Submit manuscript...
International Journal of
eISSN: 2475-5559

Petrochemical Science & Engineering

Research Article Volume 2 Issue 6

Effects of Non-Darcy Porous Medium on MHD Mixed Convection with Cross Diffusion and Non Uniform Heat Source/Sink over Exponentially Stretching Sheet

Prabhugouda Patil,1 Nafisabanu Kumbarwadi1

1Department of Mathematics, Karnataka University, India
1Department of Mathematics, Karnataka University, India

Correspondence: Prabhugouda Patil, Department of Mathematics, Karnataka University, India

Received: June 24, 2017 | Published: July 17, 2017

Citation: Patil P, Kumbarwadi N. Effects of non-darcy porous medium on MHD mixed convection with cross diffusion and non uniform heat source/sink over exponentially stretching sheet. Int J Petrochem Sci Eng. 2017;2(6):178-186. DOI: 10.15406/ipcse.2017.02.00055

Download PDF

Abstract

This paper focuses on MHD mixed convection flow over an exponentially stretching vertical sheet. The effects of cross diffusion, non-uniform heat source/sink and Non-Darcy porous medium are considered. The governing nonlinear partial differential equations reduced to linear partial differential equations by utilizing implicit finite difference scheme in combination with quasi-linearization technique. Further, the impact of various governing physical parameters on velocity, temperature and concentration profiles in association with skin friction, heat transfer and mass transfer rates are analysed and discussed through graphs. The numerical results depict that non-Darcy porous medium enhances the velocity profile, skin friction and mass transfer rate while reduces the heat transfer rate. Numerical results are compared with previous available literature and found to be in excellent agreement.

Keywords: Magnetohydrodynamics (MHD), Exponentially stretching surface, Mixed convection, Cross diffusion, Non-similar solution, Non-uniform heat source/sink, Darcy-Forchheimer (Non-Darcy) porous medium

Introduction

The flow through porous medium has wide range of applications in various fields of science and engineering such as in food processing, in petroleum engineering (gas and oil production from reservoirs), chemical engineering (reactors), environmental engineering (ground water pollution by toxic liquids), civil (concrete and soil are porous medium), agricultural (drainage and irrigation), geothermal, biomedical engineering (lung, kidneys) and hydrology (aquifers), etc. Generally, a material (space) consisting of pores, cavities and void spaces is porous medium. Further, the flow through porous medium was described by Henry Darcy1 in Darcy law as the velocity is linearly proportional to the pressure gradient. It is valid only for slow incompressible laminar flow with low velocity and small porosity. At high velocities and nonlinear porosity the Darcy law is not applicable, in such a case non-Darcy or inertial effects are used to explain high velocity flow and nonlinear porosity. Thus, it is essential to incorporate the non-Darcian terms in the study of the convective transport in a porous medium. Therefore, velocity squared term is added in momentum equation to explain the high velocity flow rate which is known as Forchheimer drag parameter or inertia term. Non-Darcy porous medium on mixed convection over an exponentially stretching sheet with cross diffusion have been studied by Srinivasacharya & Ramareddy.2 The effects of doubly stratified fluid saturated non-Darcy porous medium and cross diffusion of mixed convection over vertical plate have been investigated by Srinivasacharya & Surender.3 Soret and Dufour effects in non-Darcy porous medium have been examined by Partha et al.4 Very recently, Darcy-Forchheimer flow of Viscoelastic nanofluids: A comparative study described by Hayat et al.5

In recent years, the study of MHD has received considerable attention because of its increasing applications in engineering and industrial processes, such as MHD generators, design of nuclear reactors, plasma studies, petroleum resources, nuclear industry, thermal insulation, military submarines, geophysics etc. One dimensional mixed MHD convection has been investigated by Sposito & Ciafalo .6 MHD mixed convection boundary layer flow over stretching vertical surface with constant wall temperature have been studied by Ishak et al.7 Heat and mass transfer on MHD flow over a vertical stretching surface with heat source, chemical reaction and thermal stratification effects have been explained by Kandasamy et al.8 MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium studied by Nasir et al.9

The mass diffusion due to temperature gradient is termed as Soret effect and heat diffusion due to concentration gradient is known as Dufour effect. These effects together are also called as cross diffusion. In most of the investigation these effects are neglected because of their smaller orders of magnitude described by Fourier and Fick's laws. These effects are significant when density difference arises in the fluid flow. The Dufour and Soret (cross diffusion) effects have many practical applications such as ground water migration, the solidification of binary alloys, and in the areas of geosciences, and chemical engineering. A detailed study on cross diffusion of mixed convection flows have been provided by many authors for example Eckert and Drake,10-13 etc.

