Amon, H Redlingshofer, E Klemm, et al. Kinetic investigation of deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor. Chem Eng Pro. 1999;38:395.
  8. Shu BPA, Grandjean S, Kaliaguine. Methane steam reforming in symmetric Pd-and Pd-Ag/porous SS membrane reactor. Appl Catal. 1994;119:305–325.
  9. Carl Yaws. Chemical Properties Handbook: Physical, Thermodynamics, Engironmental Transport, Safety & Health Related Properties for Organic & Inorganic Chemical. New York: McGraw-Hill; 1999.
  10. Suttichai Assabumrungrat, Kobkan Suksomboon, Piyasan Praserthdam, et al. Simulation of a Palladium Membrane Reactor for Dehydrogenation of Ethylbenzene. J Chem Eng Jpn. 2002;35:263.
  11. Gilbert Froment, Kenneth Bischoff. Chemical Reactor Analysis and Design. 2nd ed.USA: John Wiley and Sons; 1990.
  12. J Valladsen, Michelsen ML. Solution of Differential Equation Models by Polynomial Approximation. New Jersey, USA, 1978. 446 p.
  13. Lloyd N Trefethen. Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Philadelphia. USA, 2000.
Creative Commons Attribution License

©2017 Elnashaie. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.