Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 3 Issue 1

Freezing of Spherical Droplets in the Environment of Cold Air

Marinyuk BT,1 Ugolnikova MA,1 Zabugina AV1

1Department of Low Temperatures Engineering, Moscow Polytechnic University, Russia
1Department of Low Temperatures Engineering, Moscow Polytechnic University, Russia

Correspondence: Marinyuk BT, Department of Low Temperatures Engineering, Moscow Polytechnic University, Russia

Received: January 09, 2018 | Published: February 15, 2018

Citation: Marinyuk BT, Ugolnikova MA, Zabugina A. Freezing of spherical droplets in the environment of cold air. Int J Petrochem Sci Eng. 2018;3(1):28-31. DOI: 10.15406/ipcse.2018.03.00073

Download PDF

Abstract

The problem of spherical droplets freezing in a stream of cold air is considered. Generalized equation for finding the depth of freezing of the spherical layer depends on time and thermo physical properties of the fluid was proposed. The full period time of spherical layer freezing consists of two parts: the first is preliminary cooling of droplet down to the phase change temperatures and the second period connects with freezing spherical layer time. The description of the experimental installation and the obtained experimental data were presented. The theoretical generalization was conformed with the theory.

Keywords: droplet, solid phase, freezing, fourier differential equation, boundary condition, refrigeration plant, cylindrical channel, water-saturated droplet, regular law

Introduction

Production of natural hydrocarbon, transportation and filling into storage is often carried out in the Northern regions and is accompanied by direct contact of droplets produced with the environment cold air. The droplets initially may have a positive temperature. A similar problem occurs when the final product of some chemical substances have liquid – droplet state, the conditions of preservation of them demands solidification in a low temperature environment. In particular, this process is carried out in a stream of cold air. Advantages of this technology is obvious, if the liquid-droplets substances prone to decay or have high volatility. Heat treatment of such substances allows to preserve the integrity of the product and increases the safety of storage and of working with them.

In the existing literature there are publications on this problem, which suggest solutions often difficult to implement because they require special programs for obtaining numerical results, in addition, some of them consider the object of freezing is initially chilled to a temperature of phase transition of a substance in the solid state.1

Theory

Consider a spherical droplet, with a fixed radius r, the properties of liquid substance: - heat capacity Cp thermal conductivity λ of ice are known as well as the parameters of the air environment surrounding the droplet, temperature air Ta, air velocity, its thermal properties.

The initial temperature droplet is fixed and has a positive value Twi.

To solve the task the following assumptions are accepted:

  1. Geometrical dimensions of the droplet do not change in the process of cooling and freezing.
  2. Thermo physical properties of liquid and solid phases of a substance in the heat exchange process remain constant.
  3. The intensity of heat transfer over the surface droplet is the same.
  4. The air temperature does not change with time.
  5. The law of heat transfer down to the stadium of to the phase transition is close to regular.

The scheme of interaction of the droplet-s with the cold flow air is demonstrated in Figure 1.1,2

 Fourier differential equation of heat conduction transfer for a spherical layer is:

1 a · T τ = 2 T r 2 + 2 r · T r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyyaaaacaGG3cWa aSaaa8aabaWdbiabgkGi2kaadsfaa8aabaWdbiabgkGi2kabes8a0b aacqGH9aqpdaWcaaWdaeaapeGaeyOaIy7damaaCaaabeqaaKqzadWd biaaikdaaaqcfaOaamivaaWdaeaapeGaeyOaIyRaamOCa8aadaahaa qabeaajugWa8qacaaIYaaaaaaajuaGcqGHRaWkdaWcaaWdaeaapeGa aGOmaaWdaeaapeGaamOCaaaacaGG3cWaaSaaa8aabaWdbiabgkGi2k aadsfaa8aabaWdbiabgkGi2kaadkhaaaaaaa@53F1@ …………….. (1)

Where a is the temperature diffusivity for the solid phase layer, m2/s.3

Boundary conditions have the form:

T(R,τ) = T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcapeGaamOuaiaacYcacqaHepaDpaGaaiyk a8qacaqGGaGaeyypa0JaaGPaVlaadsfadaWgaaqaaKqzadGaaGimaa qcfayabaaaaa@4304@ …………… (2)

Where T0 is a variable of droplet surface temperature, K.

