Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 5 Issue 1

Homotopy analysis method to MHD-slip flow of an upper- convected maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium

MG Sobamowo, A A Yinusa, AT Akinshilo, ST Aladenusi

Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

Correspondence: M G Sobamowo, Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria, Tel +2347034717417

Received: January 01, 2020 | Published: March 16, 2020

Citation: Sobamowo MG, Yinusa AA, Akinshilo AT, et al. Homotopy analysis method to MHD-slip flow of an upper- convected maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium. Int J Petrochem Sci Eng. 2020;5(1):11?20. DOI: 10.15406/ipcse.2020.05.00118

Download PDF

Abstract

The expanding applications of viscoelastic fluids in biomedical engineering and industrial processes require proper under and physical insights into the flow phenomena of the fluids. In this work, simultaneous effects of slip and magnetic field on the flow of an upper convected Maxwell (UCM) nano fluid through a permeable micro channel embedded in porous medium are analyzed using homotopy analysis method. The results of the approximate analytical solution depict very good agreements with the results of the fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-Kutta) coupled with shooting methodfor the verification of the mathematical method used in analyzing the flow. Thereafter, the obtained analytical solutions are used to investigate the effects of pertinent rheological parameters on flow. It is observed from the results that increase in slip parameter, nano particle concentration and Darcy number lead to increase in the velocity of the upper-convected Maxwell fluid while increase in Deborah’s, Hartmann, and Reynold numbers decrease the fluid flow velocity towards the lower plate but as the upper plate is approached a reverse trend is observed. The study can be used to advance the application of upper convected Maxwell flow in the areas of in biomedical, geophysical and astrophysics.

Keywords: slip analysis, upper-convected maxwell flow, viscoelastic nano fluid, magnetic field, porous medium

Introduction

The vast areas of applications and the importance of the viscoelastic fluid flow in modern science and engineering such as gaseous diffusion, blood flow through oxygenators, flow in blood capillaries have continue to aroused the research interests. Complex rheological fluids such as blood, paints, synovial fluid, saliva, jam which cannot be adequately described by Navier Stokes. This lead to the development of complex constitutive relations to capture the flow behaviour of the complex fluids.1 Among the newly developed fluid models of the integral and differential-type models, Upper convected Maxwell fluid model has showed to be an effective fluid model that capture these phenomena of fluids especially of those with high elastic behaviours such as polymer melts. Since highly elastic fluids have high Deborah number.2,3 In the analysis of Maxwell flow, Fetecau 4 presented a new exact solution for flow though infinite micro channel while Hunt5 studied convective fluid flow through rectangular duct. Sheikholeslami et al.6 investigated magneto hydrodynamic field effect on flow through semi-porous channel utilizing analytical methods. Shortly after, Sheikholeslami 7-9 adopted numerical solutions in the investigations of nanofluid in semi-annulus enclosure. Flow of upper convected Maxwell fluid through porous stretch sheet was investigated by Raftari and Yildirim.10 Entophy generation in fluid in the presence of magnetic field was analyzed by Sheikholeslami and Ganji 11 using lattice Boltzman method while Ganji et al.12 used analytical and numerical methods for the fluid flow problems under the influence of magnetic field. The flow of Viscoelastic fluid through a moving plate was analyzed by Sadeghy and Sharifi 13 using local similarity solutions. Mass transfer and flow of chemically reactive upper convected Maxwell fluid under induced magnetic field was investigated by Vajrevulu et al.14 Not long after Raftari and Vajrevulu 15 adopted the homotopy analysis method in the study of flow and heat transfer in stretching wall channels considering MHD. Hatamiet al. 16 presented forced convective MHD nano fluid flow conveyed through horizontal parallel plates. Laminar thermal boundary flow layer over flat plate considering convective fluid surface was analyzed by Aziz 17 using similarity solution. Beg and Makinde 18 examined the flow of viscoelastic fluid through Darcian microchannel with high permeability.

Most of the above reviews studies focused on the analysis of fluid flow under no slip condition. However, such an assumption of no slip condition does not hold in a flow system with small size characteristics size or low flow pressure. The pioneer work of flow with slip boundary condition was first initiated by Navier.19 Such an important condition (slip conditions) occur in various flows such as nano fluids, polymeric liquids, fluids containing concentrated suspensions, flow on multiple interfaces, thin film problems and rarefied fluid problems.19–31 Due to the practical implications of the condition of flow processes, several studies on the effects of slip boundary conditions on fluids flow behaviours have been presented by many researchers.19–32Abbasi et al.33 investigated the MHD flow characteristics of upper-convicted Maxwell viscoelastic flow in a permeable channel under slip conditions. However, an analytical study on simultaneous effects of slip, magnetic field, nano particle and porous medium on the flow characteristics of an upper-convected Maxwell viscoelastic nano fluid has not been carried out in literature. Therefore, in this work, slip flow analysis of an upper-convected Maxwell viscoelastic nano fluid through a permeable micro channel embedded in porous medium under the influence of magnetic field is analyzed. The nonlinear partial differential equations governing the flow phenomena are converted to a nonlinear ordinary differential equation using similarity transformation. Thereafter, the ordinary differential is solved using homotopy analysis method. 

Model Development and Analytical Solution

Consider a laminar slip flow of an electrically conducting fluid in a microchannel is considered. Along the y axis, magnetic field are imposed uniformly, as described in the physical model diagram (Figure 1) It is assumed external electric field is zero and constant of electrical conductivity is constant. Therefore, magnetic Reynolds number is smalland magnetic field induced by fluid motion is negligible.

Figure 1 Flow of upper-convected Maxwell fluid between in permeable channel embedded in porous medium.

Based on the assumptions, the governing equation for the Maxwell fluid is presented as [8]

TpI+S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGHsi slcaWGWbGaamysaiabgUcaRiaadofaaaa@3C51@   (1)

Where the Cauchy stress tensor is T and S is the extra-stress Tensor which satisfies

S+λ( ds dt LSS L T )μ A L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacqGHRa WkcqaH7oaBdaqadaqaamaalaaabaGaamizaiaadohaaeaacaWGKbGa amiDaaaacqGHsislcaWGmbGaam4uaiabgkHiTiaadofacaWGmbWaaW baaSqabeaacaWGubaaaaGccaGLOaGaayzkaaGaeqiVd0Maamyqamaa BaaaleaacaWGmbaabeaaaaa@498D@   (2)

The Rivlin-Ericksen tensor is defined by

A L =V+ ( V ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaamitaaqabaGccqGH9aqpcqGHhis0caWGwbGaey4kaSYaaeWa aeaacqGHhis0caWGwbaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGub aaaaaa@4214@   (3)

The continuity and momentum equation’s for steady, incompressible two dimensional flows are expressed as

u ¯ x + v ¯ y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRabmyDayaaraaabaGaeyOaIyRaamiEaaaacqGHRaWkdaWcaaqa aiabgkGi2kqadAhagaqeaaqaaiabgkGi2kaadMhaaaGaeyypa0JaaG imaaaa@4388@   (4)

ρ nf ( u u x +v u y )= P x + S xx x + S xy y σ nf B 2 (t)u μ nf u K p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGUbGaamOzaaqabaGcdaqadaqaaiaadwhadaWcaaqaaiab gkGi2kaadwhaaeaacqGHciITcaWG4baaaiabgUcaRiaadAhadaWcaa qaaiabgkGi2kaadwhaaeaacqGHciITcaWG5baaaaGaayjkaiaawMca aiabg2da9iabgkHiTmaalaaabaGaeyOaIyRaamiuaaqaaiabgkGi2k aadIhaaaGaey4kaSYaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiaa dIhacaWG4baabeaaaOqaaiabgkGi2kaadIhaaaGaey4kaSYaaSaaae aacqGHciITcaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiab gkGi2kaadMhaaaGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaad6gacaWGMb aabeaakiaadkeadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamiDaiaa cMcacaWG1bGaeyOeI0YaaSaaaeaacqaH8oqBdaWgaaWcbaGaamOBai aadAgaaeqaaOGaamyDaaqaaiaadUeadaWgaaWcbaGaamiCaaqabaaa aOGaaiilaaaa@7148@   (5)

ρ nf ( u ¯ v ¯ x + v ¯ v ¯ y )= P x + S yx x + S yy y μ nf v ¯ K p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGUbGaamOzaaqabaGcdaqadaqaaiqadwhagaqeamaalaaa baGaeyOaIyRabmODayaaraaabaGaeyOaIyRaamiEaaaacqGHRaWkce WG2bGbaebadaWcaaqaaiabgkGi2kqadAhagaqeaaqaaiabgkGi2kaa dMhaaaaacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacqGHci ITcaWGqbaabaGaeyOaIyRaamiEaaaacqGHRaWkdaWcaaqaaiabgkGi 2kaadofadaWgaaWcbaGaamyEaiaadIhaaeqaaaGcbaGaeyOaIyRaam iEaaaacqGHRaWkdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamyE aiaadMhaaeqaaaGcbaGaeyOaIyRaamyEaaaacqGHsisldaWcaaqaai abeY7aTnaaBaaaleaacaWGUbGaamOzaaqabaGcceWG2bGbaebaaeaa caWGlbWaaSbaaSqaaiaadchaaeqaaaaakiaacYcaaaa@67FB@   (6)

where the effective density ρnf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCcaWGUbGaamOzaaaa@39B5@  and effective dynamic viscosity μ nf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaamOzaaWdaeqaaaaa@3A05@  of the nanofluid are defined as follows:

ρ nf =( 1ϕ ) ρ f +ϕ ρ s , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGUbGaamOzaaqabaGccqGH9aqpdaqadaqaaiaaigdacqGH sislcqaHvpGzaiaawIcacaGLPaaacqaHbpGCdaWgaaWcbaGaamOzaa qabaGccqGHRaWkcqaHvpGzcqaHbpGCdaWgaaWcbaGaam4CaaqabaGc caGGSaaaaa@4B27@   (7)

μ nf = μ f ( 1ϕ ) 2.5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGUbGaamOzaaqabaGccqGH9aqpdaWcaaqaaiabeY7aTnaa BaaaleaacaWGMbaabeaaaOqaamaabmaabaGaaGymaiabgkHiTiabew 9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaa aaaakiaacYcaaaa@47EF@   (8)

σ nf = σ f [ 1+ 3{ σ s σ f 1 }ϕ { σ s σ f +2 }ϕ{ σ s σ f 1 }ϕ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaWGUbGaamOzaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGa amOzaaqabaGcdaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaaiodada GadaqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadohaaeqaaaGcbaGa eq4Wdm3aaSbaaSqaaiaadAgaaeqaaaaakiabgkHiTiaaigdaaiaawU hacaGL9baacqaHvpGzaeaadaGadaqaamaalaaabaGaeq4Wdm3aaSba aSqaaiaadohaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadAgaaeqaaa aakiabgUcaRiaaikdaaiaawUhacaGL9baacqaHvpGzcqGHsisldaGa daqaamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadohaaeqaaaGcbaGaeq 4Wdm3aaSbaaSqaaiaadAgaaeqaaaaakiabgkHiTiaaigdaaiaawUha caGL9baacqaHvpGzaaaacaGLBbGaayzxaaGaaiilaaaa@686D@   (9)

Sxx,Sxy,Syx and Syy are extra stress tensors and ρ is the density of the fluid.

Using the shear-stress strain for a upper-convected liquid, The governing equations of fluid motion is easily expressed as

u x + v y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamyDaaqaaiabgkGi2kaadIhaaaGaey4kaSYaaSaaaeaacqGH ciITcaWG2baabaGaeyOaIyRaamyEaaaacqGH9aqpcaaIWaaaaa@4358@   (10)

u u x +v u y +λ( u 2 2 u x 2 +v 2 u y 2 +2uv 2 u xy )= v nf 2 u y 2 σ nf B 2 (t)u ρ nf ν nf u K p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWcaa qaaiabgkGi2kaadwhaaeaacqGHciITcaWG4baaaiabgUcaRiaadAha daWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG5baaaiabgUcaRi abeU7aSnaabmaabaGaamyDamaaCaaaleqabaGaaGOmaaaakmaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2k aadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamODamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2k aadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmaiaadwha caWG2bWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1b aabaGaeyOaIyRaamiEaiabgkGi2kaadMhaaaaacaGLOaGaayzkaaGa eyypa0JaamODamaaBaaaleaacaWGUbGaamOzaaqabaGcdaWcaaqaai abgkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG 5bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaeq4Wdm 3aaSbaaSqaaiaad6gacaWGMbaabeaakiaadkeadaahaaWcbeqaaiaa ikdaaaGccaGGOaGaamiDaiaacMcacaWG1baabaaccaGae8xWdi3aaS baaSqaaiaad6gacaWGMbaabeaaaaGccqGHsisldaWcaaqaaiabe27a UnaaBaaaleaacaWGUbGaamOzaaqabaGccaWG1baabaGaam4samaaBa aaleaacaWGWbaabeaaaaGccaGGSaaaaa@8595@   (11)

where flow velocity component (u,v) are velocity component along the xand y directions respectively. Since flow is symmetric about channel center line, attention is given to the flow region 0<y<H. Appropriate boundary condition is given as [14]:

y=0: u x =0,v=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcaaIWaGaaiOoamaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaa dIhaaaGaeyypa0JaaGimaiaacYcacaWG2bGaeyypa0JaaGimaaaa@4488@   (12)

y=H: u y =βu,v= V w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcaWGibGaaiOoamaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaa dMhaaaGaeyypa0JaeyOeI0IaeqOSdiMaamyDaiaacYcacaaMf8Uaam ODaiabg2da9iaadAfadaWgaaWcbaGaam4Daaqabaaaaa@4A41@   (13)

where Vwand β are the wall characteristic suction velocity and sliding friction respectively.

The physical and thermal properties of the base fluid and nano particles are given in Table 1 and Table 2, respectively.

Base fluid                           ρ (kg/m3)             Cp ( J/kgK)        k (W/mK)             σ(Ω-1m-1)

Pure water                           997.1                    4179                    0.613                     5.50

Ethylene Glycol                    1115                     2430                    0.253                     1.07

Engine oil                              884                      1910                    0.144                      4.02

Kerosene                             783                       2010                    0.145                      4.01

Table 1 Amplitude in mill volts of the Lead-1 of electrocardiography in sheep

Nanoparticles                              ρ (kg/m3)           Cp ( J/kgK)          k (W/mK)             σ(Ω-1m-1)

Copper (Cu)                                  8933                   385                       401                        59.6  

Aluminum oxide (Al2O3)               3970                    765                       40                          16.7

SWCNTs                                      2600                    42.5                      6600                      1.26

Silver (Ag)                                     10500                  235.0                    429

Titanium dioxide (TiO2)                 4250                    686.2                   8.9538

Copper (II) Oxide (CuO)               783                      540                        18

Table 2 Amplitude in mill volts of the Lead-1 of electrocardiography in sheep

The similarity variables are introduced as:

η= y H ,u= V w x f ' (y);v= V w f(y);k= μ Hβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maalaaabaGaamyEaaqaaiaadIeaaaGaaiilaiaaywW7caWG1bGa eyypa0JaeyOeI0IaamOvamaaBaaaleaacaWG3baabeaakiaadIhaca WGMbWaaWbaaSqabeaacaGGNaaaaOGaaiikaiaadMhacaGGPaGaai4o aiaaywW7caWG2bGaeyypa0JaamOvamaaBaaaleaacaWG3baabeaaki aadAgacaGGOaGaamyEaiaacMcacaGG7aGaaGzbVlaadUgacqGH9aqp daWcaaqaaiabeY7aTbqaaiaadIeacqaHYoGyaaaaaa@5A08@   (14)

With the aid of the dimensionless parameters in Eq. (14), the constitutive relation is satisfied. Equation (2-4) can be expressed as:

f ''' ( M 2 + 1 Da ) f ' + ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w ( f '2 f f '' )+De ( 1ϕ ) 2.5 ( 2f f ' f '' f 2 f ''' )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaahaa WcbeqaaiaacEcacaGGNaGaai4jaaaakiabgkHiTmaabmaabaGaamyt amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaai aadseacaWGHbaaaaGaayjkaiaawMcaaiaadAgadaahaaWcbeqaaiaa cEcaaaGccqGHRaWkdaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaGynaaaakmaabmaa baWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaey 4kaSIaeqy1dy2aaSaaaeaacqaHbpGCdaWgaaWcbaGaam4Caaqabaaa keaacqaHbpGCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaayzkaa GaamOuaiaadwgadaWgaaWcbaGaam4DaaqabaGcdaqadaqaaiaadAga daahaaWcbeqaaiaacEcacaaIYaaaaOGaeyOeI0IaamOzaiaadAgada ahaaWcbeqaaiaacEcacaGGNaaaaaGccaGLOaGaayzkaaGaey4kaSIa amiraiaadwgadaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaGynaaaakmaabmaabaGa aGOmaiaadAgacaWGMbWaaWbaaSqabeaacaGGNaaaaOGaamOzamaaCa aaleqabaGaai4jaiaacEcaaaGccqGHsislcaWGMbWaaWbaaSqabeaa caaIYaaaaOGaamOzamaaCaaaleqabaGaai4jaiaacEcacaGGNaaaaa GccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@7F49@   (15)

And the boundary conditions as

η=0: f '' =0;f=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iaaicdacaGG6aGaamOzamaaCaaaleqabaGaai4jaiaacEcaaaGc cqGH9aqpcaaIWaGaai4oaiaadAgacqGH9aqpcaaIWaaaaa@42DA@   (16)

η=1: f ' =k f '' :f=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iaaigdacaGG6aGaamOzamaaCaaaleqabaGaai4jaaaakiabg2da 9iabgkHiTiaadUgacaWGMbWaaWbaaSqabeaacaGGNaGaai4jaaaaki aacQdacaWGMbGaeyypa0JaaGymaaaa@45CB@

where Re w = V w H υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGackfacaGGLb WaaSbaaSqaaiaadEhaaeqaaOGaeyypa0ZaaSaaaeaacaWGwbWaaSba aSqaaiaadEhaaeqaaOGaamisaaqaaiabew8a1baaaaa@3FB8@  is the Reynolds number, De= λ V w 2 υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaWGLb Gaeyypa0ZaaSaaaeaacqaH7oaBcaWGwbWaa0baaSqaaiaadEhaaeaa caaIYaaaaaGcbaGaeqyXduhaaaaa@401C@ is the Deborah’s number, M 2 = σ B 0 2 H μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiabeo8aZjaadkeadaqh aaWcbaGaaGimaaqaaiaaikdaaaGccaWGibaabaGaeqiVd0gaaaaa@40A3@ is the Hartman parameter, Da= K p H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaWGHb Gaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqaaiaadchaaeqaaaGcbaGa amisaaaaaaa@3DB8@ is the Darcy’s number. For Rew>0 corresponds to suction flow while Rew<0 correspond to injection flow respectively.

