Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 5 Issue 1

Magnetohydrodynamics natural convection of nanofluid flow over a vertical circular cone embedded in a porous medium and subjected tothermal radiation

MG Sobamowo, AA Yinusa, ST Aladenusi, MO Salami

Department of Mechanical Engineering, University of Lagos, Nigeria

Correspondence: MG Sobamowo, Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

Received: January 01, 2020 | Published: July 14, 2020

Citation: Sobamowo MG, Yinusa AA, Aladenusi ST, et al. Magnetohydrodynamics natural convection of nanofluid flow over a vertical circular cone embedded in a porous medium and subjected to thermal radiation. Int J Petrochem Sci Eng 2020;5(1):22-38. DOI: 10.15406/ipcse.2020.05.00119

Download PDF

Abstract

In this paper, magnetohydrodynamics natural convection of nanofluid flow over a vertical circular cone immersed in a porous medium under the influence of thermal radiation is investigated using multi-step differential transformation method. The accuracies of the analytical solutions are established through the verifications of the results of the present study with the results of the numerical solutions and the past studies. The approximate analytical solutions are used to examine the impacts of cone angle, flow medium porosity, magnetic field, nanoparticles volume-fraction and shape on the flow and heat transfer behaviours of the Copper (II) Oxide-water nanofluid. It is hoped that this study will enhance better understanding of flow process for the design of flow and heat transfer equipment.

Keywords: free convection, cone angle, porous medium, nanoparticle, magnetic field, multi-step differential transformation method

Nomenclature

cp, specific heat capacity; k, thermal conductivity; m,shape factor; Pr, Prandtl number; µ, velocity component in x-direction; v, velocity component in z-direction; y, axis perpendicular to plates; x, axis along the horizontal direction; y, axis along the vertical direction

Symbols: β, volumetric extension coefficients; ρ, density of the fluid; µ,dynamic viscosity; η,similarity variable; λ, sphericity; Φ , volume fraction or concentration of the nanofluid; θ,dimensionless temperature

Subscript: f, fluid; s, solid; nf, nanofluid

Introduction

There are various applications of free convection flow and heat transfer in aeronautics, reactor fluidization, glass-fiber production processes, aerodynamic, cooling of gas turbine rotor blades, drawing of a polymer sheet, food stuff processing, melt spinning, mechanical forming processes, cooling of metallic plates, wire and fiber coating, extrusion of plastic sheets, continuous casting, rolling, annealing, and tinning of copper wires. Since the quality of products in the processes depends considerably on the flow and heat transfer characteristics in the various applications, the analysis of fluid flow and heat transfer is very essential Earlier studies on free convections flow established its importance in science and engineering applications.1–11 However, the analyses of these studies are based on the approximations. Therefore, in some recent studies, improved approximated analyses of the flow and heat transfer models have been presented. Na & Habib12 adopted parameter differentiation method while Merkin13 presented the similarity solutions for free convection on a vertical plate. Merkin& Pop14 and Ali et al.,15 applied numerical methods for the flow process. In a very recent paper, Motsa et al.,16,17 utilized homotopy analysis method and spectral local linearization approach to analyze the free convection boundary layer flow with heat and mass transfer. Also, Ghotbi et al.,18 presented the analytical solutions to the free convection flow using the homotopy analysis method.

The simple procedures in the theory and applications of differential transformation method (DTM) have shown the effectiveness of the method in solving both linear and nonlinear equations. The method was introduced by Ζhou.19 In the free flow analysis, over a vertical surface, Yu & Chen20 and Kuo21,22 applied the method. However, it should be noted that the DTM solutions diverge for some differential equations that extremely have nonlinear behaviors or have boundary-conditions at infinity. This is because the series solution method is limited to small domain. Therefore, Rashidi et al.,23 applied DTM coupled with Padé-approximant technique to the flow problem. However, the Padé-approximant technique comes with large volume of calculations and computations. Therefore, another technique for an improved rate of convergence and the radius of convergence of power series solution is required. Among the newly developed techniques, is the multi-step differential transform method (MDTM). The method can be applied directly to nonlinear differential equations of infinite boundary conditions without the use of after-treatment techniques and domain transformation techniques.24–44

The previous studies on the problem under investigation are based on the flow of viscous fluid over a vertical surface without considering the effects of magnetic field and porosity of the flow medium. To the best of the author’s knowledge, a study on free convection flow of nanofluid over a vertical circular cone using multi-step differential transform method. Therefore, in this work, magnetohydrodynamics natural convection of nanofluid flow over a vertical circular cone immersed in a porous medium under the influence of thermal radiation is investigated using multi-step differential transformation method. The approximate analytical solutions are used to examine the impacts of cone angle, flow medium porosity, magnetic field, nanoparticles volume-fraction, shape and type on the flow and heat transfer behaviours of various nanofluids. Also, the accuracies of the analytical solutions are established through the verifications of the results with the results of the numerical solutions and the results in the past studies.

Problem formulation and mathematical analysis

Consider a free-convection flow of an incompressible electrically conducting nanofluid past a cone embedded in a porous medium which is inclined from the vertical with an acute angle γ measured in the clockwise direction and situated in an otherwise quiescent ambient fluid at temperature Tw as shown in Figure 1. A transverse magnetic field of strength Bo is applied normal to the inclined plate. The plate coincides with the plane y=0 and the flow being confined to y >0. Assuming that the flow in the laminar boundary layer is two-dimensional and steady, the equations for continuity and motion are given as 

( ru ) x + ( rv ) y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaqadaqaaiaadkhacaWG1baacaGLOaGaayzkaaaabaGaeyOa IyRaamiEaaaacqGHRaWkdaWcaaqaaiabgkGi2oaabmaabaGaamOCai aadAhaaiaawIcacaGLPaaaaeaacqGHciITcaWG5baaaiabg2da9iaa icdaaaa@48C0@   (1)

ρ nf ( u u x +v u y )= μ nf 2 u y 2 +g ( ρβ ) nf ( T T )cosγσ B o 2 u μu K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaad6gacaWGMbaabeaakmaabmaabaGaamyDamaalaaabaGa eyOaIyRaamyDaaqaaiabgkGi2kaadIhaaaGaey4kaSIaamODamaala aabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadMhaaaaacaGLOaGaayzk aaGaeyypa0JaeqiVd02aaSbaaSqaaiaad6gacaWGMbaabeaakmaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi 2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam4zamaabm aabaGaeqyWdiNaeqOSdigacaGLOaGaayzkaaWaaSbaaSqaaiaad6ga caWGMbaabeaakmaabmaabaGaamivaiabgkHiTiaadsfadaWgaaWcba GaeyOhIukabeaaaOGaayjkaiaawMcaaiaadogacaWGVbGaam4Caiab eo7aNjabgkHiTiabeo8aZjaadkeadaqhaaWcbaGaam4Baaqaaiaaik daaaGccaWG1bGaeyOeI0YaaSaaaeaacqaH8oqBcaWG1baabaGaam4s aaaaaaa@72C6@   (2)

( ρ c p ) nf ( u T x +v T y )= k nf 2 T y 2 q r y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCcaWGJbWaaSbaaSqaaiaadchaaeqaaaGccaGLOaGaayzkaaWa aSbaaSqaaiaad6gacaWGMbaabeaakmaabmaabaGaamyDamaalaaaba GaeyOaIyRaamivaaqaaiabgkGi2kaadIhaaaGaey4kaSIaamODamaa laaabaGaeyOaIyRaamivaaqaaiabgkGi2kaadMhaaaaacaGLOaGaay zkaaGaeyypa0Jaam4AamaaBaaaleaacaWGUbGaamOzaaqabaGcdaWc aaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadsfaaeaacqGHci ITcaWG5bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGa eyOaIyRaamyCamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kaadM haaaaaaa@5E38@   (3)

Assuming no slip conditions, the appropriate boundary conditions are given as

u=0,v=0,T= T s aty=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaadw hacqGH9aqpcaaIWaGaaiilaiaaywW7caWG2bGaeyypa0JaaGimaiaa cYcacaaMe8UaaGzbVlaadsfacqGH9aqpcaWGubWaaSbaaSqaaiaado haaeqaaOGaaGzbVlaadggacaWG0bGaaGzbVlaadMhacqGH9aqpcaaI Waaaaa@5020@   (4a)

u=0,T= T w ,aty MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabg2 da9iaaicdacaGGSaGaaGzbVlaadsfacqGH9aqpcaWGubWaaSbaaSqa aiaadEhaaeqaaOGaaiilaiaaywW7caWGHbGaamiDaiaaysW7caWG5b GaeyOKH4QaeyOhIukaaa@4A5E@   (4b)

where the various physical and thermal properties in the Eq. (1-3) are given as

ρ nf = ρ f ( 1ϕ )+ ρ s ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaad6gacaWGMbaabeaakiabg2da9iabeg8aYnaaBaaaleaa caWGMbaabeaakmaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkai aawMcaaiabgUcaRiabeg8aYnaaBaaaleaacaWGZbaabeaakiabew9a Mbaa@49C2@   (5a)

( ρ c p ) nf = ( ρ c p ) f ( 1ϕ )+ ( ρ c p ) s ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCcaWGJbWaaSbaaSqaaiaadchaaeqaaaGccaGLOaGaayzkaaWa aSbaaSqaaiaad6gacaWGMbaabeaakiabg2da9maabmaabaGaeqyWdi Naam4yamaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGMbaabeaakmaabmaabaGaaGymaiabgkHiTiabew9aMbGaay jkaiaawMcaaiabgUcaRmaabmaabaGaeqyWdiNaam4yamaaBaaaleaa caWGWbaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGZbaabeaaki abew9aMbaa@5496@   (5b)

( ρβ ) nf = ( ρβ ) f ( 1ϕ )+ ( ρβ ) s ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHbpGCcqaHYoGyaiaawIcacaGLPaaadaWgaaWcbaGaamOBaiaadAga aeqaaOGaeyypa0ZaaeWaaeaacqaHbpGCcqaHYoGyaiaawIcacaGLPa aadaWgaaWcbaGaamOzaaqabaGcdaqadaqaaiaaigdacqGHsislcqaH vpGzaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiabeg8aYjabek7aIb GaayjkaiaawMcaamaaBaaaleaacaWGZbaabeaakiabew9aMbaa@5340@   (5c)

μ nf = μ f ( 1ϕ ) 2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad6gacaWGMbaabeaakiabg2da9maalaaabaGaeqiVd02a aSbaaSqaaiaadAgaaeqaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0Iaeq y1dygacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaaiOlaiaaiwda aaaaaaaa@4680@   (5d)

k nf = k f [ k s +( m1 ) k f ( m1 )ϕ( k f k s ) k s +( m1 ) k f +ϕ( k f k s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGUbGaamOzaaqabaGccqGH9aqpcaWGRbWaaSbaaSqaaiaa dAgaaeqaaOWaamWaaeaadaWcaaqaaiaadUgadaWgaaWcbaGaam4Caa qabaGccqGHRaWkdaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOaGa ayzkaaGaam4AamaaBaaaleaacaWGMbaabeaakiabgkHiTmaabmaaba GaamyBaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaHvpGzdaqadaqa aiaadUgadaWgaaWcbaGaamOzaaqabaGccqGHsislcaWGRbWaaSbaaS qaaiaadohaaeqaaaGccaGLOaGaayzkaaaabaGaam4AamaaBaaaleaa caWGZbaabeaakiabgUcaRmaabmaabaGaamyBaiabgkHiTiaaigdaai aawIcacaGLPaaacaWGRbWaaSbaaSqaaiaadAgaaeqaaOGaey4kaSIa eqy1dy2aaeWaaeaacaWGRbWaaSbaaSqaaiaadAgaaeqaaOGaeyOeI0 Iaam4AamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaaaaaiaa wUfacaGLDbaaaaa@68C7@   (6)

σ nf = σ f [ 1+ 3{ σ s σ f 1 }ϕ { σ s σ f +2 }ϕ{ σ s σ f 1 }ϕ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaad6gacaWGMbaabeaakiabg2da9iabeo8aZnaaBaaaleaa caWGMbaabeaakmaadmaabaGaaGymaiabgUcaRmaalaaabaGaaG4mam aacmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaam4Caaqabaaakeaa cqaHdpWCdaWgaaWcbaGaamOzaaqabaaaaOGaeyOeI0IaaGymaaGaay 5Eaiaaw2haaiabew9aMbqaamaacmaabaWaaSaaaeaacqaHdpWCdaWg aaWcbaGaam4CaaqabaaakeaacqaHdpWCdaWgaaWcbaGaamOzaaqaba aaaOGaey4kaSIaaGOmaaGaay5Eaiaaw2haaiabew9aMjabgkHiTmaa cmaabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaam4Caaqabaaakeaacq aHdpWCdaWgaaWcbaGaamOzaaqabaaaaOGaeyOeI0IaaGymaaGaay5E aiaaw2haaiabew9aMbaaaiaawUfacaGLDbaacaGGSaaaaa@67B8@   (7)

The above model in Eq. (6) is Hamilton Crosser’s model. The “m” in the model represents the shape factor which its numerical values for different shapes are given in Table 1. It should be noted that the shape factor, m= 3 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabg2 da9maalaaabaGaaG4maaqaaiabeU7aSbaaaaa@3BEF@ , where λ is the sphericity (the ratio of the surface area of the sphere and the surface area of the real particles with equal volumes). For sphericity of sphere, platelet, cylinder, laminar and brick are 1.000, 0.526, 0.625, 0.185 and 0.811, respectively. It should be noted that the Hamilton Crosser’s model becomes a Maxwell-Garnett’s model, when the shape factor of the nanoparticle, m=3. Tables 2&3 present the physical and thermal properties of the base fluid and the nanoparticles, respectively. SWCNTs mean single-walled carbon nanotubes.

Table 1 The values of different shapes of nanoparticles37,38

Base fluid                          

ρ (kg/m3)

cp ( J/kgK)            

k (W/mK)  

Pure water                           

997.1

4179

0.613

Ethylene Glycol                  

1115

2430

0.253

Engine oil                           

884

1910

0.144

Kerosene                            

783

2010

0.145

Table 2 Physical and thermal properties of the base fluid37–44

Nanoparticles                                    

ρ (kg/m3)            

cp ( J/kgK)              

k (W/mK) 

Copper (Cu)                                         

8933

385

401

Aluminum oxide (Al2O3)                    

3970

765

40

SWCNTs                                             

2600

42.5

6600

Silver (Ag)                                          

10500

235

429

Titanium dioxide (TiO2)                    

4250

686.2

8.9538

Copper (II) Oxide (CuO)                    

783

540

18

Table 3 Physical and thermal properties of nanoparticles37–44

However, the present study focusses on Copper (II) Oxide-water nanofluid.

r=xsinλ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabg2 da9iaadIhacaWGZbGaamyAaiaad6gacqaH7oaBcaGGSaaaaa@3FAD@   (8)

Moreover γ is the half angle of the frustum cone. Because the boundary layer-thickness is small, the local radius to a point in the boundary layer r can be represented by the local radius of the cone.

Going back to Eq. (1), (2) and (3) and if one introduces a stream function, ψ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aae WaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaaaa@3D78@  such that

ru= ψ y ,rv= ψ x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaadw hacqGH9aqpdaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadMha aaGaaiilaiaaysW7caaMe8UaamOCaiaadAhacqGH9aqpcqGHsislda WcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaadIhaaaGaaiilaaaa @4E1B@   (9)

and use the following similarity and dimensionless variables

η= [ ρ f 2 ( g β f ( T w T ) ) 4 μ f 2 x ] 1 4 y,ψ= 4 μ f ρ f [ ρ f 2 ( g β f ( T w T ) ) x 3 4 μ f 2 ] 1/4 f( η ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaey ypa0ZaamWaaeaadaWcaaqaaiabeg8aYnaaDaaaleaacaWGMbaabaGa aGOmaaaakmaabmaabaGaam4zaiabek7aInaaBaaaleaacaWGMbaabe aakmaabmaabaGaamivamaaBaaaleaacaWG3baabeaakiabgkHiTiaa dsfadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaGaayjkai aawMcaaaqaaiaaisdacqaH8oqBdaqhaaWcbaGaamOzaaqaaiaaikda aaGccaWG4baaaaGaay5waiaaw2faamaaCaaaleqabaWaaSaaaeaaca aIXaaabaGaaGinaaaaaaGccaWG5bGaaiilaiabeI8a5jabg2da9maa laaabaGaaGinaiabeY7aTnaaBaaaleaacaWGMbaabeaaaOqaaiabeg 8aYnaaBaaaleaacaWGMbaabeaaaaGcdaWadaqaamaalaaabaGaeqyW di3aa0baaSqaaiaadAgaaeaacaaIYaaaaOWaaeWaaeaacaWGNbGaeq OSdi2aaSbaaSqaaiaadAgaaeqaaOWaaeWaaeaacaWGubWaaSbaaSqa aiaadEhaaeqaaOGaeyOeI0IaamivamaaBaaaleaacqGHEisPaeqaaa GccaGLOaGaayzkaaaacaGLOaGaayzkaaGaamiEamaaCaaaleqabaGa aG4maaaaaOqaaiaaisdacqaH8oqBdaqhaaWcbaGaamOzaaqaaiaaik daaaaaaaGccaGLBbGaayzxaaWaaWbaaSqabeaadaWcgaqaaiaaigda aeaacaaI0aaaaaaakiaadAgadaqadaqaaiabeE7aObGaayjkaiaawM caaiaacYcaaaa@7CC8@
θ= T T T w T ,Pr= μ f c p k f , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaey ypa0ZaaSaaaeaacaWGubGaeyOeI0IaamivamaaBaaaleaacqGHEisP aeqaaaGcbaGaamivamaaBaaaleaacaWG3baabeaakiabgkHiTiaads fadaWgaaWcbaGaeyOhIukabeaaaaGccaGGSaGaamiuaiaadkhacqGH 9aqpdaWcaaqaaiabeY7aTnaaBaaaleaacaWGMbaabeaakiaadogada WgaaWcbaGaamiCaaqabaaakeaacaWGRbWaaSbaaSqaaiaadAgaaeqa aaaakiaacYcaaaa@4F3D@   (10)

one arrives at fully coupled third and second orders ordinary differential equations

f ( η )+ ( 1ϕ ) 2.5 { [ ( 1ϕ )+ϕ( ρ s ρ f ) ]( 3f( η ) f ( η )2 ( f ( η ) ) 2 ) +[ ( 1ϕ )+ϕ[ ( ρβ ) s / ( ρβ ) f ] ]θ( η )cosγ }( M 2 + 1 Da )f( η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaasa WaaeWaaeaacqaH3oaAaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaa igdacqGHsislcqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaik dacaGGUaGaaGynaaaakmaacmaaeaqabeaadaWadaqaamaabmaabaGa aGymaiabgkHiTiabew9aMbGaayjkaiaawMcaaiabgUcaRiabew9aMn aabmaabaWaaSaaaeaacqaHbpGCdaWgaaWcbaGaam4Caaqabaaakeaa cqaHbpGCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaayzkaaaaca GLBbGaayzxaaWaaeWaaeaacaaIZaGaamOzamaabmaabaGaeq4TdGga caGLOaGaayzkaaGabmOzayaagaWaaeWaaeaacqaH3oaAaiaawIcaca GLPaaacqGHsislcaaIYaWaaeWaaeaaceWGMbGbauaadaqadaqaaiab eE7aObGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaaqaaiabgUcaRmaadmaabaWaaeWaaeaa caaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaey4kaSIaeqy1dy 2aamWaaeaadaWcgaqaamaabmaabaGaeqyWdiNaeqOSdigacaGLOaGa ayzkaaWaaSbaaSqaaiaadohaaeqaaaGcbaWaaeWaaeaacqaHbpGCcq aHYoGyaiaawIcacaGLPaaadaWgaaWcbaGaamOzaaqabaaaaaGccaGL BbGaayzxaaaacaGLBbGaayzxaaGaeqiUde3aaeWaaeaacqaH3oaAai aawIcacaGLPaaacaWGJbGaam4BaiaadohacqaHZoWzaaGaay5Eaiaa w2haaiabgkHiTmaabmaabaGaamytamaaCaaaleqabaGaaGOmaaaaki abgUcaRmaalaaabaGaaGymaaqaaiaadseacaWGHbaaaaGaayjkaiaa wMcaaiaadAgadaqadaqaaiabeE7aObGaayjkaiaawMcaaiabg2da9i aaicdaaaa@9986@   (11)

( 1+ 4 3 R ) θ +3[ 1 [ ( 1ϕ )+ϕ[ ( ρ C p ) s / ( ρ C p ) f ] ] [ k s +( m1 ) k f ( m1 )ϕ( k f k s ) k s +( m1 ) k f +ϕ( k f k s ) ] ]Prf θ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaey4kaSYaaSaaaeaacaaI0aaabaGaaG4maaaacaWGsbaacaGL OaGaayzkaaGafqiUdeNbayaacqGHRaWkcaaIZaWaamWaaeaadaWcaa qaaiaaigdaaeaadaWadaqaamaabmaabaGaaGymaiabgkHiTiabew9a MbGaayjkaiaawMcaaiabgUcaRiabew9aMnaadmaabaWaaSGbaeaada qadaqaaiabeg8aYjaadoeadaWgaaWcbaGaamiCaaqabaaakiaawIca caGLPaaadaWgaaWcbaGaam4Caaqabaaakeaadaqadaqaaiabeg8aYj aadoeadaWgaaWcbaGaamiCaaqabaaakiaawIcacaGLPaaadaWgaaWc baGaamOzaaqabaaaaaGccaGLBbGaayzxaaaacaGLBbGaayzxaaaaam aadmaabaWaaSaaaeaacaWGRbWaaSbaaSqaaiaadohaaeqaaOGaey4k aSYaaeWaaeaacaWGTbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadU gadaWgaaWcbaGaamOzaaqabaGccqGHsisldaqadaqaaiaad2gacqGH sislcaaIXaaacaGLOaGaayzkaaGaeqy1dy2aaeWaaeaacaWGRbWaaS baaSqaaiaadAgaaeqaaOGaeyOeI0Iaam4AamaaBaaaleaacaWGZbaa beaaaOGaayjkaiaawMcaaaqaaiaadUgadaWgaaWcbaGaam4Caaqaba GccqGHRaWkdaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOaGaayzk aaGaam4AamaaBaaaleaacaWGMbaabeaakiabgUcaRiabew9aMnaabm aabaGaam4AamaaBaaaleaacaWGMbaabeaakiabgkHiTiaadUgadaWg aaWcbaGaam4CaaqabaaakiaawIcacaGLPaaaaaaacaGLBbGaayzxaa aacaGLBbGaayzxaaGaamiuaiaadkhacaWGMbGafqiUdeNbauaacqGH 9aqpcaaIWaaaaa@8CF0@   (12)

and the boundary conditions as

f=0, f =0,θ=1,when η=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaadA gacqGH9aqpcaaIWaGaaiilaiaaywW7ceWGMbGbauaacqGH9aqpcaaI WaGaaiilaiaaywW7cqaH4oqCcqGH9aqpcaaIXaGaaiilaiaaywW7ca WG3bGaamiAaiaadwgacaWGUbGaaeiiaiabeE7aOjabg2da9iaaicda caaMf8oaaa@51F9@   (13)

f =0,θ=0,when η= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa Gaeyypa0JaaGimaiaacYcacaaMf8UaeqiUdeNaeyypa0JaaGimaiaa cYcacaaMf8Uaam4DaiaadIgacaWGLbGaamOBaiaabccacqaH3oaAcq GH9aqpcqGHEisPaaa@4AAB@   (14)

Basic concepts of differential transform method

The relatively new semi-analytical method, differential transformation method introduced by Zhou19 has proven proved very effective in providing highly accurate solutions to differential equations, difference equation, differential-difference equations, fractional differential equation, pantograph equation and integro-differential equation. Therefore, this method is applied to the present study. The basic definitions and the operational properties of the method are as follows

If u(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaaaa@3AC2@  is analytic in the domain T, then the function u(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaaaa@3AC2@  will be differentiated continuously with respect to time t.

d p u(t) d t p =φ(t,p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbWaaWbaaSqabeaacaWGWbaaaOGaamyDaiaacIcacaWG0bGaaiyk aaqaaiaadsgacaWG0bWaaWbaaSqabeaacaWGWbaaaaaakiabg2da9i abeA8aQjaacIcacaWG0bGaaiilaiaadchacaGGPaaaaa@46AF@  for all   tT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaadsfaaaa@3ACC@ (15)

for t= t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaadshadaWgaaWcbaGaamyAaaqabaaaaa@3B88@ , then φ(t,p)=φ( t i ,p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaai ikaiaadshacaGGSaGaamiCaiaacMcacqGH9aqpcqaHgpGAcaGGOaGa amiDamaaBaaaleaacaWGPbaabeaakiaacYcacaWGWbGaaiykaaaa@4508@  , where p belongs to the set of non-negative integers, denoted as the p-domain. We can therefore write Eq. (15) as

U(p)=φ( t i ,p)= [ d p u(t) d t p ] t= t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaacI cacaWGWbGaaiykaiabg2da9iabeA8aQjaacIcacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaaiilaiaadchacaGGPaGaeyypa0ZaamWaaeaada WcaaqaaiaadsgadaahaaWcbeqaaiaadchaaaGccaWG1bGaaiikaiaa dshacaGGPaaabaGaamizaiaadshadaahaaWcbeqaaiaadchaaaaaaa GccaGLBbGaayzxaaWaaSbaaSqaaiaadshacqGH9aqpcaWG0bWaaSba aWqaaiaadMgaaeqaaaWcbeaaaaa@523D@   (16)

where U p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGWbaabeaaaaa@3971@  is called the spectrum of u(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaaaa@3AC2@  at

Expressing u(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaaaa@3AC2@ in Taylor’s series as t= t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaadshadaWgaaWcbaGaamyAaaqabaaaaa@3B88@

u(t)= p [ ( t t i ) p p! ] U(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaiabg2da9maaqahabaWaamWaaeaadaWcaaqaamaa bmaabaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiaadchaaaaakeaacaWGWbGaaiyi aaaaaiaawUfacaGLDbaaaSqaaiaadchaaeaacqGHEisPa0GaeyyeIu oakiaaysW7caaMe8UaamyvaiaacIcacaWGWbGaaiykaaaa@5110@   (17)

where Equ. (15) is the inverse of U(k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaacI cacaWGRbGaaiykaaaa@3A99@  us symbol ‘D’ denoting the differential transformation process and combining (16) and (17), we have

u(t)= p=0 [ ( t t i ) p p! ] U(p)= D 1 U(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaacI cacaWG0bGaaiykaiabg2da9maaqahabaWaamWaaeaadaWcaaqaamaa bmaabaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaadaahaaWcbeqaaiaadchaaaaakeaacaWGWbGaaiyi aaaaaiaawUfacaGLDbaaaSqaaiaadchacqGH9aqpcaaIWaaabaGaey OhIukaniabggHiLdGccaaMe8UaamyvaiaacIcacaWGWbGaaiykaiab g2da9iaadseadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGvbGaai ikaiaadchacaGGPaaaaa@5819@   (18)

Basic concepts of multi-step differential transform method

The limitation of classical DTM is shown when is being used for solving differential equations with the boundary conditions at infinity i.e. the obtained series solution through the DTM for such equation with the boundary condition become divergent. Besides that, generally, power series solutions are not useful for large values of the independent variable. In order to overcome this shortcoming, the multi-step DTM is developed (Table 4). The basic concepts of the multi-step DTM for solving non-linear initial-value problem is presented as follows;

Table 4 Operational properties of differential transformation method

u( t,f, f ,... f ( h ) )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiDaiaacYcacaWGMbGaaiilaiqadAgagaqbaiaacYcacaGG UaGaaiOlaiaac6cacaWGMbWaaWbaaSqabeaadaqadaqaaiaadIgaai aawIcacaGLPaaaaaaakiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiil aiaaykW7aaa@488D@   (19)

subject to the initial conditions

f ( k ) ( 0 )= c k ,k=0,1,...h1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOWaaeWaaeaa caaIWaaacaGLOaGaayzkaaGaeyypa0Jaam4yamaaBaaaleaacaWGRb aabeaakiaacYcacaaMc8UaaGPaVlaaykW7caWGRbGaeyypa0JaaGim aiaacYcacaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaadIgacqGHsi slcaaIXaGaaiOlaiaaykW7aaa@516C@   (20)

Let [ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaiilaiaaykW7caaMc8UaaGPaVlaadsfaaiaawUfacaGLDbaa aaa@404C@ be the interval over which we want to find the solution of the initial value problem of Eq. (19). In actual application of the DTM, the approximate solution of the initial value problem of Eq. (19) can be expressed by the following finite series:

f( t )= m=0 M a m t m t[ 0,T ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiDaaGaayjkaiaawMcaaiabg2da9maaqahabaGaamyyamaa BaaaleaacaWGTbaabeaakiaadshadaahaaWcbeqaaiaad2gaaaGcca aMc8UaaGPaVlaaykW7caWG0bGaeyicI48aamWaaeaacaaIWaGaaiil aiaaykW7caaMc8UaaGPaVlaadsfaaiaawUfacaGLDbaaaSqaaiaad2 gacqGH9aqpcaaIWaaabaGaamytaaqdcqGHris5aOGaaiOlaiaaykW7 aaa@581A@   (21)

The multi-step approach introduces a new idea for constructing the approximate solution. Assume that the interval [ 0,T ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaiilaiaaykW7caaMc8UaaGPaVlaadsfaaiaawUfacaGLDbaa aaa@404C@ is divided into N subintervals [ t i1 , t i ],i=1,2,...,N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaykW7caGG SaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawUfacaGLDb aacaGGSaGaaGPaVlaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaad6eaaaa@4DAF@ of equal step size H=T/N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 da9iaadsfacaGGVaGaaiOtaaaa@3BA7@ by using the nodes t=iH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2 da9iaadMgacaWGibaaaa@3B30@ . The main idea of the multi-step DTM is as follows. First, we apply the DTM to Eq. (19) over the interval [ 0, t 1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaGPaVlaacYcacaaMc8UaamiDamaaBaaaleaacaaIXaaabeaa aOGaay5waiaaw2faaiaacYcaaaa@4082@ we will obtain the following approximate solution,

f 1 ( t )= m=0 K a 1m t m t[ 0, t 1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9maaqahabaGaamyyamaaBaaaleaacaaIXaGaamyBaaqabaGcca WG0bWaaWbaaSqabeaacaWGTbaaaOGaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caWG0bGaeyicI48aamWaaeaacaaIWaGaaGPaVlaacYcaca aMc8UaamiDamaaBaaaleaacaaIXaaabeaaaOGaay5waiaaw2faaiaa cYcaaSqaaiaad2gacqGH9aqpcaaIWaaabaGaam4saaqdcqGHris5aa aa@5AC9@   (22)

Using the initial conditions f ( k ) ( 0 )= c k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOWaaeWaaeaa caaIWaaacaGLOaGaayzkaaGaeyypa0Jaam4yamaaBaaaleaacaWGRb aabeaakiaac6caaaa@411A@ For i2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgw MiZkaaikdaaaa@3AE6@ and at each subinterval [ t i1 , t i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaykW7caGG SaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawUfacaGLDb aaaaa@4310@ we will use the initial conditions f i ( k ) ( t i1 )= f i1 ( k ) ( t i1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWGPbaabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOWa aeWaaeaacaWG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaaaO GaayjkaiaawMcaaiabg2da9iaadAgadaqhaaWcbaGaamyAaiabgkHi TiaaigdaaeaadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaGcdaqada qaaiaadshadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaaGccaGL OaGaayzkaaaaaa@4DD2@ and apply the DTM to Eq. (19) over the interval [ t i1 , t i ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG0bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaykW7caGG SaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawUfacaGLDb aacaGGSaaaaa@43C0@ where t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaaaaa@3955@ in Eq. (15) is replaced by t i1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGPbGaeyOeI0IaaGymaaqabaaaaa@3B31@ . The process is repeated and generates a sequence of approximate solution, f i ( t ),i =1, 2,,N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiaa cYcaqaaaaaaaaaWdbiaadMgacaqGGaGaeyypa0JaaGymaiaacYcaca qGGaGaaGOmaiaacYcacqGHMacVcaGGSaGaamOtaaaa@45F9@ for the solution f( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiDaaGaayjkaiaawMcaaaaa@3AE3@ ,

f i ( t )= m=0 K a im ( t t i1 ) m ,t[ t i , t i+1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiDaaGaayjkaiaawMcaaiab g2da9maaqahabaGaamyyamaaBaaaleaacaWGPbGaamyBaaqabaGcda qadaqaaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaadMgacqGHsisl caaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamyBaaaaki aacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadshacqGHiiIZ daWadaqaaiaadshadaWgaaWcbaGaamyAaaqabaGccaGGSaGaaGPaVl aaykW7caWG0bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaaaOGa ay5waiaaw2faaiaacYcaaSqaaiaad2gacqGH9aqpcaaIWaaabaGaam 4saaqdcqGHris5aOGaaGPaVdaa@66E2@   (23)

where M=KN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 da9iaadUeacqGHflY1caWGobaaaa@3D3B@ . In fact, the multi-step DTM assumes the following solution:

f( t ){ f 1 ( t ),t[ 0, t 1 ] . . . f i ( t ),t[ t i , t i+1 ] . . . f N ( t ),t[ t N1 , t N ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiDaaGaayjkaiaawMcaamaaceaaeaqabeaacaWGMbWaaSba aSqaaiaaigdaaeqaaOWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaai ilaiaaykW7caaMc8UaamiDaiabgIGiopaadmaabaGaaGimaiaaykW7 caGGSaGaaGPaVlaadshadaWgaaWcbaGaaGymaaqabaaakiaawUfaca GLDbaaaeaacaGGUaaabaGaaiOlaaqaaiaac6cacaaMc8UaaGPaVdqa aiaadAgadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiaadshaaiaawI cacaGLPaaacaGGSaGaaGPaVlaaykW7caWG0bGaeyicI48aamWaaeaa caWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVlaacYcacaaMc8Uaam iDamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaaakiaawUfacaGL DbaacaaMc8oabaGaaiOlaaqaaiaac6caaeaacaGGUaaabaGaamOzam aaBaaaleaacaWGobaabeaakmaabmaabaGaamiDaaGaayjkaiaawMca aiaacYcacaaMc8UaaGPaVlaadshacqGHiiIZdaWadaqaaiaadshada WgaaWcbaGaamOtaiabgkHiTiaaigdaaeqaaOGaaGPaVlaacYcacaaM c8UaamiDamaaBaaaleaacaWGobaabeaaaOGaay5waiaaw2faaiaayk W7caaMc8oaaiaawUhaaaaa@876B@   (24)

which shows that there is a separate function for every sub domain.