Further,

T(r,0) = T wi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcacaGGYbWdbiaacYcacaaIWaWdaiaacMca peGaaeiiaiabg2da9iaaykW7caWGubWaaSbaaeaajugWaiaadEhaca WGPbaajuaGbeaaaaa@4348@ ……………… (3)

T(η,τ) = T f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcacqaH3oaAcaGGSaGaeqiXdqNaaiyka8qa caqGGaGaeyypa0JaaGPaVlaadsfadaWgaaqaaKqzadGaamOzaaqcfa yabaaaaa@43EB@ ……………... (4)

Where T w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaabaqcLbmapeGaam4DaSWdamaaBaaajuaG baqcLbmapeGaamyAaaqcfa4daeqaaaqabaaaaa@3D7A@ and Tf – initial temperature of the liquid (more 273K) and the temperature of the phase transition of the liquid to the solid phase, respectively K.

Thermal condition at the boundary of solid phase -water:

λ s · T r | r=η =ρ·L· dη dτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHsislcqaH7oaBpaWaaSbaaeaajugWa8qacaWGZbaajuaG paqabaWdbiaacEladaabcaWdaeaapeWaaSaaa8aabaWdbiabgkGi2k aadsfaa8aabaWdbiabgkGi2kaadkhaaaaacaGLiWoapaWaaSbaaeaa jugWa8qacaWGYbGaeyypa0Jaeq4TdGgajuaGpaqabaWdbiabg2da9i abeg8aYjaacElacaWGmbGaai4Tamaalaaapaqaa8qacaWGKbGaeq4T dGgapaqaa8qacaWGKbGaeqiXdqhaaaaa@5595@ ……………….. (5)

Where λs is the thermal conductivity of the solid phase, λs = 2.3 W/m·K.4

ρ is the density of the solid phase, kg/m3

L is the heat of phase transition of liquid to solid phase, j/kg

τ – Time of the process, с r and η is the current coordinate in the layer of the solid phase and the coordinate of the front phase transformation, respectively.

To solve the problem, we introduce a generalized variable ν

ν= Rr τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH9oGBcqGH9aqpcaaMc8+aaSaaa8aabaWdbiaadkfacqGH sislcaWGYbaapaqaa8qadaGcaaWdaeaapeGaeqiXdqhabeaaaaaaaa@3FEB@ ………. (6)

Accordingly, when r=η, the value of ν will turn in to

β= Rη τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycaaMc8Uaeyypa0JaaGPaVpaalaaapaqaa8qacaWG sbGaeyOeI0Iaeq4TdGgapaqaa8qadaGcaaWdaeaapeGaeqiXdqhabe aaaaaaaa@4214@ ………….. (7)

Boundary conditions 2,3,4 and 5 will take the form

T(β) = Т f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcapeGaeqOSdi2daiaacMcapeGaaeiiaiab g2da9iaaykW7caWGIqWaaSbaaeaajugWaiaadAgaaKqbagqaaaaa@415C@ ……………. (8)

T() = Т wi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcacqGHEisPcaGGPaWdbiaabccacqGH9aqp caaMc8UaamOiemaaBaaabaqcLbmacaWG3bGaamyAaaqcfayabaaaaa@420C@ …………. (9)

T(0) = Т 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdaiaacIcacaaIWaGaaiyka8qacaqGGaGaeyypa0Ja aGPaVlaadkcbdaWgaaqaaKqzadGaaGimaaqcfayabaaaaa@4025@ …………….. (10)

 

Taking into account the expression (6), the conditions on the boundary of the liquid – solid phase takes the form