The heat and mass transfer over stretching sheet have been studied extensively in recent years because of their ever-increasing practical applications in polymer processing industry, crystal growing, drawing of plastic wires and films, food processing, paper and glass fiber production, polymer extrusions, manufacturing of artificial fibers etc. Crane 14 initiated the study of boundary layer flow over linear stretching surface. Gupta & Gupta15 have studied isothermal stretching with suction/blowing effects. Chen & Char16 extended the work of Gupta & Gupta15 to non-isothermal stretching sheet. Chen17 described an analysis of mixed convection heat transfer from a vertical continuously stretching sheet. Patil et al.18 have investigated mixed convection flow over a vertical power law stretching sheet. Patil et al.19 discussed the effects of surface mass transfer on steady mixed convection flow from vertical stretching sheet with variable wall temperature and concentration.

The heat and mass transfer through exponentially stretching sheet has many applications in science and technology such as annealing and thinning of copper wires and many more. Magyari & Keller20 discussed the heat and mass transfer characteristics of boundary layer flow over exponentially continuous stretching sheet. El-Aziz21 presented the viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet. Sajid & Hayat22 examined the impact of thermal radiation on boundary layer flow due to exponentially stretching surface. Bidin & Nazar23 investigated the effects of thermal radiation on boundary layer flow over an exponentially stretching sheet. Dulal Pal24 discussed the magnetic effect on mixed convection heat transfer in the boundary layers on an exponentially stretching sheet. Ishak25 obtained the numerical solution of MHD boundary layer flow over an exponentially stretching sheet with radiation effects. Mukhopadhyay & Gorla26 have studied the effects of partial slip on boundary layer flow past a permeable exponentially stretching sheet in presence of thermal radiation. Mukhopadhyay27 studied slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation.

The study of viscous dissipation is transfer of kinetic energy of fluid to internal energy of the fluid. Many researchers considered the viscous dissipation effect with numerous geometries and fluid properties. For example, Dessie & Naikoti28 examined MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink. Bhukta et al.29 discussed the dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink. Very recently Patil et al.30 investigated double diffusive mixed convection flow from a vertical exponentially stretching surface in presence of the viscous dissipation.

The simultaneous effect of temperature and concentration gradient on the flow velocity is known as double diffusive. Patil et al.31 investigated thermal diffusion and diffusion-thermo effects on mixed convection from an exponentially impermeable stretching surface. The non-similarity in the flow occurs due to free stream velocity, surface mass transfer or due to curvature of the body or due to all these effects. Because of its mathematical complexity many researchers restricted (confined) their studies to either unsteady similar flows or steady non-similar flows. The study of non-similar solutions is made by Patil et al.32-34

The aim of the present paper is to explore the study of steady MHD mixed convection flow over exponentially stretching sheet in presence of cross diffusion, non-uniform heat source/sink and Darcy-Forchheimer porous medium. This work has not been reported in the literature so far to the authors best of knowledge. Non-similar transformations are used to transform the governing boundary layer equations to a set of non-dimensional equations and then numerically solved by an implicit finite difference scheme in association with the Quasi-linearization technique.35 The numerical results are compared with the previously published data, and are found to be in good agreement.