Following the above definition, it could be stated that the multi-step DTM for every sub-domain is defined as

F i ( m )= H m m! [ d m u(t) d t m ] t= t i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyBaaGaayjkaiaawMcaaiab g2da9maalaaabaGaamisamaaCaaaleqabaGaamyBaaaaaOqaaiaad2 gacaGGHaaaamaadmaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaWG TbaaaOGaamyDaiaacIcacaWG0bGaaiykaaqaaiaadsgacaWG0bWaaW baaSqabeaacaWGTbaaaaaaaOGaay5waiaaw2faamaaBaaaleaacaWG 0bGaeyypa0JaamiDamaaBaaameaacaWGPbaabeaaaSqabaaaaa@4F38@   (25)

The inverse multi-step DTM is

f i (t)= m=0 [ ( t t i ) m m! ] F i (m) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGPbaabeaakiaacIcacaWG0bGaaiykaiabg2da9maaqaha baWaamWaaeaadaWcaaqaamaabmaabaGaamiDaiabgkHiTiaadshada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa d2gaaaaakeaacaWGTbGaaiyiaaaaaiaawUfacaGLDbaaaSqaaiaad2 gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccaaMe8UaamOr amaaBaaaleaacaWGPbaabeaakiaacIcacaWGTbGaaiykaaaa@5361@   (26)

The new algorithm, multi-step DTM is simple for computational performance for all values of H. It is easily observed that if the step size H=T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 da9iaadsfaaaa@3A22@ , then the multi-step DTM reduces to the classical DTM. Using the operational properties of the differential transformation method, the differential transformation of the governing differential Eq. (10) is given as

( p+1 )( p+2 )( p+3 )F( p+3 ) + ( 1ϕ ) 2.5 { α 1 [ 3 l=0 p ( pl+1 )( pl+2 )F( l )F( pl+2 ) 2 l=0 p ( l+1 )( pl+1 )F( l+1 )F( pl+1 ) ] + α 2 Θ( p )cosγ( M 2 +D a 1 )F( p ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaam aabmaabaGaamiCaiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqa aiaadchacqGHRaWkcaaIYaaacaGLOaGaayzkaaWaaeWaaeaacaWGWb Gaey4kaSIaaG4maaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadcha cqGHRaWkcaaIZaaacaGLOaGaayzkaaaabaGaey4kaSYaaeWaaeaaca aIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaGaaiOlaiaaiwdaaaGcdaGadaabaeqabaGaeqySde2aaSbaaSqaai aaigdaaeqaaOWaamWaaeaacaaIZaWaaabCaeaadaqadaqaaiaadcha cqGHsislcaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaaba GaamiCaiabgkHiTiaadYgacqGHRaWkcaaIYaaacaGLOaGaayzkaaGa amOramaabmaabaGaamiBaaGaayjkaiaawMcaaiaadAeadaqadaqaai aadchacqGHsislcaWGSbGaey4kaSIaaGOmaaGaayjkaiaawMcaaaWc baGaamiBaiabg2da9iaaicdaaeaacaWGWbaaniabggHiLdGccqGHsi slcaaIYaWaaabCaeaadaqadaqaaiaadYgacqGHRaWkcaaIXaaacaGL OaGaayzkaaWaaeWaaeaacaWGWbGaeyOeI0IaamiBaiabgUcaRiaaig daaiaawIcacaGLPaaacaWGgbWaaeWaaeaacaWGSbGaey4kaSIaaGym aaGaayjkaiaawMcaaiaadAeadaqadaqaaiaadchacqGHsislcaWGSb Gaey4kaSIaaGymaaGaayjkaiaawMcaaaWcbaGaamiBaiabg2da9iaa icdaaeaacaWGWbaaniabggHiLdaakiaawUfacaGLDbaaaeaacqGHRa WkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccqqHyoqudaqadaqaaiaa dchaaiaawIcacaGLPaaacaWGJbGaam4BaiaadohacqaHZoWzcqGHsi sldaqadaqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG ebGaamyyamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawM caaiaadAeadaqadaqaaiaadchaaiaawIcacaGLPaaaaaGaay5Eaiaa w2haaiabg2da9iaaicdaaaaa@AC24@   (27)

Eq. (27) can be written as

F( p+3 )= ( 1ϕ ) 2.5 ( p+1 )( p+2 )( p+3 ) { α 1 [ 2 l=0 p ( l+1 )( pl+1 )F( l+1 )F( pl+1 ) 3 l=0 p ( pl+1 )( pl+2 )F( l )F( pl+2 ) ] α 2 Θ( p )cosγ+( M 2 +D a 1 )F( p ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaGaamiCaiabgUcaRiaaiodaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaaGcbaWaaeWaaeaacaWG WbGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamiCaiabgU caRiaaikdaaiaawIcacaGLPaaadaqadaqaaiaadchacqGHRaWkcaaI ZaaacaGLOaGaayzkaaaaamaacmaabaGaeqySde2aaSbaaSqaaiaaig daaeqaaOWaamWaaqaabeqaaiaaikdadaaeWbqaamaabmaabaGaamiB aiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadchacqGHsi slcaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadAeadaqadaqa aiaadYgacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamOramaabmaaba GaamiCaiabgkHiTiaadYgacqGHRaWkcaaIXaaacaGLOaGaayzkaaaa leaacaWGSbGaeyypa0JaaGimaaqaaiaadchaa0GaeyyeIuoaaOqaai abgkHiTiaaiodadaaeWbqaamaabmaabaGaamiCaiabgkHiTiaadYga cqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGWbGaeyOeI0 IaamiBaiabgUcaRiaaikdaaiaawIcacaGLPaaacaWGgbWaaeWaaeaa caWGSbaacaGLOaGaayzkaaGaamOramaabmaabaGaamiCaiabgkHiTi aadYgacqGHRaWkcaaIYaaacaGLOaGaayzkaaaaleaacaWGSbGaeyyp a0JaaGimaaqaaiaadchaa0GaeyyeIuoaaaGccaGLBbGaayzxaaGaey OeI0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaeuiMde1aaeWaaeaa caWGWbaacaGLOaGaayzkaaGaam4yaiaad+gacaWGZbGaeq4SdCMaey 4kaSYaaeWaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa amiraiaadggadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcaca GLPaaacaWGgbWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaacaGL7bGa ayzFaaaaaa@A9B3@   (28)

For the Eq.(11), we have the recursive relation in differential transform domain as

( p+1 )( p+2 )Θ( p+2 )+{ 3 α 3 Pr l=0 p ( l+1 )Θ( l+1 )F( pl ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGWbGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamiCaiab gUcaRiaaikdaaiaawIcacaGLPaaacqqHyoqudaqadaqaaiaadchacq GHRaWkcaaIYaaacaGLOaGaayzkaaGaey4kaSYaaiWaaeaacaaIZaGa eqySde2aaSbaaSqaaiaaiodaaeqaaOGaamiuaiaadkhadaaeWbqaam aabmaabaGaamiBaiabgUcaRiaaigdaaiaawIcacaGLPaaacqqHyoqu daqadaqaaiaadYgacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamOram aabmaabaGaamiCaiabgkHiTiaadYgaaiaawIcacaGLPaaaaSqaaiaa dYgacqGH9aqpcaaIWaaabaGaamiCaaqdcqGHris5aaGccaGL7bGaay zFaaGaeyypa0JaaGimaaaa@63EC@   (29)

which can be written as

Θ( p+2 )= 3 α 3 Pr ( p+1 )( p+2 ) { l=0 p ( l+1 )Θ( l+1 )F( pl ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMde1aae WaaeaacaWGWbGaey4kaSIaaGOmaaGaayjkaiaawMcaaiabg2da9maa laaabaGaeyOeI0IaaG4maiabeg7aHnaaBaaaleaacaaIZaaabeaaki aadcfacaWGYbaabaWaaeWaaeaacaWGWbGaey4kaSIaaGymaaGaayjk aiaawMcaamaabmaabaGaamiCaiabgUcaRiaaikdaaiaawIcacaGLPa aaaaWaaiWaaeaadaaeWbqaamaabmaabaGaamiBaiabgUcaRiaaigda aiaawIcacaGLPaaacqqHyoqudaqadaqaaiaadYgacqGHRaWkcaaIXa aacaGLOaGaayzkaaGaamOramaabmaabaGaamiCaiabgkHiTiaadYga aiaawIcacaGLPaaaaSqaaiaadYgacqGH9aqpcaaIWaaabaGaamiCaa qdcqGHris5aaGccaGL7bGaayzFaaaaaa@634D@   (30)

where

α 1 =( 1ϕ )+ϕ( ρ s ρ f ) α 2 =[ ( 1ϕ )+ϕ[ ( ρβ ) s / ( ρβ ) f ] ] α 3 =[ 1 [ ( 1ϕ )+ϕ[ ( ρ C p ) s / ( ρ C p ) f ] ] [ k s +( m1 ) k f ( m1 )ϕ( k f k s ) k s +( m1 ) k f +ϕ( k f k s ) ] ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai abeg7aHnaaBaaaleaacaaIXaaabeaakiabg2da9maabmaabaGaaGym aiabgkHiTiabew9aMbGaayjkaiaawMcaaiabgUcaRiabew9aMnaabm aabaWaaSaaaeaacqaHbpGCdaWgaaWcbaGaam4CaaqabaaakeaacqaH bpGCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaayzkaaaabaGaeq ySde2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaamWaaeaadaqadaqa aiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaacqGHRaWkcqaHvp GzdaWadaqaamaalyaabaWaaeWaaeaacqaHbpGCcqaHYoGyaiaawIca caGLPaaadaWgaaWcbaGaam4Caaqabaaakeaadaqadaqaaiabeg8aYj abek7aIbGaayjkaiaawMcaamaaBaaaleaacaWGMbaabeaaaaaakiaa wUfacaGLDbaaaiaawUfacaGLDbaaaeaacqaHXoqydaWgaaWcbaGaaG 4maaqabaGccqGH9aqpdaWadaqaamaalaaabaGaaGymaaqaamaadmaa baWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaey 4kaSIaeqy1dy2aamWaaeaadaWcgaqaamaabmaabaGaeqyWdiNaam4q amaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaamaaBaaaleaaca WGZbaabeaaaOqaamaabmaabaGaeqyWdiNaam4qamaaBaaaleaacaWG WbaabeaaaOGaayjkaiaawMcaamaaBaaaleaacaWGMbaabeaaaaaaki aawUfacaGLDbaaaiaawUfacaGLDbaaaaWaamWaaeaadaWcaaqaaiaa dUgadaWgaaWcbaGaam4CaaqabaGccqGHRaWkdaqadaqaaiaad2gacq GHsislcaaIXaaacaGLOaGaayzkaaGaam4AamaaBaaaleaacaWGMbaa beaakiabgkHiTmaabmaabaGaamyBaiabgkHiTiaaigdaaiaawIcaca GLPaaacqaHvpGzdaqadaqaaiaadUgadaWgaaWcbaGaamOzaaqabaGc cqGHsislcaWGRbWaaSbaaSqaaiaadohaaeqaaaGccaGLOaGaayzkaa aabaGaam4AamaaBaaaleaacaWGZbaabeaakiabgUcaRmaabmaabaGa amyBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGRbWaaSbaaSqaai aadAgaaeqaaOGaey4kaSIaeqy1dy2aaeWaaeaacaWGRbWaaSbaaSqa aiaadAgaaeqaaOGaeyOeI0Iaam4AamaaBaaaleaacaWGZbaabeaaaO GaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaiaawUfacaGLDbaaaaaa @B043@

Also, recursive relation for the boundary conditions in Eq. (13) are

F( p )=0F( 0 )=0,( p+1 )F( p+1 )=0F(1)=0,θ( p )=1θ( 0 )=1, F( 2 )=a,θ( 1 )=b, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aadAeadaqadaqaaiaadchaaiaawIcacaGLPaaacqGH9aqpcaaIWaGa eyO0H4TaamOramaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9i aaicdacaGGSaGaaGzbVpaabmaabaGaamiCaiabgUcaRiaaigdaaiaa wIcacaGLPaaacaWGgbWaaeWaaeaacaWGWbGaey4kaSIaaGymaaGaay jkaiaawMcaaiabg2da9iaaicdacaaMf8UaeyO0H4TaamOraiaacIca caaIXaGaaiykaiabg2da9iaaicdacaGGSaGaaGzbVlabeI7aXnaabm aabaGaamiCaaGaayjkaiaawMcaaiabg2da9iaaigdacaaMf8UaeyO0 H4TaeqiUde3aaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaG ymaiaacYcaaeaacaWGgbWaaeWaaeaacaaIYaaacaGLOaGaayzkaaGa eyypa0JaamyyaiaacYcacaaMf8UaeqiUde3aaeWaaeaacaaIXaaaca GLOaGaayzkaaGaeyypa0JaamOyaiaacYcaaaaa@7A71@   (31)

where a and b are unknown constants which will be found later.

It should be noted that the transformations which included “a” and “b” are established from values of  f ( 0 )=a and  θ ( 0 )=b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaga WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaaeypaiaadggacaqGGaGa aeyyaiaab6gacaqGKbGaaeiiaiqbeI7aXzaafaWaaeWaaeaacaaIWa aacaGLOaGaayzkaaGaeyypa0JaamOyaaaa@464B@

From Eq. (29), we have the following boundary conditions in differential transform domain

F[ 0 ]=0,F[ 1 ]=0,θ[ 0 ]=1,F[ 2 ]=a,θ[ 1 ]=b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaadm aabaGaaGimaaGaay5waiaaw2faaiabg2da9iaaicdacaGGSaGaaGzb VlaadAeadaWadaqaaiaaigdaaiaawUfacaGLDbaacqGH9aqpcaaIWa GaaiilaiaaywW7cqaH4oqCdaWadaqaaiaaicdaaiaawUfacaGLDbaa cqGH9aqpcaaIXaGaaiilaiaaywW7caWGgbWaamWaaeaacaaIYaaaca GLBbGaayzxaaGaeyypa0JaamyyaiaacYcacaaMf8UaeqiUde3aamWa aeaacaaIXaaacaGLBbGaayzxaaGaeyypa0JaamOyaaaa@5CB5@   (32)

Using p=0, 1, 2, 3, 4, 5, 6, 7… in the above recursive relations in Eq. (29), we arrived at

F[ 3 ]= 1 6 ( 1ϕ ) 5/2 α 2 cosγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaIZaaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaaeaacaaIXaaabaGaaGOnaaaapaGaaG5bV=qadaqadaWdae aapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIYaaapaqabaGccaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaH ZoWzaaa@50C2@

F[ 4 ]= 1 24 ( 1ϕ ) 5/2 b α 2 cosγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI0aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaaeaacaaIXaaabaGaaGOmaiaaisdaaaWdaiaayEW7peWaae Waa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOWdaiaadkgacaaMc8 +dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7peGa am4yaiaad+gacaWGZbWdaiabeo7aNbaa@540E@

F[ 5 ]= a( 2a ( 1ϕ ) 5/2 α 1 Da+ M 2 Da+1 ) 60Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI1aaacaGLBbGaayzxaaGaeyypa0ZaaSaa a8aabaWdbiaadggadaqadaWdaeaapeGaaGOmaiaadggapaGaaG5bV= qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiraiaadggacqGHRaWk caWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGebGaamyyaiabgU caRiaaigdaaiaawIcacaGLPaaaa8aabaWdbiaaiAdacaaIWaWdaiaa yEW7peGaamiraiaadggaaaaaaa@5948@

F[ 6 ]= ( Da M 2 +1 ) ( 1ϕ ) 5/2 α 2 cosγ 720Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI2aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaWGebGaamyya8aacaaMh8 +dbiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaigda aiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikda aaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4yai aad+gacaWGZbWdaiabeo7aNjaayEW7aeaapeGaaG4naiaaikdacaaI WaWdaiaayEW7peGaamiraiaadggaaaaaaa@5BE6@

F[ 7 ]= ( 1ϕ ) 5/2 α 2 bcosγ( 40Da ( 1ϕ ) 5/2 Rda α 1 30 ( 1ϕ ) 5/2 α 1 aDa +4Da M 2 Rd18DaPra α 3 +3Da M 2 +4Rd+3 ) ( 15120+20160Rd )Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI3aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dy gacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOm aaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7ca WGIbWdbiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbmaabmaa paabaeqabaWdbiabgkHiTiaaisdacaaIWaWdaiaayEW7peGaamirai aadggapaGaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9a MbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaik daaaGccaWGsbGaamiza8aacaaMh8+dbiaadggacqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaG4maiaaicdapaGaaG 5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXo qypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiaadggacaWG ebGaamyyaaqaaiabgUcaRiaaisdapaGaaG5bV=qacaWGebGaamyya8 aacaaMh8+dbiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfa caWGKbGaeyOeI0IaaGymaiaaiIdapaGaaG5bV=qacaWGebGaamyya8 aacaaMh8+dbiGaccfacaGGYbWdaiaayEW7peGaamyyaiabeg7aH9aa daWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaaIZaWdaiaayE W7peGaamiraiaadggapaGaaG5bV=qacaWGnbWdamaaCaaaleqabaWd biaaikdaaaGccqGHRaWkcaaI0aWdaiaayEW7peGaamOuaiaadsgacq GHRaWkcaaIZaaaaiaawIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qa caaIXaGaaGynaiaaigdacaaIYaGaaGimaiabgUcaRiaaikdacaaIWa GaaGymaiaaiAdacaaIWaWdaiaayEW7peGaamOuaiaadsgaaiaawIca caGLPaaacaWGebGaamyyaaaaaaa@B218@

F[ 8 ]= 1 ( 120960+161280Rd )D a 2 ( 6a+8D a 2 M 4 Rda+16Da M 2 Rda144 ( 1ϕ ) 5/2 α 1 a 2 Da+312D a 2 a 3 ϕ 5 α 1 2 1560D a 2 a 3 ϕ 4 α 1 2 +3120D a 2 a 3 ϕ 3 α 1 2 3120D a 2 a 3 ϕ 2 α 1 2 +1560D a 2 a 3 ϕ α 1 2 416D a 2 Rd a 3 α 1 2 192D a 2 M 2 ( 1ϕ ) 5/2 Rd a 2 α 1 15D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 α 1 α 2 2 9D a 2 Prb (cosγ) 2 α 2 2 α 3 +100D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ α 1 α 2 2 200D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 2 α 1 α 2 2 100D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 4 α 1 α 2 2 +200D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 3 α 1 α 2 2 +20D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 5 α 1 α 2 2 192Da ( 1ϕ ) 5/2 Rd a 2 α 1 144D a 2 M 2 ( 1ϕ ) 5/2 a 2 α 1 4160D a 2 Rd a 3 ϕ 2 α 1 2 +2080D a 2 Rd a 3 ϕ α 1 2 +4160D a 2 Rd a 3 ϕ 3 α 1 2 +416D a 2 Rd a 3 ϕ 5 α 1 2 2080D a 2 Rd a 3 ϕ 4 α 1 2 +8Rda+12Da M 2 a312D a 2 a 3 α 1 2 +6D a 2 M 4 a20D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 α 1 α 2 2 +75D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ α 1 α 2 2 +150D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 3 α 1 α 2 2 150D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 2 α 1 α 2 2 +15D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 5 α 1 α 2 2 75D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 4 α 1 α 2 2 +9D a 2 Prb (cosγ) 2 ϕ 5 α 2 2 α 3 45D a 2 Prb (cosγ) 2 ϕ 4 α 2 2 α 3 +90D a 2 Prb (cosγ) 2 ϕ 3 α 2 2 α 3 90D a 2 Prb (cosγ) 2 ϕ 2 α 2 2 α 3 +45D a 2 Prb (cosγ) 2 ϕ α 2 2 α 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI4aaacaGLBbGaayzxaaGaeyypa0ZaaSaa a8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaaIXaGaaGOmai aaicdacaaI5aGaaGOnaiaaicdacqGHRaWkcaaIXaGaaGOnaiaaigda caaIYaGaaGioaiaaicdapaGaaG5bV=qacaWGsbGaamizaaGaayjkai aawMcaaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWd amaabmaaeaqabeaapeGaaGOna8aacaaMh8+dbiaadggacqGHRaWkca aI4aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOm aaaakiaad2eapaWaaWbaaSqabeaapeGaaGinaaaakiaadkfacaWGKb WdaiaayEW7peGaamyyaiabgUcaRiaaigdacaaI2aWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qacaWGnbWdamaaCaaaleqabaWdbiaaik daaaGccaWGsbGaamiza8aacaaMh8+dbiaadggacqGHsislcaaIXaGa aGinaiaaisdapaGaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTi abew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4l aiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcca aMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadseacaWG HbGaey4kaSIaaG4maiaaigdacaaIYaWdaiaayEW7peGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaa peGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaapeGaeyOeI0IaaGymaiaaiwdacaaI2aGaaGima8 aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGc caWGHbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHvpGzpaWaaWbaaS qabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aa beaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIZaGaaGymai aaikdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaa peGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaG4maaaakiabew 9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaa peGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTi aaiodacaaIXaGaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOGaamyya8aadaahaaWcbeqaa8qaca aIZaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaey4kaSIaaGymaiaaiwdacaaI2aGaaGima8aacaaMh8+dbiaa dseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGHbWdamaaCa aaleqabaWdbiaaiodaaaGccqaHvpGzpaGaaG5bV=qacqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaa Gcpaqaa8qacqGHsislcaaI0aGaaGymaiaaiAdapaGaaG5bV=qacaWG ebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapa GaaG5bV=qacaWGHbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaeyOeI0IaaGymaiaaiMdacaaIYaWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabe aapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dyga caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaa aakiaadkfacaWGKbWdaiaayEW7peGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbi abgkHiTiaaigdacaaI1aWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeq y1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGa aGOmaaaakiaadkgacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNj aacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaa peGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGH sislcaaI5aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaape GaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaamOyaiaacIcacaWG JbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaik daaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWc beqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWdae qaaOWdbiabgUcaRiaaigdacaaIWaGaaGima8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG ymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadk gacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWc beqaa8qacaaIYaaaaOGaeqy1dy2daiaayEW7peGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacqGHsislcaaIYaGaaGimaiaaicdapaGaaG5bV=qacaWGebGaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacq GHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGyn aiaac+cacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbGaai ikaiaadogacaWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaa peGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqy paWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaeyOeI0IaaGymaiaaicdacaaIWaWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXa GaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa iwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamOyai aacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqa baWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaaki abeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqyS de2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaG OmaaaaaOWdaeaapeGaey4kaSIaaGOmaiaaicdacaaIWaWdaiaayEW7 peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapa qaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaa leqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayE W7peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiyk amaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaape GaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaa yEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaS qabeaapeGaaGOmaaaakiabgUcaRiaaikdacaaIWaWdaiaayEW7peGa amiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8 qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7pe GaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaa CaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaG ynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7 peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabe aapeGaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGymaiaaiMdacaaIYaWd aiaayEW7peGaamiraiaadggapaGaaG5bV=qadaqadaWdaeaapeGaaG ymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWd biaaigdaa8aabeaak8qacqGHsislcaaIXaGaaGinaiaaisdapaGaaG 5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyt a8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacq GHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGyn aiaac+cacaaIYaaaaOGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO GaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaa isdacaaIXaGaaGOnaiaaicdapaGaaG5bV=qacaWGebGaamyya8aada ahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWG HbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHvpGzpaWaaWbaaSqabe aapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgUcaRiaaikdaca aIWaGaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGHbWdam aaCaaaleqabaWdbiaaiodaaaGccqaHvpGzpaGaaG5bV=qacqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaey4kaSIaaGinaiaaigdacaaI2aGaaGima8aacaaMh8+dbiaa dseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8 aacaaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaG4maaaakiabew9a M9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa isdacaaIXaGaaGOna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaale qabaWdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWa aWbaaSqabeaapeGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qaca aI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWba aSqabeaapeGaaGOmaaaakiabgkHiTiaaikdacaaIWaGaaGioaiaaic dapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaamOuaiaadsgapaGaaG5bV=qacaWGHbWdamaaCaaaleqabaWdbi aaiodaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7a H9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaik daaaaak8aabaWdbiabgUcaRiaaiIdapaGaaG5bV=qacaWGsbGaamiz a8aacaaMh8+dbiaadggacqGHRaWkcaaIXaGaaGOma8aacaaMh8+dbi aadseacaWGHbWdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaI YaaaaOGaamyyaiabgkHiTiaaiodacaaIXaGaaGOma8aacaaMh8+dbi aadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGHbWdamaa CaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXa aapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGOna8aa caaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcca WGnbWdamaaCaaaleqabaWdbiaaisdaaaGccaWGHbGaeyOeI0IaaGOm aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaam OuaiaadsgapaGaaG5bV=qacaWGIbGaaiikaiaadogacaWGVbGaam4C a8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaO WdaeaapeGaey4kaSIaaG4naiaaiwdapaGaaG5bV=qacaWGebGaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacq GHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGyn aiaac+cacaaIYaaaaOGaamOyaiaacIcacaWGJbGaam4Baiaadohapa Gaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGa aG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8 +dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqa baWdbiaaikdaaaGccqGHRaWkcaaIXaGaaGynaiaaicdapaGaaG5bV= qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aa baWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaS qabeaapeGaaGynaiaac+cacaaIYaaaaOGaamOyaiaacIcacaWGJbGa am4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaa GccqaHvpGzpaWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWg aaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaale aapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaa peGaeyOeI0IaaGymaiaaiwdacaaIWaWdaiaayEW7peGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaakiaadkgacaGGOaGaam4yaiaad+gacaWGZbWd aiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2dam aaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaI XaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8 aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIXaGaaGyn a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGIbGaai ikaiaadogacaWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaa peGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqy paWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qacqGHsislcaaI3aGaaGyna8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaG ymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaI1aGaai4laiaaikdaaaGccaWGIbGaaiikaiaadogacaWGVbGaam 4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9a M9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI YaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGyoa8 aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGc ciGGqbGaaiOCa8aacaaMh8+dbiaadkgacaGGOaGaam4yaiaad+gaca WGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1 dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2d amaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaaisdacaaI1a WdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaa kiGaccfacaGGYbWdaiaayEW7peGaamOyaiaacIcacaWGJbGaam4Bai aadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaH vpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaey4kaSIaaGyoai aaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaI YaaaaOGaciiuaiaackhapaGaaG5bV=qacaWGIbGaaiikaiaadogaca WGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaa kiabew9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBa aaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiab eg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHsislcaaI5a GaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaadkgacaGGOaGaam4yai aad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2damaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaS baaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGa eqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaais dacaaI1aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGa aGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaamOyaiaacIcacaWGJb Gaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikda aaGccqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYa aapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaa leaapeGaaG4maaWdaeqaaaaakiaawIcacaGLPaaaaaa@016B@