λ s τ dТ dν | ν=β =ρ·L· β 2 τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOeI0Iaeq4UdW2damaaBaaabaqcLbma peGaam4Caaqcfa4daeqaaaqaa8qadaGcaaWdaeaapeGaeqiXdqhabe aaaaWaaSaaa8aabaWdbiaadsgacaWGIqaapaqaa8qacaWGKbGaeqyV d4gaamaaeeaapaqaamaaBaaabaWdbiabe27aUjaaykW7cqGH9aqpca aMc8UaeqOSdigapaqabaaapeGaay5bSdGaaGPaVlabg2da9iaaykW7 cqaHbpGCcaGG3cGaamitaiaacElacaaMc8+aaSaaa8aabaWdbiabek 7aIbWdaeaapeGaaGOmamaakaaapaqaa8qacqaHepaDaeqaaaaaaaa@5BB4@ ……………… (11)

λ s τ dТ dν | ν=β =ρ·L· β 2 λ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOeI0Iaeq4UdW2damaaBaaabaqcLbma peGaam4Caaqcfa4daeqaaaqaa8qadaGcaaWdaeaapeGaeqiXdqhabe aaaaWaaSaaa8aabaWdbiaadsgacaWGIqaapaqaa8qacaWGKbGaeqyV d4gaamaaeeaapaqaamaaBaaabaWdbiabe27aUjaaykW7cqGH9aqpca aMc8UaeqOSdigapaqabaaapeGaay5bSdGaaGPaVlabg2da9iaaykW7 cqaHbpGCcaGG3cGaamitaiaacElacaaMc8+aaSaaa8aabaWdbiabek 7aIbWdaeaapeGaaGOmaiabeU7aSnaaBaaabaqcLbmacaWGZbaajuaG beaaaaaaaa@5E49@ ……………………… (12)

Evaluation of the surface temperature droplet Т0 can be obtained on the basis of the of prof. Leibenzon’s method, which assume stationary temperature distribution within the spherical layer of the solid phase.

Omitting intermediate transformations, we find the expression for Т0.

T 0 = a R T a λ s η + T f Rη 1 Rη + a R λ s η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaabaqcLbmapeGaaGimaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeWaaSaaa8aabaWdbiabg2Hi1+aadaWgaa qaaKqzadWdbiaadggaaKqba+aabeaapeGaamOuaiaadsfapaWaaSba aeaajugWa8qacaWGHbaajuaGpaqabaaabaWdbiabeU7aS9aadaWgaa qaaKqzadWdbiaadohaaKqba+aabeaapeGaeq4TdGgaaiabgUcaRmaa laaapaqaa8qacaWGubWdamaaBaaabaqcLbmapeGaamOzaaqcfa4dae qaaaqaa8qacaWGsbqcLbmacqGHsislcqaH3oaAaaaajuaGpaqaa8qa daWcaaWdaeaapeGaaGymaaWdaeaapeGaamOuaiabgkHiTiabeE7aOb aacqGHRaWkdaWcaaWdaeaapeGaeyyhIu7damaaBaaabaqcLbmapeGa amyyaaqcfa4daeqaa8qacaWGsbaapaqaa8qacqaH7oaBpaWaaSbaae aajugWa8qacaWGZbaajuaGpaqabaWdbiabeE7aObaaaaaaaa@670B@ …………. (13)

By substituting the expression (6) into equation (1), we obtain the differential equation in full derivatives

1 a · dT dν ·ν τ · 1 2 · τ 3 2 = 1 τ · d 2 T d ν 2 + 2·a ν· τ +η · dT dν · 1 τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOeI0IaaGymaaWdaeaapeGaamyyaaaa caGG3cWaaSaaa8aabaWdbiaadsgacaWGubaapaqaa8qacaWGKbGaeq yVd4gaaiaacElacqaH9oGBdaGcaaWdaeaapeGaeqiXdqhabeaacaGG 3cWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaai4Taiabes 8a09aadaahaaqabeaal8qadaWcaaqcfa4daeaajugWa8qacqGHsisl caaIZaaajuaGpaqaaKqzadWdbiaaikdaaaaaaKqbakabg2da9maala aapaqaa8qacaaIXaaapaqaa8qadaGcaaWdaeaapeGaeqiXdqhabeaa aaGaai4Tamaalaaapaqaa8qacaWGKbWdamaaCaaabeqaaKqzadWdbi aaikdaaaqcfaOaamivaaWdaeaapeGaamizaiabe27aU9aadaahaaqa beaajugWa8qacaaIYaaaaaaajuaGcqGHRaWkdaWcaaWdaeaapeGaaG OmaiaacElacaWGHbaapaqaa8qacqaH9oGBcaGG3cWaaOaaa8aabaWd biabes8a0bqabaGaey4kaSIaeq4TdGgaaiaacEladaWcaaWdaeaape Gaamizaiaadsfaa8aabaWdbiaadsgacqaH9oGBaaGaai4Tamaalaaa paqaa8qacaaIXaaapaqaa8qadaGcaaWdaeaapeGaeqiXdqhabeaaaa aaaa@7660@ ………….. (14)