Analysis

Consider two-dimensional steady laminar MHD mixed convection flow through exponentially stretching vertical sheet embedded in Darcy-Forchheimer porous medium in presence of cross diffusion, viscous dissipation and non-uniform heat source/sink. Consider the sheet is moving vertically upward direction in x-axis and y-axis normal to it, as shown in Figure 1. A uniform magnetic field B0 is applied normal to the plate. The velocity of the wall stretching sheet is U w = U 0 e X / L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaWG3baajuaGbeaacqGH9aqpcaWGvbWaaSbaaeaa jugWaiaaicdaaKqbagqaaKqzadGaamyzaKqbaoaaCaaabeqaaKqzad Gaamiwaiaac+cacaWGmbaaaaaa@4506@ and freestream velocity is U e = U e X / L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaWGLbaajuaGbeaacqGH9aqpcaWGvbWaaSbaaeaa jugWaiabg6HiLcqcfayabaqcLbmacaWGLbqcfa4aaWbaaeqabaqcLb macaWGybGaai4laiaadYeaaaaaaa@45AB@ where U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39F5@ reference and U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacqGHEisPaKqbagqaaaaa@3AAC@ is ambient velocity. The surface (sheet) temperature T w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3A37@ and concentration C w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3A26@ of the fluid are constant. All thermo physical properties of the fluid are assumed to be constant except the density variations causing a body force in the momentum equation. Using Boussinesq Approximation,36 the governing equations for conservation of mass, momentum, energy and species concentration are given by

u x + v y = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITcaWG1baabaGaeyOaIyRaamiEaaaacaaMc8Uaey4kaSIa aGPaVpaalaaabaGaeyOaIyRaamODaaqaaiabgkGi2kaadMhaaaGaaG PaVlabg2da9iaaykW7caaIWaGaaiilaaaa@49AB@ .......... (1)
u u x + v u y = U e d U e d x + ν 2 u y 2 + σ B 0 2 ρ ( U e u ) + g [ β 1 ( T T ) + β 1 * ( C C ) ] , ε ν K ( u U e ) S ε 2 K 1 2 ( u 2 U e 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WG1bGaaGPaVpaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadIha aaGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadAhacaaMc8+aaS aaaeaacqGHciITcaWG1baabaGaeyOaIyRaamyEaaaacaaMc8UaaGPa Vlabg2da9iaaykW7caaMc8UaamyvamaaBaaabaqcLbmacaWGLbaaju aGbeaadaWcaaqaaiaadsgacaWGvbWaaSbaaeaajugWaiaadwgaaKqb agqaaaqaaiaadsgacaWG4baaaiaaykW7caaMc8Uaey4kaSIaaGPaVl aaykW7cqaH9oGBcaaMc8+aaSaaaeaacqGHciITdaahaaqabeaajugW aiaaikdaaaqcfaOaamyDaaqaaiabgkGi2kaadMhadaahaaqabeaaju gWaiaaikdaaaaaaKqbakaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7 caaMc8+aaSaaaeaacqaHdpWCcaWGcbWaa0baaeaajugWaiaaicdaaK qbagaajugWaiaaikdaaaaajuaGbaGaeqyWdihaamaabmaabaGaamyv amaaBaaabaqcLbmacaWGLbaajuaGbeaacqGHsislcaWG1baacaGLOa GaayzkaaGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadEgacaaM c8UaaGPaVpaadmaabaGaeqOSdi2aaSbaaeaajugWaiaaigdaaKqbag qaaiaaykW7caGGOaGaamivaiabgkHiTiaadsfadaWgaaqaaKqzadGa eyOhIukajuaGbeaacaGGPaGaey4kaSIaaGPaVlabek7aInaaBaaaba qcLbmacaaIXaaajuaGbeaadaahaaqabeaajugWaiaacQcaaaqcfaOa aGPaVlaacIcacaWGdbGaeyOeI0Iaam4qamaaBaaabaqcLbmacqGHEi sPaKqbagqaaiaacMcaaiaawUfacaGLDbaacaGGSaGaaGPaVdGcbaqc faOaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlabgkHiTiaaykW7daWcaaqaaiabew7aLjabe27aUb qaaiaadUeaaaGaaGPaVpaabmaabaGaaGPaVlaadwhacaaMc8UaeyOe I0IaaGPaVlaadwfadaWgaaqaaKqzadGaamyzaaqcfayabaGaaGPaVd GaayjkaiaawMcaaiaaykW7cqGHsislcaaMc8+aaSaaaeaacaWGtbGa aGPaVlabew7aLnaaCaaabeqaaKqzadGaaGOmaaaajuaGcaaMc8oaba Gaam4samaaCaaabeqaaSWaaSGaaKqbagaajugWaiaaigdaaKqbagaa jugWaiaaikdaaaaaaaaajuaGcaaMc8+aaeWaaeaacaaMc8UaamyDam aaCaaabeqaaKqzadGaaGOmaaaajuaGcaaMc8UaeyOeI0IaaGPaVlaa dwfadaqhaaqaaiaadwgaaeaajugWaiaaikdaaaqcfaOaaGPaVdGaay jkaiaawMcaaiaacYcaaaaa@295D@ ....... (2)
u T x + v T y = α 2 T y 2 + D m K T C s C p 2 C y 2 + σ B 0 2 ρ C p ( U e u ) 2 + q ρ C p , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aaykW7daWcaaqaaiabgkGi2kaadsfaaeaacqGHciITcaWG4baaaiaa ykW7caaMc8Uaey4kaSIaaGPaVlaaykW7caWG2bGaaGPaVpaalaaaba GaeyOaIyRaamivaaqaaiabgkGi2kaadMhaaaGaaGPaVlaaykW7cqGH 9aqpcaaMc8UaaGPaVlabeg7aHjaaykW7daWcaaqaaiabgkGi2oaaCa aabeqaaKqzadGaaGOmaaaajuaGcaWGubaabaGaeyOaIyRaamyEamaa CaaabeqaaKqzadGaaGOmaaaaaaqcfaOaaGPaVlaaykW7cqGHRaWkca aMc8UaaGPaVpaalaaabaGaamiramaaBaaabaGaamyBaaqabaGaam4s amaaBaaabaGaamivaaqabaaabaGaam4qamaaBaaabaqcLbmacaWGZb aajuaGbeaacaWGdbWaaSbaaeaajugWaiaadchaaKqbagqaaaaacaaM c8UaaGPaVpaalaaabaGaeyOaIy7aaWbaaeqabaqcLbmacaaIYaaaaK qbakaadoeaaeaacqGHciITcaWG5bWaaWbaaeqabaqcLbmacaaIYaaa aaaajuaGcaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8+aaSaaaeaacq aHdpWCcaWGcbWaa0baaeaajugWaiaaicdaaKqbagaajugWaiaaikda aaaajuaGbaGaeqyWdiNaam4qamaaBaaabaGaamiCaaqabaaaaiaayk W7caaMc8+aaeWaaeaacaWGvbWaaSbaaeaajugWaiaadwgaaKqbagqa aiabgkHiTiaadwhaaiaawIcacaGLPaaadaahaaqabeaajugWaiaaik daaaqcfaOaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVpaalaaabaGa bmyCayaasaaabaGaeqyWdiNaam4qamaaBaaabaqcLbmacaWGWbaaju aGbeaaaaGaaiilaiaaykW7aaa@AE05@ ................(3)