F[ 9 ]= ( 1ϕ ) 5/2 α 2 cosγ ( 1088640+1451520Rd )D a 2 ( 3252 ( 1ϕ ) 5/2 α 1 aDa+216D a 2 a 2 ϕ 5 α 1 2 1080D a 2 a 2 ϕ 4 α 1 2 +2160D a 2 a 2 ϕ 3 α 1 2 2160D a 2 a 2 ϕ 2 α 1 2 +1080D a 2 a 2 ϕ α 1 2 288D a 2 Rd a 2 α 1 2 15D a 2 b 2 cosγ ϕ 5 α 1 α 2 +75D a 2 b 2 cosγ ϕ 4 α 1 α 2 150D a 2 b 2 cosγ ϕ 3 α 1 α 2 +150D a 2 b 2 cosγ ϕ 2 α 1 α 2 +20D a 2 Rd b 2 cosγ α 1 α 2 75D a 2 b 2 cosγϕ α 1 α 2 336D a 2 M 2 ( 1ϕ ) 5/2 Rda α 1 +8Da M 2 Rd+200D a 2 Rd b 2 cosγ ϕ 2 α 1 α 2 +100D a 2 Rd b 2 cosγ ϕ 4 α 1 α 2 1440D a 2 Rd a 2 ϕ 4 α 1 2 200D a 2 Rd b 2 cosγ ϕ 3 α 1 α 2 +9D a 2 ( 1ϕ ) 5/2 Pr b 2 cosγ α 2 α 3 20D a 2 Rd b 2 cosγ ϕ 5 α 1 α 2 100D a 2 Rd b 2 cosγϕ α 1 α 2 336Da ( 1ϕ ) 5/2 Rda α 1 +288D a 2 Rd a 2 ϕ 5 α 1 2 +15D a 2 b 2 cosγ α 1 α 2 252D a 2 M 2 ( 1ϕ ) 5/2 a α 1 2880D a 2 Rd a 2 ϕ 2 α 1 2 +1440D a 2 Rd a 2 ϕ α 1 2 +2880D a 2 Rd a 2 ϕ 3 α 1 2 +6 M 2 Da+3D a 2 M 4 +4D a 2 M 4 Rd216D a 2 a 2 α 1 2 +4Rd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaI5aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dy gacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOm aaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7pe Gaam4yaiaad+gacaWGZbWdaiabeo7aNbqaa8qadaqadaWdaeaapeGa aGymaiaaicdacaaI4aGaaGioaiaaiAdacaaI0aGaaGimaiabgUcaRi aaigdacaaI0aGaaGynaiaaigdacaaI1aGaaGOmaiaaicdapaGaaG5b V=qacaWGsbGaamizaaGaayjkaiaawMcaaiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaaaaOWaaeWaaqaabeqaaiaaiodacqGHsisl caaIYaGaaGynaiaaikdapaGaaG5bV=qadaqadaWdaeaapeGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI 1aGaai4laiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapa qabaGccaaMh8+dbiaadggacaWGebGaamyyaiabgUcaRiaaikdacaaI XaGaaGOna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGz paWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbi aaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaI XaGaaGimaiaaiIdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaW baaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaGOm aaaakiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2dam aaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaa kiabgUcaRiaaikdacaaIXaGaaGOnaiaaicdapaGaaG5bV=qacaWGeb Gaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaa GccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqa a8qacaaIYaaaaaGcpaqaa8qacqGHsislcaaIYaGaaGymaiaaiAdaca aIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOm aaaakiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9aada ahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGym aaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaigdaca aIWaGaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO Gaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaikdacaaI4a GaaGioa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kmaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaGyna8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG IbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaadohapa Gaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaa kiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeq ySde2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgUcaRiaa iEdacaaI1aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaape GaaGOmaaaakiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadoga caWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbe qaa8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqa aOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpe GaeyOeI0IaaGymaiaaiwdacaaIWaWdaiaayEW7peGaamiraiaadgga paWaaWbaaSqabeaapeGaaGOmaaaakiaadkgapaWaaWbaaSqabeaape GaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiab ew9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaale aapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaey4kaSIaaGymaiaaiwdacaaIWaWdaiaayE W7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkga paWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aacq aHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGa eqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXo qypaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaey4kaSIaaGOm aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdC2dbiabeg 7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2d amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaiEdacaaI1a WdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaa kiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam 4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aa daWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBa aaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaiodacaaIZaGaaGOn a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGa aGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaa dggacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaey 4kaSIaaGioa8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamyt a8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgacqGHRaWkca aIYaGaaGimaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbWdam aaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4S dCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg 7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2d amaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaigdacaaIWa GaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadkgapaWaaWbaaSqabe aapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+d biabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyOeI0IaaGymaiaaisdacaaI0aGaaG ima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaWbaaSqabeaape GaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqyS de2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaG OmaaaaaOWdaeaapeGaeyOeI0IaaGOmaiaaicdacaaIWaWdaiaayEW7 peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfaca WGKbWdaiaayEW7peGaamOya8aadaahaaWcbeqaa8qacaaIYaaaaOGa am4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCa aaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaa paqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabe aak8qacqGHRaWkcaaI5aWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeq y1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGa aGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaamOya8aadaahaaWcbe qaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7 peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyOeI0IaaGOm aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV= qacqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9aadaWg aaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaale aapeGaaGOmaaWdaeqaaaGcbaWdbiabgkHiTiaaigdacaaIWaGaaGim a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGsbGaamiza8aacaaMh8+dbiaadkgapaWaaWbaaSqabeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzpeGaeqy1dy2dai aayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5b V=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0 IaaG4maiaaiodacaaI2aWdaiaayEW7peGaamiraiaadggapaGaaG5b V=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGa amiza8aacaaMh8+dbiaadggacqaHXoqypaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaey4kaSIaaGOmaiaaiIdacaaI4aWdaiaayEW7peGa amiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKb WdaiaayEW7peGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1 dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qa cqGHRaWkcaaIXaGaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGIbWdamaaCaaaleqabaWdbiaaikda aaGccaWGJbGaam4BaiaadohapaGaeq4SdC2dbiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiabgkHiTiaaikdacaaI1aGaaGOma8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG nbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI 1aGaai4laiaaikdaaaGccaWGHbGaeqySde2damaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabgkHiTiaaikdacaaI4aGaaGioaiaaicdapaGa aG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaam OuaiaadsgapaGaaG5bV=qacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aada WgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGc cqGHRaWkcaaIXaGaaGinaiaaisdacaaIWaWdaiaayEW7peGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaa yEW7peGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2dai aayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWba aSqabeaapeGaaGOmaaaaaOWdaeaapeGaey4kaSIaaGOmaiaaiIdaca aI4aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWd biaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaIZaaa aOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRiaaiAdapaGaaG5bV=qacaWGnbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGebGaamyyaiabgUcaRiaaiodapa GaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGa amyta8aadaahaaWcbeqaa8qacaaI0aaaaOGaey4kaSIaaGina8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG nbWdamaaCaaaleqabaWdbiaaisdaaaGccaWGsbGaamizaiabgkHiTi aaikdacaaIXaGaaGOna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaa leqabaWdbiaaikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqa a8qacaaIYaaaaOGaey4kaSIaaGina8aacaaMh8+dbiaadkfacaWGKb aaaiaawIcacaGLPaaaaaa@153E@

F[ 10 ]= ( 1ϕ ) 5/2 α 2 cosy 3628800 ( 3+4Rd ) 2 D a 2 ( 77760D a 2 Rd a 2 bϕ α 1 2 +9b+5832D a 2 a 2 b α 1 2 +16D a 2 M 4 R d 2 b+24D a 2 M 4 Rdb +32Da M 2 R d 2 b+48Da M 2 Rdb+378Dacosγ α 1 α 2 378D a 2 M 2 cosγ ϕ 5 α 1 α 2 +1890D a 2 M 2 cosγ ϕ 4 α 1 α 2 672DaR d 2 cosγ ϕ 5 α 1 α 2 3780D a 2 M 2 cosγ ϕ 3 α 1 α 2 +3360DaR d 2 cosγ ϕ 4 α 1 α 2 1008DaRdcosγ ϕ 5 α 1 α 2 +672D a 2 M 2 R d 2 cosγ α 1 α 2 6720DaR d 2 cosγ ϕ 3 α 1 α 2 +5040DaRdcosγ ϕ 4 α 1 α 2 10368D a 2 R d 2 a 2 b ϕ 5 α 1 2 +51840D a 2 R d 2 a 2 b ϕ 4 α 1 2 15552D a 2 Rd a 2 b ϕ 5 α 1 2 103680D a 2 R d 2 a 2 b ϕ 3 α 1 2 +77760D a 2 Rd a 2 b ϕ 4 α 1 2 +103680D a 2 R d 2 a 2 b ϕ 2 α 1 2 155520D a 2 Rd a 2 b ϕ 3 α 1 2 51840D a 2 R d 2 a 2 bϕ α 1 2 +155520D a 2 Rd a 2 b ϕ 2 α 1 2 +5328D a 2 ( 1ϕ ) 5/2 PrRd a 2 b α 1 α 3 +3780Dacosγ ϕ 2 α 1 α 2 +672DaR d 2 cosγ α 1 α 2 +378D a 2 M 2 cosγ α 1 α 2 +3360D a 2 M 2 R d 2 cosγ ϕ 4 α 1 α 2 3780Dacosγ ϕ 3 α 1 α 2 +1890Dacosγ ϕ 4 α 1 α 2 +3240D a 2 Pr 2 a 2 b α 3 2 378Dacosγ ϕ 5 α 1 α 2 +10080D a 2 M 2 Rdcosγ ϕ 2 α 1 α 2 3360D a 2 M 2 R d 2 cosγϕ α 1 α 2 10080D a 2 M 2 Rdcosγ ϕ 3 α 1 α 2 +6720D a 2 M 2 R d 2 cosγ ϕ 2 α 1 α 2 +5040D a 2 M 2 Rdcosγ ϕ 4 α 1 α 2 6720D a 2 M 2 R d 2 cosγ ϕ 3 α 1 α 2 1008D a 2 M 2 Rdcosγ ϕ 5 α 1 α 2 3408Da ( 1ϕ ) 5/2 Rdab α 1 +3780D a 2 M 2 cosγ ϕ 2 α 1 α 2 2272Da ( 1ϕ ) 5/2 R d 2 ab α 1 1278D a 2 M 2 ( 1ϕ ) 5/2 ab α 1 5040DaRdcosγϕ α 1 α 2 144DaPrRdab α 3 +10080DaRdcosγ ϕ 2 α 1 α 2 3360DaR d 2 cosγϕ α 1 α 2 10080DaRdcosγ ϕ 3 α 1 α 2 +6720DaR d 2 cosγ ϕ 2 α 1 α 2 1890D a 2 M 2 cosγϕ α 1 α 2 +1008D a 2 M 2 Rdcosγ α 1 α 2 672D a 2 M 2 R d 2 cosγ ϕ 5 α 1 α 2 108D a 2 M 2 Prab α 3 +9D a 2 M 4 b+18Da M 2 b1278Da ( 1ϕ ) 5/2 ab α 1 108DaPrab α 3 +1008DaRdcosγ α 1 α 2 1890Dacosγϕ α 1 α 2 +58320D a 2 a 2 b ϕ 2 α 1 2 29160D a 2 a 2 bϕ α 1 2 +29160D a 2 a 2 b ϕ 4 α 1 2 58320D a 2 a 2 b ϕ 3 α 1 2 5832D a 2 a 2 b ϕ 5 α 1 2 +10368D a 2 R d 2 a 2 b α 1 2 +15552D a 2 Rd a 2 b α 1 2 +16R d 2 b+24Rdb5040D a 2 M 2 Rdcosγϕ α 1 α 2 144D a 2 M 2 PrRdab α 3 +3996D a 2 ( 1ϕ ) 5/2 Pr a 2 b α 1 α 3 3408D a 2 M 2 ( 1ϕ ) 5/2 Rdab α 1 2272D a 2 M 2 ( 1ϕ ) 5/2 R d 2 ab α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWaamWaaeaacaaIXaGaaGimaaGaay5waiaaw2faaiabg2da 9iabgkHiTmaalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTi abew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4l aiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcca aMh8+dbiaadogacaWGVbGaam4CaiaadMhaa8aabaWdbiaaiodacaaI 2aGaaGOmaiaaiIdacaaI4aGaaGimaiaaicdapaGaaG5bV=qadaqada WdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV=qacaWGsbGaamiz aaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcpaWaaeWaaqaabeqa a8qacqGHsislcaaI3aGaaG4naiaaiEdacaaI2aGaaGima8aacaaMh8 +dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGa amiza8aacaaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkgacqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI XaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGyoa8 aacaaMh8+dbiaadkgacqGHRaWkcaaI1aGaaGioaiaaiodacaaIYaWd aiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkgacqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaO Gaey4kaSIaaGymaiaaiAdapaGaaG5bV=qacaWGebGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaI0a aaaOGaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkga cqGHRaWkcaaIYaGaaGina8aacaaMh8+dbiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaisda aaGccaWGsbGaamiza8aacaaMh8+dbiaadkgaaeaacqGHRaWkcaaIZa GaaGOma8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamyta8aa daahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqabe aapeGaaGOmaaaakiaadkgacqGHRaWkcaaI0aGaaGioa8aacaaMh8+d biaadseacaWGHbWdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qaca aIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbGaey4kaSIaaG4m aiaaiEdacaaI4aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qaca WGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHsislcaaIZaGaaG4naiaaiIdapaGa aG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaam yta8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWd aiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaa GccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiab eg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacqGHRaWkca aIXaGaaGioaiaaiMdacaaIWaWdaiaayEW7peGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaG OmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9a M9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaeyOeI0IaaGOnaiaaiEdacaaIYaWdaiaayEW7pe GaamiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aadaahaaWcbeqa a8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7pe Gaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHsislcaaIZaGaaG4naiaaiIdacaaI WaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaa aakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGa am4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qaca aIZaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5b V=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaey 4kaSIaaG4maiaaiodacaaI2aGaaGima8aacaaMh8+dbiaadseacaWG HbWdaiaayEW7peGaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaa aakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aa daahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaG ymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaa paqabaGcpeGaeyOeI0IaaGymaiaaicdacaaIWaGaaGioa8aacaaMh8 +dbiaadseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qa caWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaW baaSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdae qaaOWdbiabgUcaRiaaiAdacaaI3aGaaGOma8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaale qabaWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaI YaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqySde 2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWa aSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaeyOeI0IaaGOnaiaaiE dacaaIYaGaaGima8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGa amOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVb Gaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qa caaIZaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG 5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4k aSIaaGynaiaaicdacaaI0aGaaGima8aacaaMh8+dbiaadseacaWGHb WdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qacaWGJbGaam4Baiaa dohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaG inaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7 peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTi aaigdacaaIWaGaaG4maiaaiAdacaaI4aWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccaWGIbGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXo qypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaI YaaaaaGcpaqaa8qacqGHRaWkcaaI1aGaaGymaiaaiIdacaaI0aGaaG ima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9aM9aadaahaaWc beqaa8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdacaaI1aGa aGynaiaaiwdacaaIYaWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9aM9aadaahaaWcbe qaa8qacaaI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqa aOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdacaaIWaGaaG 4maiaaiAdacaaI4aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOy aiabew9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaey4kaSIaaG4naiaaiEdacaaI3aGaaGOnaiaaicdapaGaaG 5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOu aiaadsgapaGaaG5bV=qacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGIbGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaey4kaSIaaGymaiaaicdacaaIZaGaaGOnaiaaiIdacaaIWaWd aiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGHbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGIbGaeqy1dy2damaaCaaaleqaba WdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGc daahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaaiwdacaaI1a GaaGynaiaaikdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9aM9aadaahaaWc beqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGyn aiaaigdacaaI4aGaaGinaiaaicdapaGaaG5bV=qacaWGebGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqa beaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkgacqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI XaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGymai aaiwdacaaI1aGaaGynaiaaikdacaaIWaWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayE W7peGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9a M9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa iwdacaaIZaGaaGOmaiaaiIdapaGaaG5bV=qacaWGebGaamyya8aada ahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsisl cqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+ cacaaIYaaaaOGaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aa caaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkgacq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7a H9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqaa8qacqGHRaWkcaaIZa GaaG4naiaaiIdacaaIWaWdaiaayEW7peGaamiraiaadggapaGaaG5b V=qacaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpa WaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaa WdaeqaaOWdbiabgUcaRiaaiAdacaaI3aGaaGOma8aacaaMh8+dbiaa dseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaWaaWbaaSqabeaape GaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiab eg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde 2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiodacaaI 3aGaaGioa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHXoqypaWaaSbaaSqaa8 qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGHRaWkcaaIZaGaaG4maiaaiAdacaaIWaWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaa d2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdCMa aG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgkHiTiaaiodacaaI3a GaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaa dogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaa Wcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaey4kaSIaaGymaiaaiIdacaaI5aGaaGima8aacaaMh8+dbiaa dseacaWGHbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNj aayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aada WgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaaIZaGaaGOmaiaa isdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaape GaaGOmaaaak8aadaWfGaqaa8qaciGGqbGaaiOCaaWcpaqabeaapeGa aGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkgacq aHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaOGaeyOeI0IaaG4maiaaiEdacaaI4aWdaiaayEW7peGaam iraiaadggapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdCMa aG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgUcaRiaaigdacaaIWa GaaGimaiaaiIdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaa aakiaadkfacaWGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiab eo7aN9qacqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaiodacaaIZaGaaG OnaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuai aadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4C a8aacqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aada WgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaa leaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaaigdacaaIWaGaaGimai aaiIdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaa peGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadk facaWGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aN9qa cqaHvpGzpaWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaa peGaaGOmaaWdaeqaaaGcbaWdbiabgUcaRiaaiAdacaaI3aGaaGOmai aaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaI YaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaads gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aa cqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaO GaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaH XoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGynai aaicdacaaI0aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaa leqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGsbGaamiza8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaH ZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqy paWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaGOnaiaaiE dacaaIYaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcca WGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+ga caWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbi aaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacq GHsislcaaIXaGaaGimaiaaicdacaaI4aWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabe aapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaam4yaiaad+ga caWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbi aaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsi slcaaIZaGaaGinaiaaicdacaaI4aWdaiaayEW7peGaamiraiaadgga paGaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGc caWGsbGaamiza8aacaaMh8+dbiaadggacaWGIbGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaiodacaaI3aGaaGio aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaa d+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqaba WdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGc caaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8 qacqGHsislcaaIYaGaaGOmaiaaiEdacaaIYaWdaiaayEW7peGaamir aiaadggapaGaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew 9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaa ikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam yyaiaadkgacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa eyOeI0IaaGymaiaaikdacaaI3aGaaGioa8aacaaMh8+dbiaadseaca WGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqa baWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikda aaGccaWGHbGaamOyaiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacqGHsislcaaI1aGaaGimaiaaisdacaaIWaWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaado gacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+d biabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeq ySde2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgkHiTiaa igdacaaI0aGaaGina8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7pe GaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaa dggacaWGIbGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbi abgUcaRiaaigdacaaIWaGaaGimaiaaiIdacaaIWaWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaado gacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWc beqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyOeI0IaaG4maiaaiodacaaI2aGaaGima8aacaaMh8+dbiaads eacaWGHbWdaiaayEW7peGaamOuaiaadsgapaWaaWbaaSqabeaapeGa aGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew 9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgkHiTiaaigdacaaIWaGaaGimaiaaiIdacaaIWaWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaado gacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWc beqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaaa keaapeGaey4kaSIaaGOnaiaaiEdacaaIYaGaaGima8aacaaMh8+dbi aadseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaWaaWbaaSqabeaa peGaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbi abew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaa leaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyOeI0IaaGymaiaaiIdacaaI5aGaaGim a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaa dohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaGaaG5bV=qacqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWg aaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaaic dacaaI4aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGa aGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfaca WGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7 peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaeyOeI0Ia aGOnaiaaiEdacaaIYaWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaa kiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam 4BaiaadohapaGaeq4SdC2dbiabew9aM9aadaahaaWcbeqaa8qacaaI 1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV= qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0Ia aGymaiaaicdacaaI4aWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaa kiGaccfacaGGYbWdaiaayEW7peGaamyyaiaadkgacqaHXoqypaWaaS baaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaGyoa8aacaaMh8+d biaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdam aaCaaaleqabaWdbiaaisdaaaGccaWGIbGaey4kaSIaaGymaiaaiIda paGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaS qabeaapeGaaGOmaaaakiaadkgacqGHsislcaaIXaGaaGOmaiaaiEda caaI4aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qadaqadaWdae aapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaI1aGaai4laiaaikdaaaGccaWGHbGaamOyaiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqGHsislcaaIXaGa aGimaiaaiIdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiGacc facaGGYbWdaiaayEW7peGaamyyaiaadkgacqaHXoqypaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaey4kaSIaaGymaiaaicdacaaIWaGaaG ioa8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamOuaiaadsga paGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7a H9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaaIXaGaaG ioaiaaiMdacaaIWaWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qa caWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaGaaG 5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+d biabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkca aI1aGaaGioaiaaiodacaaIYaGaaGima8aacaaMh8+dbiaadseacaWG HbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGHbWdamaaCaaaleqaba WdbiaaikdaaaGccaWGIbGaeqy1dy2damaaCaaaleqabaWdbiaaikda aaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbe qaa8qacaaIYaaaaOGaeyOeI0IaaGOmaiaaiMdacaaIXaGaaGOnaiaa icdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYa aaaOGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9a M9aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakm aaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgUcaRiaaikdacaaI 5aGaaGymaiaaiAdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaW baaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaGOm aaaakiaadkgacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg 7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaGccqGHsislcaaI1aGaaGioaiaaiodacaaIYaGaaGima8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG HbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGIbGaeqy1dy2damaaCa aaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaa paqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGynaiaaiI dacaaIZaGaaGOma8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcca WGIbGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaO Gaey4kaSIaaGymaiaaicdacaaIZaGaaGOnaiaaiIdapaGaaG5bV=qa caWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaads gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaa peGaaGOmaaaakiaadkgacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapa qabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGHRaWkcaaI XaGaaGynaiaaiwdacaaI1aGaaGOma8aacaaMh8+dbiaadseacaWGHb WdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8+d biaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkgacqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSIaaGymaiaaiAdapaGaaG5bV=qacaWGsbGaamiza8aada ahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabgUcaRiaaikdacaaI0aWd aiaayEW7peGaamOuaiaadsgapaGaaG5bV=qacaWGIbGaeyOeI0IaaG ynaiaaicdacaaI0aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaik daaaGccaWGsbGaamiza8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aa cqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiabgkHiTiaaigdacaaI0aGaaGina8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG nbWdamaaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8 +dbiaadkfacaWGKbWdaiaayEW7peGaamyyaiaadkgacqaHXoqypaWa aSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaey4kaSIaaG4maiaaiM dacaaI5aGaaGOna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikda aaGcciGGqbGaaiOCa8aacaaMh8+dbiaadggapaWaaWbaaSqabeaape GaaGOmaaaakiaadkgacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqa baGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaak8 qacqGHsislcaaIZaGaaGinaiaaicdacaaI4aWdaiaayEW7peGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaS qabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1 dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaG OmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyyaiaadkgacqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaGOmaiaaik dacaaI3aGaaGOma8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcda qadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamyyaiaadkgacqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaaaaOGaayjkaiaawMcaaaaa@2AD9@

In the same manner, the expressions for F [11], F[12], F[13], F[14], F[15] are found but they are too large to be included in this paper.

Also, using p=0, 1, 2, 3… in the above recursive relations in Eq. (30), we arrived at following solutions

Θ[ 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaikdaaiaawUfacaGLDbaacqGH9aqpcaaI Waaaaa@3D7B@

Θ[ 3 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiodaaiaawUfacaGLDbaacqGH9aqpcaaI Waaaaa@3D7C@

Θ[ 4 ]= 3 4 ( α 3 Prab 3+4Rd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaisdaaiaawUfacaGLDbaacqGH9aqpcqGH sisldaWcaaqaaiaaiodaaeaacaaI0aaaamaabmaabaWaaSaaa8aaba Wdbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaakiaayEW7peGa ciiuaiaackhapaGaaG5bV=qacaWGHbGaaGPaVlaadkgaa8aabaWdbi aaiodacqGHRaWkcaaI0aWdaiaayEW7peGaamOuaiaadsgaaaaacaGL OaGaayzkaaaaaa@5211@

Θ[ 5 ]= 3 α 3 Pr ( 1ϕ ) 5/2 b α 2 cosγ 120+160Rd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiwdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaaG4ma8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbi aaiodaa8aabeaakiaayEW7peGaciiuaiaackhapaGaaG5bV=qadaqa daWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcpaGaamOyaiaaykW7 peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOGaaG5bV=qaca WGJbGaam4BaiaadohapaGaeq4SdCMaaG5bVdqaa8qacaaIXaGaaGOm aiaaicdacqGHRaWkcaaIXaGaaGOnaiaaicdapaGaaG5bV=qacaWGsb Gaamizaaaaaaa@64A7@

Θ[ 6 ]= α 3 Pr b 2 ( 1ϕ ) 5/2 α 2 cosγ 240+320Rd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiAdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbiaadkgapaWaaWbaaSqabeaa peGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaa kiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7peGaam 4yaiaad+gacaWGZbWdaiabeo7aNbqaa8qacaaIYaGaaGinaiaaicda cqGHRaWkcaaIZaGaaGOmaiaaicdapaGaaG5bV=qacaWGsbGaamizaa aaaaa@6015@

Θ[ 7 ]= α 3 Prba( 3+8Da ( 1ϕ ) 5/2 Rda α 1 +6 ( 1ϕ ) 5/2 α 1 aDa +4Da M 2 Rd180DaPra α 3 +3Da M 2 +4Rd ) 280 ( 3+4Rd ) 2 Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiEdaaiaawUfacaGLDbaacqGH9aqpcqGH sisldaWcaaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdae qaaOGaaG5bV=qaciGGqbGaaiOCa8aacaaMh8+dbiaadkgacaWGHbWa aeWaa8aaeaqabeaapeGaaG4maiabgUcaRiaaiIdapaGaaG5bV=qaca WGebGaamyya8aacaaMh8+dbmaabmaapaqaa8qacaaIXaGaeyOeI0Ia eqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVa GaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyyaiabeg7aH9aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaaI2aWdaiaayE W7peWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeqySde 2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacaWGHbGaamir aiaadggaaeaacqGHRaWkcaaI0aWdaiaayEW7peGaamiraiaadggapa GaaG5bV=qacaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGa amizaiabgkHiTiaaigdacaaI4aGaaGima8aacaaMh8+dbiaadseaca WGHbWdaiaayEW7peGaciiuaiaackhapaGaaG5bV=qacaWGHbGaeqyS de2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaiodapa GaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaSqa beaapeGaaGOmaaaakiabgUcaRiaaisdapaGaaG5bV=qacaWGsbGaam izaaaacaGLOaGaayzkaaaapaqaa8qacaaIYaGaaGioaiaaicdapaGa aG5bV=qadaqadaWdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV= qacaWGsbGaamizaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaamiraiaadggaaaaaaa@A6D3@

Θ[ 8 ]= α 3 Pr ( 1ϕ ) 5/2 b α 2 cosγ( 4Da M 2 Rd630DaPra α 3 +3Da M 2 +4Rd+3 ) 4480 ( 3+4Rd ) 2 Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiIdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaak8aacaWGIbGaaGPaV=qacqaHXoqypaWaaSba aSqaa8qacaaIYaaapaqabaGccaaMh8+dbiaadogacaWGVbGaam4Ca8 aacqaHZoWzpeWaaeWaa8aabaWdbiaaisdapaGaaG5bV=qacaWGebGa amyya8aacaaMh8+dbiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkfacaWGKbGaeyOeI0IaaGOnaiaaiodacaaIWaWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qaciGGqbGaaiOCa8aacaaMh8+dbiaadg gacqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIa aG4ma8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamyta8aada ahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGina8aacaaMh8+dbiaa dkfacaWGKbGaey4kaSIaaG4maaGaayjkaiaawMcaaaWdaeaapeGaaG inaiaaisdacaaI4aGaaGima8aacaaMh8+dbmaabmaapaqaa8qacaaI ZaGaey4kaSIaaGina8aacaaMh8+dbiaadkfacaWGKbaacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaGccaWGebGaamyyaaaaaaa@90A9@