Equation (14) can be solved by decomposition it into a power series.5

T( ν )= T 0 + T ν=β ' · νβ 1! + T ν=β '' · ( νβ 2! ) 2 + T ν=β n · νβ n! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWaaeWaa8aabaWdbiabe27aUbGaayjkaiaawMcaaiab g2da9iaadsfal8aadaWgaaqcfayaaKqzadWdbiaaicdaaKqba+aabe aapeGaey4kaSIaamiva8aadaqhaaqaaKqzadWdbiabe27aUjabg2da 9iabek7aIbqcfa4daeaapeGaai4jaaaacaGG3cWaaSaaa8aabaWdbi abe27aUjabgkHiTiabek7aIbWdaeaapeGaaGymaiaacgcaaaGaey4k aSIaamiva8aadaqhaaqaaKqzadWdbiabe27aUjabg2da9iabek7aIb qcfa4daeaapeGaai4jaiaacEcaaaGaai4Tamaabmaapaqaa8qadaWc aaWdaeaapeGaeqyVd4MaeyOeI0IaeqOSdigapaqaa8qacaaIYaGaai yiaaaaaiaawIcacaGLPaaapaWaaWbaaeqabaqcLbmapeGaaGOmaaaa juaGcqGHRaWkcqGHMacVcaWGubWdamaaDaaabaqcLbmapeGaeqyVd4 Maeyypa0JaeqOSdigajuaGpaqaaKqzadWdbiaad6gaaaqcfaOaai4T amaalaaapaqaa8qacqaH9oGBcqGHsislcqaHYoGya8aabaWdbiaad6 gacaGGHaaaaaaa@7932@ ……………. (15)

Substituting the appropriate values for, T 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWcpaWaaSbaaKqbagaajugWa8qacaaIWaaajuaGpaqa baaaaa@3ADC@ , T ν=β ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaDaaabaqcLbmapeGaeqyVd4Maeyypa0JaeqOS digajuaGpaqaa8qacaGGNaaaaaaa@3EA4@ and T ν=β '' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaDaaabaqcLbmapeGaeqyVd4Maeyypa0JaeqOS digajuaGpaqaa8qacaGGNaGaai4jaaaaaaa@3F4F@ and applying the condition ten one can receive