Equ. (13) is a third-order differential equation with four boundary conditions. Through a creative differentiation of Eq. (12). Hence introducing fourth order equation as:

f iv ( M 2 + 1 Da ) f + ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w ( f f f f )+De ( 1ϕ ) 2.5 ( 2 f 2 f '' 2f f 2 + f 2 f iv )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaahaa WcbeqaaiaadMgacaWG2baaaOGaeyOeI0YaaeWaaeaacaWGnbWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamirai aadggaaaaacaGLOaGaayzkaaGabmOzayaagaGaey4kaSYaaeWaaeaa caaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWaaWbaaSqabeaaca aIYaGaaiOlaiaaiwdaaaGcdaqadaqaamaabmaabaGaaGymaiabgkHi Tiabew9aMbGaayjkaiaawMcaaiabgUcaRiabew9aMnaalaaabaGaeq yWdi3aaSbaaSqaaiaadohaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaa dAgaaeqaaaaaaOGaayjkaiaawMcaaiaadkfacaWGLbWaaSbaaSqaai aadEhaaeqaaOWaaeWaaeaaceWGMbGbauaaceWGMbGbayaacqGHsisl caWGMbGabmOzayaasaaacaGLOaGaayzkaaGaey4kaSIaamiraiaadw gadaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdacaGGUaGaaGynaaaakmaabmaabaGaaGOmaiqadA gagaqbamaaCaaaleqabaGaaGOmaaaakiaadAgadaahaaWcbeqaaiaa cEcacaGGNaaaaOGaeyOeI0IaaGOmaiaadAgaceWGMbGbayaadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaWGMbWaaWbaaSqabeaacaaIYaaa aOGaamOzamaaCaaaleqabaGaamyAaiaadAhaaaaakiaawIcacaGLPa aacqGH9aqpcaaIWaaaaa@7FDC@   (17)

The above Eq. (17) study satisfies all the four boundary conditions

Application of the Homotopy Analysis Method to the Flow Problem

The homotopy analysis method (HAM) which is an analytical scheme for providing approximate solutions to the ordinary differential equations, is adopted in generating solutions to the ordinary nonlinear differential equations .Upon constructing the homotopy, the initial guess and auxiliary linear operator can be expressed as

f 0 (η)= 1 2(3k+1) η 3 + 3(2k+1) 2(3k+1) η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGimaaqabaGccaGGOaGaeq4TdGMaaiykaiabg2da9iabgkHi TmaalaaabaGaaGymaaqaaiaaikdacaGGOaGaaG4maiaadUgacqGHRa WkcaaIXaGaaiykaaaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqGH RaWkdaWcaaqaaiaaiodacaGGOaGaaGOmaiaadUgacqGHRaWkcaaIXa GaaiykaaqaaiaaikdacaGGOaGaaG4maiaadUgacqGHRaWkcaaIXaGa aiykaaaacqaH3oaAaaa@5407@   (18)

L(f)= f '''' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaGGOa GaamOzaiaacMcacqGH9aqpcaWGMbWaaWbaaSqabeaacaGGNaGaai4j aiaacEcacaGGNaaaaaaa@3EED@   (19)

L( 1 6 c 1 η 3 + 1 2 c 2 η 2 + c 3 η+ c 4 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqada qaamaalaaabaGaaGymaaqaaiaaiAdaaaGaam4yamaaBaaaleaacaaI XaaabeaakiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRmaala aabaGaaGymaaqaaiaaikdaaaGaam4yamaaBaaaleaacaaIYaaabeaa kiabeE7aOnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadogadaWgaa WcbaGaaG4maaqabaGccqaH3oaAcqGHRaWkcaWGJbWaaSbaaSqaaiaa isdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaaaa@4F35@   (20)

Where C i ( i=1,2,3,4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaakmaabmaabaGaamyAaabaaaaaaaaapeGaeyyp a0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaaGinaaWdai aawIcacaGLPaaaaaa@4090@  are constants? Let P=[ 0,1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaiabg2da9iabgIGiopaadmaabaGaaGimaiaacYcacaaIXaaa caGLBbGaayzxaaaaaa@3EA4@ connotes the embedding parameter and  is the non-zero auxiliary parameter. Therefore, the homogony is constructed as

Zeroth-order deformation equations

( 1P )L[ F( η;p ) f 0 (η) ]=pH(η)N[ F(η;p) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTiaadcfaaiaawIcacaGLPaaacaWGmbWaamWaaeaacaWG gbWaaeWaaeaacqaH3oaAcaGG7aGaamiCaaGaayjkaiaawMcaaiabgk HiTiaadAgadaWgaaWcbaGaaGimaaqabaGccaGGOaGaeq4TdGMaaiyk aaGaay5waiaaw2faaiabg2da9iaadchacqWIpecAcaWGibGaaiikai abeE7aOjaacMcacaWGobWaamWaaeaacaWGgbGaaiikaiabeE7aOjaa cUdacaWGWbGaaiykaaGaay5waiaaw2faaaaa@5897@   (21)

F(0;p)=0; F '' ( 0;p )=0;F( 1;p )=1;k F '' ( 1;p )+ F ' ( 1;p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaaGimaiaacUdacaWGWbGaaiykaiabg2da9iaaicdacaGG7aGaamOr amaaCaaaleqabaGaai4jaiaacEcaaaGcdaqadaqaaiaaicdacaGG7a GaamiCaaGaayjkaiaawMcaaiabg2da9iaaicdacaGG7aGaamOramaa bmaabaGaaGymaiaacUdacaGGWbaacaGLOaGaayzkaaGaeyypa0JaaG ymaiaacUdacaWGRbGaamOramaaCaaaleqabaGaai4jaiaacEcaaaGc daqadaqaaiaaigdacaGG7aGaaiiCaaGaayjkaiaawMcaaiabgUcaRi aadAeadaahaaWcbeqaaiaacEcaaaGcdaqadaqaaiaaigdacaGG7aGa amiCaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@5DB5@   (22)

N[F(η;p)]= d 4 F( η;p ) d η 4 + ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w [ dF(η;p) dη d 2 F(η;p) d η 2 F(η;p) d 3 (η;p) d η 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGBb GaamOraiaacIcacqaH3oaAcaGG7aGaamiCaiaacMcacaGGDbGaeyyp a0ZaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI0aaaaOGaamOramaabm aabaGaeq4TdGMaai4oaiaadchaaiaawIcacaGLPaaaaeaacaWGKbGa eq4TdG2aaWbaaSqabeaacaaI0aaaaaaakiabgUcaRmaabmaabaGaaG ymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aiaac6cacaaI1aaaaOWaaeWaaeaadaqadaqaaiaaigdacqGHsislcq aHvpGzaiaawIcacaGLPaaacqGHRaWkcqaHvpGzdaWcaaqaaiabeg8a YnaaBaaaleaacaWGZbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGMb aabeaaaaaakiaawIcacaGLPaaacaWGsbGaamyzamaaBaaaleaacaWG 3baabeaakmaadmaabaWaaSaaaeaacaWGKbGaamOraiaacIcacqaH3o aAcaGG7aGaaiiCaiaacMcaaeaacaWGKbGaeq4TdGgaamaalaaabaGa amizamaaCaaaleqabaGaaGOmaaaakiaadAeacaGGOaGaeq4TdGMaai 4oaiaadchacaGGPaaabaGaamizaiabeE7aOnaaCaaaleqabaGaaGOm aaaaaaGccqGHsislcaWGgbGaaiikaiabeE7aOjaacUdacaWGWbGaai ykamaalaaabaGaamizamaaCaaaleqabaGaaG4maaaakiaacIcacqaH 3oaAcaGG7aGaamiCaiaacMcaaeaacaWGKbGaeq4TdG2aaWbaaSqabe aacaaIZaaaaaaaaOGaay5waiaaw2faaaaa@8C2F@
M 2 d 2 F(η;p) d η 2 1 Da d 2 F(η;p) d η 2 +De ( 1ϕ ) 2.5 [2 ( dF(η;p) dη ) 2 d 2 F(η;p) d η 2 2F(η;p) ( d 2 F(η;p) d η 2 ) 2 + (f(y;p)) 2 d 4 F( η;p ) d η 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaad2 eadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadsgadaahaaWcbeqa aiaaikdaaaGccaWGgbGaaiikaiabeE7aOjaacUdacaWGWbGaaiykaa qaaiaadsgacqaH3oaAdaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0Ya aSaaaeaacaaIXaaabaGaamiraiaadggaaaWaaSaaaeaacaWGKbWaaW baaSqabeaacaaIYaaaaOGaamOraiaacIcacqaH3oaAcaGG7aGaamiC aiaacMcaaeaacaWGKbGaeq4TdG2aaWbaaSqabeaacaaIYaaaaaaaki abgUcaRiaadseacaWGLbWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dyga caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaaiOlaiaaiwdaaaGcca GGBbGaaGOmamaabmaabaWaaSaaaeaacaWGKbGaamOraiaacIcacqaH 3oaAcaGG7aGaaiiCaiaacMcaaeaacaWGKbGaeq4TdGgaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadAeacaGGOaGaeq4TdGMaai4oaiaadchaca GGPaaabaGaamizaiabeE7aOnaaCaaaleqabaGaaGOmaaaaaaGccqGH sislcaaIYaGaamOraiaacIcacqaH3oaAcaGG7aGaaiiCaiaacMcada qadaqaamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadAea caGGOaGaeq4TdGMaai4oaiaadchacaGGPaaabaGaamizaiabeE7aOn aaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaGGOaGaamOzaiaacIcacaGG5bGaai4oai aacchacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaakmaalaaabaGa amizamaaCaaaleqabaGaaGinaaaakiaadAeadaqadaqaaiabeE7aOj aacUdacaWGWbaacaGLOaGaayzkaaaabaGaamizaiabeE7aOnaaCaaa leqabaGaaGinaaaaaaGccaGGDbaaaa@9DF8@   (23)

when p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbGaeyypa0JaaGimaaaa@38CB@  and p=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGWbGaeyypa0JaaGymaaaa@38CC@ we have

F(η;0)= f 0 (η);F(η;1)=f(η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaeq4TdGMaai4oaiaaicdacaGGPaGaeyypa0JaamOzamaaBaaaleaa caaIWaaabeaakiaacIcacqaH3oaAcaGGPaGaai4oaiaadAeacaGGOa Gaeq4TdGMaai4oaiaaigdacaGGPaGaeyypa0JaamOzaiaacIcacqaH 3oaAcaGGPaaaaa@4D3C@   (24)

As p increases from 0 to 1. F(y;p) varies from f0(y) to f(y). By Taylor’s theorem and utilizing Eq. (26),F(y; p) can be expanded in the power series of p as follows:

F(η;p)= f 0 (η)+ m1 f m (η) p m , f m (η) = 1 m! m (F(η;p)) p m | p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa Gaeq4TdGMaai4oaiaadchacaGGPaGaeyypa0JaamOzamaaBaaaleaa caaIWaaabeaakiaacIcacqaH3oaAcaGGPaGaey4kaSYaaabCaeaaca WGMbWaaSbaaSqaaiaad2gaaeqaaOGaaiikaiabeE7aOjaacMcacaWG WbWaaWbaaSqabeaacaWGTbaaaOGaaiilaiaadAgadaWgaaWcbaGaam yBaaqabaGccaGGOaGaeq4TdGMaaiykaaWcbaGaamyBaiabgkHiTiaa igdaaeaacqGHEisPa0GaeyyeIuoakiabg2da9maalaaabaGaaGymaa qaaiaad2gacaGGHaaaamaaeiaabaWaaSaaaeaacqGHciITdaahaaWc beqaaiaad2gaaaGccaGGOaGaamOraiaacIcacqaH3oaAcaGG7aGaam iCaiaacMcacaGGPaaabaGaeyOaIyRaamiCamaaCaaaleqabaGaamyB aaaaaaaakiaawIa7amaaBaaaleaacaWGWbGaeyypa0JaaGimaaqaba aaaa@6B8E@   (25)

where ℏ  is chosen such that the series is convergent at p1; therefore, by Eq. (24) it is easily shown that

f(η)= f 0 (η)+ m1 f m (η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa Gaeq4TdGMaaiykaiabg2da9iaadAgadaWgaaWcbaGaaGimaaqabaGc caGGOaGaeq4TdGMaaiykaiabgUcaRmaaqahabaGaamOzamaaBaaale aacaWGTbaabeaakiaacIcacqaH3oaAcaGGPaaaleaacaWGTbGaeyOe I0IaaGymaaqaaiabg6HiLcqdcqGHris5aaaa@4D2B@   (26)

Math order deformation equations

L[ f m (η) χ m f m1 (η)]=H(η) R m (η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaGGBb GaamOzamaaBaaaleaacaWGTbaabeaakiaacIcacqaH3oaAcaGGPaGa eyOeI0Iaeq4Xdm2aaSbaaSqaaiaad2gaaeqaaOGaamOzamaaBaaale aacaWGTbGaeyOeI0IaaGymaaqabaGccaGGOaGaeq4TdGMaaiykaiaa c2facqGH9aqpcqWIpecAcaWGibGaaiikaiabeE7aOjaacMcacaWGsb WaaSbaaSqaaiaad2gaaeqaaOGaaiikaiabeE7aOjaacMcaaaa@5448@   (27)

F m (0;p)=0; F '' (0;p)=0; F m (1,p)=0;k F m '' (1;p)+ F m ' (1,p)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyBaaqabaGccaGGOaGaaGimaiaacUdacaWGWbGaaiykaiab g2da9iaaicdacaGG7aGaamOramaaCaaaleqabaGaai4jaiaacEcaaa GccaGGOaGaaGimaiaacUdacaWGWbGaaiykaiabg2da9iaaicdacaGG 7aGaamOramaaBaaaleaacaWGTbaabeaakiaacIcacaaIXaGaaiilai aadchacaGGPaGaeyypa0JaaGimaiaacUdacaWGRbGaamOramaaDaaa leaacaWGTbaabaGaai4jaiaacEcaaaGccaGGOaGaaGymaiaacUdaca WGWbGaaiykaiabgUcaRiaadAeadaqhaaWcbaGaamyBaaqaaiaacEca aaGccaGGOaGaaGymaiaacYcacaWGWbGaaiykaiabg2da9iaaicdaaa a@610C@    (28)

R m (η)= f m1 '''' + k=0 m1 [ ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w ( f m1 ' f k '' f m1k f k ''' )+De ( 1ϕ ) 2.5 f m1k ' ( l=0 k ( 2 f kl ' f l '' ) ) De ( 1ϕ ) 2.5 f m1k ( l=0 k ( 2 f k '' l f '' f kl f l '''' ) ) ]           M 2 f m1 '' 1 Da f m1 '' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOuam aaBaaaleaacaWGTbaabeaakiaacIcacqaH3oaAcaGGPaGaeyypa0Ja amOzamaaDaaaleaacaWGTbGaeyOeI0IaaGymaaqaaiaacEcacaGGNa Gaai4jaiaacEcaaaGccqGHRaWkdaaeWbqaamaadmaaeaqabeaadaqa daqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdacaGGUaGaaGynaaaakmaabmaabaWaaeWaaeaacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaGaey4kaSIaeqy1dy2aaSaaae aacqaHbpGCdaWgaaWcbaGaam4CaaqabaaakeaacqaHbpGCdaWgaaWc baGaamOzaaqabaaaaaGccaGLOaGaayzkaaGaamOuaiaadwgadaWgaa WcbaGaam4DaaqabaGcdaqadaqaaiaadAgadaqhaaWcbaGaamyBaiab gkHiTiaaigdaaeaacaGGNaaaaOGaamOzamaaDaaaleaacaWGRbaaba Gaai4jaiaacEcaaaGccqGHsislcaWGMbWaaSbaaSqaaiaad2gacqGH sislcaaIXaGaeyOeI0Iaam4AaaqabaGccaWGMbWaa0baaSqaaiaadU gaaeaacaGGNaGaai4jaiaacEcaaaaakiaawIcacaGLPaaacqGHRaWk caWGebGaamyzamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkai aawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOGaamOzamaa DaaaleaacaWGTbGaeyOeI0IaaGymaiabgkHiTiaadUgaaeaacaGGNa aaaOWaaeWaaeaadaaeWbqaamaabmaabaGaaGOmaiaadAgadaqhaaWc baGaam4AaiabgkHiTiaadYgaaeaacaGGNaaaaOGaamOzamaaDaaale aacaWGSbaabaGaai4jaiaacEcaaaaakiaawIcacaGLPaaaaSqaaiaa dYgacqGH9aqpcaaIWaaabaGaam4AaaqdcqGHris5aaGccaGLOaGaay zkaaaabaGaeyOeI0IaamiraiaadwgadaqadaqaaiaaigdacqGHsisl cqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaG ynaaaakiaadAgadaWgaaWcbaGaamyBaiabgkHiTiaaigdacqGHsisl caWGRbaabeaakmaabmaabaWaaabCaeaadaqadaqaaiaaikdacaWGMb Waa0baaSqaaiaadUgaaeaacaGGNaGaai4jaaaakiabgkHiTmaaBaaa leaacaWGSbaabeaakiaadAgadaahaaWcbeqaaiaacEcacaGGNaaaaO GaeyOeI0IaamOzamaaBaaaleaacaWGRbGaeyOeI0IaamiBaaqabaGc caWGMbWaa0baaSqaaiaadYgaaeaacaGGNaGaai4jaiaacEcacaGGNa aaaaGccaGLOaGaayzkaaaaleaacaWGSbGaeyypa0JaaGimaaqaaiaa dUgaa0GaeyyeIuoaaOGaayjkaiaawMcaaaaacaGLBbGaayzxaaaale aacaWGRbGaeyypa0JaaGimaaqaaiaad2gacqGHsislcaaIXaaaniab ggHiLdaakeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca qGGaGaaeiiaiaabccacqGHsislcaWGnbWaaWbaaSqabeaacaaIYaaa aOGaamOzamaaDaaaleaacaWGTbGaeyOeI0IaaGymaaqaaiaacEcaca GGNaaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiraiaadggaaaGa amOzamaaDaaaleaacaWGTbGaeyOeI0IaaGymaaqaaiaacEcacaGGNa aaaaaaaa@DE05@   (29)