Θ[ 9 ]= α 3 Prb α 2 cosγ 40320 ( 3+4Rd ) 2 Da ( 4Da M 2 ( 1ϕ ) 5/2 Rdb1026 α 3 Prba ( 1ϕ ) 5/2 Da315DaPrcosγ ϕ 5 α 2 α 3 +40DaRdab ϕ 5 α 1 +3Da M 2 ( 1ϕ ) 5/2 b+1575DaPrcosγ ϕ 4 α 2 α 3 200DaRdab ϕ 4 α 1 +30Daab ϕ 5 α 1 +150Daabϕ α 1 30Daab α 1 3150DaPrcosγ ϕ 3 α 2 α 3 +400DaRdab ϕ 3 α 1 150Daab ϕ 4 α 1 +3150DaPrcosγ ϕ 2 α 2 α 3 400DaRdab ϕ 2 α 1 +300Daab ϕ 3 α 1 +4 ( 1ϕ ) 5/2 Rdb1575DaPrcosγϕ α 2 α 3 +200DaRdabϕ α 1 300Daab ϕ 2 α 1 +3b ( 1ϕ ) 5/2 +315 α 3 Pr α 2 cosγDa40DaRdab α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaiMdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbiaadkgacqaHXoqypaWaaSba aSqaa8qacaaIYaaapaqabaGccaaMh8+dbiaadogacaWGVbGaam4Ca8 aacqaHZoWzaeaapeGaaGinaiaaicdacaaIZaGaaGOmaiaaicdapaGa aG5bV=qadaqadaWdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV= qacaWGsbGaamizaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaamiraiaadggaaaWaaeWaaqaabeqaaiaaisdapaGaaG5bV= qacaWGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaSqabeaapeGa aGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaa dkfacaWGKbWdaiaayEW7peGaamOyaiabgkHiTiaaigdacaaIWaGaaG OmaiaaiAdapaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIZaaa paqabaGccaaMh8+dbiGaccfacaGGYbWdaiaayEW7peGaamOyaiaadg gadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGebGaam yyaiabgkHiTiaaiodacaaIXaGaaGyna8aacaaMh8+dbiaadseacaWG HbWdaiaayEW7peGaciiuaiaackhapaGaaG5bV=qacaWGJbGaam4Bai aadohapaGaeq4SdC2dbiabew9aM9aadaahaaWcbeqaa8qacaaI1aaa aOGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaaakeaapeGaey4kaSIa aGinaiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaadk facaWGKbWdaiaayEW7peGaamyyaiaadkgacqaHvpGzpaWaaWbaaSqa beaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacqGHRaWkcaaIZaWdaiaayEW7peGaamiraiaadggapaGaaG5b V=qacaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaape GaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaI1aGaai4laiaaikdaaaGccaWGIbGaey4kaSIaaGymaiaaiw dacaaI3aGaaGyna8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGa ciiuaiaackhapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdC MaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7a H9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7peGaeqySde2dam aaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiabgkHiTiaaikdacaaI WaGaaGima8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamOuai aadsgapaGaaG5bV=qacaWGHbGaamOyaiabew9aM9aadaahaaWcbeqa a8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgUcaRiaaiodacaaIWaWdaiaayEW7peGaamiraiaadggapaGa aG5bV=qacaWGHbGaamOyaiabew9aM9aadaahaaWcbeqaa8qacaaI1a aaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUca RiaaigdacaaI1aGaaGima8aacaaMh8+dbiaadseacaWGHbWdaiaayE W7peGaamyyaiaadkgacqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaG4maiaaicdapaGaaG 5bV=qacaWGebGaamyya8aacaaMh8+dbiaadggacaWGIbGaeqySde2d amaaBaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiabgkHiTiaaiodaca aIXaGaaGynaiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+d biGaccfacaGGYbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo 7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaH XoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGccaaMh8+dbiabeg7aH9 aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaaI0aGaaGim aiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaadkfaca WGKbWdaiaayEW7peGaamyyaiaadkgacqaHvpGzpaWaaWbaaSqabeaa peGaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGHsislcaaIXaGaaGynaiaaicdapaGaaG5bV=qacaWGebGaamyy a8aacaaMh8+dbiaadggacaWGIbGaeqy1dy2damaaCaaaleqabaWdbi aaisdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaey4kaSIaaG4maiaaigdacaaI1aGaaGima8aacaaMh8+dbiaads eacaWGHbWdaiaayEW7peGaciiuaiaackhapaGaaG5bV=qacaWGJbGa am4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabe aapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaa kiaayEW7peGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbi abgkHiTiaaisdacaaIWaGaaGima8aacaaMh8+dbiaadseacaWGHbWd aiaayEW7peGaamOuaiaadsgapaGaaG5bV=qacaWGHbGaamOyaiabew 9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaa peGaaGymaaWdaeqaaOWdbiabgUcaRiaaiodacaaIWaGaaGima8aaca aMh8+dbiaadseacaWGHbWdaiaayEW7peGaamyyaiaadkgacqaHvpGz paWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbi aaigdaa8aabeaaaOqaa8qacqGHRaWkcaaI0aWdaiaayEW7peWaaeWa a8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaamOuaiaadsgapaGa aG5bV=qacaWGIbGaeyOeI0IaaGymaiaaiwdacaaI3aGaaGyna8aaca aMh8+dbiaadseacaWGHbWdaiaayEW7peGaciiuaiaackhapaGaaG5b V=qacaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpa GaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGccaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRa WkcaaIYaGaaGimaiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaM h8+dbiaadkfacaWGKbWdaiaayEW7peGaamyyaiaadkgacqaHvpGzpa GaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaa peGaeyOeI0IaaG4maiaaicdacaaIWaWdaiaayEW7peGaamiraiaadg gapaGaaG5bV=qacaWGHbGaamOyaiabew9aM9aadaahaaWcbeqaa8qa caaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbi abgUcaRiaaiodapaGaaG5bV=qacaWGIbWaaeWaa8aabaWdbiaaigda cqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaG ynaiaac+cacaaIYaaaaOGaey4kaSIaaG4maiaaigdacaaI1aWdaiaa yEW7peGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG5bV= qaciGGqbGaaiOCa8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaa ikdaa8aabeaakiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNj aayEW7peGaamiraiaadggacqGHsislcaaI0aGaaGima8aacaaMh8+d biaadseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qaca WGHbGaamOyaiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGc peGaayjkaiaawMcaaaaa@26D3@

Θ[ 10 ]= α 3 Prb 403200 ( 3+4Rd ) 3 D a 2 ( 1152D a 2 M 2 ( 1ϕ ) 5/2 Rd a 2 α 1 450D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 2 α 1 α 2 2 +18a9072 α 3 Pr a 2 Da +48D a 2 M 4 Rda+96Da M 2 Rda432 ( 1ϕ ) 5/2 α 1 a 2 Da+936D a 2 a 3 ϕ 5 α 1 2 4680D a 2 a 3 ϕ 4 α 1 2 +9360D a 2 a 3 ϕ 3 α 1 2 9360D a 2 a 3 ϕ 2 α 1 2 +4680D a 2 a 3 ϕ α 1 2 45D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 α 1 α 2 2 12096D a 2 M 2 PrRd a 2 α 3 18144D a 2 ( 1ϕ ) 5/2 Pr a 3 α 1 α 3 768D a 2 M 2 ( 1ϕ ) 5/2 R d 2 a 2 α 1 12096DaPrRd a 2 α 3 9072D a 2 M 2 Pr a 2 α 3 +450D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 3 α 1 α 2 2 225D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 4 α 1 α 2 2 +45D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ 5 α 1 α 2 2 +3429D a 2 Prb (cosγ) 2 ϕ 5 α 2 2 α 3 +34290D a 2 Prb (cosγ) 2 ϕ 3 α 2 2 α 3 34290D a 2 Prb (cosγ) 2 ϕ 2 α 2 2 α 3 80D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 α 1 α 2 2 4572D a 2 PrRdb (cosγ) 2 α 2 2 α 3 17145D a 2 Prb (cosγ) 2 ϕ 4 α 2 2 α 3 120D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 α 1 α 2 2 24192D a 2 ( 1ϕ ) 5/2 PrRd a 3 α 1 α 3 +225D a 2 ( 1ϕ ) 5/2 b (cosγ) 2 ϕ α 1 α 2 2 +600D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ α 1 α 2 2 1200D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 2 α 1 α 2 2 +1200D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 3 α 1 α 2 2 600D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 4 α 1 α 2 2 +120D a 2 ( 1ϕ ) 5/2 Rdb (cosγ) 2 ϕ 5 α 1 α 2 2 +32R d 2 a +18D a 2 M 4 a1152Da ( 1ϕ ) 5/2 Rd a 2 α 1 432D a 2 M 2 ( 1ϕ ) 5/2 a 2 α 1 +12480D a 2 Rd a 3 ϕ α 1 2 936D a 2 a 3 α 1 2 3429D a 2 Prb (cosγ) 2 α 2 2 α 3 +17145D a 2 Prb (cosγ) 2 ϕ α 2 2 α 3 +400D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 ϕ α 1 α 2 2 +36Da M 2 a+800D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 ϕ 3 α 1 α 2 2 800D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 ϕ 2 α 1 α 2 2 +80D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 ϕ 5 α 1 α 2 2 400D a 2 ( 1ϕ ) 5/2 R d 2 b (cosγ) 2 ϕ 4 α 1 α 2 2 45720D a 2 PrRdb (cosγ) 2 ϕ 2 α 2 2 α 3 +22860D a 2 PrRdb (cosγ) 2 ϕ α 2 2 α 3 +4572D a 2 PrRdb (cosγ) 2 ϕ 5 α 2 2 α 3 22860D a 2 PrRdb (cosγ) 2 ϕ 4 α 2 2 α 3 +45720D a 2 PrRdb (cosγ) 2 ϕ 3 α 2 2 α 3 24960D a 2 Rd a 3 ϕ 2 α 1 2 +24960D a 2 Rd a 3 ϕ 3 α 1 2 12480D a 2 Rd a 3 ϕ 4 α 1 2 +2496D a 2 Rd a 3 ϕ 5 α 1 2 +8320D a 2 R d 2 a 3 ϕ α 1 2 +181440D a 2 Pr 2 a 3 α 3 2 +48Rda +16640D a 2 R d 2 a 3 ϕ 3 α 1 2 16640D a 2 R d 2 a 3 ϕ 2 α 1 2 8320D a 2 R d 2 a 3 ϕ 4 α 1 2 768Da ( 1ϕ ) 5/2 R d 2 a 2 α 1 +1664D a 2 R d 2 a 3 ϕ 5 α 1 2 2496D a 2 Rd a 3 α 1 2 +64Da M 2 R d 2 a+32D a 2 M 4 R d 2 a1664D a 2 R d 2 a 3 α 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHyoqudaWadaqaaiaaigdacaaIWaaacaGLBbGaayzxaaGaeyyp a0JaeyOeI0YaaSaaa8aabaWdbiabeg7aH9aadaWgaaWcbaWdbiaaio daa8aabeaakiaayEW7peGaciiuaiaackhapaGaaG5bV=qacaWGIbaa paqaa8qacaaI0aGaaGimaiaaiodacaaIYaGaaGimaiaaicdapaGaaG 5bV=qadaqadaWdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV=qa caWGsbGaamizaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIZa aaaOGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaqa daabaeqabaGaeyOeI0IaaGymaiaaigdacaaI1aGaaGOma8aacaaMh8 +dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgk HiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGa ai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaW baaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHsislcaaI0aGaaGynaiaaicdapaGaaG5bV=qaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWd biaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGynaiaac+cacaaIYaaaaOGaamOyaiaacIcacaWGJbGaam4B aiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccq aHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaape GaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa igdacaaI4aWdaiaayEW7peGaamyyaiabgkHiTiaaiMdacaaIWaGaaG 4naiaaikdapaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIZaaa paqabaGccaaMh8+dbiGaccfacaGGYbWdaiaayEW7peGaamyya8aada ahaaWcbeqaa8qacaaIYaaaaOGaamiraiaadggaaeaacqGHRaWkcaaI 0aGaaGioa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaisdaaaGccaWGsbGa amiza8aacaaMh8+dbiaadggacqGHRaWkcaaI5aGaaGOna8aacaaMh8 +dbiaadseacaWGHbWdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qa caaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGHbGaeyOeI0IaaG inaiaaiodacaaIYaWdaiaayEW7peWaaeWaa8aabaWdbiaaigdacqGH sislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynai aac+cacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqa aOGaaG5bV=qacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGeb GaamyyaiabgUcaRiaaiMdacaaIZaGaaGOna8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGHbWdamaaCaaale qabaWdbiaaiodaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaa kiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqaba WdbiaaikdaaaGccqGHsislcaaI0aGaaGOnaiaaiIdacaaIWaWdaiaa yEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadg gapaWaaWbaaSqabeaapeGaaG4maaaakiabew9aM9aadaahaaWcbeqa a8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO WaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaey4kaSIaaGyoaiaa iodacaaI2aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaale qabaWdbiaaikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaiodaaaGc cqaHvpGzpaWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGH sislcaaI5aGaaG4maiaaiAdacaaIWaWdaiaayEW7peGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaa peGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGa aGOmaaaakiabgUcaRiaaisdacaaI2aGaaGioaiaaicdapaGaaG5bV= qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyya8aa daahaaWcbeqaa8qacaaIZaaaaOGaeqy1dy2daiaayEW7peGaeqySde 2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOm aaaakiabgkHiTiaaisdacaaI1aWdaiaayEW7peGaamiraiaadggapa WaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOe I0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdaca GGVaGaaGOmaaaakiaadkgacaGGOaGaam4yaiaad+gacaWGZbWdaiab eo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacqGHsislcaaIXaGaaGOmaiaaicdacaaI5aGaaGOna8aacaaMh8+d biaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdam aaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaa dkfacaWGKbWdaiaayEW7peGaamyya8aadaahaaWcbeqaa8qacaaIYa aaaOGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHi TiaaigdacaaI4aGaaGymaiaaisdacaaI0aWdaiaayEW7peGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaI XaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aaiwdacaGGVaGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaamyy a8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI ZaaapaqabaGcpeGaeyOeI0IaaG4naiaaiAdacaaI4aWdaiaayEW7pe GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWa aWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0 Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGG VaGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0IaaGymaiaaikdaca aIWaGaaGyoaiaaiAdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+d biGaccfacaGGYbWdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qaca WGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyOeI0IaaGyoaiaaicdacaaI3aGaaG Oma8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8 aacaaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7a H9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaaI0aGaaG ynaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGa amOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCa aaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaG4m aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7pe GaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaa peGaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGOmaiaaikdacaaI1aWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaa bmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkgacaGGOaGa am4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qaca aIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aada WgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGc cqGHRaWkcaaI0aGaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiab ew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4lai aaikdaaaGccaWGIbGaaiikaiaadogacaWGVbGaam4Ca8aacqaHZoWz caGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9aadaahaaWcbe qaa8qacaaI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqa aOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcda ahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaG4maiaaisdacaaIYaGa aGyoa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaik daaaGcciGGqbGaaiOCa8aacaaMh8+dbiaadkgacaGGOaGaam4yaiaa d+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaO Gaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSba aSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeq ySde2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiabgUcaRiaa iodacaaI0aGaaGOmaiaaiMdacaaIWaWdaiaayEW7peGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7 peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykam aaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGa aG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCa aaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaa paqabaGcpeGaeyOeI0IaaG4maiaaisdacaaIYaGaaGyoaiaaicdapa GaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGa ciiuaiaackhapaGaaG5bV=qacaWGIbGaaiikaiaadogacaWGVbGaam 4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9a M9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaape GaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aa daWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHsislcaaI4aGaaGima8 aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGc daqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8 aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiz a8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiaacIcacaWGJbGaam 4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGc cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiabgkHiTiaaisdacaaI1aGaaG4naiaaikdapa GaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGa ciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaadk gacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWc beqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGOmaaWdae qaaOWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGHsislcaaIXaGaaG4naiaaigdacaaI0a GaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaadkgacaGGOaGaam4yai aad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqypaWaaS baaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGa eqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaaig dacaaIYaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikda aaGccaWGsbGaamiza8aacaaMh8+dbiaadkgacaGGOaGaam4yaiaad+ gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGa eqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXo qypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaI YaaaaaGcpaqaa8qacqGHsislcaaIYaGaaGinaiaaigdacaaI5aGaaG Oma8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcciGGqbGa aiOCa8aacaaMh8+dbiaadkfacaWGKbWdaiaayEW7peGaamyya8aada ahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGaaGym aaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIZaaapa qabaGcpeGaey4kaSIaaGOmaiaaikdacaaI1aWdaiaayEW7peGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qaca aIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaiwdacaGGVaGaaGOmaaaakiaadkgacaGGOaGaam4yaiaad+gaca WGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1 dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO GaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaah aaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGOnaiaaicdacaaIWaWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaa bmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWd aiaayEW7peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdC MaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGaaG5bV=qa cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiabgkHiTiaaigdacaaIYaGaaGimaiaaicdapa GaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWa aeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapa WaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaamOuaiaadsga paGaaG5bV=qacaWGIbGaaiikaiaadogacaWGVbGaam4Ca8aacqaHZo WzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9aadaahaaWc beqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGc daahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGymaiaaikdacaaIWa GaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWG sbGaamiza8aacaaMh8+dbiaadkgacaGGOaGaam4yaiaad+gacaWGZb Wdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2d amaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qaca aIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikda a8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTi aaiAdacaaIWaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaa leqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew 9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaa ikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadkgacaGGOaGaam4yai aad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqypaWaaS baaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWc baWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRa WkcaaIXaGaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcq aHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+ca caaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGIbGaaiikaiaado gacaWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOm aaaakiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2dam aaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSba aSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey 4kaSIaaG4maiaaikdapaGaaG5bV=qacaWGsbGaamiza8aadaahaaWc beqaa8qacaaIYaaaaOGaamyyaaqaaiabgUcaRiaaigdacaaI4aWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaa d2eapaWaaWbaaSqabeaapeGaaGinaaaakiaadggacqGHsislcaaIXa GaaGymaiaaiwdacaaIYaWdaiaayEW7peGaamiraiaadggapaGaaG5b V=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGa amiza8aacaaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki abeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaaI 0aGaaG4maiaaikdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbe qaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOWa aeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapa WaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRiaaigdacaaIYaGaaGinaiaaiIdacaaIWaWd aiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkfacaWGKbWdaiaayEW7peGaamyya8aadaahaaWcbeqaa8qacaaI ZaaaaOGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaG ymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaeyOe I0IaaGyoaiaaiodacaaI2aWdaiaayEW7peGaamiraiaadggapaWaaW baaSqabeaapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaG4m aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaale qabaWdbiaaikdaaaGccqGHsislcaaIZaGaaGinaiaaikdacaaI5aWd aiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki GaccfacaGGYbWdaiaayEW7peGaamOyaiaacIcacaWGJbGaam4Baiaa dohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHXo qypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaI YaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgU caRiaaigdacaaI3aGaaGymaiaaisdacaaI1aWdaiaayEW7peGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiGaccfacaGGYbWdai aayEW7peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMa aiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaaGcba WdbiabgUcaRiaaisdacaaIWaGaaGima8aacaaMh8+dbiaadseacaWG HbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI 1aGaai4laiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qaca aIYaaaaOGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMa aiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7a H9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaik daaaGccqGHRaWkcaaIZaGaaGOna8aacaaMh8+dbiaadseacaWGHbWd aiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyyai abgUcaRiaaiIdacaaIWaGaaGima8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgk HiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGa ai4laiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYa aaaOGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiyk amaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaape GaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaa yEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaS qabeaapeGaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGioaiaaicdacaaI WaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaa aakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfaca WGKbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGIbGaaiikaiaadoga caWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaa aakiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaa BaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaS qaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4k aSIaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbe qaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGz aiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYa aaaOGaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkga caGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbe qaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGc cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaGccqGHsislcaaI0aGaaGimaiaaicdapaGaaG5bV=qacaWGeb Gaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaa igdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaape GaaGynaiaac+cacaaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqabeaa peGaaGOmaaaakiaadkgacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo 7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaa leqabaWdbiaaisdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapa qabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaa kmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaisdaca aI1aGaaG4naiaaikdacaaIWaWdaiaayEW7peGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaam OuaiaadsgapaGaaG5bV=qacaWGIbGaaiikaiaadogacaWGVbGaam4C a8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9 aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGa aGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aada WgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaaIYaGaaGOmaiaa iIdacaaI2aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaale qabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaadkfacaWG KbWdaiaayEW7peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq 4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGaaG5b V=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbe qaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqa aOWdbiabgUcaRiaaisdacaaI1aGaaG4naiaaikdapaGaaG5bV=qaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackha paGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaadkgacaGGOaGaam 4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaI YaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypa WaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaa aOGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiabgk HiTiaaikdacaaIYaGaaGioaiaaiAdacaaIWaWdaiaayEW7peGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiGaccfacaGGYbWdai aayEW7peGaamOuaiaadsgapaGaaG5bV=qacaWGIbGaaiikaiaadoga caWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaa aakiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaki abeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaaI 0aGaaGynaiaaiEdacaaIYaGaaGima8aacaaMh8+dbiaadseacaWGHb WdamaaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8+d biaadkfacaWGKbWdaiaayEW7peGaamOyaiaacIcacaWGJbGaam4Bai aadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaH vpGzpaWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyOeI0IaaGOmaiaais dacaaI5aGaaGOnaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGHb WdamaaCaaaleqabaWdbiaaiodaaaGccqaHvpGzpaWaaWbaaSqabeaa peGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakm aaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiaaiMda caaI2aGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqaba WdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaWba aSqabeaapeGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qacaaIZa aaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqa beaapeGaaGOmaaaaaOWdaeaapeGaeyOeI0IaaGymaiaaikdacaaI0a GaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGHbWdamaaCa aaleqabaWdbiaaiodaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGin aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaale qabaWdbiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiaaiMdacaaI2aWd aiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaki aadkfacaWGKbWdaiaayEW7peGaamyya8aadaahaaWcbeqaa8qacaaI ZaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSIaaGioaiaaiodacaaIYaGaaGima8aacaaMh8+dbiaads eacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aa daahaaWcbeqaa8qacaaIYaaaaOGaamyya8aadaahaaWcbeqaa8qaca aIZaaaaOGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGa aGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaig dacaaI4aGaaGymaiaaisdacaaI0aGaaGima8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcpaWaaCbiaeaapeGaci iuaiaackhaaSWdaeqabaWdbiaaikdaaaGccaWGHbWdamaaCaaaleqa baWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqaba GcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGinaiaaiIdapaGa aG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaadggacaaMc8oapaqaa8 qacqGHRaWkcaaIXaGaaGOnaiaaiAdacaaI0aGaaGima8aacaaMh8+d biaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaam iza8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyya8aadaahaaWcbeqa a8qacaaIZaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaOGaeyOeI0IaaGymaiaaiAdacaaI2aGaaGinaiaaicdapa GaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGa amOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadggapaWaaW baaSqabeaapeGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qacaaI YaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaS qabeaapeGaaGOmaaaakiabgkHiTiaaiIdacaaIZaGaaGOmaiaaicda paGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO GaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadggapaWa aWbaaSqabeaapeGaaG4maaaakiabew9aM9aadaahaaWcbeqaa8qaca aI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWba aSqabeaapeGaaGOmaaaakiabgkHiTiaaiEdacaaI2aGaaGioa8aaca aMh8+dbiaadseacaWGHbWdaiaayEW7peWaaeWaa8aabaWdbiaaigda cqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaG ynaiaac+cacaaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqabeaapeGa aGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqGHRaWkcaaIXaGa aGOnaiaaiAdacaaI0aWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGHbWdamaaCaaaleqabaWdbiaaiodaaaGccqaHvpGzpa WaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIYa GaaGinaiaaiMdacaaI2aWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyya8 aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGa aGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaiA dacaaI0aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qacaWGnbWd amaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbe qaa8qacaaIYaaaaOGaamyyaiabgUcaRiaaiodacaaIYaWdaiaayEW7 peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapa WaaWbaaSqabeaapeGaaGinaaaakiaadkfacaWGKbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGHbGaeyOeI0IaaGymaiaaiAdacaaI2aGaaG ina8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyya8 aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGa aGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGLOaGaay zkaaaaaa@2C5E@

In the same manner, the expressions for Θ [11], Θ[12], Θ[13], Θ[14], Θ[15]… are found but they are too large to be included in this paper

From the definition in Eq. (18), the solutions of Eqs. (10) and (11) are given as

f( η )=F[0]+ηF[1]+ η 2 F[2]+ η 3 F[3]++ η 4 F[4]+ η 5 F[5]           + η 6 F[6]+ η 7 F[7]+ η 8 F[8]+ η 9 F[9]++ η 10 F[10]+... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aadAgadaqadaqaaiabeE7aObGaayjkaiaawMcaaiabg2da9iaadAea caGGBbGaaGimaiaac2facqGHRaWkcqaH3oaAcaWGgbGaai4waiaaig dacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaamOr aiaacUfacaaIYaGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqabaGaaG 4maaaakiaadAeacaGGBbGaaG4maiaac2facqGHRaWkcqGHRaWkcqaH 3oaAdaahaaWcbeqaaiaaisdaaaGccaWGgbGaai4waiaaisdacaGGDb Gaey4kaSIaeq4TdG2aaWbaaSqabeaacaaI1aaaaOGaamOraiaacUfa caaI1aGaaiyxaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacqGHRaWkcqaH3oaAdaahaaWc beqaaiaaiAdaaaGccaWGgbGaai4waiaaiAdacaGGDbGaey4kaSIaeq 4TdG2aaWbaaSqabeaacaaI3aaaaOGaamOraiaacUfacaaI3aGaaiyx aiabgUcaRiabeE7aOnaaCaaaleqabaGaaGioaaaakiaadAeacaGGBb GaaGioaiaac2facqGHRaWkcqaH3oaAdaahaaWcbeqaaiaaiMdaaaGc caWGgbGaai4waiaaiMdacaGGDbGaey4kaSIaey4kaSIaeq4TdG2aaW baaSqabeaacaaIXaGaaGimaaaakiaadAeacaGGBbGaaGymaiaaicda caGGDbGaey4kaSIaaiOlaiaac6cacaGGUaaaaaa@9066@   (33)

θ( η )=Θ[0]+ηΘ[1]+ η 2 Θ[2]+ η 3 Θ[3]++ η 4 Θ[4]+ η 5 Θ[5]           + η 6 Θ[6]+ η 7 Θ[7]+ η 8 Θ[8]+ η 9 Θ[9]++ η 10 Θ[10]+... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai abeI7aXnaabmaabaGaeq4TdGgacaGLOaGaayzkaaGaeyypa0JaeuiM deLaai4waiaaicdacaGGDbGaey4kaSIaeq4TdGMaeuiMdeLaai4wai aaigdacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGa euiMdeLaai4waiaaikdacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabe aacaaIZaaaaOGaeuiMdeLaai4waiaaiodacaGGDbGaey4kaSIaey4k aSIaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeuiMdeLaai4waiaais dacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaI1aaaaOGaeuiM deLaai4waiaaiwdacaGGDbaabaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiabgUcaRiabeE7a OnaaCaaaleqabaGaaGOnaaaakiabfI5arjaacUfacaaI2aGaaiyxai abgUcaRiabeE7aOnaaCaaaleqabaGaaG4naaaakiabfI5arjaacUfa caaI3aGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqabaGaaGioaaaaki abfI5arjaacUfacaaI4aGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqa baGaaGyoaaaakiabfI5arjaacUfacaaI5aGaaiyxaiabgUcaRiabgU caRiabeE7aOnaaCaaaleqabaGaaGymaiaaicdaaaGccqqHyoqucaGG BbGaaGymaiaaicdacaGGDbGaey4kaSIaaiOlaiaac6cacaGGUaaaaa a@9895@   (34)

Now, consider similar fully coupled third and second orders ordinary differential equations presented in Eqs. (11) and (12), but at this time, we take a=1 and b=1

g ( η )+ ( 1ϕ ) 2.5 { α 1 ( 3g( η ) g ( η )2 ( f ( η ) ) 2 )+ α 2 ϑ ( η )cosγ( M 2 +D a 1 )g( η ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaasa WaaSbaaSqaaaqabaGcdaqadaqaaiabeE7aObGaayjkaiaawMcaaiab gUcaRmaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOWaaiWaaeaacqaHXoqy daWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaiodacaWGNbWaaeWaae aacqaH3oaAaiaawIcacaGLPaaaceWGNbGbayaadaWgaaWcbaaabeaa kmaabmaabaGaeq4TdGgacaGLOaGaayzkaaGaeyOeI0IaaGOmamaabm aabaGabmOzayaafaWaaSbaaSqaaaqabaGcdaqadaqaaiabeE7aObGa ayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaiabgUcaRiabeg7aHnaaBaaaleaacaaIYaaabeaa kiabeg9aknaaBaaaleaaaeqaaOWaaeWaaeaacqaH3oaAaiaawIcaca GLPaaacaWGJbGaam4BaiaadohacqaHZoWzcqGHsisldaqadaqaaiaa d2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGebGaamyyamaaCa aaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaiaadEgadaqa daqaaiabeE7aObGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9i aaicdaaaa@77C5@   (35)

ϑ ( η )+3 α 3 Prg( η ) ϑ ( η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqy0dOKbay aadaWgaaWcbaaabeaakmaabmaabaGaeq4TdG2aaSbaaSqaaaqabaaa kiaawIcacaGLPaaacqGHRaWkcaaIZaGaeqySde2aaSbaaSqaaiaaio daaeqaaOGaamiuaiaadkhacaWGNbWaaeWaaeaacqaH3oaAdaWgaaWc baaabeaaaOGaayjkaiaawMcaaiqbeg9akzaafaWaaSbaaSqaaaqaba GcdaqadaqaaiabeE7aOnaaBaaaleaaaeqaaaGccaGLOaGaayzkaaGa eyypa0JaaGimaaaa@4E35@   (36)

With initial conditions as

& g=0, g =0, g =1,ϑ=1, ϑ =1when η=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaadE gacqGH9aqpcaaIWaGaaiilaiaaywW7ceWGNbGbauaacqGH9aqpcaaI WaGaaiilaiaaywW7ceWGNbGbayaacqGH9aqpcaaIXaGaaiilaiaayw W7cqaHrpGscqGH9aqpcaaIXaGaaiilaiaaywW7cuaHrpGsgaqbaiab g2da9iaaigdacaaMf8Uaam4DaiaadIgacaWGLbGaamOBaiaabccacq aH3oaAcqGH9aqpcaaIWaGaaGzbVdaa@5BE8@ nbsp; (37)

Following the similar solution procedures of Eqs. (10) and (11), the solutions of Eqs. (35) and (36) are

g( η )=G[0]+ηG[1]+ η 2 G[2]+ η 3 G[3]++ η 4 G[4]+ηGF[5]           + η 6 G[6]+ η 7 G[7]+ η 8 G[8]+ η 9 G[9]++ η 10 G[10]+... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aadEgadaqadaqaaiabeE7aObGaayjkaiaawMcaaiabg2da9iaadEea caGGBbGaaGimaiaac2facqGHRaWkcqaH3oaAcaWGhbGaai4waiaaig dacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaam4r aiaacUfacaaIYaGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqabaGaaG 4maaaakiaadEeacaGGBbGaaG4maiaac2facqGHRaWkcqGHRaWkcqaH 3oaAdaahaaWcbeqaaiaaisdaaaGccaWGhbGaai4waiaaisdacaGGDb Gaey4kaSIaeq4TdGMaam4raiaadAeacaGGBbGaaGynaiaac2faaeaa caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaI2aaaaOGa am4raiaacUfacaaI2aGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqaba GaaG4naaaakiaadEeacaGGBbGaaG4naiaac2facqGHRaWkcqaH3oaA daahaaWcbeqaaiaaiIdaaaGccaWGhbGaai4waiaaiIdacaGGDbGaey 4kaSIaeq4TdG2aaWbaaSqabeaacaaI5aaaaOGaam4raiaacUfacaaI 5aGaaiyxaiabgUcaRiabgUcaRiabeE7aOnaaCaaaleqabaGaaGymai aaicdaaaGccaWGhbGaai4waiaaigdacaaIWaGaaiyxaiabgUcaRiaa c6cacaGGUaGaaiOlaaaaaa@9047@   (38)