u C x + v C y = D 2 C y 2 + D m K T T m 2 T y 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aaykW7daWcaaqaaiabgkGi2kaadoeaaeaacqGHciITcaWG4baaaiaa ykW7caaMc8Uaey4kaSIaaGPaVlaaykW7caWG2bGaaGPaVpaalaaaba GaeyOaIyRaam4qaaqaaiabgkGi2kaadMhaaaGaaGPaVlaaykW7cqGH 9aqpcaaMc8UaaGPaVlaadseacaaMc8UaaGPaVpaalaaabaGaeyOaIy 7aaWbaaeqabaqcLbmacaaIYaaaaKqbakaadoeaaeaacqGHciITcaWG 5bWaaWbaaeqabaqcLbmacaaIYaaaaaaajuaGcaaMc8UaaGPaVlabgU caRiaaykW7caaMc8+aaSaaaeaacaWGebWaaSbaaeaajugWaiaad2ga aKqbagqaaiaadUeadaWgaaqaaKqzadGaamivaaqcfayabaaabaGaam ivamaaBaaabaqcLbmacaWGTbaajuaGbeaaaaGaaGPaVlaaykW7daWc aaqaaiabgkGi2oaaCaaabeqaaKqzadGaaGOmaaaajuaGcaWGubaaba GaeyOaIyRaamyEamaaCaaabeqaaKqzadGaaGOmaaaaaaqcfaOaaiil aiaaykW7caaMc8oaaa@836E@ ..................(4)