Now the results for the convergence, differential equation and the auxiliary function are determined according to the solution expression. So we assume

H(y)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamyEaiaacMcacqGH9aqpcaaIXaaaaa@3BF3@   (30)

The analytic solution is deve,loped using the MATLAB computational stencil. Hence the first deformation is expressed below

f 1 (η)={ 5 672 De ( 1ϕ ) 2.5 η 9 (3k+1) 3 2 ( 0.0071649 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w 0.042857De 0.0023810 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w 0.085714Dek ) η 7 27 k 3 +27 k 2 +9k+1 3 2 ( 0.15( M 2 + 1 Da ) k 2 0.1( M 2 + 1 Da )k0.016667( M 2 + 1 Da )+0.3De k 2 +0.3De ( 1ϕ ) 2.5 k+0.075De ( 1ϕ ) 2.5 ) η 5 27 k 3 +27 k 2 +9k+1 + 1 840 [ ( 378De ( 1ϕ ) 2.5 k 3 1890( M 2 + 1 Da ) k 3 189 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w k 2 +2268DDe ( 1ϕ ) 2.5 2 1638( M 2 + 1 Da ) k 2 90 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w k462( M 2 + 1 Da )k+468De ( 1ϕ ) 2.5 k ) η 3 1+54 k 2 +12k+108 k 3 +81 k 4 + ( 9 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w +52De ( 1ϕ ) 2.5 42( M 2 + 1 Da ) ) 1+54 k 2 +12k+108 k 3 +81 k 4 ] 1 1120 [ ( 8 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w 96 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w k1764( M 2 + 1 Da ) k 3 +1440De ( 1ϕ ) 2.5 k 2 +77De ( 1ϕ ) 2.5 k364( M 2 + 1 Da )k )η 1+54 k 2 +12k+108 k 3 +81 k 4 + ( 1428( M 2 + 1 Da ) k 2 +3528De ( 1ϕ ) 2.5 k 3 216 ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w k 2 28( M 2 + 1 Da )+7De ( 1ϕ ) 2.5 )η 1+54 k 2 +12k+108 k 3 +81 k 4 ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaaqabaGccaGGOaGaeq4TdGMaaiykaiabg2da9iabl+qi OnaacmaaeaqabeaacqGHsisldaWcaaqaaiaaiwdaaeaacaaI2aGaaG 4naiaaikdaaaWaaSaaaeaacaWGebGaamyzamaabmaabaGaaGymaiab gkHiTiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6 cacaaI1aaaaOGaeq4TdG2aaWbaaSqabeaacaaI5aaaaaGcbaGaaiik aiaaiodacaWGRbGaey4kaSIaaGymaiaacMcaaaGaeyOeI0YaaSaaae aacaaIZaaabaGaaGOmaaaadaWcaaqaamaabmaaeaqabeaacqGHsisl caaIWaGaaiOlaiaaicdacaaIWaGaaG4naiaaigdacaaI2aGaaGinai aaiMdadaqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaa daahaaWcbeqaaiaaikdacaGGUaGaaGynaaaakmaabmaabaWaaeWaae aacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaey4kaSIaeqy1 dy2aaSaaaeaacqaHbpGCdaWgaaWcbaGaam4CaaqabaaakeaacqaHbp GCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaayzkaaGaamOuaiaa dwgadaWgaaWcbaGaam4DaaqabaGccqGHsislcaaIWaGaaiOlaiaaic dacaaI0aGaaGOmaiaaiIdacaaI1aGaaG4naiaadseacaWGLbGaeyOe I0cabaGaaGimaiaac6cacaaIWaGaaGimaiaaikdacaaIZaGaaGioai aaigdacaaIWaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaGaaiOlaiaaiwdaaaGcdaqadaqaam aabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaaiabgUca Riabew9aMnaalaaabaGaeqyWdi3aaSbaaSqaaiaadohaaeqaaaGcba GaeqyWdi3aaSbaaSqaaiaadAgaaeqaaaaaaOGaayjkaiaawMcaaiaa dkfacaWGLbWaaSbaaSqaaiaadEhaaeqaaOGaeyOeI0IaaGimaiaac6 cacaaIWaGaaGioaiaaiwdacaaI3aGaaGymaiaaisdacaWGebGaamyz aiaadUgaaaGaayjkaiaawMcaaiabeE7aOnaaCaaaleqabaGaaG4naa aaaOqaaiaaikdacaaI3aGaam4AamaaCaaaleqabaGaaG4maaaakiab gUcaRiaaikdacaaI3aGaam4AamaaCaaaleqabaGaaGOmaaaakiabgU caRiaaiMdacaWGRbGaey4kaSIaaGymaaaaaeaacqGHsisldaWcaaqa aiaaiodaaeaacaaIYaaaamaalaaabaWaaeWaaqaabeqaaiabgkHiTi aaicdacaGGUaGaaGymaiaaiwdadaqadaqaaiaad2eadaahaaWcbeqa aiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGebGaamyyaa aaaiaawIcacaGLPaaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaaGimaiaac6cacaaIXaWaaeWaaeaacaWGnbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamiraiaadggaaaaa caGLOaGaayzkaaGaam4AaiabgkHiTiaaicdacaGGUaGaaGimaiaaig dacaaI2aGaaGOnaiaaiAdacaaI3aWaaeWaaeaacaWGnbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamiraiaadg gaaaaacaGLOaGaayzkaaGaey4kaSIaaGimaiaac6cacaaIZaGaamir aiaadwgacaWGRbWaaWbaaSqabeaacaaIYaaaaaGcbaGaey4kaSIaaG imaiaac6cacaaIZaGaamiraiaadwgadaqadaqaaiaaigdacqGHsisl cqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaG ynaaaakiaadUgacqGHRaWkcaaIWaGaaiOlaiaaicdacaaI3aGaaGyn aiaadseacaWGLbWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaGaaiOlaiaaiwdaaaaaaOGaayjk aiaawMcaaiabeE7aOnaaCaaaleqabaGaaGynaaaaaOqaaiaaikdaca aI3aGaam4AamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdacaaI 3aGaam4AamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiMdacaWGRb Gaey4kaSIaaGymaaaaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI 4aGaaGinaiaaicdaaaWaamWaaqaabeqaamaalaaabaWaaeWaaqaabe qaaiaaiodacaaI3aGaaGioaiaadseacaWGLbWaaeWaaeaacaaIXaGa eyOeI0Iaeqy1dygacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaGaai OlaiaaiwdaaaGccaWGRbWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0Ia aGymaiaaiIdacaaI5aGaaGimamaabmaabaGaamytamaaCaaaleqaba GaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaadseacaWGHbaa aaGaayjkaiaawMcaaiaadUgadaahaaWcbeqaaiaaiodaaaGccqGHsi slcaaIXaGaaGioaiaaiMdadaqadaqaaiaaigdacqGHsislcqaHvpGz aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaGynaaaakm aabmaabaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzk aaGaey4kaSIaeqy1dy2aaSaaaeaacqaHbpGCdaWgaaWcbaGaam4Caa qabaaakeaacqaHbpGCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGa ayzkaaGaamOuaiaadwgadaWgaaWcbaGaam4DaaqabaGccaWGRbWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaikdacaaI2aGaaGio aiaadseacaWGebGaamyzamaabmaabaGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0cabaGaaGymaiaaiAdacaaIZa GaaGioamaabmaabaGaamytamaaCaaaleqabaGaaGOmaaaakiabgUca RmaalaaabaGaaGymaaqaaiaadseacaWGHbaaaaGaayjkaiaawMcaai aadUgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI5aGaaGimamaa bmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaaCaaale qabaGaaGOmaiaac6cacaaI1aaaaOWaaeWaaeaadaqadaqaaiaaigda cqGHsislcqaHvpGzaiaawIcacaGLPaaacqGHRaWkcqaHvpGzdaWcaa qaaiabeg8aYnaaBaaaleaacaWGZbaabeaaaOqaaiabeg8aYnaaBaaa leaacaWGMbaabeaaaaaakiaawIcacaGLPaaacaWGsbGaamyzamaaBa aaleaacaWG3baabeaakiaadUgacqGHsislcaaI0aGaaGOnaiaaikda daqadaqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaWGebGaamyyaaaaaiaawIcacaGLPaaacaWGRbGa ey4kaSIaaGinaiaaiAdacaaI4aGaamiraiaadwgadaqadaqaaiaaig dacqGHsislcqaHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda caGGUaGaaGynaaaakiaadUgaaaGaayjkaiaawMcaaiabeE7aOnaaCa aaleqabaGaaG4maaaaaOqaaiaaigdacqGHRaWkcaaI1aGaaGinaiaa dUgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGOmaiaadU gacqGHRaWkcaaIXaGaaGimaiaaiIdacaWGRbWaaWbaaSqabeaacaaI ZaaaaOGaey4kaSIaaGioaiaaigdacaWGRbWaaWbaaSqabeaacaaI0a aaaaaaaOqaaiabgUcaRmaalaaabaWaaeWaaeaacqGHsislcaaI5aWa aeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaGaaiOlaiaaiwdaaaGcdaqadaqaamaabmaabaGaaGym aiabgkHiTiabew9aMbGaayjkaiaawMcaaiabgUcaRiabew9aMnaala aabaGaeqyWdi3aaSbaaSqaaiaadohaaeqaaaGcbaGaeqyWdi3aaSba aSqaaiaadAgaaeqaaaaaaOGaayjkaiaawMcaaiaadkfacaWGLbWaaS baaSqaaiaadEhaaeqaaOGaey4kaSIaaGynaiaaikdacaWGebGaamyz amaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaiaac6cacaaI1aaaaOGaeyOeI0IaaGinaiaaikda daqadaqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaWGebGaamyyaaaaaiaawIcacaGLPaaaaiaawIca caGLPaaaaeaacaaIXaGaey4kaSIaaGynaiaaisdacaWGRbWaaWbaaS qabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacaWGRbGaey4kaSIa aGymaiaaicdacaaI4aGaam4AamaaCaaaleqabaGaaG4maaaakiabgU caRiaaiIdacaaIXaGaam4AamaaCaaaleqabaGaaGinaaaaaaaaaOGa ay5waiaaw2faaaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaigdaca aIXaGaaGOmaiaaicdaaaWaamWaaqaabeqaamaalaaabaWaaeWaaqaa beqaaiabgkHiTiaaiIdadaqadaqaaiaaigdacqGHsislcqaHvpGzai aawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaGynaaaakmaa bmaabaWaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaa Gaey4kaSIaeqy1dy2aaSaaaeaacqaHbpGCdaWgaaWcbaGaam4Caaqa baaakeaacqaHbpGCdaWgaaWcbaGaamOzaaqabaaaaaGccaGLOaGaay zkaaGaamOuaiaadwgadaWgaaWcbaGaam4DaaqabaGccqGHsislcaaI 5aGaaGOnamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawM caamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOWaaeWaaeaadaqa daqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaacqGHRaWkcq aHvpGzdaWcaaqaaiabeg8aYnaaBaaaleaacaWGZbaabeaaaOqaaiab eg8aYnaaBaaaleaacaWGMbaabeaaaaaakiaawIcacaGLPaaacaWGsb GaamyzamaaBaaaleaacaWG3baabeaakiaadUgacqGHsislcaaIXaGa aG4naiaaiAdacaaI0aWaaeWaaeaacaWGnbWaaWbaaSqabeaacaaIYa aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamiraiaadggaaaaacaGL OaGaayzkaaGaam4AamaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRi aaigdacaaI0aGaaGinaiaaicdacaWGebGaamyzamaabmaabaGaaGym aiabgkHiTiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmai aac6cacaaI1aaaaOGaam4AamaaCaaaleqabaGaaGOmaaaakiabgUca RiaaiEdacaaI3aGaamiraiaadwgadaqadaqaaiaaigdacqGHsislcq aHvpGzaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdacaGGUaGaaGyn aaaakiaadUgacqGHsislcaaIZaGaaGOnaiaaisdadaqadaqaaiaad2 eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaa caWGebGaamyyaaaaaiaawIcacaGLPaaacaWGRbaaaiaawIcacaGLPa aacqaH3oaAaeaacaaIXaGaey4kaSIaaGynaiaaisdacaWGRbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacaWGRbGaey4kaS IaaGymaiaaicdacaaI4aGaam4AamaaCaaaleqabaGaaG4maaaakiab gUcaRiaaiIdacaaIXaGaam4AamaaCaaaleqabaGaaGinaaaaaaGccq GHRaWkaeaadaWcaaqaamaabmaaeaqabeaacqGHsislcaaIXaGaaGin aiaaikdacaaI4aWaaeWaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSYaaSaaaeaacaaIXaaabaGaamiraiaadggaaaaacaGLOaGa ayzkaaGaam4AamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodaca aI1aGaaGOmaiaaiIdacaWGebGaamyzamaabmaabaGaaGymaiabgkHi Tiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6caca aI1aaaaOGaam4AamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaikda caaIXaGaaGOnamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkai aawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOWaaeWaaeaa daqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaacqGHRa WkcqaHvpGzdaWcaaqaaiabeg8aYnaaBaaaleaacaWGZbaabeaaaOqa aiabeg8aYnaaBaaaleaacaWGMbaabeaaaaaakiaawIcacaGLPaaaca WGsbGaamyzamaaBaaaleaacaWG3baabeaakiaadUgadaahaaWcbeqa aiaaikdaaaaakeaacqGHsislcaaIYaGaaGioamaabmaabaGaamytam aaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaa dseacaWGHbaaaaGaayjkaiaawMcaaiabgUcaRiaaiEdacaWGebGaam yzamaabmaabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaiaac6cacaaI1aaaaaaakiaawIcacaGLPaaacq aH3oaAaeaacaaIXaGaey4kaSIaaGynaiaaisdacaWGRbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacaWGRbGaey4kaSIaaG ymaiaaicdacaaI4aGaam4AamaaCaaaleqabaGaaG4maaaakiabgUca RiaaiIdacaaIXaGaam4AamaaCaaaleqabaGaaGinaaaaaaaaaOGaay 5waiaaw2faaaaacaGL7bGaayzFaaaaaa@E301@    (28)

Similarly, f2(η), f3(η), f4(η), f5(η)… are found but they are too large expressions that cannot be included in this paper. However, they are included in the results displayed graphically.

Convergence of the HAM solution

It is established that the convergence and the rate of approximation for the HAM solution strongly depend on the value of the auxiliary parameter.34–37The present problem shows a wide of acceptable range of values of for the difference controlling parameters of the model as shown in (Tables 3a-3d.).