ϑ( η )=Φ[0]+ηΦ[1]+ η 2 Φ[2]+ η 3 Φ[3]++ η 4 Φ[4]+ η 5 Φ[5]           + η 6 Φ[6]+ η 7 Φ[7]+ η 8 Φ[8]+ η 9 Φ[9]++ η 10 Φ[10]+.. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai abeg9aknaabmaabaGaeq4TdGgacaGLOaGaayzkaaGaeyypa0JaeuOP dyKaai4waiaaicdacaGGDbGaey4kaSIaeq4TdGMaeuOPdyKaai4wai aaigdacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGa euOPdyKaai4waiaaikdacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabe aacaaIZaaaaOGaeuOPdyKaai4waiaaiodacaGGDbGaey4kaSIaey4k aSIaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeuOPdyKaai4waiaais dacaGGDbGaey4kaSIaeq4TdG2aaWbaaSqabeaacaaI1aaaaOGaeuOP dyKaai4waiaaiwdacaGGDbaabaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiabgUcaRiabeE7a OnaaCaaaleqabaGaaGOnaaaakiabfA6agjaacUfacaaI2aGaaiyxai abgUcaRiabeE7aOnaaCaaaleqabaGaaG4naaaakiabfA6agjaacUfa caaI3aGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqabaGaaGioaaaaki abfA6agjaacUfacaaI4aGaaiyxaiabgUcaRiabeE7aOnaaCaaaleqa baGaaGyoaaaakiabfA6agjaacUfacaaI5aGaaiyxaiabgUcaRiabgU caRiabeE7aOnaaCaaaleqabaGaaGymaiaaicdaaaGccqqHMoGrcaGG BbGaaGymaiaaicdacaGGDbGaey4kaSIaaiOlaiaac6caaaaa@97F6@   (39)

where

G[ 0 ]=0,G[ 1 ]=0,,G[ 2 ]= 1 2 ,θ[ 0 ]=1,θ[ 1 ]=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaadm aabaGaaGimaaGaay5waiaaw2faaiabg2da9iaaicdacaGGSaGaaGzb VlaadEeadaWadaqaaiaaigdaaiaawUfacaGLDbaacqGH9aqpcaaIWa GaaiilaiaaywW7caGGSaGaam4ramaadmaabaGaaGOmaaGaay5waiaa w2faaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaayw W7cqaH4oqCdaWadaqaaiaaicdaaiaawUfacaGLDbaacqGH9aqpcaaI XaGaaiilaiaaywW7cqaH4oqCdaWadaqaaiaaigdaaiaawUfacaGLDb aacqGH9aqpcaaIXaGaaGzbVdaa@5F6B@

G[ 3 ]= 1 6 ( 1ϕ ) 5/2 α 2 cosγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaIZaaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaaeaacaaIXaaabaGaaGOnaaaapaGaaG5bV=qadaqadaWdae aapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIYaaapaqabaGccaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaH ZoWzaaa@50C3@

G[ 4 ]= 1 24 ( 1ϕ ) 5/2 α 2 cosγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI0aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaaeaacaaIXaaabaGaaGOmaiaaisdaaaWdaiaayEW7peWaae Waa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeqySde2damaaBa aaleaapeGaaGOmaaWdaeqaaOWdbiaadogacaWGVbGaam4Ca8aacqaH ZoWzcaaMh8UaaCzcaaaa@5220@

G[ 5 ]= ( ( 1ϕ ) 5/2 α 1 Da+ M 2 Da+1 ) 120Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI1aaacaGLBbGaayzxaaGaeyypa0ZaaSaa a8aabaWdbmaabmaapaqaaiaayEW7peWaaeWaa8aabaWdbiaaigdacq GHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGyn aiaac+cacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdae qaaOWdbiaadseacaWGHbGaey4kaSIaamyta8aadaahaaWcbeqaa8qa caaIYaaaaOGaamiraiaadggacqGHRaWkcaaIXaaacaGLOaGaayzkaa aapaqaa8qacaaIXaGaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyy aaaaaaa@5759@

G[ 6 ]= ( Da M 2 +1 ) ( 1ϕ ) 5/2 α 2 cosγ 720Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI2aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaWGebGaamyya8aacaaMh8 +dbiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaigda aiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikda aaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGccaaMh8+dbi aadogacaWGVbGaam4Ca8aacqaHZoWzaeaapeGaaG4naiaaikdacaaI WaWdaiaayEW7peGaamiraiaadggaaaaaaa@5BE7@

G[ 7 ]= ( 1ϕ ) 5/2 α 2 cosγ( 20Da ( 1ϕ ) 5/2 Rd α 1 15 ( 1ϕ ) 5/2 α 1 Da +4Da M 2 Rd9DaPr α 3 +3Da M 2 +4Rd+3 ) ( 15120+20160Rd )Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI3aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dy gacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOm aaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7pe Gaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peWaaeWaa8aaeaqa beaapeGaeyOeI0IaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyya8 aacaaMh8+dbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaaki aadkfacaWGKbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabgkHiTiaaigdacaaI1aWdaiaayEW7peWaaeWaa8 aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeqySde2damaaBaaale aapeGaaGymaaWdaeqaaOGaaG5bV=qacaWGebGaamyyaaqaaiabgUca RiaaisdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2eapa WaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbGaeyOeI0IaaGyo a8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaciiuaiaackhapa GaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGa ey4kaSIaaG4ma8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaam yta8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGina8aacaaM h8+dbiaadkfacaWGKbGaey4kaSIaaG4maaaacaGLOaGaayzkaaaapa qaa8qadaqadaWdaeaapeGaaGymaiaaiwdacaaIXaGaaGOmaiaaicda cqGHRaWkcaaIYaGaaGimaiaaigdacaaI2aGaaGima8aacaaMh8+dbi aadkfacaWGKbaacaGLOaGaayzkaaGaamiraiaadggaaaaaaa@ADC7@

G[ 8 ]= 1 ( 120960+161280Rd )D a 2 ( 3+4D a 2 M 4 Rd+8Da M 2 Rd36 ( 1ϕ ) 5/2 α 1 Da+78D a 2 a 3 ϕ 5 α 1 2 195D a 2 ϕ 4 α 1 2 +390D a 2 ϕ 3 α 1 2 390D a 2 ϕ 2 α 1 2 +195D a 2 ϕ α 1 2 52D a 2 Rd α 1 2 48D a 2 M 2 ( 1ϕ ) 5/2 Rd α 1 15D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 α 1 α 2 2 9D a 2 Pr ( cosγ ) 2 α 2 2 α 3 +100D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 ϕ α 1 α 2 2 200D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 ϕ 2 α 1 α 2 2 100D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 ϕ 4 α 1 α 2 2 +200D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 ϕ 3 α 1 α 2 2 +20D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 ϕ 5 α 1 α 2 2 48Da ( 1ϕ ) 5/2 Rd α 1 36D a 2 M 2 ( 1ϕ ) 5/2 α 1 520D a 2 Rd ϕ 2 α 1 2 +260D a 2 Rdϕ α 1 2 +520D a 2 Rd ϕ 3 α 1 2 +52D a 2 Rd ϕ 5 α 1 2 260D a 2 Rd ϕ 4 α 1 2 +4Rd+6Da M 2 39D a 2 α 1 2 +3D a 2 M 4 20D a 2 ( 1ϕ ) 5/2 Rd ( cosγ ) 2 α 1 α 2 2 +75D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 ϕ α 1 α 2 2 +150D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 ϕ 3 α 1 α 2 2 150D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 ϕ 2 α 1 α 2 2 +15D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 ϕ 5 α 1 α 2 2 75D a 2 ( 1ϕ ) 5/2 ( cosγ ) 2 ϕ 4 α 1 α 2 2 +9D a 2 Pr ( cosγ ) 2 ϕ 5 α 2 2 α 3 45D a 2 Pr ( cosγ ) 2 ϕ 4 α 2 2 α 3 +90D a 2 Pr ( cosγ ) 2 ϕ 3 α 2 2 α 3 90D a 2 Pr ( cosγ ) 2 ϕ 2 α 2 2 α 3 +45D a 2 Pr ( cosγ ) 2 ϕ α 2 2 α 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI4aaacaGLBbGaayzxaaGaeyypa0ZaaSaa a8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaaIXaGaaGOmai aaicdacaaI5aGaaGOnaiaaicdacqGHRaWkcaaIXaGaaGOnaiaaigda caaIYaGaaGioaiaaicdapaGaaG5bV=qacaWGsbGaamizaaGaayjkai aawMcaaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWd amaabmaaeaqabeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV=qaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaah aaWcbeqaa8qacaaI0aaaaOGaamOuaiaadsgapaGaaG5bV=qacqGHRa WkcaaI4aGaamiraiaadggapaGaaG5bV=qacaWGnbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiabgkHiTiaaio dacaaI2aWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacaWGebGa amyyaiabgUcaRiaaiEdacaaI4aGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiaadggapaWaaWbaaSqabeaapeGaaG4maaaakiab ew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2damaaBaaale aapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaa peGaeyOeI0IaaGymaiaaiMdacaaI1aGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaI0aaa aOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabe aapeGaaGOmaaaakiabgUcaRiaaiodacaaI5aGaaGima8aacaaMh8+d biaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpa WaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIZa GaaGyoaiaaicdacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2damaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaS baaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGa ey4kaSIaaGymaiaaiMdacaaI1aGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiabew9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aaba WdbiabgkHiTiaaiwdacaaIYaWdaiaayEW7peGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGa aGOmaaaakiabgkHiTiaaisdacaaI4aGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaa kmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfacaWG KbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgkHiTiaaigdacaaI1aWdaiaayEW7peGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0 Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGG VaGaaGOmaaaak8aadaqadaqaa8qacaWGJbGaam4BaiaadohapaGaeq 4SdCgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWdbiabeg7a H9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2dam aaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaa aOWdaeaapeGaeyOeI0IaaGyoa8aacaaMh8+dbiaadseacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8+aaeWa aeaapeGaam4yaiaad+gacaWGZbWdaiabeo7aNbGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaak8qacqaHXoqypaWaaSbaaSqaa8qacaaI YaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBa aaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaigdacaaIWaGaaGim a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaam iza8aacaaMh8+aaeWaaeaapeGaam4yaiaad+gacaWGZbWdaiabeo7a NbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaak8qacqaHvpGzpa GaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaikdacaaIWaGaaGim a8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMca a8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaam iza8aacaaMh8+aaeWaaeaapeGaam4yaiaad+gacaWGZbWdaiabeo7a NbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaak8qacqaHvpGzpa WaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaa WdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdacaaI WaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcca WGsbGaamiza8aacaaMh8+aaeWaaeaapeGaam4yaiaad+gacaWGZbWd aiabeo7aNbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaak8qacq aHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaape GaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa ey4kaSIaaGOmaiaaicdacaaIWaWdaiaayEW7peGaamiraiaadggapa WaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOe I0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdaca GGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7daqadaqaa8qacaWG JbGaam4BaiaadohapaGaeq4SdCgacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOWdbiabew9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGa eqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXo qypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaI YaaaaOGaey4kaSIaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGH sislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynai aac+cacaaIYaaaaOGaamOuaiaadsgapaGaaG5bVpaabmaabaWdbiaa dogacaWGVbGaam4Ca8aacqaHZoWzaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaGcpeGaeqy1dy2damaaCaaaleqabaWdbiaaiwdaaaGc cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiabgkHiTiaaisdacaaI4aGaamiraiaadggapa GaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcca WGsbGaamiza8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHsislcaaIZaGaaGOnaiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikda aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaGynaiaaik dacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGa aGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaeqy1dy2damaaCaaale qabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqa baGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGHRaWkcaaIYa GaaGOnaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaGaaG 5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWc beqaa8qacaaIYaaaaOGaey4kaSIaaGynaiaaikdacaaIWaGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaa yEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaa aOGaey4kaSIaaGynaiaaikdacaWGebGaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaWaaWba aSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8 aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIYaGaaGOn aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaWaaWbaaSqa beaapeGaaGinaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabe aakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgUcaRiaaisda paGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiabgUcaRiaaiAdaca WGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaSqabeaapeGaaGOm aaaakiabgkHiTiaaiodacaaI5aGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIZaGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaa peGaaGinaaaakiabgkHiTiaaikdacaaIWaWdaiaayEW7peGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaI XaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aaiwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7daqadaqa a8qacaWGJbGaam4BaiaadohapaGaeq4SdCgacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOWdbiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdae qaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaey4kaSIaaG4n aiaaiwdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOWdam aabmaabaWdbiaadogacaWGVbGaam4Ca8aacqaHZoWzaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaGcpeGaeqy1dy2daiaayEW7peGaeq ySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqy paWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaey4kaSIaaGymaiaaiwdacaaIWaWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXa GaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa iwdacaGGVaGaaGOmaaaak8aadaqadaqaa8qacaWGJbGaam4Baiaado hapaGaeq4SdCgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa eqy1dy2aaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcba Wdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGa aGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaey OeI0IaaGymaiaaiwdacaaIWaWdaiaayEW7peGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0 Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGG VaGaaGOmaaaak8aadaqadaqaa8qacaWGJbGaam4BaiaadohapaGaeq 4SdCgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWdbiabew9a M9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaape GaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaI YaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGymai aaiwdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaI YaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcaca GLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOWdamaa bmaabaWdbiaadogacaWGVbGaam4Ca8aacqaHZoWzaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGcpeGaeqy1dy2damaaCaaaleqabaWd biaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcca aMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaa leqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaiEdacaaI1aWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaa bmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaak8aadaqadaqaa8qa caWGJbGaam4BaiaadohapaGaeq4SdCgacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOWdbiabew9aM9aadaahaaWcbeqaa8qacaaI0aaa aOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaOGaey4kaSIaaGyoa8aacaaMh8+dbiaadseacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaMh8+aaeWa aeaapeGaam4yaiaad+gacaWGZbWdaiabeo7aNbGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaak8qacqaHvpGzpaWaaWbaaSqabeaapeGa aGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCa aaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaa paqabaGcpeGaeyOeI0IaaGinaiaaiwdapaGaaG5bV=qacaWGebGaam yya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackhapaGaaG5b VpaabmaabaWdbiaadogacaWGVbGaam4Ca8aacqaHZoWzaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGcpeGaeqy1dy2damaaCaaaleqa baWdbiaaisdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGa aG4maaWdaeqaaaGcbaWdbiabgUcaRiaaiMdacaaIWaWdaiaayEW7pe GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiGaccfacaGG YbWdaiaayEW7daqadaqaa8qacaWGJbGaam4BaiaadohapaGaeq4SdC gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWdbiabew9aM9aa daahaaWcbeqaa8qacaaIZaaaaOGaeqySde2damaaBaaaleaapeGaaG OmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWg aaWcbaWdbiaaiodaa8aabeaak8qacqGHsislcaaI5aGaaGima8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcciGG qbGaaiOCa8aacaaMh8+aaeWaaeaapeGaam4yaiaad+gacaWGZbWdai abeo7aNbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaak8qacqaH vpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaGinaiaaiw dapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaciiuaiaackhapaGaaG5bVpaabmaabaWdbiaadogacaWGVbGaam 4Ca8aacqaHZoWzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc caaMh8Uaeqy1dy2dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabe aakmaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qa caaIZaaapaqabaaaaOGaayjkaiaawMcaaaaa@AA41@

G[ 9 ]= ( 1ϕ ) 5/2 α 2 cosγ ( 1088640+1451520Rd )D a 2 ( 3126 ( 1ϕ ) 5/2 α 1 Da+54D a 2 ϕ 5 α 1 2 270D a 2 ϕ 4 α 1 2 +540D a 2 ϕ 3 α 1 2 540D a 2 ϕ 2 α 1 2 +270D a 2 ϕ α 1 2 72D a 2 Rd α 1 2 15D a 2 cosγ ϕ 5 α 1 α 2 +75D a 2 cosγ ϕ 4 α 1 α 2 150D a 2 cosγ ϕ 3 α 1 α 2 +150D a 2 cosγ ϕ 2 α 1 α 2 +20D a 2 Rdcosγ α 1 α 2 75D a 2 cosyϕ α 1 α 2 168D a 2 M 2 ( 1ϕ ) 5/2 Rd a 1 +4Da M 2 Rd+200D a 2 Rdcosγ ϕ 2 α 1 α 2 +100D a 2 Rdcosγ ϕ 4 α 1 α 2 360D a 2 Rd ϕ 4 α 1 2 200D a 2 Rdcosγ ϕ 3 α 1 α 2 +9D a 2 ( 1ϕ ) 5/2 Prcosγ α 2 α 3 20D a 2 Rdcosγ ϕ 5 α 1 α 2 100D a 2 Rdcosγϕ α 1 α 2 168Da ( 1ϕ ) 5/2 Rd a 1 +72D a 2 Rd ϕ 5 α 1 2 +15D a 2 cosγ α 1 α 2 126D a 2 M 2 ( 1ϕ ) 5/2 α 1 720D a 2 Rd ϕ 2 α 1 2 +360D a 2 Rdϕ 2 α 1 2 +720D a 2 Rd ϕ 3 α 1 2 +6 M 2 Da+3D a 2 M 4 +4D a 2 M 4 Rd54D a 2 α 1 2 +4Rd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaI5aaacaGLBbGaayzxaaGaeyypa0JaeyOe I0YaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dy gacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOm aaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7pe Gaam4yaiaad+gacaWGZbWdaiabeo7aNbqaa8qadaqadaWdaeaapeGa aGymaiaaicdacaaI4aGaaGioaiaaiAdacaaI0aGaaGimaiabgUcaRi aaigdacaaI0aGaaGynaiaaigdacaaI1aGaaGOmaiaaicdapaGaaG5b V=qacaWGsbGaamizaaGaayjkaiaawMcaaiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaaaaOWaaeWaaqaabeqaaiaaiodacqGHsisl caaIXaGaaGOmaiaaiAdapaGaaG5bV=qadaqadaWdaeaapeGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI 1aGaai4laiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapa qabaGccaaMh8+dbiaadseacaWGHbGaey4kaSIaaGynaiaaisdapaGa aG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeq y1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0 IaaGOmaiaaiEdacaaIWaGaamiraiaadggapaWaaWbaaSqabeaapeGa aGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde 2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOm aaaakiabgUcaRiaaiwdacaaI0aGaaGimaiaadseacaWGHbWdamaaCa aaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaG4m aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaiwdacaaI0aGaaGim aiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpa WaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYa GaaG4naiaaicdacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaiEdacaaI YaGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfaca WGKbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqa aOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaigdacaaI1aWdai aayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaa dogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaa Wcbeqaa8qacaaI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqaba aakeaapeGaey4kaSIaaG4naiaaiwdapaGaaG5bV=qacaWGebGaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdai abeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGc cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaaIXaGa aGynaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGa eqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaS qaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWd biaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGynaiaaicdapaGaaG 5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4y aiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaale qabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqa baGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaO qaa8qacqGHRaWkcaaIYaGaaGima8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamizaiaadogacaWGVb Gaam4Ca8aacqaHZoWzcaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaa igdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaa WdaeqaaOWdbiabgkHiTiaaiEdacaaI1aWdaiaayEW7peGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Cai aadMhapaGaaG5bV=qacqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHsislcaaIXaGaaGOnaiaaiIdacaWG ebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaa Wcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaH vpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+caca aIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacaWGHbWdamaaBaaaleaa peGaaGymaaWdaeqaaaGcbaWdbiabgUcaRiaaisdapaGaaG5bV=qaca WGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaSqabeaapeGaaGOm aaaakiaadkfacaWGKbGaey4kaSIaaGOmaiaaicdacaaIWaWdaiaayE W7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfa caWGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayE W7peGaeqy1dy2damaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaaicda paGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO GaamOuaiaadsgapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4S dC2dbiabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2dam aaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSba aSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaaG4maiaaiAdacaaIWa GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWG KbWdaiaayEW7cqaHvpGzdaahaaWcbeqaa8qacaaI0aaaaOGaeqySde 2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOm aaaaaOWdaeaapeGaeyOeI0IaaGOmaiaaicdacaaIWaWdaiaayEW7pe GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWG KbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7pe Gaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqGHRaWkcaaI5aWdaiaayEW7peGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qaca aIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWd biaaiwdacaGGVaGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaam 4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqySde2damaaBaaa leaapeGaaGOmaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyOeI0IaaGOmaiaaicdapaGaaG5bV=qa caWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaads gapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qa cqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaa peGaaGOmaaWdaeqaaaGcbaWdbiabgkHiTiaaigdacaaIWaGaaGima8 aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGc caWGsbGaamiza8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaHZo WzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWd biaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaG OmaaWdaeqaaOWdbiabgkHiTiaaigdacaaI2aGaaGioaiaadseacaWG HbWdaiaayEW7peWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzai aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaa aOGaamOuaiaadsgapaGaaG5bV=qacaWGHbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabgUcaRiaaiEdacaaIYaGaamiraiaadggapaWa aWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaeq y1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacqGHRaWkcaaIXaGaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaa CaaaleqabaWdbiaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdC MaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsi slcaaIXaGaaGOmaiaaiAdacaWGebGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8 aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeqySde2damaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgkHiTiaaiEdacaaIYaGaaGimaiaa dseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8 aacaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqyS de2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaRiaaiodacaaI2aGaaGima8aacaaMh8+dbiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aaca aMh8Uaeqy1dyMaaG5bVpaaCaaaleqabaGaaGOmaaaak8qacqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qacqGHRaWkcaaI3aGaaGOmaiaaicdapaGaaG5bV=qa caWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaads gapaGaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaG4maaaakiab eg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbi aaikdaaaGccqGHRaWkcaaI2aWdaiaayEW7peGaamyta8aadaahaaWc beqaa8qacaaIYaaaaOGaamiraiaadggacqGHRaWkcaaIZaWdaiaayE W7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2ea paWaaWbaaSqabeaapeGaaGinaaaakiabgUcaRiaaisdapaGaaG5bV= qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aa daahaaWcbeqaa8qacaaI0aaaaOGaamOuaiaadsgacqGHsislcaaI1a GaaGinaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH XoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qaca aIYaaaaOGaey4kaSIaaGina8aacaaMh8+dbiaadkfacaWGKbaaaiaa wIcacaGLPaaaaaa@C4DF@

G[ 10 ]= ( 1ϕ ) 5/2 α 2 cosy 3628800 ( 3+4Rd ) 2 D a 2 ( 19440D a 2 Rdϕ α 1 2 +9b+1458D a 2 α 1 2 +16D a 2 M 4 R d 2 +24D a 2 M 4 Rd +32Da M 2 R d 2 +48Da M 2 Rd+378Dacosγ α 1 α 2 378D a 2 M 2 cosγ ϕ 5 α 1 α 2 +1890D a 2 M 2 cosγ ϕ 4 α 1 α 2 672DaR d 2 cosγ ϕ 5 α 1 α 2 3780D a 2 M 2 cosγ ϕ 3 α 1 α 2 +3360DaR d 2 cosγ ϕ 4 α 1 α 2 1008DaRdcosγ ϕ 5 α 1 α 2 +672D a 2 M 2 R d 2 cosγ α 1 α 2 6720DaR d 2 cosγ ϕ 3 α 1 α 2 +5040DaRdcosγ ϕ 4 α 1 α 2 2592D a 2 R d 2 ϕ 5 α 1 2 +12960D a 2 R d 2 ϕ 4 α 1 2 3888D a 2 Rd ϕ 5 α 1 2 25920D a 2 R d 2 ϕ 3 α 1 2 +77760D a 2 Rd a 2 ϕ 4 α 1 2 +25920D a 2 R d 2 α 1 2 77760D a 2 Rd a 2 α 1 2 12960D a 2 R d 2 ϕ α 1 2 +38880D a 2 Rd ϕ 2 α 1 2 +1332D a 2 ( 1ϕ ) 5/2 PrRd α 1 α 3 +3780Dacosγ ϕ 2 α 1 α 2 +672DaR d 2 cosγ α 1 α 2 +378D a 2 M 2 cosγ α 1 α 2 +3360D a 2 M 2 R d 2 cosγ ϕ 4 α 1 α 2 3780Dacosγ ϕ 3 α 1 α 2 +1890Dacosγ ϕ 4 α 1 α 2 +810D a 2 Pr 2 b α 3 2 378Dacosγ ϕ 5 α 1 α 2 +10080D a 2 M 2 Rdcosγ ϕ 2 α 1 α 2 3360D a 2 M 2 R d 2 cosyϕ α 1 α 2 10080D a 2 M 2 Rdcosγ ϕ 3 α 1 α 2 +6720D a 2 M 2 R d 2 cosγ ϕ 2 α 1 α 2 +5040D a 2 M 2 Rdcosγ ϕ 4 α 1 α 2 6720D a 2 M 2 R d 2 cosγ ϕ 3 α 1 α 2 1008D a 2 M 2 Rdcosγ ϕ 5 α 1 α 2 1704Da ( 1ϕ ) 5/2 Rd α 1 +3780D a 2 M 2 cosγ ϕ 2 α 1 α 2 1138Da ( 1ϕ ) 5/2 R d 2 α 1 639D a 2 M 2 ( 1ϕ ) 5/2 α 1 5040DaRdcosγϕ α 1 α 2 72DaPrRd α 3 +10080DaRdcosγ ϕ 2 α 1 α 2 3360DaR d 2 cosγϕ α 1 α 2 10080DaRdcosγ ϕ 3 α 1 α 2 +6720DaR d 2 cosγ ϕ 2 α 1 α 2 1890D a 2 M 2 cosγϕ α 1 α 2 +1008D a 2 M 2 Rdcosγ α 1 α 2 672D a 2 M 2 R d 2 cosγ ϕ 5 α 1 α 2 54D a 2 M 2 Pr α 3 +9D a 2 M 4 +18Da M 2 639Da ( 1ϕ ) 5/2 α 1 54DaPr α 3 +1008DaRdcosγ α 1 α 2 1890Dacosγϕ α 1 α 2 +14580D a 2 b ϕ 2 α 1 2 7290D a 2 ϕ α 1 2 +7290D a 2 ϕ 4 α 1 2 14580D a 2 b ϕ 3 α 1 2 1458D a 2 ϕ 5 α 1 2 +2592D a 2 R d 2 α 1 2 +3888D a 2 Rd α 1 2 +16R d 2 +24Rd5040D a 2 M 2 Rdcosγϕ α 1 α 2 72D a 2 M 2 PrRd α 3 +999D a 2 ( 1ϕ ) 5/2 Pr α 1 α 3 1704D a 2 M 2 ( 1ϕ ) 5/2 Rd α 1 1388D a 2 M 2 ( 1ϕ ) 5/2 R d 2 α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWaamWaaeaacaaIXaGaaGimaaGaay5waiaaw2faaiabg2da 9iabgkHiTmaalaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTi abew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4l aiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcca aMh8+dbiaadogacaWGVbGaam4CaiaadMhaa8aabaWdbiaaiodacaaI 2aGaaGOmaiaaiIdacaaI4aGaaGimaiaaicdapaGaaG5bV=qadaqada WdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV=qacaWGsbGaamiz aaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamirai aadggapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcpaWaaeWaaqaabeqa a8qacqGHsislcaaIXaGaaGyoaiaaisdacaaI0aGaaGimaiaadseaca WGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aacaaM h8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaig daa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI5aWd aiaayEW7peGaamOyaiabgUcaRiaaigdacaaI0aGaaGynaiaaiIdaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaa BaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaki abgUcaRiaaigdacaaI2aWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGinaa aakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaey4k aSYdbiaaikdacaaI0aWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGinaaaa kiaadkfacaWGKbWdaiaayEW7a8qabaGaey4kaSIaaG4maiaaikdapa GaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaSqa beaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaik daaaGccqGHRaWkcaaI0aGaaGioa8aacaaMh8+dbiaadseacaWGHbWd aiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuai aadsgapaGaaG5bV=qacqGHRaWkcaaIZaGaaG4naiaaiIdapaGaaG5b V=qacaWGebGaamyya8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacq aHZoWzcaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgkHiTiaaiodacaaI3aGaaGioa8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbi aaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaH vpGzpaWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcba Wdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGa aGOmaaWdaeqaaaGcbaWdbiabgUcaRiaaigdacaaI4aGaaGyoaiaaic dapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gaca WGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaa isdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8 +dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsisl caaI2aGaaG4naiaaikdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8 +dbiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGa am4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabe aapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgkHiTiaaiodacaaI3aGaaGioaiaaicdapaGaaG5bV=qacaWGebGa amyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbe qaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7 peGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaS baaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWc baWdbiaaikdaa8aabeaaaOqaa8qacqGHRaWkcaaIZaGaaG4maiaaiA dacaaIWaWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qacaWGsbGa amiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZb Wdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaisda aaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbi abeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaaI XaGaaGimaiaaicdacaaI4aWdaiaayEW7peGaamiraiaadggapaGaaG 5bV=qacaWGsbGaamiza8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aa cqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaO GaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaH XoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaGOnai aaiEdacaaIYaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaa peGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadk facaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4Baiaa dohapaGaeq4SdCMaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXa aapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aa beaaaOqaa8qacqGHsislcaaI2aGaaG4naiaaikdacaaIWaWdaiaayE W7peGaamiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aadaahaaWc beqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayE W7peGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWa aSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaaI1aGaaGimaiaaisda caaIWaWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qacaWGsbGaam iza8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+d biabew9aM9aadaahaaWcbeqaa8qacaaI0aaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyOeI0IaaGOmaiaaiwdacaaI5aGaaG OmaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGa amiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaale qabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqa baGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGHRaWkcaaIXa GaaGOmaiaaiMdacaaI2aGaaGima8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbe qaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaisdaaaGc cqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8 qacaaIYaaaaOGaeyOeI0IaaG4maiaaiIdacaaI4aGaaGioaiaadsea caWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aaca aMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2d amaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaa aakiabgkHiTiaaikdacaaI1aGaaGyoaiaaikdacaaIWaGaamiraiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCa aaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaG4m aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiabgUcaRiaaiEdacaaI3aGaaG4n aiaaiAdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaais daaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWc beqaa8qacaaIYaaaaOGaey4kaSIaaGOmaiaaiwdacaaI5aGaaGOmai aaicdacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOu aiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaa WcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGH sislcaaI3aGaaG4naiaaiEdacaaI2aGaaGima8aacaaMh8+dbiaads eacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aa caaMh8+dbiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiabgkHiTiaaigdacaaIYaGaaGyoaiaaiAdacaaIWa GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWG KbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaOGaey4kaSIaaG4maiaaiIdacaaI4aGaaGioaiaaicdaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsga paGaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg 7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaGccqGHRaWkcaaIXaGaaG4maiaaiodacaaIYaGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaamOuaiaa dsgapaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqaba GccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqa a8qacqGHRaWkcaaIZaGaaG4naiaaiIdacaaIWaWdaiaayEW7peGaam iraiaadggapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdC2d biabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaey4kaSIaaGOnaiaaiEdacaaIYaWdai aayEW7peGaamiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aadaah aaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNj aayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5b V=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaS IaaG4maiaaiEdacaaI4aWdaiaayEW7peGaamiraiaadggapaWaaWba aSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaa aakiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabeg7aH9aa daWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBa aaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiodacaaIZaGaaGOn aiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qaca aIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaa dsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8 aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaI0aaa aOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaeyOeI0Ia aG4maiaaiEdacaaI4aGaaGima8aacaaMh8+dbiaadseacaWGHbWdai aayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1 dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaa ikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGioaiaaiMdacaaIWaWdai aayEW7peGaamiraiaadggapaGaaG5bV=qacaWGJbGaam4Baiaadoha paGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaa aakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGa eqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiI dacaaIXaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGcpaWaaCbiaeaapeGaciiuaiaackhaaSWdaeqaba WdbiaaikdaaaGccaWGIbGaeqySde2damaaBaaaleaapeGaaG4maaWd aeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaiodacaaI3a GaaGioa8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaam4yaiaa d+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaaleqaba WdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGc caaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8 qacqGHRaWkcaaIXaGaaGimaiaaicdacaaI4aGaaGima8aacaaMh8+d biaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdam aaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaa dogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaahaa Wcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaeyOeI0IaaG4maiaaiodacaaI2aGaaGima8aacaaMh8+dbiaa dseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCa aaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qa caaIYaaaaOGaam4yaiaad+gacaWGZbGaamyEa8aacaaMh8+dbiabew 9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaa kiaayEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi abgkHiTiaaigdacaaIWaGaaGimaiaaiIdacaaIWaWdaiaayEW7peGa amiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaW baaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaam4y aiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaale qabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqa baGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaO qaa8qacqGHRaWkcaaI2aGaaG4naiaaikdacaaIWaWdaiaayEW7peGa amiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaW baaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWd biaaikdaaaGccaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacq aHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaape GaaGOmaaWdaeqaaOWdbiabgUcaRiaaiwdacaaIWaGaaGinaiaaicda paGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO Gaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaGa aG5bV=qacaWGJbGaam4BaiaadohapaGaeq4SdCMaaG5bV=qacqaHvp GzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWcbaWd biaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaapeGaaG OmaaWdaeqaaOWdbiabgkHiTiaaiAdacaaI3aGaaGOmaiaaicdapaGa aG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaam yta8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaWaaWba aSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZoWzca aMh8+dbiabew9aM9aadaahaaWcbeqaa8qacaaIZaaaaOGaeqySde2d amaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaS baaSqaa8qacaaIYaaapaqabaaakeaapeGaeyOeI0IaaGymaiaaicda caaIWaGaaGioa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqaba WdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWG sbGaamizaiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew 9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2damaaBaaaleaa peGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0IaaGymaiaaiEdacaaIWaGaaGinaiaa dseacaWGHbWdaiaayEW7peWaaeWaa8aabaWdbiaaigdacqGHsislcq aHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+ca caaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHXoqypaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaG4maiaaiEdacaaI4aGa aGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaik daaaGccaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGJbGaam4B aiaadohapaGaeq4SdCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaape GaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaa yEW7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbi abgkHiTiaaigdacaaIXaGaaG4maiaaiIdacaWGebGaamyya8aacaaM h8+dbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfa caWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaGOnaiaaiodacaaI5aGa amiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaW baaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Ia eqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVa GaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGHsislcaaI1aGaaGimaiaaisdacaaIWaWdaiaayEW7peGaamirai aadggapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaadogacaWG VbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg 7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2d amaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgkHiTiaaiEdaca aIYaGaamiraiaadggapaGaaG5bV=qaciGGqbGaaiOCa8aacaaMh8+d biaadkfacaWGKbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaG 4maaWdaeqaaOWdbiabgUcaRiaaigdacaaIWaGaaGimaiaaiIdacaaI WaWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qacaWGsbGaamiza8 aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiab ew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaale aapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyOeI0IaaG4maiaaiodacaaI2aGaaGima8 aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaWa aWbaaSqabeaapeGaaGOmaaaakiaadogacaWGVbGaam4Ca8aacqaHZo WzpeGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaGym aaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapa qabaGcpeGaeyOeI0IaaGymaiaaicdacaaIWaGaaGioaiaaicdapaGa aG5bV=qacaWGebGaamyya8aacaaMh8+dbiaadkfacaWGKbWdaiaayE W7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2d amaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qaca aIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikda a8aabeaaaOqaa8qacqGHRaWkcaaI2aGaaG4naiaaikdacaaIWaWdai aayEW7peGaamiraiaadggapaGaaG5bV=qacaWGsbGaamiza8aadaah aaWcbeqaa8qacaaIYaaaaOGaam4yaiaad+gacaWGZbWdaiabeo7aNj aayEW7peGaeqy1dy2damaaCaaaleqabaWdbiaaikdaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aada WgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaaIXaGaaGioaiaa iMdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaape GaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiaadoga caWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbi abeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqyS de2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaaigdaca aIWaGaaGimaiaaiIdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaO GaamOuaiaadsgapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4S dCMaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcca aMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qa cqGHsislcaaI2aGaaG4naiaaikdapaGaaG5bV=qacaWGebGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qa caaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaaki aadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbiabew9aM9aadaah aaWcbeqaa8qacaaI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaeyOeI0IaaGynaiaaisdacaWGebGaamyya8aadaahaaWcbe qaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGa ciiuaiaackhapaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIZa aapaqabaGcpeGaey4kaSIaaGyoa8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaaleqabaWdbi aaisdaaaGccqGHRaWkcaaIXaGaaGioa8aacaaMh8+dbiaadseacaWG HbWdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOGaey OeI0IaaGOnaiaaiodacaaI5aGaamiraiaadggapaGaaG5bV=qadaqa daWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0IaaGynaiaaisdaca WGebGaamyya8aacaaMh8+dbiGaccfacaGGYbWdaiaayEW7peGaeqyS de2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaigdaca aIWaGaaGimaiaaiIdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+d biaadkfacaWGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo 7aNjaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGa aG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey OeI0IaaGymaiaaiIdacaaI5aGaaGima8aacaaMh8+dbiaadseacaWG HbGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2dai aayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5b V=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaS IaaGymaiaaisdacaaI1aGaaGioaiaaicdapaGaaG5bV=qacaWGebGa amyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOyaiabew9aM9aada ahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGym aaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaiEdaca aIYaGaaGyoaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWc beqaa8qacaaIYaaaaOGaeqy1dy2daiaayEW7peGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaey4kaSIaaG4naiaaikdacaaI5aGaaGimaiaadseacaWGHb WdamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaa peGaaGinaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakm aaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIXaGaaGinaiaaiwda caaI4aGaaGimaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGIbGaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqy paWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYa aaaOGaeyOeI0IaaGymaiaaisdacaaI1aGaaGioaiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaape GaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakmaa CaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYaGaaGynaiaaiMdaca aIYaGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfa caWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaS qaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqa a8qacqGHRaWkcaaIZaGaaGioaiaaiIdacaaI4aGaamiraiaadggapa WaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGa eqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaape GaaGOmaaaakiabgUcaRiaaigdacaaI2aWdaiaayEW7peGaamOuaiaa dsgapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaikdacaaI0a WdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qacqGHsislcaaI1aGa aGimaiaaisdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaa kiaadkfacaWGKbWdaiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo 7aNjaayEW7peGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaa peGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyOeI0IaaG4naiaaikdacaWGebGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qaca aIYaaaaOGaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aacaaM h8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqaa8qacq GHRaWkcaaI5aGaaGyoaiaaiMdapaGaaG5bV=qacaWGebGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsi slcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaa c+cacaaIYaaaaOGaciiuaiaackhapaGaaG5bV=qacqaHXoqypaWaaS baaSqaa8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWc baWdbiaaiodaa8aabeaak8qacqGHsislcaaIXaGaaG4naiaaicdaca aI0aGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2ea paWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaey OeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwda caGGVaGaaGOmaaaakiaadkfacaWGKbWdaiaayEW7peGaeqySde2dam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaaigdacaaIZaGa aGioaiaaiIdacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO Gaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaa igdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaape GaaGynaiaac+cacaaIYaaaaOGaamOuaiaadsgapaWaaWbaaSqabeaa peGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaaaa GccaGLOaGaayzkaaaaaa@9E84@