T f = a R T a λ s η + T f Rη 1 Rη + a R λ s η + ρL· ( Rη τ ) 2 2 λ s + ρL· ( Rη τ ) 3 4 λ s ·( 2 τ η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGubWdamaaBaaabaqcLbmapeGaamOzaaqcfa4daeqaa8qa cqGH9aqpdaWcaaWdaeaapeWaaSaaa8aabaWdbiabg2Hi1+aadaWgaa qaaKqzadWdbiaadggaaKqba+aabeaapeGaamOuaiaadsfapaWaaSba aeaajugWa8qacaWGHbaajuaGpaqabaaabaWdbiabeU7aS9aadaWgaa qaaKqzadWdbiaadohaaKqba+aabeaapeGaeq4TdGgaaiabgUcaRmaa laaapaqaa8qacaWGubWdamaaBaaabaqcLbmapeGaamOzaaqcfa4dae qaaaqaa8qacaWGsbGaeyOeI0Iaeq4TdGgaaaWdaeaapeWaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadkfacqGHsislcqaH3oaAaaGaey4kaS YaaSaaa8aabaWdbiabg2Hi1+aadaWgaaqaaKqzadWdbiaadggaaKqb a+aabeaapeGaamOuaaWdaeaapeGaeq4UdW2damaaBaaabaqcLbmape Gaam4Caaqcfa4daeqaa8qacqaH3oaAaaaaaiabgUcaRmaalaaapaqa a8qacqaHbpGCcaWGmbGaai4Tamaabmaapaqaa8qadaWcaaWdaeaape GaamOuaiabgkHiTiabeE7aObWdaeaapeWaaOaaa8aabaWdbiabes8a 0bqabaaaaaGaayjkaiaawMcaa8aadaahaaqabeaajugWa8qacaaIYa aaaaqcfa4daeaapeGaaGOmaiabeU7aS9aadaWgaaqaaKqzadWdbiaa dohaaKqba+aabeaaaaWdbiabgUcaRmaalaaapaqaa8qacqaHbpGCca WGmbGaai4Tamaabmaapaqaa8qadaWcaaWdaeaapeGaamOuaiabgkHi TiabeE7aObWdaeaapeWaaOaaa8aabaWdbiabes8a0bqabaaaaaGaay jkaiaawMcaa8aadaahaaqabeaajugWa8qacaaIZaaaaaqcfa4daeaa peGaaGinaiabeU7aS9aadaWgaaqaaKqzadWdbiaadohaaKqba+aabe aaaaWdbiaacEladaqadaWdaeaapeWaaSaaa8aabaWdbiaaikdadaGc aaWdaeaapeGaeqiXdqhabeaaa8aabaWdbiabeE7aObaaaiaawIcaca GLPaaaaaa@9634@ ……………….. (16)

Returning to expression (12), we note that the intensity of heat transfer from the liquid to the interface solid phase within the droplet is not possible to determine, therefore, we assume that the mode of heat transfer occurs according to the regular law. Then the cooling time of the droplet is expressed as

τ= MC p w a a F ln T w i T a T w T a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDcaaMc8Uaeyypa0JaaGPaVlaaykW7daWcaaWdaeaa peGaamytaiaadoeajugWaiaadchal8aadaWgaaqcfayaaKqzadWdbi aadEhaaKqba+aabeaaaeaapeGaamyya8aadaWgaaqaaKqzadWdbiaa dggaaKqba+aabeaapeGaamOraaaacaaMc8UaamiBaiaad6gacaaMc8 +aaSaaa8aabaWdbiaadsfapaWaaSbaaeaajugWa8qacaWG3bWcpaWa aSbaaKqbagaajugWa8qacaWGPbaajuaGpaqabaaabeaapeGaeyOeI0 Iaamiva8aadaWgaaqaaKqzadWdbiaadggaaKqba+aabeaaaeaapeGa amiva8aadaWgaaqaaKqzadWdbiaadEhaaKqba+aabeaapeGaeyOeI0 Iaamiva8aadaWgaaqaaKqzadWdbiaadggaaKqba+aabeaaaaaaaa@63DB@ ……………………… (17)

Where M is the mass of droplet, kg

Cpw – specific heat of fluid, j/kg K

αa – heat transfer coefficient from the air to the droplet surface, W/m2K

F – The droplet surface, m2                      

Tw – current temperature of the droplet, in which in the limit takes it is phase transition temperature, K

Ta – temperature of air flow, K.

The calculation plan is that at the beginning the temperature droplet time is determined while it is cold down to phase change state by the equation (17), τ1.

Further, on the basis of the solution of equation (16), we define the time of freezing of droplet spherical lay to a depth of R – η, τ2. The total solidification time to a depth R – η within the droplet will be τ= τ1+ τ2.

Figure 1 The flow sheet of interaction of the droplets with the cold air.

Experimental

To verify the above relationships, an experiment on the freezing of water-saturated and glycerol spherical bodies in a stream of cold air were conducted. Figure 2 shows a scheme of the experimental stand that includes a cooling chamber 1 with a refrigerating unit 2 and the cooler 3, camera placed inside the vertical channel 4 is fed by the discharge fan 5, air flow control.