M                      DA                          K=0.1 K=0.9

0.5                2.0-2.0 < 0.2            -1.4<  <0.4

1.0                1.0-1.4<ℏ  <0.3 -1.1< ℏ <0.0

2.0                  1.0-1.1<  0.5                -0.8 < ℏ <0.0

2.0                 0.5-0.8 < ℏ <0.0-0.6< ℏ <0.0

3.0                0.5-0.6< ℏ  <0.0-0.5< ℏ <0.0

Table 3a The results of admissible range of values for ℏ whenRew=-7.5 De= 0.12, ϕ=0.08

M          Da       k =0.1k=0.9

0.5          2.0        -0.8< ℏ <-0.4                -0.7< ℏ <-0.4

1.0           1.0       -0.7<  ℏ <0.4                    -0.8< ℏ <-0.4

2.0          1.0        -0.1< ℏ <0.0                     -1.0< ℏ <-0.1

2.0           0.5          -1.2< ℏ <0.1                   -1.0< ℏ <0.0

Table 3b The results of admissible range of values for ℏ whenRew=7.5 De= 1.10, ϕ=0.08

M          Da       k =0.1k=0.9

0.5       2.0      1.5< ℏ <0.1               -1.8< ℏ <0.0

1.0       1.0       1.7< ℏ <0.1              -1.4< ℏ <0.1

2.0       0.5       -0.7< ℏ <0.1               -0.7< ℏ <0.0

2.0        0.5       -0.6 < ℏ <0.0              -0.5< ℏ <0.0

3.0        0.5        -0.6< ℏ <0.0               -0.5< ℏ <0.0

Table 3c The results of admissible range of values for ℏ whenRew=-7.5 De= 1.10, ϕ=0.08

M          Da       k =0.1k=0.9

0.5        2.0     -1.8< ℏ <-0.5                            -19< ℏ <0.0

1.0        1.0      -2.2< ℏ <-0.5                           -2.0< ℏ <0.0

2.0        0.5      -0.7< ℏ <0.0                               -1.5< ℏ <0.0

3.0         0.5      -1.0< ℏ <0.0                              -1.4< ℏ <0.1

Table 3d The results of admissible range of values for ℏ whenRew=7.5 De= 1.10, ϕ=0.08

Numerical Procedure for the analysis of the governing equation

Eq. (15) is a fourth-order ordinary differential equation which is in this work is analyzed numerically using fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-Kutta) coupled with shooting method. Since Runge-Kutta method is for solving first-order ordinary differential equation, the fourth-order ordinary differential equation is decomposed into a system of first-order differential equations as follows:

f'=p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGNa Gaeyypa0JaamiCaiaacYcaaaa@3B4F@   (29)

f''=p'=q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGNa Gaai4jaiabg2da9iaadchacaGGNaGaeyypa0JaamyCaiaacYcaaaa@3EA1@   (30)

f'''=q'=w, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGNa Gaai4jaiaacEcacqGH9aqpcaWGXbGaai4jaiabg2da9iaadEhacaGG Saaaaa@3F53@

f iv =w'=z, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaahaa WcbeqaaiaadMgacaWG2baaaOGaeyypa0Jaam4DaiaacEcacqGH9aqp caWG6bGaaiilaaaa@3F7B@   (31)

z=( M 2 + 1 Da )p ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w ( p 2 fq )De ( 1ϕ ) 2.5 ( 2fpq f 2 w ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacqGH9a qpdaqadaqaaiaad2eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWc aaqaaiaaigdaaeaacaWGebGaamyyaaaaaiaawIcacaGLPaaacaWGWb GaeyOeI0YaaeWaaeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaGaaiOlaiaaiwdaaaGcdaqadaqaamaabm aabaGaaGymaiabgkHiTiabew9aMbGaayjkaiaawMcaaiabgUcaRiab ew9aMnaalaaabaGaeqyWdi3aaSbaaSqaaiaadohaaeqaaaGcbaGaeq yWdi3aaSbaaSqaaiaadAgaaeqaaaaaaOGaayjkaiaawMcaaiaadkfa caWGLbWaaSbaaSqaaiaadEhaaeqaaOWaaeWaaeaacaWGWbWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0IaamOzaiaadghaaiaawIcacaGLPaaa cqGHsislcaWGebGaamyzamaabmaabaGaaGymaiabgkHiTiabew9aMb GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac6cacaaI1aaaaOWa aeWaaeaacaaIYaGaamOzaiaadchacaWGXbGaeyOeI0IaamOzamaaCa aaleqabaGaaGOmaaaakiaadEhaaiaawIcacaGLPaaaaaa@7418@

The above Eqs. (29)-(31) can be written as

a( η,f,p,q,w,z )=p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaqada qaaiabeE7aOjaacYcacaWGMbGaaiilaiaadchacaGGSaGaamyCaiaa cYcacaWG3bGaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWGWb Gaaiilaaaa@4615@   (32)

b( η,f,p,q,w,z )=q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgadaqada qaaiabeE7aOjaacYcacaWGMbGaaiilaiaadchacaGGSaGaamyCaiaa cYcacaWG3bGaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWGXb Gaaiilaaaa@4617@   (33)

c( η,f,p,q,w,z )=w, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaqada qaaiabeE7aOjaacYcacaWGMbGaaiilaiaadchacaGGSaGaamyCaiaa cYcacaWG3bGaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWG3b Gaaiilaaaa@461E@   (34)

d( η,f,p,q,w,z )=z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaqada qaaiabeE7aOjaacYcacaWGMbGaaiilaiaadchacaGGSaGaamyCaiaa cYcacaWG3bGaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWG6b aaaa@4572@   (35)

e( η,f,p,q,z )=( M 2 + 1 Da )p ( 1ϕ ) 2.5 ( ( 1ϕ )+ϕ ρ s ρ f )R e w ( p 2 fq )De ( 1ϕ ) 2.5 ( 2fpq f 2 w ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaqada qaaiabeE7aOjaacYcacaWGMbGaaiilaiaadchacaGGSaGaamyCaiaa cYcacaWG6baacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGnbWaaW baaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaamir aiaadggaaaaacaGLOaGaayzkaaGaamiCaiabgkHiTmaabmaabaGaaG ymaiabgkHiTiabew9aMbGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aiaac6cacaaI1aaaaOWaaeWaaeaadaqadaqaaiaaigdacqGHsislcq aHvpGzaiaawIcacaGLPaaacqGHRaWkcqaHvpGzdaWcaaqaaiabeg8a YnaaBaaaleaacaWGZbaabeaaaOqaaiabeg8aYnaaBaaaleaacaWGMb aabeaaaaaakiaawIcacaGLPaaacaWGsbGaamyzamaaBaaaleaacaWG 3baabeaakmaabmaabaGaamiCamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaadAgacaWGXbaacaGLOaGaayzkaaGaeyOeI0Iaamiraiaadwga daqadaqaaiaaigdacqGHsislcqaHvpGzaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdacaGGUaGaaGynaaaakmaabmaabaGaaGOmaiaadAga caWGWbGaamyCaiabgkHiTiaadAgadaahaaWcbeqaaiaaikdaaaGcca WG3baacaGLOaGaayzkaaaaaa@7DCD@   (36)

The iterative scheme of the fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-Kutta) for the above system of first-order equations is given as

f i+1 = f i +h( 2835 27648 k 1 + 18575 48384 k 3 + 13525 55296 k 4 + 277 14336 k 5 + 1 4 k 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamOzamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadIgadaqadaqaamaalaaabaGaaG OmaiaaiIdacaaIZaGaaGynaaqaaiaaikdacaaI3aGaaGOnaiaaisda caaI4aaaaiaadUgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI4aGaaGynaiaaiEdacaaI1aaabaGaaGinaiaaiIda caaIZaGaaGioaiaaisdaaaGaam4AamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaiaaiodacaaI1aGaaGOmaiaaiwdaaeaa caaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSbaaSqaai aaisdaaeqaaOGaey4kaSYaaSaaaeaacaaIYaGaaG4naiaaiEdaaeaa caaIXaGaaGinaiaaiodacaaIZaGaaGOnaaaacaWGRbWaaSbaaSqaai aaiwdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWG RbWaaSbaaSqaaiaaiAdaaeqaaaGccaGLOaGaayzkaaaaaa@6B7B@   (37)

p i+1 = p i +h( 2835 27648 l 1 + 18575 48384 l 3 + 13525 55296 l 4 + 277 14336 l 5 + 1 4 l 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamiCamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadIgadaqadaqaamaalaaabaGaaG OmaiaaiIdacaaIZaGaaGynaaqaaiaaikdacaaI3aGaaGOnaiaaisda caaI4aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI4aGaaGynaiaaiEdacaaI1aaabaGaaGinaiaaiIda caaIZaGaaGioaiaaisdaaaGaamiBamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaiaaiodacaaI1aGaaGOmaiaaiwdaaeaa caaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGSbWaaSbaaSqaai aaisdaaeqaaOGaey4kaSYaaSaaaeaacaaIYaGaaG4naiaaiEdaaeaa caaIXaGaaGinaiaaiodacaaIZaGaaGOnaaaacaWGSbWaaSbaaSqaai aaiwdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWG SbWaaSbaaSqaaiaaiAdaaeqaaaGccaGLOaGaayzkaaaaaa@6B94@   (38)

q i+1 = q i +h( 2835 27648 m 1 + 18575 48384 m 3 + 13525 55296 m 4 + 277 14336 m 5 + 1 4 m 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamyCamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadIgadaqadaqaamaalaaabaGaaG OmaiaaiIdacaaIZaGaaGynaaqaaiaaikdacaaI3aGaaGOnaiaaisda caaI4aaaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI4aGaaGynaiaaiEdacaaI1aaabaGaaGinaiaaiIda caaIZaGaaGioaiaaisdaaaGaamyBamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaiaaiodacaaI1aGaaGOmaiaaiwdaaeaa caaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGTbWaaSbaaSqaai aaisdaaeqaaOGaey4kaSYaaSaaaeaacaaIYaGaaG4naiaaiEdaaeaa caaIXaGaaGinaiaaiodacaaIZaGaaGOnaaaacaWGTbWaaSbaaSqaai aaiwdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWG TbWaaSbaaSqaaiaaiAdaaeqaaaGccaGLOaGaayzkaaaaaa@6B9B@   (39)

w i+1 = w i +h( 2835 27648 n 1 + 18575 48384 n 3 + 13525 55296 n 4 + 277 14336 n 5 + 1 4 n 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaa WcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyypa0Jaam4DamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadIgadaqadaqaamaalaaabaGaaG OmaiaaiIdacaaIZaGaaGynaaqaaiaaikdacaaI3aGaaGOnaiaaisda caaI4aaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI4aGaaGynaiaaiEdacaaI1aaabaGaaGinaiaaiIda caaIZaGaaGioaiaaisdaaaGaamOBamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaiaaiodacaaI1aGaaGOmaiaaiwdaaeaa caaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGUbWaaSbaaSqaai aaisdaaeqaaOGaey4kaSYaaSaaaeaacaaIYaGaaG4naiaaiEdaaeaa caaIXaGaaGinaiaaiodacaaIZaGaaGOnaaaacaWGUbWaaSbaaSqaai aaiwdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWG UbWaaSbaaSqaaiaaiAdaaeqaaaGccaGLOaGaayzkaaaaaa@6BAC@   (40)

z i+1 = z i +h( 2835 27648 r 1 + 18575 48384 r 3 + 13525 55296 r 4 + 277 14336 r 5 + 1 4 r 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamOEamaaBaaa leaacaWGPbaabeaakiabgUcaRiaadIgadaqadaqaamaalaaabaGaaG OmaiaaiIdacaaIZaGaaGynaaqaaiaaikdacaaI3aGaaGOnaiaaisda caaI4aaaaiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI4aGaaGynaiaaiEdacaaI1aaabaGaaGinaiaaiIda caaIZaGaaGioaiaaisdaaaGaamOCamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaiaaiodacaaI1aGaaGOmaiaaiwdaaeaa caaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGYbWaaSbaaSqaai aaisdaaeqaaOGaey4kaSYaaSaaaeaacaaIYaGaaG4naiaaiEdaaeaa caaIXaGaaGinaiaaiodacaaIZaGaaGOnaaaacaWGYbWaaSbaaSqaai aaiwdaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaacaWG YbWaaSbaaSqaaiaaiAdaaeqaaaGccaGLOaGaayzkaaaaaa@6BC6@   (41)

where

k 1 =a( η i , f i , p i , q i , w i , z i ) l 1 =b( η i , f i , p i , q i , w i , z i ) m 1 =c( η i , f i , p i , q i , w i , z i ) n 1 =d( η i , f i , p i , q i , w i , z i ) r 1 =e( η i , f i , p i , q i , w i , z i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4Aam aaBaaaleaacaaIXaaabeaakiabg2da9iaadggadaqadaqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiaacYcacaWGMbWaaSbaaSqaaiaadM gaaeqaaOGaaiilaiaadchadaWgaaWcbaGaamyAaaqabaGccaGGSaGa amyCamaaBaaaleaacaWGPbaabeaakiaacYcacaWG3bWaaSbaaSqaai aadMgaaeqaaOGaaiilaiaadQhadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 JaamOyamaabmaabaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaaiil aiaadAgadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamiCamaaBaaale aacaWGPbaabeaakiaacYcacaWGXbWaaSbaaSqaaiaadMgaaeqaaOGa aiilaiaadEhadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamOEamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaad2gadaWgaaWc baGaaGymaaqabaGccqGH9aqpcaWGJbWaaeWaaeaacqaH3oaAdaWgaa WcbaGaamyAaaqabaGccaGGSaGaamOzamaaBaaaleaacaWGPbaabeaa kiaacYcacaWGWbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadghada WgaaWcbaGaamyAaaqabaGccaGGSaGaam4DamaaBaaaleaacaWGPbaa beaakiaacYcacaWG6bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaabaGaamOBamaaBaaaleaacaaIXaaabeaakiabg2da9iaadsga daqadaqaaiabeE7aOnaaBaaaleaacaWGPbaabeaakiaacYcacaWGMb WaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadchadaWgaaWcbaGaamyA aaqabaGccaGGSaGaamyCamaaBaaaleaacaWGPbaabeaakiaacYcaca WG3bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadQhadaWgaaWcbaGa amyAaaqabaaakiaawIcacaGLPaaaaeaacaWGYbWaaSbaaSqaaiaaig daaeqaaOGaeyypa0JaamyzamaabmaabaGaeq4TdG2aaSbaaSqaaiaa dMgaaeqaaOGaaiilaiaadAgadaWgaaWcbaGaamyAaaqabaGccaGGSa GaamiCamaaBaaaleaacaWGPbaabeaakiaacYcacaWGXbWaaSbaaSqa aiaadMgaaeqaaOGaaiilaiaadEhadaWgaaWcbaGaamyAaaqabaGcca GGSaGaamOEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa aa@A5B6@

k 2 =a( η i + 1 5 h, f i + 1 5 k 1 h, p i + 1 5 l 1 h, q i + 1 5 m 1 h, w i + 1 5 n 1 h, z i + 1 5 r 1 h ) l 2 =b( η i + 1 5 h, f i + 1 5 k 1 h, p i + 1 5 l 1 h, q i + 1 5 m 1 h, w i + 1 5 n 1 h, z i + 1 5 r 1 h ) m 2 =c( η i + 1 5 h, f i + 1 5 k 1 h, p i + 1 5 l 1 h, q i + 1 5 m 1 h, w i + 1 5 n 1 h, z i + 1 5 r 1 h ) n 2 =d( η i + 1 5 h, f i + 1 5 k 1 h, p i + 1 5 l 1 h, q i + 1 5 m 1 h, w i + 1 5 n 1 h, z i + 1 5 r 1 h ) r 2 =e( η i + 1 5 h, f i + 1 5 k 1 h, p i + 1 5 l 1 h, q i + 1 5 m 1 h, w i + 1 5 n 1 h, z i + 1 5 r 1 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4Aam aaBaaaleaacaaIYaaabeaakiabg2da9iaadggadaqadaqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaadU gadaWgaaWcbaGaaGymaaqabaGccaWGObGaaiilaiaaysW7caWGWbWa aSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaG ynaaaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiaacYcacaaM e8UaaGjbVlaadghadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaaI1aaaaiaad2gadaWgaaWcbaGaaGymaaqabaGc caWGObGaaiilaiaaysW7caaMe8Uaam4DamaaBaaaleaacaWGPbaabe aakiabgUcaRmaalaaabaGaaGymaaqaaiaaiwdaaaGaamOBamaaBaaa leaacaaIXaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Uaam OEamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqa aiaaiwdaaaGaamOCamaaBaaaleaacaaIXaaabeaakiaadIgaaiaawI cacaGLPaaaaeaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Ja amOyamaabmaabaGaeq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaey4kaS YaaSaaaeaacaaIXaaabaGaaGynaaaacaWGObGaaiilaiaaykW7caaM c8UaamOzamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG ymaaqaaiaaiwdaaaGaam4AamaaBaaaleaacaaIXaaabeaakiaadIga caGGSaGaaGjbVlaadchadaWgaaWcbaGaamyAaaqabaGccqGHRaWkda WcaaqaaiaaigdaaeaacaaI1aaaaiaadYgadaWgaaWcbaGaaGymaaqa baGccaWGObGaaiilaiaaysW7caaMe8UaamyCamaaBaaaleaacaWGPb aabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaiwdaaaGaamyBamaa BaaaleaacaaIXaaabeaakiaadIgacaGGSaGaaGjbVlaaysW7caWG3b WaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGa aGynaaaacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiaacYcaca aMc8UaaGPaVlaaykW7caWG6bWaaSbaaSqaaiaadMgaaeqaaOGaey4k aSYaaSaaaeaacaaIXaaabaGaaGynaaaacaWGYbWaaSbaaSqaaiaaig daaeqaaOGaamiAaaGaayjkaiaawMcaaaqaaiaad2gadaWgaaWcbaGa aGOmaaqabaGccqGH9aqpcaWGJbWaaeWaaeaacqaH3oaAdaWgaaWcba GaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaa dIgacaGGSaGaaGPaVlaaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaO Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGynaaaacaWGRbWaaSbaaSqa aiaaigdaaeqaaOGaamiAaiaacYcacaaMe8UaamiCamaaBaaaleaaca WGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaiwdaaaGaamiB amaaBaaaleaacaaIXaaabeaakiaadIgacaGGSaGaaGjbVlaaysW7ca WGXbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaa baGaaGynaaaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiaacY cacaaMe8UaaGjbVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHRaWk daWcaaqaaiaaigdaaeaacaaI1aaaaiaad6gadaWgaaWcbaGaaGymaa qabaGccaWGObGaaiilaiaaykW7caaMc8UaaGPaVlaadQhadaWgaaWc baGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaai aadkhadaWgaaWcbaGaaGymaaqabaGccaWGObaacaGLOaGaayzkaaaa baGaamOBamaaBaaaleaacaaIYaaabeaakiabg2da9iaadsgadaqada qaaiabeE7aOnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGa aGymaaqaaiaaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgada WgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI 1aaaaiaadUgadaWgaaWcbaGaaGymaaqabaGccaWGObGaaiilaiaays W7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaI XaaabaGaaGynaaaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaamiAai aacYcacaaMe8UaaGjbVlaadghadaWgaaWcbaGaamyAaaqabaGccqGH RaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaad2gadaWgaaWcbaGaaG ymaaqabaGccaWGObGaaiilaiaaysW7caaMe8Uaam4DamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaiwdaaaGaam OBamaaBaaaleaacaaIXaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7 caaMc8UaamOEamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaaba GaaGymaaqaaiaaiwdaaaGaamOCamaaBaaaleaacaaIXaaabeaakiaa dIgaaiaawIcacaGLPaaaaeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaO Gaeyypa0JaamyzamaabmaabaGaeq4TdG2aaSbaaSqaaiaadMgaaeqa aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGynaaaacaWGObGaaiilai aaykW7caaMc8UaamOzamaaBaaaleaacaWGPbaabeaakiabgUcaRmaa laaabaGaaGymaaqaaiaaiwdaaaGaam4AamaaBaaaleaacaaIXaaabe aakiaadIgacaGGSaGaaGjbVlaadchadaWgaaWcbaGaamyAaaqabaGc cqGHRaWkdaWcaaqaaiaaigdaaeaacaaI1aaaaiaadYgadaWgaaWcba GaaGymaaqabaGccaWGObGaaiilaiaaysW7caaMe8UaamyCamaaBaaa leaacaWGPbaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiaaiwdaaa GaamyBamaaBaaaleaacaaIXaaabeaakiaadIgacaGGSaGaaGjbVlaa ysW7caWG3bWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaaca aIXaaabaGaaGynaaaacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaamiA aiaacYcacaaMc8UaaGPaVlaaykW7caWG6bWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaigdaaeqaaOGaamiAaaGaayjkaiaawMcaaaaaaa@86BB@