Similarly

Φ[ 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaikdaaiaawUfacaGLDbaacqGH9aqpcaaI Waaaaa@3D7E@

Φ[ 3 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiodaaiaawUfacaGLDbaacqGH9aqpcaaI Waaaaa@3D7F@

Φ[ 4 ]= 3 8 ( α 3 Pr 3+4Rd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaisdaaiaawUfacaGLDbaacqGH9aqpcqGH sisldaWcaaqaaiaaiodaaeaacaaI4aaaamaabmaabaWaaSaaa8aaba Wdbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaakiaayEW7peGa ciiuaiaackhapaGaaG5bVdqaa8qacaaIZaGaey4kaSIaaGina8aaca aMh8+dbiaadkfacaWGKbaaaaGaayjkaiaawMcaaaaa@4EA1@

Φ[ 5 ]= 3 α 3 Pr ( 1ϕ ) 5/2 α 2 cosγ 120+160Rd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiwdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaaG4ma8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbi aaiodaa8aabeaakiaayEW7peGaciiuaiaackhapaGaaG5bV=qadaqa daWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcpaGaaGPaV=qacqaH XoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGccaaMh8+dbiaadogaca WGVbGaam4Ca8aacqaHZoWzcaaMh8oabaWdbiaaigdacaaIYaGaaGim aiabgUcaRiaaigdacaaI2aGaaGima8aacaaMh8+dbiaadkfacaWGKb aaaaaa@63C3@

Φ[ 6 ]= α 3 Pr ( 1ϕ ) 5/2 α 2 cosγ 240+320Rd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiAdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aa beaakiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNbqaa8qaca aIYaGaaGinaiaaicdacqGHRaWkcaaIZaGaaGOmaiaaicdapaGaaG5b V=qacaWGsbGaamizaaaaaaa@5E1F@

Φ[ 7 ]= α 3 Pr( 3+4Da ( 1ϕ ) 5/2 Rd α 1 +3 ( 1ϕ ) 5/2 α 1 Da +4Da M 2 Rd90DaPr α 3 +3Da M 2 +4Rd ) 560 ( 3+4Rd ) 2 Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiEdaaiaawUfacaGLDbaacqGH9aqpcqGH sisldaWcaaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdae qaaOGaaG5bV=qaciGGqbGaaiOCa8aacaaMh8+dbmaabmaapaabaeqa baWdbiaaiodacqGHRaWkcaaI0aWdaiaayEW7peGaamiraiaadggapa GaaG5bV=qadaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGcca WGsbGaamiza8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHRaWkcaaIZaWdaiaayEW7peWaaeWaa8aabaWdbi aaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaa peGaaGynaiaac+cacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG ymaaWdaeqaaOGaaG5bV=qacaWGebGaamyyaaqaaiabgUcaRiaaisda paGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2eapaWaaWbaaS qabeaapeGaaGOmaaaakiaadkfacaWGKbGaeyOeI0IaaGyoaiaaicda paGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiGaccfacaGGYbWdai aayEW7peGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOWdbiab gUcaRiaaiodapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiaad2 eapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaisdapaGaaG5b V=qacaWGsbGaamizaaaacaGLOaGaayzkaaaapaqaa8qacaaI1aGaaG OnaiaaicdapaGaaG5bV=qadaqadaWdaeaapeGaaG4maiabgUcaRiaa isdapaGaaG5bV=qacaWGsbGaamizaaGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaIYaaaaOGaamiraiaadggaaaaaaa@A197@

Φ[ 8 ]= α 3 Pr ( 1ϕ ) 5/2 α 2 cosy( 4Da M 2 Rd315DaPr α 3 +3Da M 2 +4Rd+3 ) 4480 ( 3+4Rd ) 2 Da MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiIdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaak8aacaaMc8+dbiabeg7aH9aadaWgaaWcbaWd biaaikdaa8aabeaakiaayEW7peGaam4yaiaad+gacaWGZbGaamyEa8 aacaaMh8+dbmaabmaapaqaa8qacaaI0aWdaiaayEW7peGaamiraiaa dggapaGaaG5bV=qacaWGnbWdamaaCaaaleqabaWdbiaaikdaaaGcca WGsbGaamizaiabgkHiTiaaiodacaaIXaGaaGyna8aacaaMh8+dbiaa dseacaWGHbWdaiaayEW7peGaciiuaiaackhapaGaaG5bV=qacqaHXo qypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaG4ma8aa caaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamyta8aadaahaaWcbe qaa8qacaaIYaaaaOGaey4kaSIaaGina8aacaaMh8+dbiaadkfacaWG KbGaey4kaSIaaG4maaGaayjkaiaawMcaaaWdaeaapeGaaGinaiaais dacaaI4aGaaGima8aacaaMh8+dbmaabmaapaqaa8qacaaIZaGaey4k aSIaaGina8aacaaMh8+dbiaadkfacaWGKbaacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaaikdaaaGccaWGebGaamyyaaaaaaa@8FC6@

Φ[ 9 ]= α 3 Pr α 2 cosγ 40320 ( 3+4Rd ) 2 Da ( 4Da M 2 ( 1ϕ ) 5/2 Rd516 α 3 Prb ( 1ϕ ) 5/2 Da315DaPrcosγ ϕ 5 α 2 α 3 +20DaRd ϕ 5 α 1 +3Da M 2 ( 1ϕ ) 5/2 +1575DaPrcosγ ϕ 4 α 2 α 3 100DaRd ϕ 4 α 1 +15Da ϕ 5 α 1 +75Daϕ α 1 15Da α 1 3150DaPrcosγ ϕ 3 α 2 α 3 +200DaRd ϕ 3 α 1 75Da ϕ 4 α 1 +3150DaPrcosγ ϕ 2 α 2 α 3 200DaRd ϕ 2 α 1 +150Da ϕ 3 α 1 +4 ( 1ϕ ) 5/2 Rd1575DaPrcosγϕ α 2 α 3 +100DaRdϕ α 1 150Da ϕ 2 α 1 +3 ( 1ϕ ) 5/2 +315 α 3 Pr α 2 cosγDa20DaRd α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaiMdaaiaawUfacaGLDbaacqGH9aqpdaWc aaWdaeaapeGaeqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG 5bV=qaciGGqbGaaiOCa8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWd biaaikdaa8aabeaakiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo 7aNbqaa8qacaaI0aGaaGimaiaaiodacaaIYaGaaGima8aacaaMh8+d bmaabmaapaqaa8qacaaIZaGaey4kaSIaaGina8aacaaMh8+dbiaadk facaWGKbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGc caWGebGaamyyaaaadaqadaabaeqabaGaaGina8aacaaMh8+dbiaads eacaWGHbWdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaIYaaa aOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaamOuaiaa dsgapaGaaG5bV=qacqGHsislcaaI1aGaaGymaiaaiAdapaGaaG5bV= qacqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGccaaMh8+dbiGa ccfacaGGYbWdaiaayEW7peGaamOyamaabmaapaqaa8qacaaIXaGaey OeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwda caGGVaGaaGOmaaaakiaadseacaWGHbGaeyOeI0IaaG4maiaaigdaca aI1aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qaciGGqbGaaiOC a8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacqaHZoWzcaaMh8+dbi abew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2damaaBaaa leaapeGaaGOmaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8 qacaaIZaaapaqabaaakeaapeGaey4kaSIaaGOmaiaaicdapaGaaG5b V=qacaWGebGaamyya8aacaaMh8+dbiaadkfacaWGKbGaeqy1dy2dam aaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaey4kaSIaaG4ma8aacaaMh8+dbiaadseacaWGHb WdaiaayEW7peGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWa a8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaey4kaSIaaGymaiaa iwdacaaI3aGaaGyna8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7pe GaciiuaiaackhapaGaaG5bV=qacaWGJbGaam4BaiaadohapaGaeq4S dCMaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg 7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakiaayEW7peGaeqySde2d amaaBaaaleaapeGaaG4maaWdaeqaaaGcbaWdbiabgkHiTiaaigdaca aIWaGaaGima8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaamOu aiaadsgapaGaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaGinaa aakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWk caaIXaGaaGyna8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaeq y1dy2damaaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaey4kaSIaaG4naiaaiwdapaGaaG5bV= qacaWGebGaamyya8aacaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7a H9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaaIXaGaaG yna8aacaaMh8+dbiaadseacaWGHbWdaiaayEW7peGaeqySde2damaa BaaaleaapeGaaGymaaWdaeqaaaGcbaWdbiabgkHiTiaaiodacaaIXa GaaGynaiaaicdapaGaaG5bV=qacaWGebGaamyya8aacaaMh8+dbiGa ccfacaGGYbGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeq y1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbi aaiodaa8aabeaak8qacqGHRaWkcaaIYaGaaGimaiaaicdapaGaaG5b V=qacaWGebGaamyya8aacaaMh8+dbiaadkfacaWGKbWdaiaayEW7pe Gaeqy1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaaG4naiaaiwdapaGaaG 5bV=qacaWGebGaamyya8aacaaMh8+dbiabew9aM9aadaahaaWcbeqa a8qacaaI0aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaa GcbaWdbiabgUcaRiaaiodacaaIXaGaaGynaiaaicdapaGaaG5bV=qa caWGebGaamyya8aacaaMh8+dbiGaccfacaGGYbWdaiaayEW7peGaam 4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7peGaeqy1dy2damaaCaaa leqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapa qabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaa k8qacqGHsislcaaIYaGaaGimaiaaicdapaGaaG5bV=qacaWGebGaam yya8aacaaMh8+dbiaadkfacaWGKbWdaiaayEW7peGaeqy1dy2damaa CaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaey4kaSIaaGymaiaaiwdacaaIWaWdaiaayEW7peGa amiraiaadggapaGaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGaaG 4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qa cqGHRaWkcaaI0aWdaiaayEW7peWaaeWaa8aabaWdbiaaigdacqGHsi slcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaa c+cacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqGHsislcaaIXa GaaGynaiaaiEdacaaI1aWdaiaayEW7peGaamiraiaadggapaGaaG5b V=qaciGGqbGaaiOCa8aacaaMh8+dbiaadogacaWGVbGaam4Ca8aacq aHZoWzcaaMh8+dbiabew9aM9aacaaMh8+dbiabeg7aH9aadaWgaaWc baWdbiaaikdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaape GaaG4maaWdaeqaaOWdbiabgUcaRiaaigdacaaIWaGaaGima8aacaaM h8+dbiaadseacaWGHbWdaiaayEW7peGaamOuaiaadsgapaGaaG5bV= qacqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaa paqabaaakeaapeGaeyOeI0IaaGymaiaaiwdacaaIWaWdaiaayEW7pe GaamiraiaadggapaGaaG5bV=qacqaHvpGzpaWaaWbaaSqabeaapeGa aGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacq GHRaWkcaaIZaWdaiaayEW7peWaaeWaa8aabaWdbiaaigdacqGHsisl cqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+ cacaaIYaaaaOGaey4kaSIaaG4maiaaigdacaaI1aWdaiaayEW7peGa eqySde2damaaBaaaleaapeGaaG4maaWdaeqaaOGaaG5bV=qaciGGqb GaaiOCa8aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aa beaakiaayEW7peGaam4yaiaad+gacaWGZbWdaiabeo7aNjaayEW7pe GaamiraiaadggacqGHsislcaaIYaGaaGima8aacaaMh8+dbiaadsea caWGHbWdaiaayEW7peGaamOuaiaadsgapaGaaG5bV=qacqaHXoqypa WaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiaawIcacaGLPaaaaaa@07E6@

Φ[ 10 ]= α 3 Prb 403200 ( 3+4Rd ) 3 D a 2 ( 1152D a 2 M 2 ( 1ϕ ) 5/2 Rd a 2 α 1 450D a 2 ( 1ϕ ) 5/2 (cosγ) 2 ϕ 2 α 1 α 2 2 +92268 α 3 PrDa +24D a 2 M 4 Rd+48Da M 2 Rd108 ( 1ϕ ) 5/2 α 1 Da+117D a 2 ϕ 5 α 1 2 585D a 2 ϕ 4 α 1 2 +1170D a 2 ϕ 3 α 1 2 1170D a 2 ϕ 2 α 1 2 +585D a 2 ϕ α 1 2 45D a 2 ( 1ϕ ) 5/2 (cosγ) 2 α 1 α 2 2 3024D a 2 M 2 PrRd α 3 2268D a 2 ( 1ϕ ) 5/2 Pr α 1 α 3 192D a 2 M 2 ( 1ϕ ) 5/2 R d 2 α 1 3024DaPrRd α 3 2268D a 2 M 2 Pr α 3 +450D a 2 ( 1ϕ ) 5/2 (cosγ) 2 ϕ 3 α 1 α 2 2 225D a 2 ( 1ϕ ) 5/2 (cosγ) 2 ϕ 4 α 1 α 2 2 +45D a 2 ( 1ϕ ) 5/2 (cosγ) 2 ϕ 5 α 1 α 2 2 +3429D a 2 Pr (cosγ) 2 ϕ 5 α 2 2 α 3 +34290D a 2 Pr (cosγ) 2 ϕ 3 α 2 2 α 3 34290D a 2 Pr (cosγ) 2 ϕ 2 α 2 2 α 3 80D a 2 ( 1ϕ ) 5/2 R d 2 ( cosy ) 2 α 1 α 2 2 4572D a 2 PrRd (cosγ) 2 α 2 2 α 3 17145D a 2 Pr (cosγ) 2 ϕ 4 α 2 2 α 3 120D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 α 1 α 2 2 3024D a 2 ( 1ϕ ) 5/2 PrRd α 1 α 3 +225D a 2 ( 1ϕ ) 5/2 (cosγ) 2 ϕ α 1 α 2 2 +600D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 ϕ α 1 α 2 2 1200D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 ϕ 2 α 1 α 2 2 +1200D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 ϕ 3 α 1 α 2 2 600D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 ϕ 4 α 1 α 2 2 +120D a 2 ( 1ϕ ) 5/2 Rd (cosγ) 2 ϕ 5 α 1 α 2 2 +16R d 2 +9D a 2 M 4 288Da ( 1ϕ ) 5/2 Rd α 1 108D a 2 M 2 ( 1ϕ ) 5/2 α 1 +1560D a 2 Rdϕ α 1 2 117D a 2 α 1 2 3429D a 2 Pr (cosγ) 2 α 2 2 α 3 +17145D a 2 Pr (cosγ) 2 ϕ α 2 2 α 3 +400D a 2 ( 1ϕ ) 5/2 R d 2 (cosγ) 2 ϕ α 1 α 2 2 +36Da M 2 a+800D a 2 ( 1ϕ ) 5/2 R d 2 (cosγ) 2 ϕ 3 α 1 α 2 2 800D a 2 ( 1ϕ ) 5/2 R d 2 (cosγ) 2 ϕ 2 α 1 α 2 2 +80D a 2 ( 1ϕ ) 5/2 R d 2 (cosγ) 2 ϕ 5 α 1 α 2 2 400D a 2 ( 1ϕ ) 5/2 R d 2 (cosγ) 2 ϕ 4 α 1 α 2 2 45720D a 2 PrRdb (cosγ) 2 ϕ 2 α 2 2 α 3 +22860D a 2 PrRdbcos y 2 ϕ α 2 2 α 3 +4572D a 2 PrRdbcos y 2 ϕ 5 α 2 2 α 3 22860D a 2 PrRd (cosγ) 2 ϕ 4 α 2 2 α 3 +45720D a 2 PrRd (cosγ) 2 ϕ 3 α 2 2 α 3 3120D a 2 Rd ϕ 2 α 1 2 +3120D a 2 Rd ϕ 3 α 1 2 1560D a 2 Rd ϕ 4 α 1 2 +312D a 2 Rd ϕ 5 α 1 2 +1040D a 2 R d 2 ϕ α 1 2 +22680D a 2 Pr 2 a 3 α 3 2 +24Rd +2080D a 2 R d 2 ϕ 3 α 1 2 2080D a 2 R d 2 a 3 ϕ 2 α 1 2 1040D a 2 R d 2 ϕ 4 α 1 2 192Da ( 1ϕ ) 5/2 R d 2 α 1 +208D a 2 R d 2 ϕ 5 α 1 2 312D a 2 Rd α 1 2 +32Da M 2 R d 2 +16D a 2 M 4 R d 2 208D a 2 R d 2 α 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHMoGrdaWadaqaaiaaigdacaaIWaaacaGLBbGaayzxaaGaeyyp a0JaeyOeI0YaaSaaa8aabaWdbiabeg7aH9aadaWgaaWcbaWdbiaaio daa8aabeaakiaayEW7peGaciiuaiaackhapaGaaG5bV=qacaWGIbaa paqaa8qacaaI0aGaaGimaiaaiodacaaIYaGaaGimaiaaicdapaGaaG 5bV=qadaqadaWdaeaapeGaaG4maiabgUcaRiaaisdapaGaaG5bV=qa caWGsbGaamizaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIZa aaaOGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaqa daabaeqabaGaeyOeI0IaaGymaiaaigdacaaI1aGaaGOma8aacaaMh8 +dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgk HiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGa ai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaadggapaWaaW baaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGHsislcaaI0aGaaGynaiaaicdapaGaaG5bV=qaca WGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWd biaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaGynaiaac+cacaaIYaaaaOGaaiikaiaadogacaWGVbGaam4C a8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9 aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGa aGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYa aapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGyoaiab gkHiTiaaikdacaaIYaGaaGOnaiaaiIdapaGaaG5bV=qacqaHXoqypa WaaSbaaSqaa8qacaaIZaaapaqabaGccaaMh8+dbiGaccfacaGGYbGa amiraiaadggaaeaacqGHRaWkcaaIYaGaaGina8aacaaMh8+dbiaads eacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGnbWdamaaCaaa leqabaWdbiaaisdaaaGccaWGsbGaamiza8aacaaMh8+dbiabgUcaRi aaisdacaaI4aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qacaWG nbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiza8aacaaMh8 +dbiabgkHiTiaaigdacaaIWaGaaGioamaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaakiabeg7aHnaaBaaaleaacaaIXaaabeaakiaa dseacaWGHbGaey4kaSIaaGymaiaaigdacaaI3aGaamiraiaadggapa WaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qa caaI1aaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaW baaSqabeaapeGaaGOmaaaakiabgkHiTiaaiwdacaaI4aGaaGyna8aa caaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccq aHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aaba WdbiabgUcaRiaaigdacaaIXaGaaG4naiaaicdapaGaaG5bV=qacaWG ebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCa aaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaa paqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaaig dacaaI3aGaaGimaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikda aaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aada WgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGc cqGHRaWkcaaI1aGaaGioaiaaiwdapaGaaG5bV=qacaWGebGaamyya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2daiaayEW7peGaeqyS de2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaG OmaaaakiabgkHiTiaaisdacaaI1aWdaiaayEW7peGaamiraiaadgga paWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaey OeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwda caGGVaGaaGOmaaaakiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdC MaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbi aaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiab gkHiTiaaiodacaaIWaGaaGOmaiaaisdapaGaaG5bV=qacaWGebGaam yya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyta8aadaahaaWcbeqa a8qacaaIYaaaaOGaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8 aacaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHsislcaaIYaGaaGOmaiaaiAdacaaI4aGaamiraiaadggapaWaaW baaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Ia eqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVa GaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaeqySde2damaaBaaa leaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyOeI0IaaGymaiaaiMdacaaIYaGaamir aiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaad2eapaWaaWbaaS qabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1 dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaG OmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH XoqypaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeyOeI0IaaG 4maiaaicdacaaIYaGaaGinaiaadseacaWGHbWdaiaayEW7peGaciiu aiaackhapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiabeg7aH9 aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHsislcaaIYaGaaGOm aiaaiAdacaaI4aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiaad2eapaWaaWbaaSqabeaapeGaaGOmaaaakiGa ccfacaGGYbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaG4maa WdaeqaaOWdbiabgUcaRiaaisdacaaI1aGaaGima8aacaaMh8+dbiaa dseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaape GaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaI1aGaai4laiaaikdaaaGccaGGOaGaam4yaiaad+gacaWGZb Wdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2d amaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qaca aIXaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikda a8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTi aaikdacaaIYaGaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaa leqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew 9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaa ikdaaaGccaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcada ahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaa isdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8 +dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqa baWdbiaaikdaaaGccqGHRaWkcaaI0aGaaGyna8aacaaMh8+dbiaads eacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGa aGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaI1aGaai4laiaaikdaaaGccaGGOaGaam4yaiaad+gacaWGZbWd aiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2dam aaCaaaleqabaWdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaI XaaapaqabaGccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8 aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIZaGaaGin aiaaikdacaaI5aWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabe aapeGaaGOmaaaakiGaccfacaGGYbWdaiaayEW7peGaaiikaiaadoga caWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaa aakiabew9aM9aadaahaaWcbeqaa8qacaaI1aaaaOGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaki abeg7aH9aadaWgaaWcbaWdbiaaiodaa8aabeaaaOqaa8qacqGHRaWk caaIZaGaaGinaiaaikdacaaI5aGaaGima8aacaaMh8+dbiaadseaca WGHbWdamaaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCaiaacIca caWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbi aaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaG4maaaakiabeg7a H9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaik daaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyOe I0IaaG4maiaaisdacaaIYaGaaGyoaiaaicdapaGaaG5bV=qacaWGeb Gaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackhapaGa aG5bV=qacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcada ahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaa ikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaa Wcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWd aeqaaOWdbiabgkHiTiaaiIdacaaIWaWdaiaayEW7peGaamiraiaadg gapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaiw dacaGGVaGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaa ikdaaaGcdaqadaqaaiaadogacaWGVbGaam4CaiaadMhaaiaawIcaca GLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaaleaape GaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa eyOeI0IaaGinaiaaiwdacaaI3aGaaGOma8aacaaMh8+dbiaadseaca WGHbWdamaaCaaaleqabaWdbiaaikdaaaGcciGGqbGaaiOCa8aacaaM h8+dbiaadkfacaWGKbWdaiaayEW7peGaaiikaiaadogacaWGVbGaam 4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabeg7a H9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaik daaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyOe I0IaaGymaiaaiEdacaaIXaGaaGinaiaaiwdapaGaaG5bV=qacaWGeb Gaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackhapaGa aG5bV=qacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcada ahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaa isdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaa Wcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaG4maaWd aeqaaOWdbiabgkHiTiaaigdacaaIYaGaaGima8aacaaMh8+dbiaads eacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGa aGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiaa cIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqaba WdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGc caaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCa aaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaiodacaaIWaGa aGOmaiaaisdacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO WaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaa paWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaciiuaiaack hapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiabeg7aH9aadaWg aaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBaaale aapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaikdacaaIYaGaaGyna8aa caaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcda qadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaGGOaGaam4yai aad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWcbeqaa8qacaaIYaaa aOGaeqy1dy2daiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaa WdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqa baGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGOnaiaaicdaca aIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaapeGaaGOm aaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaiwdacaGGVaGaaGOmaaaakiaadkfa caWGKbGaaiikaiaadogacaWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaW baaSqabeaapeGaaGOmaaaakiabew9aM9aacaaMh8+dbiabeg7aH9aa daWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaaBa aaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaeyOeI0IaaGymaiaaikdacaaIWaGaaGima8aacaaMh8+dbi aadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaa peGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbe qaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaMh8+d biaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaale qabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGOmaaaa kiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeq ySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGa aGOmaaaakiabgUcaRiaaigdacaaIYaGaaGimaiaaicdapaGaaG5bV= qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aa baWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaWbaaS qabeaapeGaaGynaiaac+cacaaIYaaaaOGaamOuaiaadsgapaGaaG5b V=qacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaa Wcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqabaWdbiaaioda aaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMh8+dbi abeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiabgkHiTiaaiAdacaaIWaGaaGima8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqa daWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aa caaMh8+dbiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykam aaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGa aGinaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayE W7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqa beaapeGaaGOmaaaakiabgUcaRiaaigdacaaIYaGaaGima8aacaaMh8 +dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWd aeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaa Wcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aacaaM h8+dbiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCa aaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGyn aaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7pe GaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaa peGaaGOmaaaakiabgUcaRiaaigdacaaI2aWdaiaayEW7peGaamOuai aadsgapaWaaWbaaSqabeaapeGaaGOmaaaaaOqaaiabgUcaRiaaiMda paGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaO Gaamyta8aadaahaaWcbeqaa8qacaaI0aaaaOGaeyOeI0IaaGOmaiaa iIdacaaI4aWdaiaayEW7peGaamiraiaadggapaGaaG5bV=qadaqada WdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aaca aMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH sislcaaIXaGaaGimaiaaiIdacaWGebGaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWa a8aabaWdbiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaapaWaaW baaSqabeaapeGaaGynaiaac+cacaaIYaaaaOGaeqySde2damaaBaaa leaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaigdacaaI1aGaaGOnai aaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaI YaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaGaaG5bV=qacq aHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacqGHsislcaaIXaGaaGymaiaaiEdacaWGeb Gaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaa leaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgk HiTiaaiodacaaI0aGaaGOmaiaaiMdapaGaaG5bV=qacaWGebGaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackhapaGaaG5bV= qacaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNjaacMcadaahaaWc beqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGOmaaWdae qaaOWaaWbaaSqabeaapeGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGHRaWkcaaIXaGaaG4naiaaigdacaaI0a GaaGyna8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaacIcacaWGJbGaam4Bai aadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaH vpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGa aG4maaWdaeqaaaGcbaWdbiabgUcaRiaaisdacaaIWaGaaGima8aaca aMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqa daWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aa daahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadogacaWGVbGaam4Ca8 aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabew9aM9aa caaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayE W7peGaeqySde2damaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqa beaapeGaaGOmaaaakiabgUcaRiaaiodacaaI2aWdaiaayEW7peGaam iraiaadggapaGaaG5bV=qacaWGnbWdamaaCaaaleqabaWdbiaaikda aaGccaWGHbGaey4kaSIaaGioaiaaicdacaaIWaWdaiaayEW7peGaam iraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qa caaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWdamaaCaaaleqaba WdbiaaiwdacaGGVaGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqa baWdbiaaikdaaaGccaGGOaGaam4yaiaad+gacaWGZbWdaiabeo7aNj aacMcadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqa baWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqaba GccaaMh8+dbiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaa CaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTiaaiIdacaaIWa GaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiabew9aMbGaayjkai aawMcaa8aadaahaaWcbeqaa8qacaaI1aGaai4laiaaikdaaaGccaWG sbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiikaiaadogaca WGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWbaaSqabeaapeGaaGOmaaaa kiabew9aM9aadaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaaBa aaleaapeGaaGymaaWdaeqaaOGaaG5bV=qacqaHXoqypaWaaSbaaSqa a8qacaaIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaS IaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcqaHvpGzai aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaiaac+cacaaIYaaa aOGaamOuaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaacIcaca WGJbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaa ikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaakiabeg7aH9 aadaWgaaWcbaWdbiaaigdaa8aabeaakiaayEW7peGaeqySde2damaa BaaaleaapeGaaGOmaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaaki abgkHiTiaaisdacaaIWaGaaGima8aacaaMh8+dbiaadseacaWGHbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGymaiabgk HiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aGa ai4laiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYa aaaOGaaiikaiaadogacaWGVbGaam4Ca8aacqaHZoWzcaGGPaWaaWba aSqabeaapeGaaGOmaaaakiabew9aM9aadaahaaWcbeqaa8qacaaI0a aaaOGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOGaaG5bV=qa cqaHXoqypaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacqGHsislcaaI0aGaaGynaiaaiEdacaaI YaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGcciGGqbGaaiOCa8aacaaMh8+dbiaadkfacaWGKbWdaiaa yEW7peGaamOyaiaacIcacaWGJbGaam4BaiaadohapaGaeq4SdCMaai ykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaa peGaaGOmaaaakiabeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakm aaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaI ZaaapaqabaGcpeGaey4kaSIaaGOmaiaaikdacaaI4aGaaGOnaiaaic dapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaa aOGaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbi aadkgacaWGJbGaam4BaiaadohacaWG5bWdamaaCaaaleqabaWdbiaa ikdaaaGccqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeqySde2damaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaaisdacaaI1aGaaG 4naiaaikdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOGaciiuaiaackhapaGaaG5bV=qacaWGsbGaamiza8aaca aMh8+dbiaadkgacaWGJbGaam4BaiaadohacaWG5bWdamaaCaaaleqa baWdbiaaikdaaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGynaaaaki abeg7aH9aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWd biaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaaake aapeGaeyOeI0IaaGOmaiaaikdacaaI4aGaaGOnaiaaicdapaGaaG5b V=qacaWGebGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuai aackhapaGaaG5bV=qacaWGsbGaamiza8aacaaMh8+dbiaacIcacaWG JbGaam4BaiaadohapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaik daaaGccqaHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aa daWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaa GccqaHXoqypaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIa aGinaiaaiwdacaaI3aGaaGOmaiaaicdapaGaaG5bV=qacaWGebGaam yya8aadaahaaWcbeqaa8qacaaIYaaaaOGaciiuaiaackhapaGaaG5b V=qacaWGsbGaamiza8aacaaMh8+dbiaacIcacaWGJbGaam4Baiaado hapaGaeq4SdCMaaiykamaaCaaaleqabaWdbiaaikdaaaGccqaHvpGz paWaaWbaaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbi aaikdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqaHXoqypaWa aSbaaSqaa8qacaaIZaaapaqabaGcpeGaeyOeI0IaaG4maiaaigdaca aIYaGaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWd biaaikdaaaGccaWGsbGaamiza8aacaaMh8+dbiabew9aM9aadaahaa Wcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaiodacaaIXa GaaGOmaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaWaaW baaSqabeaapeGaaG4maaaakiabeg7aH9aadaWgaaWcbaWdbiaaigda a8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabgkHiTi aaigdacaaI1aGaaGOnaiaaicdapaGaaG5bV=qacaWGebGaamyya8aa daahaaWcbeqaa8qacaaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacq aHvpGzpaWaaWbaaSqabeaapeGaaGinaaaakiabeg7aH9aadaWgaaWc baWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRa WkcaaIZaGaaGymaiaaikdacaWGebGaamyya8aadaahaaWcbeqaa8qa caaIYaaaaOGaamOuaiaadsgapaGaaG5bV=qacqaHvpGzpaWaaWbaaS qabeaapeGaaGynaaaakiabeg7aH9aadaWgaaWcbaWdbiaaigdaa8aa beaakmaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIXaGaaGimai aaisdacaaIWaWdaiaayEW7peGaamiraiaadggapaWaaWbaaSqabeaa peGaaGOmaaaakiaadkfacaWGKbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHvpGzpaGaaG5bV=qacqaHXoqypaWaaSbaaSqaa8qacaaIXaaa paqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGOmaiaaik dacaaI2aGaaGioaiaaicdapaGaaG5bV=qacaWGebGaamyya8aadaah aaWcbeqaa8qacaaIYaaaaOWdaiGaccfacaGGYbWaaWbaaSqabeaaca aIYaaaaOWdbiaadggapaWaaWbaaSqabeaapeGaaG4maaaakiabeg7a H9aadaWgaaWcbaWdbiaaiodaa8aabeaakmaaCaaaleqabaWdbiaaik daaaGccqGHRaWkcaaIYaGaaGina8aacaaMh8+dbiaadkfacaWGKbWd aiaayEW7peGaaGPaVdWdaeaapeGaey4kaSIaaGOmaiaaicdacaaI4a GaaGima8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaeq y1dy2damaaCaaaleqabaWdbiaaiodaaaGccqaHXoqypaWaaSbaaSqa a8qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0 IaaGOmaiaaicdacaaI4aGaaGimaiaadseacaWGHbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYa aaaOGaamyya8aadaahaaWcbeqaa8qacaaIZaaaaOGaeqy1dy2damaa CaaaleqabaWdbiaaikdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXa aapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaa icdacaaI0aGaaGimaiaadseacaWGHbWdamaaCaaaleqabaWdbiaaik daaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1 dy2damaaCaaaleqabaWdbiaaisdaaaGccqaHXoqypaWaaSbaaSqaa8 qacaaIXaaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Ia aGymaiaaiMdacaaIYaGaamiraiaadggapaGaaG5bV=qadaqadaWdae aapeGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaI1aGaai4laiaaikdaaaGccaWGsbGaamiza8aadaahaa Wcbeqaa8qacaaIYaaaaOGaeqySde2damaaBaaaleaapeGaaGymaaWd aeqaaaGcbaWdbiabgUcaRiaaikdacaaIWaGaaGioa8aacaaMh8+dbi aadseacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbGaamiz a8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqy1dy2damaaCaaaleqaba WdbiaaiwdaaaGccqaHXoqypaWaaSbaaSqaa8qacaaIXaaapaqabaGc daahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaaG4maiaaigdacaaIYa GaamiraiaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiaadkfacaWG KbWdaiaayEW7peGaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaO WaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaaiodacaaIYaGaamir aiaadggapaGaaG5bV=qacaWGnbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIa aGymaiaaiAdapaGaaG5bV=qacaWGebGaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamyta8aadaahaaWcbeqaa8qacaaI0aaaaOGaamOu aiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaikdaca aIWaGaaGioa8aacaaMh8+dbiaadseacaWGHbWdamaaCaaaleqabaWd biaaikdaaaGccaWGsbGaamiza8aadaahaaWcbeqaa8qacaaIYaaaaO GaeqySde2damaaBaaaleaapeGaaGymaaWdaeqaaOWaaWbaaSqabeaa peGaaGOmaaaaaaGccaGLOaGaayzkaaaaaa@9FD0@