With boundary conditions:

y = 0 : u ( x , 0 ) = U w , v ( x , 0 ) = 0 , T = T w = T + ( T w 0 T ) e 2 x / L , C = C w = C + ( C w 0 C ) e 2 x / L , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WG5bGaeyypa0JaaGimaiaaykW7caaMc8UaaiOoaiaaykW7caaMc8Ua aGPaVlaaykW7caWG1bGaaiikaiaadIhacaGGSaGaaGimaiaacMcaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaamyvamaaBaaabaqcLbma caWG3baajuaGbeaacaGGSaGaaGPaVlaaykW7caWG2bGaaiikaiaadI hacaGGSaGaaGimaiaacMcacaaMc8UaaGPaVlabg2da9iaaykW7caaM c8UaaGimaiaacYcacaaMc8UaaGPaVlaadsfacaaMc8UaaGPaVlabg2 da9iaadsfadaWgaaqaaKqzadGaam4DaaqcfayabaGaeyypa0JaaGPa VlaaykW7caWGubWaaSbaaeaajugWaiabg6HiLcqcfayabaGaaGPaVl aaykW7cqGHRaWkcaaMc8UaaGPaVlaacIcacaWGubWaaSbaaeaajugW aiaadEhalmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaaaeqaaiaayk W7caaMc8UaeyOeI0IaaGPaVlaaykW7caWGubWaaSbaaeaajugWaiab g6HiLcqcfayabaGaaiykaiaaykW7caaMc8UaamyzamaaCaaabeqaam aalyaabaqcLbmacaaIYaGaamiEaaqcfayaaKqzadGaamitaaaaaaqc faOaaiilaiaaykW7aOqaaKqbakaadoeacaaMc8UaaGPaVlabg2da9i aaykW7caaMc8Uaam4qamaaBaaabaqcLbmacaWG3baajuaGbeaacqGH 9aqpcaaMc8UaaGPaVlaadoeadaWgaaqaaKqzadGaeyOhIukajuaGbe aacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaaiikaiaadoeadaWg aaqaaKqzadGaam4DaSWaaSbaaKqbagaajugWaiaaicdaaKqbagqaaa qabaGaeyOeI0Iaam4qamaaBaaabaqcLbmacqGHEisPaKqbagqaaiaa cMcacaaMc8UaaGPaVlaadwgadaahaaqabeaalmaalyaajuaGbaqcLb macaaIYaGaamiEaaqcfayaaKqzadGaamitaaaaaaqcfaOaaiilaiaa ykW7aaaa@D395@
y : u U e , T T , C C . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMhaca aMc8UaaGPaVlabgkziUkaaykW7caaMc8UaeyOhIuQaaiOoaiaaykW7 caaMc8UaamyDaiaaykW7caaMc8UaeyOKH4QaaGPaVlaaykW7caWGvb WaaSbaaeaajugWaiaadwgaaKqbagqaaiaacYcacaaMc8UaaGPaVlaa dsfacaaMc8UaaGPaVlabgkziUkaaykW7caaMc8UaamivamaaBaaaba qcLbmacqGHEisPaKqbagqaaiaacYcacaaMc8UaaGPaVlaadoeacaaM c8UaaGPaVlabgkziUkaaykW7caaMc8Uaam4qamaaBaaabaqcLbmacq GHEisPaKqbagqaaiaac6cacaaMc8UaaGPaVdaa@76ED@ .......................... (5)

Using the non-similar transformations:

ξ = x L , η = ( U 0 ν x ) 1 / 2 e x / 2 L y , ψ ( x , y ) = ( ν U 0 x ) 1 / 2 e x / 2 L f ( ξ , η ) , T T = ( T w T ) G ( ξ , η ) , T w T = ( T w 0 T ) e 2 x / L , C C = ( C w C ) H ( ξ , η ) , C w C = ( C w 0 C ) e 2 x / L u = ψ y , v = ψ x , u = U 0 e x / L F , v = ( ν U 0 x ) 1 / 2 e x / 2 L { ( 1 + ξ ) f 2 + ξ f ξ + η 2 ( ξ 1 ) F } . } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiGaaq aabeqaaiadaIjH+oaEcaaMc8UaaGPaVladaIPH9aqpcaaMc8UaaGPa VpacaI5caaqaiaiMcGaGyoiEaaqaiaiMcGaGyoitaaaacGaGykilai aaykW7caaMc8UamaiMeE7aOjadaIPH9aqpcaaMc8UaaGPaVpacaIza daqaiaiMdGaGyUaaaeacaIPaiaiMdwfadGaGyUbaaeacaIPaiaiMic daaeqcaIjaaeacaIPamaiMe27aUjacaI5G4baaaaGaiaiMwIcacGaG yAzkaaWaiaiMCaaabKaGygacaIzcLbmacGaGyIymaiacaIPGVaGaia iMikdaaaqcfaOaamyzamaaCaaabeqaaSWaaSGbaKqbagaajugWaiaa dIhaaKqbagaajugWaiaaikdacaWGmbaaaaaajuaGcaaMc8UaaGPaVl aadMhacGaGykilaiaaykW7caaMc8UamaiMeI8a5jacaIPGOaGaiaiM dIhacGaGykilaiacaI5G5bGaiaiMcMcacGaGyIPaVlacaIjMc8Uama iMg2da9iacaIjMc8UaiaiMykW7cGaGykikaiadaIjH9oGBcGaGyoyv amacaI5gaaqaiaiMcGaGyIimaaqajaiMaiacaI5G4bGaiaiMcMcalm acaIjhaaqcfayajaiMbGaGyMqzadGaiaiMigdacGaGyk4laiacaIjI YaaaaKqbakacaIjMc8UaiaiMykW7cGaGyoyzamacaIjhaaqajaiMbG aGyUWaiaiMlyaajuaGbGaGyMqzadGaiaiMdIhaaKqbagacaIzcLbma cGaGyIOmaiacaI5GmbaaaaaajuaGcGaGyIPaVlacaIjMc8UaiaiMdA gacGaGykikaiadaIjH+oaEcGaGykilaiadaIjH3oaAcGaGykykaiac aIPGSaGaiaiMykW7cGaGyIPaVdqaiaiMcGaGyoivaiadaIPHsislcG aGyoivamacaI5gaaqaiaiMjugWaiadaIPHEisPaKqbagqcaIjacWaG yAypa0JaiaiMcIcacGaGyoivamacaI5gaaqaiaiMjugWaiacaI5G3b aajuaGbKaGycGamaiMgkHiTiacaI5GubWaiaiMBaaabGaGyMqzadGa maiMg6HiLcqcfayajaiMaiacaIPGPaGaiaiMykW7cGaGyIPaVlacaI 5GhbGaiaiMcIcacWaGysOVdGNaiaiMcYcacWaGys4TdGMaiaiMcMca cGaGykilaiacaIjMc8UaiaiMykW7cGaGWoivamacaI5gaaqaiaiMju gWaiacaI5G3baajuaGbKaGycGamaiSgkHiTiacac7GubWaiaiSBaaa bGaGWMqzadGamaiSg6HiLcqcfayajaiSaiadacRH9aqpcGaGWkikai acac7GubWaiaiSBaaabGaGWMqzadGaiaiSdEhalmacac7gaaqcfaya iaiSjugWaiacaclIWaaajuaGbKaGWcaabKaGWcGamaiSgkHiTiacac 7GubWaiaiSBaaabGaGWMqzadGamaiSg6HiLcqcfayajaiSaiacaIPG