k 3 =a( η i + 3 10 h, f i + 3 40 k 1 h+ 9 40 k 2 h, p i + 3 40 l 1 h+ 9 40 l 2 h, q i + 3 40 m 1 h+ 9 40 m 2 h, w i + 3 40 n 1 h+ 9 40 n 2 h, z i + 3 40 r 1 h+ 9 40 r 2 h ) l 3 =b( η i + 3 10 h, f i + 3 40 k 1 h+ 9 40 k 2 h, p i + 3 40 l 1 h+ 9 40 l 2 h, q i + 3 40 m 1 h+ 9 40 m 2 h, w i + 3 40 n 1 h+ 9 40 n 2 h, z i + 3 40 r 1 h+ 9 40 r 2 h ) m 3 =c( η i + 3 10 h, f i + 3 40 k 1 h+ 9 40 k 2 h, p i + 3 40 l 1 h+ 9 40 l 2 h, q i + 3 40 m 1 h+ 9 40 m 2 h, w i + 3 40 n 1 h+ 9 40 n 2 h, z i + 3 40 r 1 h+ 9 40 r 2 h ) n 3 =d( η i + 3 10 h, f i + 3 40 k 1 h+ 9 40 k 2 h, p i + 3 40 l 1 h+ 9 40 l 2 h, q i + 3 40 m 1 h+ 9 40 m 2 h, w i + 3 40 n 1 h+ 9 40 n 2 h, z i + 3 40 r 1 h+ 9 40 r 2 h ) r 3 =e( η i + 3 10 h, f i + 3 40 k 1 h+ 9 40 k 2 h, p i + 3 40 l 1 h+ 9 40 l 2 h, q i + 3 40 m 1 h+ 9 40 m 2 h, w i + 3 40 n 1 h+ 9 40 n 2 h, z i + 3 40 r 1 h+ 9 40 r 2 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4Aam aaBaaaleaacaaIZaaabeaakiabg2da9iaadggadaqadaabaeqabaGa eq4TdG2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIZa aabaGaaGymaiaaicdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAga daWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaaca aI0aGaaGimaaaacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiab gUcaRmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaaiaadUgadaWgaa WcbaGaaGOmaaqabaGccaWGObGaaiilaiaaygW7caaMb8UaaGPaVlaa ykW7caaMc8UaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaala aabaGaaG4maaqaaiaaisdacaaIWaaaaiaadYgadaWgaaWcbaGaaGym aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI5aaabaGaaGinaiaaic daaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacaGGSaGaaGPa VlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaS aaaeaacaaIZaaabaGaaGinaiaaicdaaaGaamyBamaaBaaaleaacaaI XaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiMdaaeaacaaI0aGaaG imaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiaacYcacaaM c8UaaGPaVlaaykW7caaMc8Uaam4DamaaBaaaleaacaWGPbaabeaaki abgUcaRmaalaaabaGaaG4maaqaaiaaisdacaaIWaaaaiaad6gadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI5aaaba GaaGinaiaaicdaaaGaamOBamaaBaaaleaacaaIYaaabeaakiaadIga caGGSaGaaGPaVlaaykW7caaMc8UaamOEamaaBaaaleaacaWGPbaabe aakiabgUcaRmaalaaabaGaaG4maaqaaiaaisdacaaIWaaaaiaadkha daWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI5a aabaGaaGinaiaaicdaaaGaamOCamaaBaaaleaacaaIYaaabeaakiaa dIgaaaGaayjkaiaawMcaaaqaaiaadYgadaWgaaWcbaGaaG4maaqaba GccqGH9aqpcaWGIbWaaeWaaqaabeqaaiabeE7aOnaaBaaaleaacaWG PbaabeaakiabgUcaRmaalaaabaGaaG4maaqaaiaaigdacaaIWaaaai aadIgacaGGSaGaaGPaVlaaykW7caWGMbWaaSbaaSqaaiaadMgaaeqa aOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaiaaicdaaaGaam4Aam aaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiMda aeaacaaI0aGaaGimaaaacaWGRbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiaacYcacaaMb8UaaGzaVlaaykW7caaMc8UaaGPaVlaadchadaWg aaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0a GaaGimaaaacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgUca RmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaaiaadYgadaWgaaWcba GaaGOmaaqabaGccaWGObGaaiilaiaaykW7caaMc8oabaGaamyCamaa BaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaaiaais dacaaIWaaaaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4k aSYaaSaaaeaacaaI5aaabaGaaGinaiaaicdaaaGaamyBamaaBaaale aacaaIYaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8UaaGPa VlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaio daaeaacaaI0aGaaGimaaaacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaaiaad6 gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaaiilaiaaykW7caaMc8Ua aGPaVlaadQhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaai aaiodaaeaacaaI0aGaaGimaaaacaWGYbWaaSbaaSqaaiaaigdaaeqa aOGaamiAaiabgUcaRmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaai aadkhadaWgaaWcbaGaaGOmaaqabaGccaWGObaaaiaawIcacaGLPaaa aeaacaWGTbWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0Jaam4yamaabm aaeaqabeaacqaH3oaAdaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWc aaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGObGaaiilaiaaykW7ca aMc8UaamOzamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGa aG4maaqaaiaaisdacaaIWaaaaiaadUgadaWgaaWcbaGaaGymaaqaba GccaWGObGaey4kaSYaaSaaaeaacaaI5aaabaGaaGinaiaaicdaaaGa am4AamaaBaaaleaacaaIYaaabeaakiaadIgacaGGSaGaaGzaVlaayg W7caaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGa ey4kaSYaaSaaaeaacaaIZaaabaGaaGinaiaaicdaaaGaamiBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiMdaaeaa caaI0aGaaGimaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAai aacYcacaaMc8UaaGPaVdqaaiaadghadaWgaaWcbaGaamyAaaqabaGc cqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0aGaaGimaaaacaWGTbWaaS baaSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGyoaaqa aiaaisdacaaIWaaaaiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGOb GaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caWG3bWaaSbaaSqaaiaa dMgaaeqaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaiaaicdaaa GaamOBamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqa aiaaiMdaaeaacaaI0aGaaGimaaaacaWGUbWaaSbaaSqaaiaaikdaae qaaOGaamiAaiaacYcacaaMc8UaaGPaVlaaykW7caWG6bWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGinaiaaic daaaGaamOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWc aaqaaiaaiMdaaeaacaaI0aGaaGimaaaacaWGYbWaaSbaaSqaaiaaik daaeqaaOGaamiAaaaacaGLOaGaayzkaaaabaGaamOBamaaBaaaleaa caaIZaaabeaakiabg2da9iaadsgadaqadaabaeqabaGaeq4TdG2aaS baaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGym aiaaicdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcba GaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0aGaaGim aaaacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaala aabaGaaGyoaaqaaiaaisdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOm aaqabaGccaWGObGaaiilaiaaygW7caaMb8UaaGPaVlaaykW7caaMc8 UaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4m aaqaaiaaisdacaaIWaaaaiaadYgadaWgaaWcbaGaaGymaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI5aaabaGaaGinaiaaicdaaaGaamiB amaaBaaaleaacaaIYaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7ae aacaWGXbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaaI ZaaabaGaaGinaiaaicdaaaGaamyBamaaBaaaleaacaaIXaaabeaaki aadIgacqGHRaWkdaWcaaqaaiaaiMdaaeaacaaI0aGaaGimaaaacaWG TbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caaMc8Uaam4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaa laaabaGaaG4maaqaaiaaisdacaaIWaaaaiaad6gadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI5aaabaGaaGinaiaa icdaaaGaamOBamaaBaaaleaacaaIYaaabeaakiaadIgacaGGSaGaaG PaVlaaykW7caaMc8UaamOEamaaBaaaleaacaWGPbaabeaakiabgUca RmaalaaabaGaaG4maaqaaiaaisdacaaIWaaaaiaadkhadaWgaaWcba GaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI5aaabaGaaGin aiaaicdaaaGaamOCamaaBaaaleaacaaIYaaabeaakiaadIgaaaGaay jkaiaawMcaaaqaaiaadkhadaWgaaWcbaGaaG4maaqabaGccqGH9aqp caWGLbWaaeWaaqaabeqaaiabeE7aOnaaBaaaleaacaWGPbaabeaaki abgUcaRmaalaaabaGaaG4maaqaaiaaigdacaaIWaaaaiaadIgacaGG SaGaaGPaVlaaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaS YaaSaaaeaacaaIZaaabaGaaGinaiaaicdaaaGaam4AamaaBaaaleaa caaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiMdaaeaacaaI0a GaaGimaaaacaWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiaacYca caaMb8UaaGzaVlaaykW7caaMc8UaaGPaVlaadchadaWgaaWcbaGaam yAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0aGaaGimaaaa caWGSbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGyoaaqaaiaaisdacaaIWaaaaiaadYgadaWgaaWcbaGaaGOmaaqa baGccaWGObGaaiilaiaaykW7caaMc8oabaGaamyCamaaBaaaleaaca WGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaaiaaisdacaaIWaaa aiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaae aacaaI5aaabaGaaGinaiaaicdaaaGaamyBamaaBaaaleaacaaIYaaa beaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadEhada WgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaI 0aGaaGimaaaacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgU caRmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaaiaad6gadaWgaaWc baGaaGOmaaqabaGccaWGObGaaiilaiaaykW7caaMc8UaaGPaVlaadQ hadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaa caaI0aGaaGimaaaacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGyoaaqaaiaaisdacaaIWaaaaiaadkhadaWg aaWcbaGaaGOmaaqabaGccaWGObaaaiaawIcacaGLPaaaaaaa@60A9@

k 4 =a( η i + 3 5 h, f i + 3 10 k 1 h 9 10 k 2 h+ 6 5 k 3 h, p i + 3 10 l 1 h 9 10 l 2 h+ 6 5 l 3 h, q i + 3 10 m 1 h 9 10 m 2 h+ 6 5 m 3 h, w i + 3 10 n 1 h 9 10 n 2 h+ 6 5 n 3 h, z i + 3 10 r 1 h 9 10 r 2 h+ 6 5 r 3 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcaWGHbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaa aacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaa baGaaGyoaaqaaiaaigdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOmaa qabaGccaWGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIZaaabaGaaGymaiaaicdaaaGaamiBamaaBaaaleaacaaIXaaabe aakiaadIgacqGHsisldaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaa caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGOnaaqaaiaaiwdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiaa dIgacaGGSaGaaGPaVlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGymaiaaicdaaaGaamyB amaaBaaaleaacaaIXaaabeaakiaadIgacqGHsisldaWcaaqaaiaaiM daaeaacaaIXaGaaGimaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGOnaaqaaiaaiwdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maa qaaiaaigdacaaIWaaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaamOBam aaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiAda aeaacaaI1aaaaiaad6gadaWgaaWcbaGaaG4maaqabaGccaWGObGaai ilaiaaykW7caaMc8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqa baGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGYb WaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaabaGaaGyo aaqaaiaaigdacaaIWaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiaaykW7aaGaayjkaiaawMcaaaaa@BC63@

l 4 =b( η i + 3 5 h, f i + 3 10 k 1 h 9 10 k 2 h+ 6 5 k 3 h, p i + 3 10 l 1 h 9 10 l 2 h+ 6 5 l 3 h, q i + 3 10 m 1 h 9 10 m 2 h+ 6 5 m 3 h, w i + 3 10 n 1 h 9 10 n 2 h+ 6 5 n 3 h, z i + 3 10 r 1 h 9 10 r 2 h+ 6 5 r 3 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcaWGIbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaa aacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaa baGaaGyoaaqaaiaaigdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOmaa qabaGccaWGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIZaaabaGaaGymaiaaicdaaaGaamiBamaaBaaaleaacaaIXaaabe aakiaadIgacqGHsisldaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaa caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGOnaaqaaiaaiwdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiaa dIgacaGGSaGaaGPaVlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGymaiaaicdaaaGaamyB amaaBaaaleaacaaIXaaabeaakiaadIgacqGHsisldaWcaaqaaiaaiM daaeaacaaIXaGaaGimaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGOnaaqaaiaaiwdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maa qaaiaaigdacaaIWaaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaamOBam aaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiAda aeaacaaI1aaaaiaad6gadaWgaaWcbaGaaG4maaqabaGccaWGObGaai ilaiaaykW7caaMc8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqa baGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGYb WaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaabaGaaGyo aaqaaiaaigdacaaIWaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiaaykW7aaGaayjkaiaawMcaaaaa@BC65@

m 4 =c( η i + 3 5 h, f i + 3 10 k 1 h 9 10 k 2 h+ 6 5 k 3 h, p i + 3 10 l 1 h 9 10 l 2 h+ 6 5 l 3 h, q i + 3 10 m 1 h 9 10 m 2 h+ 6 5 m 3 h, w i + 3 10 n 1 h 9 10 n 2 h+ 6 5 n 3 h, z i + 3 10 r 1 h 9 10 r 2 h+ 6 5 r 3 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcaWGJbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaa aacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaa baGaaGyoaaqaaiaaigdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOmaa qabaGccaWGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIZaaabaGaaGymaiaaicdaaaGaamiBamaaBaaaleaacaaIXaaabe aakiaadIgacqGHsisldaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaa caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGOnaaqaaiaaiwdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiaa dIgacaGGSaGaaGPaVlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGymaiaaicdaaaGaamyB amaaBaaaleaacaaIXaaabeaakiaadIgacqGHsisldaWcaaqaaiaaiM daaeaacaaIXaGaaGimaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGOnaaqaaiaaiwdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maa qaaiaaigdacaaIWaaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaamOBam aaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiAda aeaacaaI1aaaaiaad6gadaWgaaWcbaGaaG4maaqabaGccaWGObGaai ilaiaaykW7caaMc8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqa baGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGYb WaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaabaGaaGyo aaqaaiaaigdacaaIWaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiaaykW7aaGaayjkaiaawMcaaaaa@BC67@

n 4 =d( η i + 3 5 h, f i + 3 10 k 1 h 9 10 k 2 h+ 6 5 k 3 h, p i + 3 10 l 1 h 9 10 l 2 h+ 6 5 l 3 h, q i + 3 10 m 1 h 9 10 m 2 h+ 6 5 m 3 h, w i + 3 10 n 1 h 9 10 n 2 h+ 6 5 n 3 h, z i + 3 10 r 1 h 9 10 r 2 h+ 6 5 r 3 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcaWGKbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaa aacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaa baGaaGyoaaqaaiaaigdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOmaa qabaGccaWGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIZaaabaGaaGymaiaaicdaaaGaamiBamaaBaaaleaacaaIXaaabe aakiaadIgacqGHsisldaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaa caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGOnaaqaaiaaiwdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiaa dIgacaGGSaGaaGPaVlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGymaiaaicdaaaGaamyB amaaBaaaleaacaaIXaaabeaakiaadIgacqGHsisldaWcaaqaaiaaiM daaeaacaaIXaGaaGimaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGOnaaqaaiaaiwdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maa qaaiaaigdacaaIWaaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaamOBam aaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiAda aeaacaaI1aaaaiaad6gadaWgaaWcbaGaaG4maaqabaGccaWGObGaai ilaiaaykW7caaMc8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqa baGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGYb WaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaabaGaaGyo aaqaaiaaigdacaaIWaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiaaykW7aaGaayjkaiaawMcaaaaa@BC69@