The functions in Eq. (33) and (34) and that in Eq. (38) and (39) have relations as follows:

f( η )= a k g( a q η ) f ( η )= a k+q g ( a q η ) f ( )= a k+q g ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaadA gadaqadaqaaiabeE7aObGaayjkaiaawMcaaiabg2da9iaadggadaah aaWcbeqaaiaadUgaaaGccaWGNbWaaeWaaeaacaWGHbWaaWbaaSqabe aacaWGXbaaaOGaeq4TdGgacaGLOaGaayzkaaGaaGzbVlabgkziUkqa dAgagaqbamaabmaabaGaeq4TdGgacaGLOaGaayzkaaGaeyypa0Jaam yyamaaCaaaleqabaGaam4AaiabgUcaRiaadghaaaGcceWGNbGbauaa daqadaqaaiaadggadaahaaWcbeqaaiaadghaaaGccqaH3oaAaiaawI cacaGLPaaacqGHsgIRceWGMbGbauaadaqadaqaaiabg6HiLcGaayjk aiaawMcaaiabg2da9iaadggadaahaaWcbeqaaiaadUgacqGHRaWkca WGXbaaaOGabm4zayaafaWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@67F7@   (40)

and

θ( η )= b r ϑ( b s η )θ( )= b r ϑ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlabeI 7aXnaabmaabaGaeq4TdGgacaGLOaGaayzkaaGaeyypa0JaamOyamaa CaaaleqabaGaamOCaaaakiabeg9aknaabmaabaGaamOyamaaCaaale qabaGaam4CaaaakiabeE7aObGaayjkaiaawMcaaiaaywW7cqGHsgIR cqaH4oqCdaqadaqaaiabg6HiLcGaayjkaiaawMcaaiabg2da9iaadk gadaahaaWcbeqaaiaadkhaaaGccqaHrpGsdaqadaqaaiabg6HiLcGa ayjkaiaawMcaaaaa@57E4@   (41)

From Eq. (12),  f ( )=0 and θ( )=0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa WaaeWaaeaacqGHEisPaiaawIcacaGLPaaacaqG9aGaaeimaiaabcca caqGHbGaaeOBaiaabsgacaqGGaGaeqiUde3aaeWaaeaacqGHEisPai aawIcacaGLPaaacqGH9aqpcaaIWaGaaeiiaaaa@47EF@

Since  a0 and b0 g ( )=0 and ϑ( )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgc Mi5kaaicdacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaadkgacqGH GjsUcaaIWaGaeyOKH4Qabm4zayaafaWaaeWaaeaacqGHEisPaiaawI cacaGLPaaacqGH9aqpcaaIWaGaaeiiaiaabggacaqGUbGaaeizaiaa bccacqaHrpGsdaqadaqaaiabg6HiLcGaayjkaiaawMcaaiabg2da9i aaicdaaaa@544A@

Applying multi-step DTM

To solve the boundary layer problems, the domain [0,∞) is replaced by [0, η ͚). But η ͚ should be great enough that the solution is not dependent on. The solution domain should be divided to N equal parts (H= η ͚ /N). So, we have

g i ( η i )+ ( 1ϕ ) 2.5 { [ ( 1ϕ )+ϕ( ρ s ρ f ) ]( 3 g i ( η i ) g i ( η i )2 ( g i ( η i ) ) 2 ) +[ ( 1ϕ )+ϕ[ ( ρβ ) s / ( ρβ ) f ] ] ϑ i ( η i )cosγ( M 2 +D a 1 ) g i ( η i ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaasa WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaaigdacq GHsislcqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGG UaGaaGynaaaakmaacmaaeaqabeaadaWadaqaamaabmaabaGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaaiabgUcaRiabew9aMnaabmaa baWaaSaaaeaacqaHbpGCdaWgaaWcbaGaam4CaaqabaaakeaacqaHbp GCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaWaaeWaaeaacaaIZaGaam4zamaaBaaaleaacaWGPbaabeaakm aabmaabaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzk aaGabm4zayaagaWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3o aAdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacqGHsislcaaI YaWaaeWaaeaaceWGNbGbauaadaWgaaWcbaGaamyAaaqabaGcdaqada qaaiabeE7aOnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaa qaaiabgUcaRmaadmaabaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dyga caGLOaGaayzkaaGaey4kaSIaeqy1dy2aamWaaeaadaWcgaqaamaabm aabaGaeqyWdiNaeqOSdigacaGLOaGaayzkaaWaaSbaaSqaaiaadoha aeqaaaGcbaWaaeWaaeaacqaHbpGCcqaHYoGyaiaawIcacaGLPaaada WgaaWcbaGaamOzaaqabaaaaaGccaGLBbGaayzxaaaacaGLBbGaayzx aaGaeqy0dO0aaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaAda WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaWGJbGaam4Baiaa dohacqaHZoWzcqGHsisldaqadaqaaiaad2eadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWGebGaamyyamaaCaaaleqabaGaeyOeI0IaaGym aaaaaOGaayjkaiaawMcaaiaadEgadaWgaaWcbaGaamyAaaqabaGcda qadaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca aaaacaGL7bGaayzFaaGaeyypa0JaaGimaaaa@A841@   (42)

( i1 )H η i <iH,foriiN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVpaabm aabaGaamyAaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGibGaeyiz ImQaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaeyipaWJaamyAaiaadI eacaGGSaGaaGzbVlaadAgacaWGVbGaamOCaiaaywW7caWGPbGaeyiz ImQaamyAaiabgsMiJkaad6eaaaa@51EE@

ϑ i ( η i )+3[ 1 [ ( 1ϕ )+ϕ[ ( ρ C p ) s / ( ρ C p ) f ] ] [ k s +( m1 ) k f ( m1 )ϕ( k f k s ) k s +( m1 ) k f +ϕ( k f k s ) ] ]Pr g i ( η i ) ϑ i ( η i )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqy0dOKbay aadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiabeE7aOnaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaiodadaWadaqaam aalaaabaGaaGymaaqaamaadmaabaWaaeWaaeaacaaIXaGaeyOeI0Ia eqy1dygacaGLOaGaayzkaaGaey4kaSIaeqy1dy2aamWaaeaadaWcga qaamaabmaabaGaeqyWdiNaam4qamaaBaaaleaacaWGWbaabeaaaOGa ayjkaiaawMcaamaaBaaaleaacaWGZbaabeaaaOqaamaabmaabaGaeq yWdiNaam4qamaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaamaa BaaaleaacaWGMbaabeaaaaaakiaawUfacaGLDbaaaiaawUfacaGLDb aaaaWaamWaaeaadaWcaaqaaiaadUgadaWgaaWcbaGaam4CaaqabaGc cqGHRaWkdaqadaqaaiaad2gacqGHsislcaaIXaaacaGLOaGaayzkaa Gaam4AamaaBaaaleaacaWGMbaabeaakiabgkHiTmaabmaabaGaamyB aiabgkHiTiaaigdaaiaawIcacaGLPaaacqaHvpGzdaqadaqaaiaadU gadaWgaaWcbaGaamOzaaqabaGccqGHsislcaWGRbWaaSbaaSqaaiaa dohaaeqaaaGccaGLOaGaayzkaaaabaGaam4AamaaBaaaleaacaWGZb aabeaakiabgUcaRmaabmaabaGaamyBaiabgkHiTiaaigdaaiaawIca caGLPaaacaWGRbWaaSbaaSqaaiaadAgaaeqaaOGaey4kaSIaeqy1dy 2aaeWaaeaacaWGRbWaaSbaaSqaaiaadAgaaeqaaOGaeyOeI0Iaam4A amaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaaaaaiaawUfaca GLDbaaaiaawUfacaGLDbaacaWGqbGaamOCaiaadEgadaWgaaWcbaGa amyAaaqabaGcdaqadaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaiqbeg9akzaafaWaaSbaaSqaaiaadMgaaeqaaOWa aeWaaeaacqaH3oaAdaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aacqGH9aqpcaaIWaaaaa@97C4@   (43)

( i1 )H η i <iH,foriiN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVpaabm aabaGaamyAaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGibGaeyiz ImQaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaeyipaWJaamyAaiaadI eacaGGSaGaaGzbVlaadAgacaWGVbGaamOCaiaaywW7caWGPbGaeyiz ImQaamyAaiabgsMiJkaad6eaaaa@51EE@

Applying multi-step DTM on Eq. (42) and Eq. (43)

G i ( p+3 )= ( 1ϕ ) 2.5 H 3 ( p+1 )( p+2 )( p+3 ) { α 1 [ 2 l=0 p ( l+1 ) H G i ( l+1 ) ( pl+1 ) H G i ( pl+1 ) 3 l=0 p G i ( l ) ( pl+1 )( pl+2 ) H 2 G i ( pl+2 ) ] α 2 ϑ i ( p )cosγ( M 2 +D a 1 ) G i ( p ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWGPbaabeaakmaabmaabaGaamiCaiabgUcaRiaaiodaaiaa wIcacaGLPaaacqGH9aqpdaWcaaqaamaabmaabaGaaGymaiabgkHiTi abew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI 1aaaaOGaamisamaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaam iCaiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadchacqGH RaWkcaaIYaaacaGLOaGaayzkaaWaaeWaaeaacaWGWbGaey4kaSIaaG 4maaGaayjkaiaawMcaaaaadaGadaabaeqabaGaeqySde2aaSbaaSqa aiaaigdaaeqaaOWaamWaaqaabeqaaiaaikdadaaeWbqaamaalaaaba WaaeWaaeaacaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaaaqaaiaa dIeaaaGaam4ramaaBaaaleaacaWGPbaabeaakmaabmaabaGaamiBai abgUcaRiaaigdaaiaawIcacaGLPaaadaWcaaqaamaabmaabaGaamiC aiabgkHiTiaadYgacqGHRaWkcaaIXaaacaGLOaGaayzkaaaabaGaam isaaaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWGWbGa eyOeI0IaamiBaiabgUcaRiaaigdaaiaawIcacaGLPaaaaSqaaiaadY gacqGH9aqpcaaIWaaabaGaamiCaaqdcqGHris5aaGcbaGaeyOeI0Ia aG4mamaaqahabaGaam4ramaaBaaaleaacaWGPbaabeaakmaabmaaba GaamiBaaGaayjkaiaawMcaamaalaaabaWaaeWaaeaacaWGWbGaeyOe I0IaamiBaiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadc hacqGHsislcaWGSbGaey4kaSIaaGOmaaGaayjkaiaawMcaaaqaaiaa dIeadaahaaWcbeqaaiaaikdaaaaaaOGaam4ramaaBaaaleaacaWGPb aabeaakmaabmaabaGaamiCaiabgkHiTiaadYgacqGHRaWkcaaIYaaa caGLOaGaayzkaaaaleaacaWGSbGaeyypa0JaaGimaaqaaiaadchaa0 GaeyyeIuoaaaGccaGLBbGaayzxaaaabaGaeyOeI0IaeqySde2aaSba aSqaaiaaikdaaeqaaOGaeqy0dO0aaSbaaSqaaiaadMgaaeqaaOWaae WaaeaacaWGWbaacaGLOaGaayzkaaGaam4yaiaad+gacaWGZbGaeq4S dCMaeyOeI0YaaeWaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaamiraiaadggadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaa wIcacaGLPaaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaaca WGWbaacaGLOaGaayzkaaaaaiaawUhacaGL9baaaaa@B743@   (44)

foriiN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaad+ gacaWGYbGaaGzbVlaadMgacqGHKjYOcaWGPbGaeyizImQaamOtaaaa @41F3@

ϑ i ( p+2 )= 3 H 2 Pr ( p+1 )( p+2 ) { α 3 l=0 p ( l+1 ) H ϑ i ( l+1 ) G i ( pl ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dO0aaS baaSqaaiaadMgaaeqaaOWaaeWaaeaacaWGWbGaey4kaSIaaGOmaaGa ayjkaiaawMcaaiabg2da9maalaaabaGaeyOeI0IaaG4maiaadIeada ahaaWcbeqaaiaaikdaaaGccaWGqbGaamOCaaqaamaabmaabaGaamiC aiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadchacqGHRa WkcaaIYaaacaGLOaGaayzkaaaaamaacmaabaGaeqySde2aaSbaaSqa aiaaiodaaeqaaOWaaabCaeaadaWcaaqaamaabmaabaGaamiBaiabgU caRiaaigdaaiaawIcacaGLPaaaaeaacaWGibaaaiabeg9aknaaBaaa leaacaWGPbaabeaakmaabmaabaGaamiBaiabgUcaRiaaigdaaiaawI cacaGLPaaacaWGhbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacaWG WbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaWcbaGaamiBaiabg2da9i aaicdaaeaacaWGWbaaniabggHiLdaakiaawUhacaGL9baaaaa@69B9@   (45)

foriiN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaad+ gacaWGYbGaaGzbVlaadMgacqGHKjYOcaWGPbGaeyizImQaamOtaaaa @41F3@

The initial conditions for the problem are considered for the first sub domain (i =1). Followng Eq. (24), the differential transform for the initial conditions for Eq. (35) and (36) and for Eqs. (44) and (45) are

G 1 ( 0 )= g 1 ( 0 )=0, G 1 ( 1 )=H g 1 ( 0 )=0, G 1 ( 2 )= H 2 2 g 1 = H 2 2 , Ψ 1 ( 0 )= ϑ 1 ( 0 )=1, Ψ 1 ( 1 )=H ϑ ( 0 )=H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aaysW7caWGhbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIWaaa caGLOaGaayzkaaGaeyypa0Jaam4zamaaBaaaleaacaaIXaaabeaakm aabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGa aGzbVlaadEeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaigdaai aawIcacaGLPaaacqGH9aqpcaWGibGabm4zayaafaWaaSbaaSqaaiaa igdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaG imaiaacYcacaaMf8Uaam4ramaaBaaaleaacaaIXaaabeaakmaabmaa baGaaGOmaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamisamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdaaaGabm4zayaagaWaaSbaaSqa aiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGibWaaWbaaSqabeaaca aIYaaaaaGcbaGaaGOmaaaacaGGSaGaaGzbVdqaaiabfI6aznaaBaaa leaacaaIXaaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2 da9iabeg9aknaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGimaaGa ayjkaiaawMcaaiabg2da9iaaigdacaGGSaGaaGzbVlabfI6aznaaBa aaleaacaaIXaaabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaiab g2da9iaadIeacuaHrpGsgaqbamaabmaabaGaaGimaaGaayjkaiaawM caaiabg2da9iaadIeaaaaa@7F5D@   (46)

The boundary conditions of each subdomain are continuity of the

g i ( η i ), g i ( η i ), g ( η i ),ϑ( η i ),and   ϑ ( η i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaadE gadaWgaaWcbaGaamyAaaqabaGcdaqadaqaaiabeE7aOnaaBaaaleaa caWGPbaabeaaaOGaayjkaiaawMcaaiaacYcacaaMf8Uabm4zayaafa WaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaacaGGSaGaaGzbVlqadEgagaGbam aabmaabaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzk aaGaaiilaiaaywW7cqaHrpGsdaqadaqaaiabeE7aOnaaBaaaleaaca WGPbaabeaaaOGaayjkaiaawMcaaiaacYcacaaMf8Uaamyyaiaad6ga caWGKbGaaeiiaiaabccacuaHrpGsgaqbamaabmaabaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@6441@   (47)

These boundary conditions can be obtained from Eq. (26):

g i ( η i+1 )= k=0 m G i ( k ) g i+1 ( η i+1 )= G i+1 ( 0 ) G i+1 ( 0 )= k=0 m G i ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aaysW7caWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaA daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaa Gaeyypa0ZaaabCaeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaaqaaiaa dUgacqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aOWaaeWaaeaaca WGRbaacaGLOaGaayzkaaaabaGaam4zamaaBaaaleaacaWGPbGaey4k aSIaaGymaaqabaGcdaqadaqaaiabeE7aOnaaBaaaleaacaWGPbGaey 4kaSIaaGymaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGhbWaaSba aSqaaiaadMgacqGHRaWkcaaIXaaabeaakmaabmaabaGaaGimaaGaay jkaiaawMcaaiabgkziUkaadEeadaWgaaWcbaGaamyAaiabgUcaRiaa igdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0Zaaa bCaeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadUgacqGH9aqp caaIWaaabaGaamyBaaqdcqGHris5aOWaaeWaaeaacaWGRbaacaGLOa Gaayzkaaaaaaa@70B4@   (48a)

g i ( η i+1 )= k=1 m k H G i ( k ) g i ( η i+1 )= G i+1 ( 1 ) H G i+1 ( 1 )= k=1 m k G i ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai qadEgagaqbamaaBaaaleaacaWGPbaabeaakmaabmaabaGaeq4TdG2a aSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaai abg2da9maaqahabaWaaSaaaeaacaWGRbaabaGaamisaaaacaWGhbWa aSbaaSqaaiaadMgaaeqaaaqaaiaadUgacqGH9aqpcaaIXaaabaGaam yBaaqdcqGHris5aOWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaabaGa bm4zayaafaWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaAda WgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaGa eyypa0ZaaSaaaeaacaWGhbWaaSbaaSqaaiaadMgacqGHRaWkcaaIXa aabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaaqaaiaadIeaaaGa eyOKH4Qaam4ramaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaGcda qadaqaaiaaigdaaiaawIcacaGLPaaacqGH9aqpdaaeWbqaaiaadUga caWGhbWaaSbaaSqaaiaadMgaaeqaaaqaaiaadUgacqGH9aqpcaaIXa aabaGaamyBaaqdcqGHris5aOWaaeWaaeaacaWGRbaacaGLOaGaayzk aaaaaaa@7140@   (48b)

g i ( η i+1 )= k=2 m k( k1 ) H 2 G i ( k ) g i ( η i+1 )= 2 G i+1 ( 2 ) H 2 G i+1 ( 2 )= 1 2 k=1 m k( k1 ) G i ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai qadEgagaGbamaaBaaaleaacaWGPbaabeaakmaabmaabaGaeq4TdG2a aSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaai abg2da9maaqahabaWaaSaaaeaacaWGRbWaaeWaaeaacaWGRbGaeyOe I0IaaGymaaGaayjkaiaawMcaaaqaaiaadIeadaahaaWcbeqaaiaaik daaaaaaOGaam4ramaaBaaaleaacaWGPbaabeaaaeaacaWGRbGaeyyp a0JaaGOmaaqaaiaad2gaa0GaeyyeIuoakmaabmaabaGaam4AaaGaay jkaiaawMcaaaqaaiqadEgagaGbamaaBaaaleaacaWGPbaabeaakmaa bmaabaGaeq4TdG2aaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaaaO GaayjkaiaawMcaaiabg2da9maalaaabaGaaGOmaiaadEeadaWgaaWc baGaamyAaiabgUcaRiaaigdaaeqaaOWaaeWaaeaacaaIYaaacaGLOa GaayzkaaaabaGaamisamaaCaaaleqabaGaaGOmaaaaaaGccqGHsgIR caWGhbWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakmaabmaaba GaaGOmaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaa ikdaaaWaaabCaeaacaWGRbWaaeWaaeaacaWGRbGaeyOeI0IaaGymaa GaayjkaiaawMcaaiaadEeadaWgaaWcbaGaamyAaaqabaaabaGaam4A aiabg2da9iaaigdaaeaacaWGTbaaniabggHiLdGcdaqadaqaaiaadU gaaiaawIcacaGLPaaaaaaa@7DB0@   (48c)

ϑ i ( η i+1 )= k=0 m Ψ i ( k ) ϑ i+1 ( η i+1 )= Ψ i+1 ( 0 ) Ψ i+1 ( 0 )= k=0 m Ψ i ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai abeg9aknaaBaaaleaacaWGPbaabeaakmaabmaabaGaeq4TdG2aaSba aSqaaiaadMgacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaiabg2 da9maaqahabaGaeuiQdK1aaSbaaSqaaiaadMgaaeqaaaqaaiaadUga cqGH9aqpcaaIWaaabaGaamyBaaqdcqGHris5aOWaaeWaaeaacaWGRb aacaGLOaGaayzkaaaabaGaeqy0dO0aaSbaaSqaaiaadMgacqGHRaWk caaIXaaabeaakmaabmaabaGaeq4TdG2aaSbaaSqaaiaadMgacqGHRa WkcaaIXaaabeaaaOGaayjkaiaawMcaaiabg2da9iabfI6aznaaBaaa leaacaWGPbGaey4kaSIaaGymaaqabaGcdaqadaqaaiaaicdaaiaawI cacaGLPaaacqGHsgIRcqqHOoqwdaWgaaWcbaGaamyAaiabgUcaRiaa igdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0Zaaa bCaeaacqqHOoqwdaWgaaWcbaGaamyAaaqabaaabaGaam4Aaiabg2da 9iaaicdaaeaacaWGTbaaniabggHiLdGcdaqadaqaaiaadUgaaiaawI cacaGLPaaaaaaa@73AB@   (49a)

ϑ i ( η i+1 )= k=1 m k H Ψ i ( k ) ϑ i ( η i+1 )= Ψ i+1 ( 1 ) H Ψ i+1 ( 1 )= k=1 m k Ψ i ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai qbeg9akzaafaWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3oaA daWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaa Gaeyypa0ZaaabCaeaadaWcaaqaaiaadUgaaeaacaWGibaaaiabfI6a znaaBaaaleaacaWGPbaabeaaaeaacaWGRbGaeyypa0JaaGymaaqaai aad2gaa0GaeyyeIuoakmaabmaabaGaam4AaaGaayjkaiaawMcaaaqa aiqbeg9akzaafaWaaSbaaSqaaiaadMgaaeqaaOWaaeWaaeaacqaH3o aAdaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzk aaGaeyypa0ZaaSaaaeaacqqHOoqwdaWgaaWcbaGaamyAaiabgUcaRi aaigdaaeqaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaaabaGaamis aaaacqGHsgIRcqqHOoqwdaWgaaWcbaGaamyAaiabgUcaRiaaigdaae qaaOWaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaeyypa0ZaaabCaeaa caWGRbGaeuiQdK1aaSbaaSqaaiaadMgaaeqaaaqaaiaadUgacqGH9a qpcaaIXaaabaGaamyBaaqdcqGHris5aOWaaeWaaeaacaWGRbaacaGL OaGaayzkaaaaaaa@75C4@   (49b)

The values of the g ( η ) and ϑ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaafa WaaeWaaeaacqaH3oaAdaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaa wMcaaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaeqy0dO0aaeWaae aacqaH3oaAdaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaaaa @47D0@ can be calculated by differentiating from Eq. (24)

g i ( ) g i ( η )= g i ( η N+1 )= k=1 m k H G N ( k ) ϑ i ( ) ϑ i ( η )= ϑ i ( η N+1 )= k=0 m Ψ N ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai qadEgagaqbamaaBaaaleaacaWGPbaabeaakmaabmaabaGaeyOhIuka caGLOaGaayzkaaGaeS4qISJabm4zayaafaWaaSbaaSqaaiaadMgaae qaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGaeyOhIukabeaaaOGaayjk aiaawMcaaiabg2da9iqadEgagaqbamaaBaaaleaacaWGPbaabeaakm aabmaabaGaeq4TdG2aaSbaaSqaaiaad6eacqGHRaWkcaaIXaaabeaa aOGaayjkaiaawMcaaiabg2da9maaqahabaWaaSaaaeaacaWGRbaaba GaamisaaaacaWGhbWaaSbaaSqaaiaad6eaaeqaaaqaaiaadUgacqGH 9aqpcaaIXaaabaGaamyBaaqdcqGHris5aOWaaeWaaeaacaWGRbaaca GLOaGaayzkaaaabaGaeqy0dO0aaSbaaSqaaiaadMgaaeqaaOWaaeWa aeaacqGHEisPaiaawIcacaGLPaaacqWIdjYocqaHrpGsdaWgaaWcba GaamyAaaqabaGcdaqadaqaaiabeE7aOnaaBaaaleaacqGHEisPaeqa aaGccaGLOaGaayzkaaGaeyypa0Jaeqy0dO0aaSbaaSqaaiaadMgaae qaaOWaaeWaaeaacqaH3oaAdaWgaaWcbaGaamOtaiabgUcaRiaaigda aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaabCaeaacqqHOoqwdaWgaa WcbaGaamOtaaqabaaabaGaam4Aaiabg2da9iaaicdaaeaacaWGTbaa niabggHiLdGcdaqadaqaaiaadUgaaiaawIcacaGLPaaaaaaa@7FCE@   (50)

Now, Eq. (11) and (12) are solved with a similar process like Eqs. (35) and (36) using multi-step DTM. The only difference is that the condition f ( 0 )=a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaga WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0Jaamyyaaaa@3C9D@ is replaced by the condition g ( 0 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaaga WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaaGymaaaa@3C73@

It should be noted as mentioned previously that the unknown parameters “a” and “b” in the solutions are unknown constants. The infinite boundary conditions i.e. η, f =0,θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaey OKH4QaeyOhIuQaaiilaiaaywW7ceWGMbGbauaacqGH9aqpcaaIWaGa aiilaiaaywW7cqaH4oqCcqGH9aqpcaaIWaaaaa@4729@ are applied. The resulting simultaneous equations are solved to obtain the values of “a” and “b” for the respective values of the physical and thermal properties of the nanofluids under considerations (Figures 1–4). 