The experiments were conducted under the following conditions:

  1. Air temperature Ta=-15°C (258К)
  2. Object of study: water-saturated spherical object d=12mm
  3. The phase transition temperature of Tf=273K
  4. Coefficient of thermal conductivity of the solid phase λs=2,3 W/mK
  5. The heat transfer coefficient of air, α=90 W/m2K

Estimation of the error of measuring instruments

When conducted the experiments, the following values has been determered: temperature, air flow rate, time, diameter and thickness of the obgect as well as its weight. Let us estimate the instrument error when measuring these values. Temperature sensors were used. They were attach with digital receiver temperature transmitter (Figure 3) providing a range of measured temperatures from minus 50 to plus 200°C with an accuracy of 0.1°C. Maximum absolute error of temperature measurement is δtmax=0.5%.

Measurement of the rate of air flow was conducted using an anemometer Aero Temp x-line (Figure 4). According to the passport of the device measuring range of the device 0-30 m / s, accuracy δmax=3%.

Diameter and thickness of frozen layer were measured with the help a digital caliper (Figure 5), it is equipped with an electronic reading device and allows to obtain the output data with high accuracy (Table 1).

Name

Measuring range

Division value

Accuracy, δmax

Caliper device

0 -150 mm

0,01mm

± MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHXcqSaaa@3893@ s0,03 mm

The time of the experiment was measured using an electronic stopwatch. The error of time measurement in a process that takes more than 10 minutes is less than 1%. The mass of the object was measured on the laboratory electronic scales ACOM JW-1 (Figure 6). According to the passport of the device absolute error in the measurement of time is δmmax=0.1 g.

Experimental procedure

Chilled in the refrigerator, the air passing through the fan (1) is supplied to the stabilization channel (2). In a cylindrical channel (3) droplets levitated in a stream of cold air flowing over the surface of the them. The prose goes on at the beginning of the cooling down to sphere layer solidification. The depth of freezing of a spherical liquid layer is measured after the experiment was finished being done in the environment of the cold air chamber.

Figure 2 The scheme of experimental installation: 1 – fan; 2 – channel of air flow stabilization; 3 – cylindrical channel; 4 – grid; 5 – mesh partition; 6 – working channel; 7 – an experienced element; 8 – thermocouple temperature sensor; 9 – latch; 10 – compressor-condensation unit.

Figure 3 Digital receiver temperature transmitter.

Figure 4 Aero Temp x-line anemometer.

Figure 5 Digital caliper.

Figure 6 Laboratory electronic scales ACOM JW-1

The Results of experiment

Figure 7 shows the dependence of the relative thickness of the freezing layers within droplets.

  1. water-saturated sphere of diameter d=12 mm experiment and theory
  2. a spherical droplet of glycerol d=6 mm calculated data.
  3. As can be seen from the figure 3 the theoretical and experimental results are in a good agreement.

Figure 7The dynamics of freezing of spherical droplets.

Conclusion

  1. The problem of spherical droplets freezing in a stream of cold air is considered.
  2. Generalized equation for finding the depth of spherical layer freezing was suggested. It depends on time and thermo physical properties of the substances.
  3. The full freezing layer period of time consists of two parts: the first is preliminary cooling of droplet down to the phase change temperatures, the second period connects with freezing spherical layer time.
  4. The description of the experimental installation and the obtained experimental data conformed the theoretical generalization.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Olcer NY. Unsteady Temperature Distribution In A Sphere Subjected To Time Dependent Surface Heat Flux And Internal Heat Source. J Heat Transfer. 1969;91(1):45–50.
  2. Luikov AV. Theory of Heat Conductivity. 1967.
  3. Carslaw HS. Conduction of Heat in Solids. Oxford, UK, 1959.
  4. Dean JW, Timmerhaus KD. Thermal conductivity of solid H2O and D2O at low temperatures. Adv in Cryogen Engineering. 1963;8:263–267.
  5. Marinyuk BT. The Calculation Of Heat Transfer. In the apparatus and the low-temperature cooling systems. Mashinostroenie. Russia, 2015.
Creative Commons Attribution License

©2018 Marinyuk, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.