r 4 =e( η i + 3 5 h, f i + 3 10 k 1 h 9 10 k 2 h+ 6 5 k 3 h, p i + 3 10 l 1 h 9 10 l 2 h+ 6 5 l 3 h, q i + 3 10 m 1 h 9 10 m 2 h+ 6 5 m 3 h, w i + 3 10 n 1 h 9 10 n 2 h+ 6 5 n 3 h, z i + 3 10 r 1 h 9 10 r 2 h+ 6 5 r 3 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGinaaqabaGccqGH9aqpcaWGLbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maaqaai aaiwdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaa aacaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaa baGaaGyoaaqaaiaaigdacaaIWaaaaiaadUgadaWgaaWcbaGaaGOmaa qabaGccaWGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWG RbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiaacYcacaaMc8UaaGPaVl aaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSYaaSaaaeaa caaIZaaabaGaaGymaiaaicdaaaGaamiBamaaBaaaleaacaaIXaaabe aakiaadIgacqGHsisldaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaa caWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaGOnaaqaaiaaiwdaaaGaamiBamaaBaaaleaacaaIZaaabeaakiaa dIgacaGGSaGaaGPaVlaaykW7aeaacaWGXbWaaSbaaSqaaiaadMgaae qaaOGaey4kaSYaaSaaaeaacaaIZaaabaGaaGymaiaaicdaaaGaamyB amaaBaaaleaacaaIXaaabeaakiaadIgacqGHsisldaWcaaqaaiaaiM daaeaacaaIXaGaaGimaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGa amiAaiabgUcaRmaalaaabaGaaGOnaaqaaiaaiwdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacaGGSaGaaGPaVlaaykW7caaMc8Ua am4DamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4maa qaaiaaigdacaaIWaaaaiaad6gadaWgaaWcbaGaaGymaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI5aaabaGaaGymaiaaicdaaaGaamOBam aaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiAda aeaacaaI1aaaaiaad6gadaWgaaWcbaGaaG4maaqabaGccaWGObGaai ilaiaaykW7caaMc8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqa baGccqGHRaWkdaWcaaqaaiaaiodaaeaacaaIXaGaaGimaaaacaWGYb WaaSbaaSqaaiaaigdaaeqaaOGaamiAaiabgkHiTmaalaaabaGaaGyo aaqaaiaaigdacaaIWaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGcca WGObGaey4kaSYaaSaaaeaacaaI2aaabaGaaGynaaaacaWGYbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiaaykW7aaGaayjkaiaawMcaaaaa@BC6E@

k 5 =a( η i +h, f i 11 54 k 1 h+ 5 2 k 2 h 70 27 k 3 h+ 35 27 k 4 h, p i 11 54 l 1 h+ 5 2 l 2 h 70 27 l 3 h+ 35 27 l 4 h, q i 11 54 m 1 h+ 5 2 m 2 h 70 27 m 3 h+ 35 27 m 4 h, w i 11 54 n 1 h+ 5 2 n 2 h 70 27 n 3 h+ 35 27 n 4 h, z i 11 54 r 1 h+ 5 2 r 2 h 70 27 r 3 h+ 35 27 r 4 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaWGHbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRiaadIgacaGGSaGaaGPaVl aaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aaabaGaaGOmaaaa caWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgkHiTmaalaaaba GaaG4naiaaicdaaeaacaaIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaa iodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaG4maiaaiwdaaeaaca aIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaaisdaaeqaaOGaamiAaiaa cYcacaaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaaca aI1aaabaGaaGOmaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiA aiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaaca WGSbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGa aG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGSbWaaSbaaSqaaiaais daaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaai aad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaa caaI1aaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaa caWGTbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGTbWaaSbaaSqaaiaa isdaaeqaaOGaamiAaiaacYcacaaMc8UaaGzaVlaaygW7caaMc8UaaG PaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcaaqaaiaa igdacaaIXaaabaGaaGynaiaaisdaaaGaamOBamaaBaaaleaacaaIXa aabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIYaaaaiaa d6gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaeyOeI0YaaSaaaeaaca aI3aGaaGimaaqaaiaaikdacaaI3aaaaiaad6gadaWgaaWcbaGaaG4m aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIZaGaaGynaaqaaiaaik dacaaI3aaaaiaad6gadaWgaaWcbaGaaGinaaqabaGccaWGObGaaiil aiaaykW7caaMb8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqaba GccqGHsisldaWcaaqaaiaaigdacaaIXaaabaGaaGynaiaaisdaaaGa amOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaai aaiwdaaeaacaaIYaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI3aGaaGimaaqaaiaaikdacaaI3aaaai aadkhadaWgaaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaa caaIZaGaaGynaaqaaiaaikdacaaI3aaaaiaadkhadaWgaaWcbaGaaG inaaqabaGccaWGObGaaGPaVlaaykW7caaMc8oaaiaawIcacaGLPaaa aaa@E74C@

l 5 =b( η i +h, f i 11 54 k 1 h+ 5 2 k 2 h 70 27 k 3 h+ 35 27 k 4 h, p i 11 54 l 1 h+ 5 2 l 2 h 70 27 l 3 h+ 35 27 l 4 h, q i 11 54 m 1 h+ 5 2 m 2 h 70 27 m 3 h+ 35 27 m 4 h, w i 11 54 n 1 h+ 5 2 n 2 h 70 27 n 3 h+ 35 27 n 4 h, z i 11 54 r 1 h+ 5 2 r 2 h 70 27 r 3 h+ 35 27 r 4 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaWGIbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRiaadIgacaGGSaGaaGPaVl aaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aaabaGaaGOmaaaa caWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgkHiTmaalaaaba GaaG4naiaaicdaaeaacaaIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaa iodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaG4maiaaiwdaaeaaca aIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaaisdaaeqaaOGaamiAaiaa cYcacaaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaaca aI1aaabaGaaGOmaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiA aiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaaca WGSbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGa aG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGSbWaaSbaaSqaaiaais daaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaai aad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaa caaI1aaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaa caWGTbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGTbWaaSbaaSqaaiaa isdaaeqaaOGaamiAaiaacYcacaaMc8UaaGzaVlaaygW7caaMc8UaaG PaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcaaqaaiaa igdacaaIXaaabaGaaGynaiaaisdaaaGaamOBamaaBaaaleaacaaIXa aabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIYaaaaiaa d6gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaeyOeI0YaaSaaaeaaca aI3aGaaGimaaqaaiaaikdacaaI3aaaaiaad6gadaWgaaWcbaGaaG4m aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIZaGaaGynaaqaaiaaik dacaaI3aaaaiaad6gadaWgaaWcbaGaaGinaaqabaGccaWGObGaaiil aiaaykW7caaMb8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqaba GccqGHsisldaWcaaqaaiaaigdacaaIXaaabaGaaGynaiaaisdaaaGa amOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaai aaiwdaaeaacaaIYaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI3aGaaGimaaqaaiaaikdacaaI3aaaai aadkhadaWgaaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaa caaIZaGaaGynaaqaaiaaikdacaaI3aaaaiaadkhadaWgaaWcbaGaaG inaaqabaGccaWGObGaaGPaVlaaykW7caaMc8oaaiaawIcacaGLPaaa aaa@E74E@

m 5 =c( η i +h, f i 11 54 k 1 h+ 5 2 k 2 h 70 27 k 3 h+ 35 27 k 4 h, p i 11 54 l 1 h+ 5 2 l 2 h 70 27 l 3 h+ 35 27 l 4 h, q i 11 54 m 1 h+ 5 2 m 2 h 70 27 m 3 h+ 35 27 m 4 h, w i 11 54 n 1 h+ 5 2 n 2 h 70 27 n 3 h+ 35 27 n 4 h, z i 11 54 r 1 h+ 5 2 r 2 h 70 27 r 3 h+ 35 27 r 4 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaWGJbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRiaadIgacaGGSaGaaGPaVl aaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aaabaGaaGOmaaaa caWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgkHiTmaalaaaba GaaG4naiaaicdaaeaacaaIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaa iodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaG4maiaaiwdaaeaaca aIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaaisdaaeqaaOGaamiAaiaa cYcacaaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaaca aI1aaabaGaaGOmaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiA aiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaaca WGSbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGa aG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGSbWaaSbaaSqaaiaais daaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaai aad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaa caaI1aaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaa caWGTbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGTbWaaSbaaSqaaiaa isdaaeqaaOGaamiAaiaacYcacaaMc8UaaGzaVlaaygW7caaMc8UaaG PaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcaaqaaiaa igdacaaIXaaabaGaaGynaiaaisdaaaGaamOBamaaBaaaleaacaaIXa aabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIYaaaaiaa d6gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaeyOeI0YaaSaaaeaaca aI3aGaaGimaaqaaiaaikdacaaI3aaaaiaad6gadaWgaaWcbaGaaG4m aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIZaGaaGynaaqaaiaaik dacaaI3aaaaiaad6gadaWgaaWcbaGaaGinaaqabaGccaWGObGaaiil aiaaykW7caaMb8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqaba GccqGHsisldaWcaaqaaiaaigdacaaIXaaabaGaaGynaiaaisdaaaGa amOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaai aaiwdaaeaacaaIYaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI3aGaaGimaaqaaiaaikdacaaI3aaaai aadkhadaWgaaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaa caaIZaGaaGynaaqaaiaaikdacaaI3aaaaiaadkhadaWgaaWcbaGaaG inaaqabaGccaWGObGaaGPaVlaaykW7caaMc8oaaiaawIcacaGLPaaa aaa@E750@

n 5 =c( η i +h, f i 11 54 k 1 h+ 5 2 k 2 h 70 27 k 3 h+ 35 27 k 4 h, p i 11 54 l 1 h+ 5 2 l 2 h 70 27 l 3 h+ 35 27 l 4 h, q i 11 54 m 1 h+ 5 2 m 2 h 70 27 m 3 h+ 35 27 m 4 h, w i 11 54 n 1 h+ 5 2 n 2 h 70 27 n 3 h+ 35 27 n 4 h, z i 11 54 r 1 h+ 5 2 r 2 h 70 27 r 3 h+ 35 27 r 4 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaWGJbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRiaadIgacaGGSaGaaGPaVl aaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aaabaGaaGOmaaaa caWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgkHiTmaalaaaba GaaG4naiaaicdaaeaacaaIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaa iodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaG4maiaaiwdaaeaaca aIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaaisdaaeqaaOGaamiAaiaa cYcacaaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaaca aI1aaabaGaaGOmaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiA aiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaaca WGSbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGa aG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGSbWaaSbaaSqaaiaais daaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaai aad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaa caaI1aaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaa caWGTbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGTbWaaSbaaSqaaiaa isdaaeqaaOGaamiAaiaacYcacaaMc8UaaGzaVlaaygW7caaMc8UaaG PaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcaaqaaiaa igdacaaIXaaabaGaaGynaiaaisdaaaGaamOBamaaBaaaleaacaaIXa aabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIYaaaaiaa d6gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaeyOeI0YaaSaaaeaaca aI3aGaaGimaaqaaiaaikdacaaI3aaaaiaad6gadaWgaaWcbaGaaG4m aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIZaGaaGynaaqaaiaaik dacaaI3aaaaiaad6gadaWgaaWcbaGaaGinaaqabaGccaWGObGaaiil aiaaykW7caaMb8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqaba GccqGHsisldaWcaaqaaiaaigdacaaIXaaabaGaaGynaiaaisdaaaGa amOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaai aaiwdaaeaacaaIYaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI3aGaaGimaaqaaiaaikdacaaI3aaaai aadkhadaWgaaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaa caaIZaGaaGynaaqaaiaaikdacaaI3aaaaiaadkhadaWgaaWcbaGaaG inaaqabaGccaWGObGaaGPaVlaaykW7caaMc8oaaiaawIcacaGLPaaa aaa@E751@

r 5 =d( η i +h, f i 11 54 k 1 h+ 5 2 k 2 h 70 27 k 3 h+ 35 27 k 4 h, p i 11 54 l 1 h+ 5 2 l 2 h 70 27 l 3 h+ 35 27 l 4 h, q i 11 54 m 1 h+ 5 2 m 2 h 70 27 m 3 h+ 35 27 m 4 h, w i 11 54 n 1 h+ 5 2 n 2 h 70 27 n 3 h+ 35 27 n 4 h, z i 11 54 r 1 h+ 5 2 r 2 h 70 27 r 3 h+ 35 27 r 4 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGynaaqabaGccqGH9aqpcaWGKbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRiaadIgacaGGSaGaaGPaVl aaykW7caWGMbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0YaaSaaaeaa caaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaadUgadaWgaaWcbaGaaG ymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aaabaGaaGOmaaaa caWGRbWaaSbaaSqaaiaaikdaaeqaaOGaamiAaiabgkHiTmaalaaaba GaaG4naiaaicdaaeaacaaIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaa iodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaG4maiaaiwdaaeaaca aIYaGaaG4naaaacaWGRbWaaSbaaSqaaiaaisdaaeqaaOGaamiAaiaa cYcacaaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaaca aI1aaabaGaaGOmaaaacaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaamiA aiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaaca WGSbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGa aG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGSbWaaSbaaSqaaiaais daaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0YaaSaaaeaacaaIXaGaaGymaaqaaiaaiwdacaaI0aaaai aad2gadaWgaaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaa caaI1aaabaGaaGOmaaaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaam iAaiabgkHiTmaalaaabaGaaG4naiaaicdaaeaacaaIYaGaaG4naaaa caWGTbWaaSbaaSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaaba GaaG4maiaaiwdaaeaacaaIYaGaaG4naaaacaWGTbWaaSbaaSqaaiaa isdaaeqaaOGaamiAaiaacYcacaaMc8UaaGzaVlaaygW7caaMc8UaaG PaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqGHsisldaWcaaqaaiaa igdacaaIXaaabaGaaGynaiaaisdaaaGaamOBamaaBaaaleaacaaIXa aabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIYaaaaiaa d6gadaWgaaWcbaGaaGOmaaqabaGccaWGObGaeyOeI0YaaSaaaeaaca aI3aGaaGimaaqaaiaaikdacaaI3aaaaiaad6gadaWgaaWcbaGaaG4m aaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIZaGaaGynaaqaaiaaik dacaaI3aaaaiaad6gadaWgaaWcbaGaaGinaaqabaGccaWGObGaaiil aiaaykW7caaMb8UaaGPaVdqaaiaadQhadaWgaaWcbaGaamyAaaqaba GccqGHsisldaWcaaqaaiaaigdacaaIXaaabaGaaGynaiaaisdaaaGa amOCamaaBaaaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaai aaiwdaaeaacaaIYaaaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaWG ObGaeyOeI0YaaSaaaeaacaaI3aGaaGimaaqaaiaaikdacaaI3aaaai aadkhadaWgaaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaa caaIZaGaaGynaaqaaiaaikdacaaI3aaaaiaadkhadaWgaaWcbaGaaG inaaqabaGccaWGObGaaGPaVlaaykW7caaMc8oaaiaawIcacaGLPaaa aaa@E756@

k 6 =a( η i + 7 8 h, f i + 1631 55296 k 1 h+ 175 512 k 2 h+ 575 13824 k 3 h+ 44275 110592 k 4 h+ 253 4096 k 5 h, p i + 1631 55296 l 1 h+ 175 512 l 2 h+ 575 13824 l 3 h+ 44275 110592 l 4 h+ 253 4096 l 5 h, q i + 1631 55296 m 1 h+ 175 512 m 2 h+ 575 13824 m 3 h+ 44275 110592 m 4 h+ 253 4096 m 5 h, n i + 1631 55296 w 1 h+ 175 512 w 2 h+ 575 13824 w 3 h+ 44275 110592 w 4 h+ 253 4096 w 5 h, z i + 1631 55296 r 1 h+ 175 512 r 2 h+ 575 13824 r 3 h+ 44275 110592 r 4 h+ 253 4096 r 5 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaWGHbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4naaqaai aaiIdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdacaaI2aGaaG4maiaaig daaeaacaaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSba aSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGymaiaaiE dacaaI1aaabaGaaGynaiaaigdacaaIYaaaaiaadUgadaWgaaWcbaGa aGOmaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aGaaG4naiaaiw daaeaacaaIXaGaaG4maiaaiIdacaaIYaGaaGinaaaacaWGRbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGinaiaais dacaaIYaGaaG4naiaaiwdaaeaacaaIXaGaaGymaiaaicdacaaI1aGa aGyoaiaaikdaaaGaam4AamaaBaaaleaacaaI0aaabeaakiaadIgacq GHRaWkdaWcaaqaaiaaikdacaaI1aGaaG4maaqaaiaaisdacaaIWaGa aGyoaiaaiAdaaaGaam4AamaaBaaaleaacaaI1aaabeaakiaadIgaca GGSaaabaGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaa baGaaGymaiaaiAdacaaIZaGaaGymaaqaaiaaiwdacaaI1aGaaGOmai aaiMdacaaI2aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIXaGaaG4naiaaiwdaaeaacaaI1aGaaGymai aaikdaaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWk daWcaaqaaiaaiwdacaaI3aGaaGynaaqaaiaaigdacaaIZaGaaGioai aaikdacaaI0aaaaiaadYgadaWgaaWcbaGaaG4maaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaI0aGaaGinaiaaikdacaaI3aGaaGynaaqaai aaigdacaaIXaGaaGimaiaaiwdacaaI5aGaaGOmaaaacaWGSbWaaSba aSqaaiaaisdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGOmaiaaiw dacaaIZaaabaGaaGinaiaaicdacaaI5aGaaGOnaaaacaWGSbWaaSba aSqaaiaaiwdaaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOnaiaaiodacaaI XaaabaGaaGynaiaaiwdacaaIYaGaaGyoaiaaiAdaaaGaamyBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaigdacaaI 3aGaaGynaaqaaiaaiwdacaaIXaGaaGOmaaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGynaiaaiEdacaaI 1aaabaGaaGymaiaaiodacaaI4aGaaGOmaiaaisdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaisdacaaI 0aGaaGOmaiaaiEdacaaI1aaabaGaaGymaiaaigdacaaIWaGaaGynai aaiMdacaaIYaaaaiaad2gadaWgaaWcbaGaaGinaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIYaGaaGynaiaaiodaaeaacaaI0aGaaGimai aaiMdacaaI2aaaaiaad2gadaWgaaWcbaGaaGynaaqabaGccaWGObGa aiilaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI2aGaaG4maiaaigdaaeaacaaI1aGaaGynaiaaikda caaI5aGaaGOnaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGymaiaaiEdacaaI1aaabaGaaGynaiaaigda caaIYaaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaWGObGaey4kaS YaaSaaaeaacaaI1aGaaG4naiaaiwdaaeaacaaIXaGaaG4maiaaiIda caaIYaGaaGinaaaacaWG3bWaaSbaaSqaaiaaiodaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGinaiaaisdacaaIYaGaaG4naiaaiwdaaeaa caaIXaGaaGymaiaaicdacaaI1aGaaGyoaiaaikdaaaGaam4DamaaBa aaleaacaaI0aaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaikdacaaI 1aGaaG4maaqaaiaaisdacaaIWaGaaGyoaiaaiAdaaaGaam4DamaaBa aaleaacaaI1aaabeaakiaadIgacaGGSaaabaGaamOEamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaiaaiAdacaaIZaGaaG ymaaqaaiaaiwdacaaI1aGaaGOmaiaaiMdacaaI2aaaaiaadkhadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIXaGaaG 4naiaaiwdaaeaacaaI1aGaaGymaiaaikdaaaGaamOCamaaBaaaleaa caaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdacaaI3aGaaG ynaaqaaiaaigdacaaIZaGaaGioaiaaikdacaaI0aaaaiaadkhadaWg aaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI0aGaaG inaiaaikdacaaI3aGaaGynaaqaaiaaigdacaaIXaGaaGimaiaaiwda caaI5aGaaGOmaaaacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGOmaiaaiwdacaaIZaaabaGaaGinaiaaicda caaI5aGaaGOnaaaacaWGYbWaaSbaaSqaaiaaiwdaaeqaaOGaamiAaa aacaGLOaGaayzkaaaaaa@4A28@