Figure 1 The geometry of the of the free convection flow over the cone.

Figure 2 (a) Effects of cone angle on the velocity profile, (b) Effects of cone angle on temperature profile.

Figure 3 (a) Effects of magnetic field on the velocity profile, (b) Effects of magnetic field on temperature profile.

Figure 4 (a) Effects of flow medium porosity on the velocity profile, (b) Effects of flow medium porosity on temperature profile.

Flow and heat transfer parameters

The determinations of other physically important quantities such as shear stress, drag, heat transfer rate and heat transfer coefficient) associated with the free convection flow and heat transfer problem are very important in the design of equipment. Therefore, in this analysis physically important quantities are computed. The local heat transfer coefficient at the surface of the vertical plate can be obtained from

Fluid flow parameter 

Skin friction coefficient

c f = τ w ρ nf u 2 = μ nf u y | y=0 ρ nf u 2 = μ nf ( u η η y )| y=0 ρ nf u 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGMbaabeaakiabg2da9maalaaabaGaeqiXdq3aaSbaaSqa aiaadEhaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaad6gacaWGMbaabe aakiaadwhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaa cqaH8oqBdaWgaaWcbaGaamOBaiaadAgaaeqaaOWaaqGaaeaadaWcaa qaaiabgkGi2kaadwhaaeaacqGHciITcaWG5baaaaGaayjcSdWaaSba aSqaaiaadMhacqGH9aqpcaaIWaaabeaaaOqaaiabeg8aYnaaBaaale aacaWGUbGaamOzaaqabaGccaWG1bWaaWbaaSqabeaacaaIYaaaaaaa kiabg2da9maalaaabaGaeqiVd02aaSbaaSqaaiaad6gacaWGMbaabe aakmaaeiaabaWaaeWaaeaadaWcaaqaaiabgkGi2kaadwhaaeaacqGH ciITcqaH3oaAaaGaeyyXIC9aaSaaaeaacqGHciITcqaH3oaAaeaacq GHciITcaWG5baaaaGaayjkaiaawMcaaaGaayjcSdWaaSbaaSqaaiaa dMhacqGH9aqpcaaIWaaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGUb GaamOzaaqabaGccaWG1bWaaWbaaSqabeaacaaIYaaaaaaaaaa@7548@   (51)

The dimensionless form of the skin friction coefficient,

c f ( R e x ) 1/2 = f ( 0 ) ( 1ϕ ) 2.5 c f ( R e x ) 1/2 τ w ( 4G r x 3 ) 1/4 ( νμ ) = f ( 0 ) f ( 0 ) ( 1ϕ ) 2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGJb WaaSbaaSqaaiaadAgaaeqaaOWaaeWaaeaacaWGsbGaamyzamaaBaaa leaacaWG4baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSGbae aacaaIXaaabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiqadAgagaGb amaabmaabaGaaGimaaGaayjkaiaawMcaaaqaamaabmaabaGaaGymai abgkHiTiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaa c6cacaaI1aaaaaaaaOqaaiaadogadaWgaaWcbaGaamOzaaqabaGcda qadaqaaiaadkfacaWGLbWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaakm aalaaabaGaeqiXdq3aaSbaaSqaaiaadEhaaeqaaaGcbaWaaeWaaeaa caaI0aGaam4raiaadkhadaqhaaWcbaGaamiEaaqaaiaaiodaaaaaki aawIcacaGLPaaadaahaaWcbeqaamaalyaabaGaaGymaaqaaiaaisda aaaaaOWaaeWaaeaacqaH9oGBcqaH8oqBaiaawIcacaGLPaaaaaGaey ypa0JabmOzayaagaWaaeWaaeaacaaIWaaacaGLOaGaayzkaaWaaSaa aeaaceWGMbGbayaadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaada qadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaadaahaaWc beqaaiaaikdacaGGUaGaaGynaaaaaaaaaaa@725D@   (52)

Heat transfer parameter

h x = k nf T w T ( T y ) y=0 = k nf θ ( 0 ) 1 x ( 1 4 G r x ) 1/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWG4baabeaakiabg2da9iabgkHiTmaalaaabaGaam4Aamaa BaaaleaacaWGUbGaamOzaaqabaaakeaacaWGubWaaSbaaSqaaiaadE haaeqaaOGaeyOeI0IaamivamaaBaaaleaacqGHEisPaeqaaaaakmaa bmaabaWaaSaaaeaacqGHciITcaWGubaabaGaeyOaIyRaamyEaaaaai aawIcacaGLPaaadaWgaaWcbaGaamyEaiabg2da9iaaicdaaeqaaOGa eyypa0JaeyOeI0Iaam4AamaaBaaaleaacaWGUbGaamOzaaqabaGccu aH4oqCgaqbamaabmaabaGaaGimaaGaayjkaiaawMcaamaalaaabaGa aGymaaqaaiaadIhaaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaaI0a aaaiaadEeacaWGYbWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacaaIXaGaai4laiaaisdaaaaaaa@606A@   (53)

The local nusselt number

The local Nusselt number is

N u x = h x x k nf =( x T w T ) ( T y ) y=0 = θ ( 0 ) ( 1 4 G r x ) 1/4 N u x = θ ( 0 ) 2 G r x 1/4 =f( ( Pr )G r x 1/4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaauFqaai aad6eacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaa caWGObWaaSbaaSqaaiaadIhaaeqaaOGaamiEaaqaaiaadUgadaWgaa WcbaGaamOBaiaadAgaaeqaaaaakiabg2da9iabgkHiTmaabmaabaWa aSaaaeaacaWG4baabaGaamivamaaBaaaleaacaWG3baabeaakiabgk HiTiaadsfadaWgaaWcbaGaeyOhIukabeaaaaaakiaawIcacaGLPaaa daqadaqaamaalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaadMhaaa aacaGLOaGaayzkaaWaaSbaaSqaaiaadMhacqGH9aqpcaaIWaaabeaa kiabg2da9iabgkHiTiqbeI7aXzaafaWaaeWaaeaacaaIWaaacaGLOa GaayzkaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaiaadEea caWGYbWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIXaGaai4laiaaisdaaaaakeaacaWGobGaamyDamaaBaaa leaacaWG4baabeaakiabg2da9iabgkHiTmaalaaabaGafqiUdeNbau aadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaadaGcaaqaaiaaikda aSqabaaaaOGaam4raiaadkhadaqhaaWcbaGaamiEaaqaaiaaigdaca GGVaGaaGinaaaakiabg2da9iaadAgadaqadaqaamaabmaabaGaamiu aiaadkhaaiaawIcacaGLPaaacaWGhbGaamOCamaaDaaaleaacaWG4b aabaGaaGymaiaac+cacaaI0aaaaaGccaGLOaGaayzkaaaaaaa@7F24@   (54)

where ϕ( Pr )= θ ( 0 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aae WaaeaacaWGqbGaamOCaaGaayjkaiaawMcaaiabg2da9iabgkHiTmaa laaabaGafqiUdeNbauaadaqadaqaaiaaicdaaiaawIcacaGLPaaaae aadaGcaaqaaiaaikdaaSqabaaaaaaa@4372@ is a function of Prandtl number. The dependence of ϕ on the Prandtl number is evidenced by Eq. (54).

It could also be shown that

N u x ( R e x ) 1/2 = k nf k f θ ( 0 )=[ k s +( m1 ) k f ( m1 )ϕ( k f k s ) k s +( m1 ) k f +ϕ( k f k s ) ] θ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGobGaamyDamaaBaaaleaacaWG4baabeaaaOqaamaabmaabaGaamOu aiaadwgadaWgaaWcbaGaamiEaaqabaaakiaawIcacaGLPaaadaahaa WcbeqaamaalyaabaGaaGymaaqaaiaaikdaaaaaaaaakiabg2da9iab gkHiTmaalaaabaGaam4AamaaBaaaleaacaWGUbGaamOzaaqabaaake aacaWGRbWaaSbaaSqaaiaadAgaaeqaaaaakiqbeI7aXzaafaWaaeWa aeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaamWaaeaada WcaaqaaiaadUgadaWgaaWcbaGaam4CaaqabaGccqGHRaWkdaqadaqa aiaad2gacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4AamaaBaaale aacaWGMbaabeaakiabgkHiTmaabmaabaGaamyBaiabgkHiTiaaigda aiaawIcacaGLPaaacqaHvpGzdaqadaqaaiaadUgadaWgaaWcbaGaam OzaaqabaGccqGHsislcaWGRbWaaSbaaSqaaiaadohaaeqaaaGccaGL OaGaayzkaaaabaGaam4AamaaBaaaleaacaWGZbaabeaakiabgUcaRm aabmaabaGaamyBaiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGRbWa aSbaaSqaaiaadAgaaeqaaOGaey4kaSIaeqy1dy2aaeWaaeaacaWGRb WaaSbaaSqaaiaadAgaaeqaaOGaeyOeI0Iaam4AamaaBaaaleaacaWG ZbaabeaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacuaH4oqCga qbamaabmaabaGaaGimaaGaayjkaiaawMcaaaaa@7D12@   (55)

where R e x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gadaWgaaWcbaGaamiEaaqabaaaaa@38E0@  and G r x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadk hadaWgaaWcbaGaamiEaaqabaaaaa@38E2@ are the local Reynold and Grashof numbers defined as:

R e x = ux ν nf   and  G r x = gβ( T w T ) x 3 ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaadw gadaWgaaWcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaadwhacaWG 4baabaGaeqyVd42aaSbaaSqaaiaad6gacaWGMbaabeaaaaGccaqGGa GaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGGaGaam4raiaadkha daWgaaWcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaadEgacqaHYo GydaqadaqaaiaadsfadaWgaaWcbaGaam4DaaqabaGccqGHsislcaWG ubWaaSbaaSqaaiabg6HiLcqabaaakiaawIcacaGLPaaacaWG4bWaaW baaSqabeaacaaIZaaaaaGcbaGaeqyVd42aaWbaaSqabeaacaaIZaaa aaaaaaa@58B8@

Results and discussion

Tables 5–7 present various comparisons of results of the present study and the past works for viscous fluid i.e. when the volume fraction of the nanoparticle is zero (ϕ=0). Also, setting half of the cone angle to infinity, i.e.  and neglecting the magnetic effects. It could be seen from the Tables that there are excellent agreements between the past results and the present study. Moreover, the Tables present the effects of Prandtl number on the flow and heat transfer processes.

f '' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaWbaaeqabaqcLbmacaGGNaGaai4jaaaajuaGdaqadaGcbaqc LbsacaaIWaaakiaawIcacaGLPaaaaaa@3E18@  

Pr                         

Sparrow &Gregg5            

 Kuiken8      

Present Study

0.003

1.0223

1.0151

  1. 0224

0.008

0.9955

0.9801

0.9955

0.02

0.959

0.9284

0.9591

0.03

0.9384

0.8966

0.9384

Table 5 Comparison of results for the skin friction parameter

f( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaOqaaKqzGeGaeyOhIukakiaawIcacaGLPaaaaaa@3B9B@  

Pr                         

Sparrow &Gregg5            

 Kuiken8      

Present Study

0.003

8.7060

8.8763

8.7061

0.008

5.4018

5.4152

5.4018

0.020

3.4093

3.4055

3.4093

0.030

2.7878

2.7710

2.7878

Table 6 Comparison of results of f(∞)

N u x / ( G x P r 2 ) 1 4 = θ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob GaamyDaKqbaoaaBaaaleaajugWaiaadIhaaSqabaqcLbsacaGGVaqc fa4aaeWaaOqaaKqzGeGaam4raKqbaoaaBaaaleaajugWaiaadIhaaS qabaqcLbsacaWGqbGaamOCaKqbaoaaCaaaleqabaqcLbmacaaIYaaa aaGccaGLOaGaayzkaaqcfa4aaWbaaSqabeaadaWcaaqaaKqzadGaaG ymaaWcbaqcLbmacaaI0aaaaaaajugibiabg2da9iabgkHiTiqbeI7a Xzaafaqcfa4aaeWaaOqaaKqzGeGaaGimaaGccaGLOaGaayzkaaaaaa@545D@  

Pr                         

Sparrow &Gregg5            

 Kuiken8      

Present Study

0.003

0.5827

0.5827

0. 5827

0.008

0.5729

0.5714

0.5728

0.020

0.5582

0.5546

0.5582

0.030

0.5497

0.5443

0.5497

Table 7 Comparison of results of -Θ1(0)

Effect of cone angle on nanofluid velocity and temperature distributions

The variations of the flow velocity and the temperature gradient of the fluid are inversely proportional to half of the cone angle, γ increases. It should be noted that as the angle increases, the applied magnetic field decreases. Also, the skin friction factor in terms of shear stress and heat transfer rate in terms of Nusselt number are decreased.

Figure 5 shows the effects of magnetic parameter on the fluid velocity and the temperature. As in the preceding parametric study, the fluid velocity and the temperature decrease as the magnetic field increases. This is because, magnetic field creates a flow resistance force called Lorentz force in the flow. The presence of this force in the flow slows fluid motion at boundary layer on solid walls. Consequently, there is decrease the fluid velocity and increase fluid temperature within the boundary layer. And by extension, the skin friction factor in terms of shear stress and heat transfer rate in terms of Nusselt number are decreased.

Figure 5 (a) Effects of Prandtl number on the velocity profile when ϕ=0.020, (b) Effects of Prandtl number on temperature profile when ϕ=0.020.

Effect of flow medium porosity on nanofluid velocity and temperature distributions Effects of Darcy number which represent flow medium porosity parameter on the flow velocity and temperature distributions are presented in Figure 6. It is depicted in the figure that as the porosity parameter increases the flow velocity of the fluid decrease while the temperature distribution in the flow increases as the Darcy number increases.

Figure 6 (a) Effects of Prandtl number on the velocity profile when ϕ=0.040, (b) Effects of Prandtl number on temperature profile when ϕ=0.040.

Effect of nanoparticle volume fraction on the velocity and temperature distributions

It has been shown in some previous studies that the presence of nanoparticles in a fluid has significant effects on the flow behaviours of fluid. Figures 7&8 show the effects nanoparticle concentration/volume fraction and Prandtl number on velocity and temperature profiles of copper (II) oxide-water nanofluid. It is indicated in the Figures that as the volume-fraction or concentration of the nanoparticle in the nanofluid increases, the velocity decreases. However, an opposite trend in the temperature profile is observed i.e. the nanofluid temperature increases as the volume-fraction of the nanoparticles in the basefluid increases.This is because, the solid volume fraction has significant impacts on the thermal conductivity. The increased volume fraction of nanoparticles in basefluid results in higher thermal conductivity of the basefluid which increases the heat enhancement capacity of the basefluid. Also, one of the possible reasons for the enhancement on heat transfer of nanofluids can be explained by the high concentration of nanoparticles in the thermal boundary layer at the wall side through the migration of nanoparticles. It should also be stated that the thickness of thermal boundary layer rises with increasing the values of nanoparticle volume fraction. This consequently reduces the velocity of the nanofluid as the shear stress and skin friction are increased.

Figure 7 (a) Effect of nanoparticle shape on velocity distribution of the nanofluid, (b) Effects of nanoparticle shape on temperature distribution of nanofluid.

Figure 8 (a) Effects of radiation parameter on the velocity profile of the nanofluid, (b) Effects of radiation parameter on temperature profile of the nanofluid.

Furthermore, the figures show the effects of Prandtl number (Pr) on the velocity and temperature profiles. It is indicated that the velocity of the nanofluid decreases as the Pr increases but the temperature of the nanofluid increases as the Pr increases. This is because the nanofluid with higher Prandtl number has a relatively low thermal conductivity, which reduces conduction, and thereby reduces the thermal boundary-layer thickness, and as a consequence, increases the heat transfer rate at the surface. For the case of the fluid velocity that decreases with the increase of Pr, the reason is that fluid of the higher Prandtl number means more viscous fluid, which increases the boundary-layer thickness and thus, reduces the shear stress and consequently, retards the flow of the nanofluid. Also, it can be seen that the velocity distribution for small value of Prandtl number consist of two distinct regions. A thin region near the wall of the plate where there are large velocity gradients due to viscous effects and a region where the velocity gradients are small compared with those near the wall. In the later region, the viscous effects are negligible and the flow of fluid in the region can be considered to be inviscid. Also, such region tends to create uniform accelerated flow at the surface of the plate.

It is shown in this study that the use of nanoparticles in the fluid exhibited better properties relating to the heat transfer of fluid than heat transfer enhancement through the use of suspended millimeter- or micrometer-sized particles which potentially cause some severe problems, such as abrasion, clogging, high pressure drop, and sedimentation of particles. The very low concentrations applications and nanometer sizes properties of nanoparticles in basefluid prevent the sedimentation in the flow that may clog the channel. It should be added that the theoretical prediction of enhanced thermal conductivity of the basefluid and prevention of clogging, abrasion, high pressure drop and sedimentation through the addition of nanoparticles in basefluid have been supported with experimental evidences in literature.

Effect of nanoparticle shape on the velocity and temperature distributions

The impact of nanoparticle shape at different values of Prandtl number on velocity and temperature profiles of Copper (II) Oxide-water nanofluid is shown in Figure 9. It is indicated that the maximum decrease in velocity and maximum increase in temperature are caused by lamina, platelets, cylinder, bricks and sphere, respectively. It is observed that lamina shaped nanoparticle carries maximum velocity whereas spherical shaped nanoparticle has better enhancement on heat transfer than other nanoparticle shapes. This is because the lamina nanoparticle has greater shape factor than other nanoparticles of different shapes. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.

It is evident from this study that proper choice of nanoparticles will be helpful in controlling velocity and heat transfer. It is also observed that irreversibility process can be reduced by using nanoparticles, especially the spherical particles. This can potentially result in higher enhancement in the thermal conductivity of a nanofluid containing elongated particles compared to the one containing spherical nanoparticle, as exhibited by the experimental data in the literature.

Effect of thermal radiation parameter on the velocity and temperature distributions

The variation in the thermal radiation parameter is directly proportional to the velocity of the fluid to increase. This is because as the radiation parameter is augmented, the absorption of radiated heat from the heated plate releases more heat energy released to the fluid and the resulting temperature increases the buoyancy forces in the boundary layer which also increases the fluid motion and the momentum boundary layer thickness accelerates. This is expected, because the considered radiation effect within the boundary layer increases the motion of the fluid which increases the surface frictions.

The influence of radiation parameter on the temperature field is illustrated in Figure 11. Increase in the radiation parameter contributes in general to increase in the temperature of the nanofluid. This is because, as the thermal radiation increases, the absorption of radiated heat from the heated plate releases heat energy released to the fluid the thermal boundary layer of fluid increases as the temperature near the boundary is enhanced.

Conclusion

The analysis of magnetohydrodynamics natural convection of nanofluid flow over a vertical circular cone immersed in a porous medium under the influence of thermal radiation have been carried out in this work using multi-step differential transformation method. Effects of various parameters of the flow and heat transfer models on the fluid-dynamic and thermal behaviours of the nanofluid have been examined and discussed using the approximate analytical solutions. Also, the accuracies of the developed analytical solutions were evaluated by comparing the results of the present study with the results of the numerical solutions and the past studies. It is believed that this study will create a better physical insight into the flow process for the design of flow and heat transfer equipment.

Acknowledgments

None.

Conflicts of interest

There are no conflicts of interest.

Funding

None.

References

  1. Schmidt E, Beckmann W. The temperature and speed field in front of a heat-emitting vertical plate at a natural convention. Tech Mech U Themodynamik. 1930;1(10):341–349.
  2. Ostrach S. An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. NACA Report. 1953. 1111 p.
  3. Sparrow EM, JL Gregg. Laminar free convection from a vertical plate with uniform surface heat flux in chemically reacting systems. Trans A.S.M.E. 1956;45(2):435–440.
  4. Lefevre EJ. Laminar free convection from a vertical plane surface, 9th Intern. Congress on Applied Mechanics. Brussels; 1956. 168 p.
  5. Sparrow EM, Gregg JL. Similar solutions for free convection from a nonisothermal vertical plate. Trans A.S.M.E. 1958;80:379–386.
  6. Stewartson K, LT Jones. The heated vertical plate at high Prandtl number. J Aeronautical Sciences. 1957;24:379–380.
  7. Kuiken HK. An asymptotic solution for large Prandtl number free convection. J Engng Math. 1968;2:355–371.
  8. Kuiken HK. Free convection at low Prandtl numbers. J Fluid Mech. 1969;37:785–798.
  9. Eshghy S. Free-convection layers at large Prandtl number. J Applied Math Physics (ZAMP). 1971;22:275–292.
  10. S. Roy, High Prandtl number free convection for uniform surface heat flux. Trans A.S.M.E.J Heat Transfer. 1973;95:124–126.
  11. Kuiken HK, Z Rotem. Asymptotic solution for the plume at very large and small Prandtl numbers. J Fluid Mech. 1971;45:585–600.
  12. TY Na, IS Habib. Solution of the natural convection problem by parameter differentiation. Int J Heat Mass Transfer. 1974;17(3):457–459.
  13. Merkin JH. A note on the similarity solutions for free convection on a vertical plate. J Engng Math. 1985;19:189–201.
  14. Merkin JH, Pop I. Conjugate free convection on a vertical surface. Int J Heat Mass Transfer. 1996;39:1527–1534.
  15. Ali FM, R Nazar, NM Arifin. Numerical investigation of free convective boundary layer in a viscous fluid. The American Journal of Scientific Research. 2009;5:13–19.
  16. SS Motsa, S Shateyi, Z Makukula. Homotopy analysis of free convection boundary layer flow with heat and mass transfer. Chemical Engineering Communications. 2011;198(6):783–795.
  17. SS Motsa, ZG Makukula, S Shateyi. Spectral Local Linearisation Approach for Natural Convection Boundary Layer Flow. Hindawi Publishing Corporation Mathematical Problems in Engineering. 2013;765013:7.
  18. AR Ghotbi, H Bararnia,G Domairry, et al. Investigation of a powerful analytical method into natural convection boundary layer flow. Communications in Nonlinear Science and Numerical Simulation. 2009;14(5):2222–2228.
  19. JK Zhou. Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China; 1986.
  20. LT Yu, CK Chen. The solution of the Blasius equation by the differential transformation method. Math Comput Modell. 1998;28(1):101–111.
  21. BL Kuo. Thermal boundary-layer problems in a semi-infinite flat plate by the differential transformation method. Appl Math Comput. 2004;150(2):143–160.
  22. BL Kuo. Application of the differential transformation method to the solutions of the free convection problem. Applied Mathematics and Computation. 2005;165:63–79.
  23. MM Rashidi, N Laraqi, SM Sadri. A Novel Analytical Solution of Mixed Convection about an Inclined Flat Plate Embedded in a Porous Medium Using the DTM-Pade. International Journal of Thermal Sciences. 2010;49(12):2405–2412.
  24. ER El-Zahar. Applications of adaptive multi-step differential transform method to singular perturbation problems arising in science and engineering. Applied Math Inf Sci. 2015;9:223–232.
  25. VS Erturk, ZM Odibat, S Momani. The multi-step differential transform method and its application to determine the solutions of nonlinear oscillators. Adv Applied Math Mechan. 2012;4:422–438.
  26. Gokdogan A, M Merdan, A Yildirim. Adaptive multi-step differential transformation method to solving nonlinear differential equations. Math Comput Modell. 2012a;55:761–769.  
  27. Gokdogan A, M Merdan, A Yildirim. A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun Nonlinear Sci Numerical Simulat. 2012b;17:1–8.
  28. MM Alam, MA Alim, MK Chowdhury. Free convection from a vertical permeable circular cone with pressure work and non-uniform surface temperature. Nonlinear Analysis Modeling and Control. 2007;261:21–32.
  29. Alamgir M. Over-all Heat Transfer from Vertical Cones in Laminar Free Convection: An Approximate Method, Transactions of ASME. J Heat Transfer. 1979;101:174–176.
  30. MA Alim, MM Alam, MK Chowdhury. Pressure work effect on natural convection from a vertical circular cone with suction and non-uniform surface temperature. Mech Eng. 2014;36:6–11.
  31. EMA Elbashbeshy, TG Emam, EA Sayed. Effect of pressure work on free convection flow from a vertical circular cone with variable surface heat flux. Strojnicky casopis. 2012;63(3):169–177.
  32. RG Hering, RJ Grosh. Laminar free convection from a non-isothermal cone. Int Heat Mass Transfer. 1962;5:1059–1068.
  33. MA Hossain, SC Paul. Free convection from a vertical permeable circular cone with non-uniform surface heat flux. Heat Mass Transfer. 2001;37:167–173.
  34. TY Na, JP Chiou. Laminar Natural Convection over a frustum of a Cone. Appl Sci Res. 1979;35:409–421.
  35. S Roy. Free convection over a slender vertical cone at high Prandtl numbers. ASME J Heat Mass Transfer. 1974;101:174–176.
  36. EMA Elbashbeshy, TG Emam, EA Sayed. Effect of pressure work on free convection flow about a truncated cone. International Journal of Physical Sciences. 2011;1(1):001–010.
  37. Akbar NS, AW Butt. Ferro-magnetic effects for peristaltic flow of Cu-water nanofluid for different shapes of nano-size particles. Appl Nanosci. 2016;6:379–385.
  38. Sheikholesmi M, MM Bhatti. Free convection of nanofluid in the presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer. 2017;111:1039–1049.
  39. Ul Haq R, Nadeem S, ZH Khan, et al. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B. 2015;457:40–47.  
  40. Talley LD, GL Pickard, WJ Emery, et al. Descriptive Physical Oceanography. Physical Properties of Sea Water. 6th ed. Elsevier Ltd; 2011. p. 2–6M5.
  41. Pastoriza-Gallego M, L Lugo, J Legido, et al. Thermal conductivity and viscosity measurements of ethylene glycol-based Al 2O3 nanofluids. Nanoscale Res Lett. 2011;6(221):1–11.
  42. Aberoumand S, A Jafarimoghaddam. Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. Journal of the Taiwan Institute of Chemical Engineers. 2017;71:315–322.
  43. Kuiken HK. On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small, IMA. Journal of Applied Mathematics. 1981;27(4):387–405.
  44. Thameem Basha H, IL Animasaun, OD Makinde, et al. Effect of Electromagnetohydrodynamic on Chemically Reacting Nanofluid Flow over a Cone and Plate. Applied Mathematics and Scientific Computing. Trends in Mathematics. Birkhäuser Cham. 2019;99–107.
Creative Commons Attribution License

©2020 Sobamowo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.