PaGaiaiSykW7cGaGWIPaVlacac7GLbWaiaiSCaaabKaGWgacacBcLb macGaGWIOmaSWaiaiSlyaajuaGbGaGWMqzadGaiaiSdIhaaKqbagac acBcLbmacGaGWoitaaaaaaqcfaOaiaiMcYcaaeaacGaGyo4qaiadaI PHsislcGaGyo4qamacaI5gaaqaiaiMjugWaiadaIPHEisPaKqbagqc aIjacWaGyAypa0JaiaiMcIcacGaGyo4qamacaI5gaaqaiaiMjugWai acaI5G3baajuaGbKaGycGamaiMgkHiTiacaI5GdbWaiaiMBaaabGaG yMqzadGamaiMg6HiLcqcfayajaiMaiacaIPGPaGaaGPaVlaaykW7cG aGyoisaiacaIPGOaGamaiMe67a4jacaIPGSaGamaiMeE7aOjacaIPG PaGaiaiMcYcacGaGyIPaVlacaIjMc8Uaam4qamacaI5gaaqaiaiMju gWaiacaI5G3baajuaGbKaGycGamaiSgkHiTiaadoeadGaGWUbaaeac acBcLbmacWaGWAOhIukajuaGbKaGWcGamaiSg2da9iacacRGOaGaam 4qamacac7gaaqaiaiSjugWaiacac7G3bWcdGaGWUbaaKqbagacacBc LbmacGaGWIimaaqcfayajaiSaaqajaiSaiadacRHsislcaWGdbWaia iSBaaabGaGWMqzadGamaiSg6HiLcqcfayajaiSaiacaIPGPaGaiaiS ykW7cGaGWIPaVlacac7GLbWaiaiSCaaabKaGWgacac7cdGaGWUGbaK qbagacacBcLbmacGaGWIOmaiacac7G4baajuaGbGaGWMqzadGaiaiS dYeaaaaaaaqcfayaaiacaI5G1bGamaiMg2da9macaI5caaqaiaiMcW aGyAOaIyRamaiMeI8a5bqaiaiMcWaGyAOaIyRaiaiMdMhaaaGaiaiM cYcacGaGyIPaVlacaIjMc8UaiaiMykW7cGaGyoODaiadaIPH9aqpcW aGyAOeI0YaiaiMlaaabGaGykadaIPHciITcWaGysiYdKhabGaGykad aIPHciITcGaGyoiEaaaacGaGykilaiacaIjMc8UaaGPaVlaadwhaca aMc8UaaGPaVlabg2da9iaaykW7caaMc8UaamyvamaaBaaabaqcLbma caaIWaaajuaGbeaacaaMc8UaaGPaVlacac7GLbWaiaiSCaaabKaGWg acac7cdGaGWUGbaKqbagacacBcLbmacGaGWoiEaaqcfayaiaiSjugW aiacac7GmbaaaaaajuaGcaaMc8UaaGPaVlaadAeacaGGSaGaaGPaVl aaykW7caWG2bGaeyypa0JaeyOeI0YaaeWaaeaadaWcaaqaaiabe27a UjaadwfadaWgaaqaaKqzadGaaGimaaqcfayabaaabaGaamiEaaaaai aawIcacaGLPaaadaahaaqabeaajugWaiaaigdacaGGVaGaaGOmaaaa juaGcaaMc8UaaGPaVlacac7GLbWaiaiSCaaabKaGWgacac7cdGaGWU GbaKqbagacacBcLbmacGaGWoiEaaqcfayaiaiSjugWaiacaclIYaGa iaiSdYeaaaaaaKqbakaaykW7caaMc8+aaiWaaeaacaGGOaGaaGymai abgUcaRiabe67a4jaacMcadaWcaaqaaiaadAgaaeaacaaIYaaaaiab gUcaRiaaykW7cqaH+oaEcaaMc8UaamOzamaaBaaabaGaeqOVdGhabe aacqGHRaWkdaWcaaqaaiabeE7aObqaaiaaikdaaaGaaGPaVlaacIca cqaH+oaEcqGHsislcaaIXaGaaiykaiaadAeaaiaawUhacaGL9baaca GGUaaaaiaaw2haaiaaykW7aaa@BA33@ ................ (6)