l 6 =b( η i + 7 8 h, f i + 1631 55296 k 1 h+ 175 512 k 2 h+ 575 13824 k 3 h+ 44275 110592 k 4 h+ 253 4096 k 5 h, p i + 1631 55296 l 1 h+ 175 512 l 2 h+ 575 13824 l 3 h+ 44275 110592 l 4 h+ 253 4096 l 5 h, q i + 1631 55296 m 1 h+ 175 512 m 2 h+ 575 13824 m 3 h+ 44275 110592 m 4 h+ 253 4096 m 5 h, n i + 1631 55296 w 1 h+ 175 512 w 2 h+ 575 13824 w 3 h+ 44275 110592 w 4 h+ 253 4096 w 5 h, z i + 1631 55296 r 1 h+ 175 512 r 2 h+ 575 13824 r 3 h+ 44275 110592 r 4 h+ 253 4096 r 5 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaWGIbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4naaqaai aaiIdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdacaaI2aGaaG4maiaaig daaeaacaaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSba aSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGymaiaaiE dacaaI1aaabaGaaGynaiaaigdacaaIYaaaaiaadUgadaWgaaWcbaGa aGOmaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aGaaG4naiaaiw daaeaacaaIXaGaaG4maiaaiIdacaaIYaGaaGinaaaacaWGRbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGinaiaais dacaaIYaGaaG4naiaaiwdaaeaacaaIXaGaaGymaiaaicdacaaI1aGa aGyoaiaaikdaaaGaam4AamaaBaaaleaacaaI0aaabeaakiaadIgacq GHRaWkdaWcaaqaaiaaikdacaaI1aGaaG4maaqaaiaaisdacaaIWaGa aGyoaiaaiAdaaaGaam4AamaaBaaaleaacaaI1aaabeaakiaadIgaca GGSaaabaGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaa baGaaGymaiaaiAdacaaIZaGaaGymaaqaaiaaiwdacaaI1aGaaGOmai aaiMdacaaI2aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIXaGaaG4naiaaiwdaaeaacaaI1aGaaGymai aaikdaaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWk daWcaaqaaiaaiwdacaaI3aGaaGynaaqaaiaaigdacaaIZaGaaGioai aaikdacaaI0aaaaiaadYgadaWgaaWcbaGaaG4maaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaI0aGaaGinaiaaikdacaaI3aGaaGynaaqaai aaigdacaaIXaGaaGimaiaaiwdacaaI5aGaaGOmaaaacaWGSbWaaSba aSqaaiaaisdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGOmaiaaiw dacaaIZaaabaGaaGinaiaaicdacaaI5aGaaGOnaaaacaWGSbWaaSba aSqaaiaaiwdaaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOnaiaaiodacaaI XaaabaGaaGynaiaaiwdacaaIYaGaaGyoaiaaiAdaaaGaamyBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaigdacaaI 3aGaaGynaaqaaiaaiwdacaaIXaGaaGOmaaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGynaiaaiEdacaaI 1aaabaGaaGymaiaaiodacaaI4aGaaGOmaiaaisdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaisdacaaI 0aGaaGOmaiaaiEdacaaI1aaabaGaaGymaiaaigdacaaIWaGaaGynai aaiMdacaaIYaaaaiaad2gadaWgaaWcbaGaaGinaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIYaGaaGynaiaaiodaaeaacaaI0aGaaGimai aaiMdacaaI2aaaaiaad2gadaWgaaWcbaGaaGynaaqabaGccaWGObGa aiilaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI2aGaaG4maiaaigdaaeaacaaI1aGaaGynaiaaikda caaI5aGaaGOnaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGymaiaaiEdacaaI1aaabaGaaGynaiaaigda caaIYaaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaWGObGaey4kaS YaaSaaaeaacaaI1aGaaG4naiaaiwdaaeaacaaIXaGaaG4maiaaiIda caaIYaGaaGinaaaacaWG3bWaaSbaaSqaaiaaiodaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGinaiaaisdacaaIYaGaaG4naiaaiwdaaeaa caaIXaGaaGymaiaaicdacaaI1aGaaGyoaiaaikdaaaGaam4DamaaBa aaleaacaaI0aaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaikdacaaI 1aGaaG4maaqaaiaaisdacaaIWaGaaGyoaiaaiAdaaaGaam4DamaaBa aaleaacaaI1aaabeaakiaadIgacaGGSaaabaGaamOEamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaiaaiAdacaaIZaGaaG ymaaqaaiaaiwdacaaI1aGaaGOmaiaaiMdacaaI2aaaaiaadkhadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIXaGaaG 4naiaaiwdaaeaacaaI1aGaaGymaiaaikdaaaGaamOCamaaBaaaleaa caaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdacaaI3aGaaG ynaaqaaiaaigdacaaIZaGaaGioaiaaikdacaaI0aaaaiaadkhadaWg aaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI0aGaaG inaiaaikdacaaI3aGaaGynaaqaaiaaigdacaaIXaGaaGimaiaaiwda caaI5aGaaGOmaaaacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGOmaiaaiwdacaaIZaaabaGaaGinaiaaicda caaI5aGaaGOnaaaacaWGYbWaaSbaaSqaaiaaiwdaaeqaaOGaamiAaa aacaGLOaGaayzkaaaaaa@4A2A@

m 6 =c( η i + 7 8 h, f i + 1631 55296 k 1 h+ 175 512 k 2 h+ 575 13824 k 3 h+ 44275 110592 k 4 h+ 253 4096 k 5 h, p i + 1631 55296 l 1 h+ 175 512 l 2 h+ 575 13824 l 3 h+ 44275 110592 l 4 h+ 253 4096 l 5 h, q i + 1631 55296 m 1 h+ 175 512 m 2 h+ 575 13824 m 3 h+ 44275 110592 m 4 h+ 253 4096 m 5 h, n i + 1631 55296 w 1 h+ 175 512 w 2 h+ 575 13824 w 3 h+ 44275 110592 w 4 h+ 253 4096 w 5 h, z i + 1631 55296 r 1 h+ 175 512 r 2 h+ 575 13824 r 3 h+ 44275 110592 r 4 h+ 253 4096 r 5 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaWGJbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4naaqaai aaiIdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdacaaI2aGaaG4maiaaig daaeaacaaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSba aSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGymaiaaiE dacaaI1aaabaGaaGynaiaaigdacaaIYaaaaiaadUgadaWgaaWcbaGa aGOmaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aGaaG4naiaaiw daaeaacaaIXaGaaG4maiaaiIdacaaIYaGaaGinaaaacaWGRbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGinaiaais dacaaIYaGaaG4naiaaiwdaaeaacaaIXaGaaGymaiaaicdacaaI1aGa aGyoaiaaikdaaaGaam4AamaaBaaaleaacaaI0aaabeaakiaadIgacq GHRaWkdaWcaaqaaiaaikdacaaI1aGaaG4maaqaaiaaisdacaaIWaGa aGyoaiaaiAdaaaGaam4AamaaBaaaleaacaaI1aaabeaakiaadIgaca GGSaaabaGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaa baGaaGymaiaaiAdacaaIZaGaaGymaaqaaiaaiwdacaaI1aGaaGOmai aaiMdacaaI2aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIXaGaaG4naiaaiwdaaeaacaaI1aGaaGymai aaikdaaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWk daWcaaqaaiaaiwdacaaI3aGaaGynaaqaaiaaigdacaaIZaGaaGioai aaikdacaaI0aaaaiaadYgadaWgaaWcbaGaaG4maaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaI0aGaaGinaiaaikdacaaI3aGaaGynaaqaai aaigdacaaIXaGaaGimaiaaiwdacaaI5aGaaGOmaaaacaWGSbWaaSba aSqaaiaaisdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGOmaiaaiw dacaaIZaaabaGaaGinaiaaicdacaaI5aGaaGOnaaaacaWGSbWaaSba aSqaaiaaiwdaaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOnaiaaiodacaaI XaaabaGaaGynaiaaiwdacaaIYaGaaGyoaiaaiAdaaaGaamyBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaigdacaaI 3aGaaGynaaqaaiaaiwdacaaIXaGaaGOmaaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGynaiaaiEdacaaI 1aaabaGaaGymaiaaiodacaaI4aGaaGOmaiaaisdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaisdacaaI 0aGaaGOmaiaaiEdacaaI1aaabaGaaGymaiaaigdacaaIWaGaaGynai aaiMdacaaIYaaaaiaad2gadaWgaaWcbaGaaGinaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIYaGaaGynaiaaiodaaeaacaaI0aGaaGimai aaiMdacaaI2aaaaiaad2gadaWgaaWcbaGaaGynaaqabaGccaWGObGa aiilaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI2aGaaG4maiaaigdaaeaacaaI1aGaaGynaiaaikda caaI5aGaaGOnaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGymaiaaiEdacaaI1aaabaGaaGynaiaaigda caaIYaaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaWGObGaey4kaS YaaSaaaeaacaaI1aGaaG4naiaaiwdaaeaacaaIXaGaaG4maiaaiIda caaIYaGaaGinaaaacaWG3bWaaSbaaSqaaiaaiodaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGinaiaaisdacaaIYaGaaG4naiaaiwdaaeaa caaIXaGaaGymaiaaicdacaaI1aGaaGyoaiaaikdaaaGaam4DamaaBa aaleaacaaI0aaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaikdacaaI 1aGaaG4maaqaaiaaisdacaaIWaGaaGyoaiaaiAdaaaGaam4DamaaBa aaleaacaaI1aaabeaakiaadIgacaGGSaaabaGaamOEamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaiaaiAdacaaIZaGaaG ymaaqaaiaaiwdacaaI1aGaaGOmaiaaiMdacaaI2aaaaiaadkhadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIXaGaaG 4naiaaiwdaaeaacaaI1aGaaGymaiaaikdaaaGaamOCamaaBaaaleaa caaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdacaaI3aGaaG ynaaqaaiaaigdacaaIZaGaaGioaiaaikdacaaI0aaaaiaadkhadaWg aaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI0aGaaG inaiaaikdacaaI3aGaaGynaaqaaiaaigdacaaIXaGaaGimaiaaiwda caaI5aGaaGOmaaaacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGOmaiaaiwdacaaIZaaabaGaaGinaiaaicda caaI5aGaaGOnaaaacaWGYbWaaSbaaSqaaiaaiwdaaeqaaOGaamiAaa aacaGLOaGaayzkaaaaaa@4A2C@

n 6 =d( η i + 7 8 h, f i + 1631 55296 k 1 h+ 175 512 k 2 h+ 575 13824 k 3 h+ 44275 110592 k 4 h+ 253 4096 k 5 h, p i + 1631 55296 l 1 h+ 175 512 l 2 h+ 575 13824 l 3 h+ 44275 110592 l 4 h+ 253 4096 l 5 h, q i + 1631 55296 m 1 h+ 175 512 m 2 h+ 575 13824 m 3 h+ 44275 110592 m 4 h+ 253 4096 m 5 h, n i + 1631 55296 w 1 h+ 175 512 w 2 h+ 575 13824 w 3 h+ 44275 110592 w 4 h+ 253 4096 w 5 h, z i + 1631 55296 r 1 h+ 175 512 r 2 h+ 575 13824 r 3 h+ 44275 110592 r 4 h+ 253 4096 r 5 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaWGKbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4naaqaai aaiIdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdacaaI2aGaaG4maiaaig daaeaacaaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSba aSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGymaiaaiE dacaaI1aaabaGaaGynaiaaigdacaaIYaaaaiaadUgadaWgaaWcbaGa aGOmaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aGaaG4naiaaiw daaeaacaaIXaGaaG4maiaaiIdacaaIYaGaaGinaaaacaWGRbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGinaiaais dacaaIYaGaaG4naiaaiwdaaeaacaaIXaGaaGymaiaaicdacaaI1aGa aGyoaiaaikdaaaGaam4AamaaBaaaleaacaaI0aaabeaakiaadIgacq GHRaWkdaWcaaqaaiaaikdacaaI1aGaaG4maaqaaiaaisdacaaIWaGa aGyoaiaaiAdaaaGaam4AamaaBaaaleaacaaI1aaabeaakiaadIgaca GGSaaabaGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaa baGaaGymaiaaiAdacaaIZaGaaGymaaqaaiaaiwdacaaI1aGaaGOmai aaiMdacaaI2aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIXaGaaG4naiaaiwdaaeaacaaI1aGaaGymai aaikdaaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWk daWcaaqaaiaaiwdacaaI3aGaaGynaaqaaiaaigdacaaIZaGaaGioai aaikdacaaI0aaaaiaadYgadaWgaaWcbaGaaG4maaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaI0aGaaGinaiaaikdacaaI3aGaaGynaaqaai aaigdacaaIXaGaaGimaiaaiwdacaaI5aGaaGOmaaaacaWGSbWaaSba aSqaaiaaisdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGOmaiaaiw dacaaIZaaabaGaaGinaiaaicdacaaI5aGaaGOnaaaacaWGSbWaaSba aSqaaiaaiwdaaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOnaiaaiodacaaI XaaabaGaaGynaiaaiwdacaaIYaGaaGyoaiaaiAdaaaGaamyBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaigdacaaI 3aGaaGynaaqaaiaaiwdacaaIXaGaaGOmaaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGynaiaaiEdacaaI 1aaabaGaaGymaiaaiodacaaI4aGaaGOmaiaaisdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaisdacaaI 0aGaaGOmaiaaiEdacaaI1aaabaGaaGymaiaaigdacaaIWaGaaGynai aaiMdacaaIYaaaaiaad2gadaWgaaWcbaGaaGinaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIYaGaaGynaiaaiodaaeaacaaI0aGaaGimai aaiMdacaaI2aaaaiaad2gadaWgaaWcbaGaaGynaaqabaGccaWGObGa aiilaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI2aGaaG4maiaaigdaaeaacaaI1aGaaGynaiaaikda caaI5aGaaGOnaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGymaiaaiEdacaaI1aaabaGaaGynaiaaigda caaIYaaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaWGObGaey4kaS YaaSaaaeaacaaI1aGaaG4naiaaiwdaaeaacaaIXaGaaG4maiaaiIda caaIYaGaaGinaaaacaWG3bWaaSbaaSqaaiaaiodaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGinaiaaisdacaaIYaGaaG4naiaaiwdaaeaa caaIXaGaaGymaiaaicdacaaI1aGaaGyoaiaaikdaaaGaam4DamaaBa aaleaacaaI0aaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaikdacaaI 1aGaaG4maaqaaiaaisdacaaIWaGaaGyoaiaaiAdaaaGaam4DamaaBa aaleaacaaI1aaabeaakiaadIgacaGGSaaabaGaamOEamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaiaaiAdacaaIZaGaaG ymaaqaaiaaiwdacaaI1aGaaGOmaiaaiMdacaaI2aaaaiaadkhadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIXaGaaG 4naiaaiwdaaeaacaaI1aGaaGymaiaaikdaaaGaamOCamaaBaaaleaa caaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdacaaI3aGaaG ynaaqaaiaaigdacaaIZaGaaGioaiaaikdacaaI0aaaaiaadkhadaWg aaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI0aGaaG inaiaaikdacaaI3aGaaGynaaqaaiaaigdacaaIXaGaaGimaiaaiwda caaI5aGaaGOmaaaacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGOmaiaaiwdacaaIZaaabaGaaGinaiaaicda caaI5aGaaGOnaaaacaWGYbWaaSbaaSqaaiaaiwdaaeqaaOGaamiAaa aacaGLOaGaayzkaaaaaa@4A2E@

r 6 =e( η i + 7 8 h, f i + 1631 55296 k 1 h+ 175 512 k 2 h+ 575 13824 k 3 h+ 44275 110592 k 4 h+ 253 4096 k 5 h, p i + 1631 55296 l 1 h+ 175 512 l 2 h+ 575 13824 l 3 h+ 44275 110592 l 4 h+ 253 4096 l 5 h, q i + 1631 55296 m 1 h+ 175 512 m 2 h+ 575 13824 m 3 h+ 44275 110592 m 4 h+ 253 4096 m 5 h, n i + 1631 55296 w 1 h+ 175 512 w 2 h+ 575 13824 w 3 h+ 44275 110592 w 4 h+ 253 4096 w 5 h, z i + 1631 55296 r 1 h+ 175 512 r 2 h+ 575 13824 r 3 h+ 44275 110592 r 4 h+ 253 4096 r 5 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGOnaaqabaGccqGH9aqpcaWGLbWaaeWaaqaabeqaaiabeE7a OnaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaabaGaaG4naaqaai aaiIdaaaGaamiAaiaacYcacaaMc8UaaGPaVlaadAgadaWgaaWcbaGa amyAaaqabaGccqGHRaWkdaWcaaqaaiaaigdacaaI2aGaaG4maiaaig daaeaacaaI1aGaaGynaiaaikdacaaI5aGaaGOnaaaacaWGRbWaaSba aSqaaiaaigdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGymaiaaiE dacaaI1aaabaGaaGynaiaaigdacaaIYaaaaiaadUgadaWgaaWcbaGa aGOmaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI1aGaaG4naiaaiw daaeaacaaIXaGaaG4maiaaiIdacaaIYaGaaGinaaaacaWGRbWaaSba aSqaaiaaiodaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGinaiaais dacaaIYaGaaG4naiaaiwdaaeaacaaIXaGaaGymaiaaicdacaaI1aGa aGyoaiaaikdaaaGaam4AamaaBaaaleaacaaI0aaabeaakiaadIgacq GHRaWkdaWcaaqaaiaaikdacaaI1aGaaG4maaqaaiaaisdacaaIWaGa aGyoaiaaiAdaaaGaam4AamaaBaaaleaacaaI1aaabeaakiaadIgaca GGSaaabaGaamiCamaaBaaaleaacaWGPbaabeaakiabgUcaRmaalaaa baGaaGymaiaaiAdacaaIZaGaaGymaaqaaiaaiwdacaaI1aGaaGOmai aaiMdacaaI2aaaaiaadYgadaWgaaWcbaGaaGymaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIXaGaaG4naiaaiwdaaeaacaaI1aGaaGymai aaikdaaaGaamiBamaaBaaaleaacaaIYaaabeaakiaadIgacqGHRaWk daWcaaqaaiaaiwdacaaI3aGaaGynaaqaaiaaigdacaaIZaGaaGioai aaikdacaaI0aaaaiaadYgadaWgaaWcbaGaaG4maaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaI0aGaaGinaiaaikdacaaI3aGaaGynaaqaai aaigdacaaIXaGaaGimaiaaiwdacaaI5aGaaGOmaaaacaWGSbWaaSba aSqaaiaaisdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGOmaiaaiw dacaaIZaaabaGaaGinaiaaicdacaaI5aGaaGOnaaaacaWGSbWaaSba aSqaaiaaiwdaaeqaaOGaamiAaiaacYcaaeaacaWGXbWaaSbaaSqaai aadMgaaeqaaOGaey4kaSYaaSaaaeaacaaIXaGaaGOnaiaaiodacaaI XaaabaGaaGynaiaaiwdacaaIYaGaaGyoaiaaiAdaaaGaamyBamaaBa aaleaacaaIXaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaigdacaaI 3aGaaGynaaqaaiaaiwdacaaIXaGaaGOmaaaacaWGTbWaaSbaaSqaai aaikdaaeqaaOGaamiAaiabgUcaRmaalaaabaGaaGynaiaaiEdacaaI 1aaabaGaaGymaiaaiodacaaI4aGaaGOmaiaaisdaaaGaamyBamaaBa aaleaacaaIZaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaisdacaaI 0aGaaGOmaiaaiEdacaaI1aaabaGaaGymaiaaigdacaaIWaGaaGynai aaiMdacaaIYaaaaiaad2gadaWgaaWcbaGaaGinaaqabaGccaWGObGa ey4kaSYaaSaaaeaacaaIYaGaaGynaiaaiodaaeaacaaI0aGaaGimai aaiMdacaaI2aaaaiaad2gadaWgaaWcbaGaaGynaaqabaGccaWGObGa aiilaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkdaWcaa qaaiaaigdacaaI2aGaaG4maiaaigdaaeaacaaI1aGaaGynaiaaikda caaI5aGaaGOnaaaacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGymaiaaiEdacaaI1aaabaGaaGynaiaaigda caaIYaaaaiaadEhadaWgaaWcbaGaaGOmaaqabaGccaWGObGaey4kaS YaaSaaaeaacaaI1aGaaG4naiaaiwdaaeaacaaIXaGaaG4maiaaiIda caaIYaGaaGinaaaacaWG3bWaaSbaaSqaaiaaiodaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGinaiaaisdacaaIYaGaaG4naiaaiwdaaeaa caaIXaGaaGymaiaaicdacaaI1aGaaGyoaiaaikdaaaGaam4DamaaBa aaleaacaaI0aaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaikdacaaI 1aGaaG4maaqaaiaaisdacaaIWaGaaGyoaiaaiAdaaaGaam4DamaaBa aaleaacaaI1aaabeaakiaadIgacaGGSaaabaGaamOEamaaBaaaleaa caWGPbaabeaakiabgUcaRmaalaaabaGaaGymaiaaiAdacaaIZaGaaG ymaaqaaiaaiwdacaaI1aGaaGOmaiaaiMdacaaI2aaaaiaadkhadaWg aaWcbaGaaGymaaqabaGccaWGObGaey4kaSYaaSaaaeaacaaIXaGaaG 4naiaaiwdaaeaacaaI1aGaaGymaiaaikdaaaGaamOCamaaBaaaleaa caaIYaaabeaakiaadIgacqGHRaWkdaWcaaqaaiaaiwdacaaI3aGaaG ynaaqaaiaaigdacaaIZaGaaGioaiaaikdacaaI0aaaaiaadkhadaWg aaWcbaGaaG4maaqabaGccaWGObGaey4kaSYaaSaaaeaacaaI0aGaaG inaiaaikdacaaI3aGaaGynaaqaaiaaigdacaaIXaGaaGimaiaaiwda caaI5aGaaGOmaaaacaWGYbWaaSbaaSqaaiaaisdaaeqaaOGaamiAai abgUcaRmaalaaabaGaaGOmaiaaiwdacaaIZaaabaGaaGinaiaaicda caaI5aGaaGOnaaaacaWGYbWaaSbaaSqaaiaaiwdaaeqaaOGaamiAaa aacaGLOaGaayzkaaaaaa@4A33@

Using theabove fifth-order Runge-Kutta Fehlberg method coupled with shooting method,computer programs are written in MATLAB for the solutions of the Eq. (14). The results for step size, h = 0.01 are presented in the following section.

Results and Discussion

The results of the solutions of the nonlinear model with the aid of homotopy analysis method (HAM) is compared with the results of the fifth-order Runge-Kutta Fehlberg method (RKFNM) coupled with shooting method as shown in in (Table 4). As observed from the Table, good agreement is established between the results of the numerical and homotopy analysis methods.

  η

Rkfnm

ham

|rkfnm-ham|

0

0

0

0

0.05

0.070154

0.0701

2.89E-07

0.1

0.139997

0.139998

5.69E-07

0.15

0.209217

0.209218

8.33E-07

0.2

0.259219

0.259218

1.08E-06

0.25

0.344546

0.344548

1.29E-06

0.3

0.410038

0.41004

1.47E-06

0.35

0.473672

0.473674

1.61E-06

0.4

0.535148

0.535146

1.71E-06

0.45

0.594153

0.594155

1.75E-06

0.5

0.650402

0.650404

1.75E-06

0.55

0.7036

0.703599

1.7E-06

0.6

0.75345

0.753452

1.61E-06

0.65

0.79968

0.799682

1.47E-06

0.7

0.842013

0.842014

1.29E-06

0.75

0.880181

0.880182

1.08E-06

0.8

0.913929

0.913929

8.45E-07

0.85

0.94301

0.943011

6.05E-07

Table 4 Comparison of results of numerical and homotopy analysis method for f(η), whenDe 0.1,Da-1 M 0,K 0.1,Rew=4

Using copper nanoparticle and water, the results obtained from the analytical solutionare shown graphically in Figs. 2-9, when Rew8,De0.1,M2,,Da2 and ϕ=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy1dyMaeyypa0JaaGimaiaac6cacaaIWaGaaGymaaaa@3CDD@ , unless otherwise stated. Figure 2. illustrate the influence of nano particle concentration ( ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacqaHvpGzaiaawIcacaGLPaaaaaa@3A7F@  on the flow process. As shown from the Figure 3, the quantitative increase of the nano particle concentration causes increase in the velocity distribution. It is very important to indicate viscoelastic nature of the fluid. Therefore, the effects of Deborah’s number on the flow process are depicted in Fig. 3. It illustrated in that increase in Deborah’s number (De) which illustrates the UCM as highly elastic fluid (such as polymeric melts) depicts decrease in fluid flow velocity.

Figure 2 Effect of nanoparticle concentration number (ϕ) on the axial velocity of the flow process.

Figure 3 Effect of Deborah’s number (De) onthe axial velocity of the flow process.

The influence of magnetic field parameter on flow of the UCM fluid under is depicted in (Figure 4). As observed in the figure, the numerical increase of the magnetic or Hartmann parameter (M) shows decreasing velocity profile. This is because the applied magnetic field produces a damping effect (Lorentz force) on the flow process. This damping effects increases as the quantitative or numerical value of the Hartmann number increases. It should be noted that the effects magnetic field parameter is maximum towards the upper flow channel. In order to shown the effect of the permeability of the porous medium on the flow, effect of Darcy parameter (Da) on fluid transport is illustrated in (Figure 5) Increasing Darcy number demonstrates increasing velocity profile as shown in the figure.

Figure 4 Effect of Hartmann parameter (M) on the axial velocity of the flow process.

Figure 5 Effect of Darcy’s number (Da) onthe axial velocity of the flow process.

(Figure 6) shows the effect of fluid slip parameter (k) on the velocity of the fluid flow. It should be noted that the slip parameter depicts that the fluid velocity at the boundary is not at equal velocity with fluid particles closest to flow boundary due to large variance in macro and micro fluid flow. As observed from the (Figure 6) increasing the slip parameter leads to decreasing velocity distributions of the process. In order to show the relative significance of the inertia effect as compared to the viscous effect, the effect of Reynolds number on the flow phenomena is illustrated in the (Figure 7). It is established form the graphical display that increasing Reynolds number (Rew) causes decrease in flow profile which effect is maximum towards the upper plate.

Figure 6 Effect of slip parameter (k) on the axial velocity of the flow process.

Figure 7 Effect of Reynold’s number (Rew) onthe axial velocity of the flow process.

It is shown that increasing the Reynolds number causes decrease in velocity distribution but as flow reaches the mid plate around  (not determined accurately) an increasing velocity distribution is seen. However, effect is minimal towards the upper plate. Also, influence of magnetic field on radial velocity is depicted in (Figure 9). as shown significant increase in velocity is seen due to quantitative increase of Hartmann parameter (M) towards the lower plate while as upper plate is approached a reverse trend is observed.

Figure 8 Effect of Reynold’s number (Rew) onthe radial velocity of the flow process.

Figure 9 Effect of Hartman parameter (M) on the radial velocity of the flow process.

Conclusion

In this work, analysis of upper convective Maxwell (UCM) nano fluid flow through a permeable microchannel embedded in a porous medium and under the influence of slip condition has been presented. Important fluid parameter effect such as Deborah’s number, Darcy parameter and Hartman parameter were investigated on flow. that increase in slip parameter, nano particle concentration and Darcy number lead to increase in the velocity of the upper-convected Maxwell fluid while increase in Deborah’s, Hartmann, and Reynolds numbers decrease the fluid flow velocity towards the lower plate but as the upper plate is approached a reverse trend is observed. The results obtained in this work may be used to further UCM fluid in applications in biomedical, astrophysics, geosciences etc.

Data availability Statement

The data used in this work can be found in open documents in public domain.

Acknowledgments

The authors express sincere appreciation to University of Lagos, Nigeria for providing material supports and good environment for this work.

Funding Statement

This research was performed as part of the employment of the authors under the University of Lagos, Nigeria.

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. R B Bird, R C.  Armstrong O. Dynamics of polymeric liquids,vols I and II. Wiley New York. 1987.
  2. K  Sadeghy, AH Najafi, M  Saffaripour.  Sakiadis flow of an upper-convected maxwell fluid.  International Journal of Non-Linear Mechanics. 2005;40:1220–1228.
  3. Z Ziabaksh  G  Domairry. Solution of laminar viscous flow in semi porous channel in the presence of a uniform magnetic field by using homotopy analysis method. Communications in nonlinear science and numerical simulations. 2009;14(4):1284–1294.
  4. C Fetecau.  A new exact solution for the flow of a maxwell fluid past an infinite plate. International Journal of Non-Linear Mechanics . 2003;38:423–427.
  5. JCR Hunt. Magnetohydrodynamic flow in rectangular ducts.  Journal of Fluid Mechanics. 1965;21:577–590.
  6. M  Sheikholeslami, M Hatami, DD Ganji.  Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technology. 2013;246:327–336.
  7. M Sheikholeslami, MGorji-Bandpy DD. Ganji. numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus using LBM Energy. 2013; 60:501–510.
  8. M Sheikholeslami, M Gorji-Bandpy, DD Gnaji. Lattice boltzman method for MHD natural convection heat transfer using nano fluid. Powder Technology. 2014;254:82–93.
  9. M Sheikholeslami, MHatami, DD Ganji. Nano fluid flow and heat transfer in a rotating system in the presence of a magnetic field. Journal of Molecular Liquid. 2014;190:112–120.
  10. B Raftari ,A Yildirim. The application of homotopy  perturbation method for MHD flows above porous stretching sheets. Computational Applied Mechanics. 2010;59:740–744.
  11. M Sheikholeslami, DD Ganji. Entropy generation of nanofluid in presence of magnetic field using lattice boltzmann method. Physica A. 2015;417:273–286.
  12. DD Ganji, H Kachapi, H Seyed. Analytical and numerical method in engineering and applied science. Progress Nonlinear Science. 2011;3:570–579.
  13. K Sadeghy M Sharifi. Local similarity solution for the flow of a “second grade” viscoelastic fluid above a moving plate. International Journal of Non-Linear Mechanics. 2004;39:1265-1273.
  14.  K Vajrevulu, K V Prasad, A Sujatha. MHD flow and mass transfer of chemically reactive upper convected maxwell fluid past porous surface. Applied Mathematical Mechanics. 2012;33(7): 899-910.
  15. B Raftari  KVajrevulu.  Homotopy analysis method for MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall. Communications Nonlinear Science Simulation. 2012;17(11):4149–4162.
  16. M Hatami, R Nouri ,DD Ganji. Forced convection analysis for MHD Al2O3-water nanofluid flow over a horizontal plate. Journal of Molecular Liquid. 2013;187:294–301.
  17. Aziz. A similarity solution for laminar thermal boundary layer over a flat plat with a convective surface boundary condition. Communication Nonlinear Science Numerical Simulation. 2009;14:1064–1068.
  18. OA  Beg, OD Makinde. Viscoelastic flow and species transfer in a darcian high permeability channel. Journal of Petrol Science Engineering 2011;76: 93–99.
  19. CLMH. Navier. Memoir sur les lois du movement des fluids. Memoirs Academic Royal Science Institute France.1823;6:389-440.
  20. CH Choi, JA Westin, KS Breur. To slip or not slip water flows in hydrophilic and hydrophobic microchannels. Proceedings of IMECE New Orleans LA Article ID. 2002;33:707.
  21. M T Matthew, ID Boyd. Nano boundary layer equation with nonlinear Navier boundary condition. Journal of Mathematical Analysis and Application. 2007;333:381–400.
  22. M J Martin  LD Boyd.  Momentum and heat transfer in a laminar boundary layer with slip flow. Journal of Thermo physics and Heat Transfer. 2006; 20(4):710–719.
  23. P D Ariel. Axisymmetric flow due to stretching sheet with partial slip. Computer and Mathematics with Application. 2007;333:381–400.
  24. C Wang. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis: Real world application. 2009;10(1) :375–380.
  25. K Das. Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat and mass transfer. 2012;48:767–778.
  26. K Das. Slip effects on heat and mass transfer in MHD micro polar fluid flow over an inclined plate with thermal radiation and chemical reaction. International Journal of Numerical methods in Fluids. 2016;70:96-101.
  27. Hussain ST. Mohyud-Cheema, TA Din. Analytical and numerical approaches to squeezing flow and heat transfer between two parallel disks with velocity slip and temperature jump. China Physics Letter. 2012;29:1-5.
  28. K Das. Slip flow and convective heat transfer of nanofluid over a permeable stretching surface. Computers and Physics.2012;64(1):34-42.
  29. RG Deissler. An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. International Journal of heat and mass transfer. 1964;7(6):681-694.
  30. K Das, Jana S, Acharya N. Slip effects on squeezing flow of nanofluid between two parallel disks. International Journal of Applied Mechanics and Engineering. 2016;21(1):5-20.
  31. R Ellahi, Hayat T, Mahomed FM. Effects of slip on nonlinear flows of a third grade fluid. NonlinearAnalysis: Real world Applications. 2010;11:139-146.
  32. Malvadi, F Hedayati, DD Ganji. Slip effects on unsteady stagnation pointflow of a nanofluid over a stretching sheet. Powder Technology. 2014;253:377-384.
  33. M Abbasi, M Khaki, A Rahbari, DD. Ganji. Analysis of MHD flow characteristics of an UCM viscoelastic flow in a permeable channel under slip conditions. Journal of Brazilian Society of Mechanical Engineering Science. 2015:25-5.
  34. SJ  Liao. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis Shanghai Jiao Tong University.1992.
  35. SJ Liao.  Beyond perturbation: Introduction to the homotopy analysis method. Chapman  Hall CRC Press Boca Raton. 2003.
  36. SJ  Liao. On the homotopy analysis method for nonlinear problems. Applied Mathematical Computation. 2004;47 (2):499-513.
  37. S J Liao. An approximate solution technique not depending on small parameters: a special example. International Journal of Non-Linear Mechanics.1995;303:371-380.
Creative Commons Attribution License

©2020 Sobamowo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.