From Eqs. (1) to (4), we find that Eq. (1) is trivially satisfied and Eqs. (2) to (4) reduce to

F η η + ( ξ + 1 ) f 2 F η ξ F 2 + β 2 ξ + M 2 ξ e ξ Re ( β F ) + R i ξ ( G + N H ) ξ e ξ D a Re ( F β ) ξ Γ ( F 2 β 2 ) = ξ { F F ξ f ξ F η } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGgbWaaSbaaeaajugWaiabeE7aOjabeE7aObqcfayabaGaaGPaVlaa ykW7cqGHRaWkcaaMc8UaaGPaVlaacIcacaaMc8UaeqOVdGNaaGPaVl abgUcaRiaaykW7caaIXaGaaiykaiaaykW7caaMc8+aaSaaaeaacaWG MbaabaGaaGOmaaaacaaMc8UaaGPaVlaadAeadaWgaaqaaKqzadGaeq 4TdGgajuaGbeaacaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8UaeqOV dGNaaGPaVlaaykW7caWGgbWaaWbaaeqabaqcLbmacaaIYaaaaKqbak aaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7cqaHYoGydaahaaqabeaa jugWaiaaikdaaaqcfaOaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVl abgUcaRiaaykW7caaMc8UaamytamaaCaaabeqaaKqzadGaaGOmaaaa juaGcaaMc8UaaGPaVlabe67a4jaaykW7caaMc8UaamyzamaaCaaabe qaaKqzadGaeyOeI0IaeqOVdGhaaKqbakaaykW7caaMc8UaciOuaiaa cwgacaaMc8UaaGPaVlaacIcacaaMc8UaaGPaVlabek7aIjaaykW7ca aMc8UaeyOeI0IaaGPaVlaaykW7caWGgbGaaGPaVlaaykW7caGGPaGa aGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadkfacaWGPbGaaGPaVl aaykW7cqaH+oaEcaaMc8UaaGPaVpaabmaabaGaam4raiaaykW7caaM c8Uaey4kaSIaaGPaVlaaykW7caWGobGaaGPaVlaadIeaaiaawIcaca GLPaaacaaMc8oakeaajuaGcqGHsisldaWcaaqaaiabe67a4jaadwga daahaaqabeaajugWaiabgkHiTiabe67a4baaaKqbagaacaWGebGaam yyaiaaykW7ciGGsbGaaiyzaaaacaaMc8+aaeWaaeaacaaMc8UaamOr aiaaykW7cqGHsislcaaMc8UaeqOSdiMaaGPaVdGaayjkaiaawMcaai aaykW7cqGHsislcaaMc8UaeqOVdGNaaGPaVlabfo5ahjaaykW7daqa daqaaiaadAeadaahaaqabeaajugWaiaaikdaaaqcfaOaeyOeI0Iaeq OSdi2aaWbaaeqabaqcLbmacaaIYaaaaaqcfaOaayjkaiaawMcaaiab g2da9iaaykW7cqaH+oaEcaaMc8+aaiWaaeaacaWGgbGaaGPaVlaadA eadaWgaaqaaiabe67a4bqabaGaaGPaVlabgkHiTiaaykW7caWGMbWa aSbaaeaacqaH+oaEaeqaaiaaykW7caWGgbWaaSbaaeaacqaH3oaAae qaaiaaykW7aiaawUhacaGL9baacaGGSaaaaaa@1159@ .............. (7)

G η η + Pr { ( ξ + 1 ) f 2 } G η 2 Pr ξ F G + Pr M 2 Re ξ e ξ E c ( β F ) 2 + Pr D f H η η + A * F + B * G = Pr ξ { F G ξ f ξ G η } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGhbWaaSbaaeaajugWaiabeE7aOjabeE7aObqcfayabaGaaGPaVlaa ykW7cqGHRaWkcaaMc8UaaGPaVlGaccfacaGGYbGaaGPaVlaaykW7da GadaqaaiaaykW7caGGOaGaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPa VlabgUcaRiaaykW7caaMc8UaaGymaiaaykW7caaMc8Uaaiykaiaayk W7caaMc8+aaSaaaeaacaWGMbaabaGaaGOmaaaacaaMc8UaaGPaVdGa ay5Eaiaaw2haaiaaykW7caaMc8Uaam4ramaaBaaabaqcLbmacqaH3o aAaKqbagqaaiaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaIYaGa aGPaVlaaykW7ciGGqbGaaiOCaiaaykW7caaMc8UaeqOVdGNaaGPaVl aaykW7caWGgbGaaGPaVlaaykW7caWGhbGaey4kaSIaaGPaVlaaykW7 ciGGqbGaaiOCaiaaykW7caaMc8UaamytamaaCaaabeqaaKqzadGaaG OmaaaajuaGcaaMb8UaaGPaVlaaykW7ciGGsbGaaiyzaiaaykW7caaM c8UaeqOVdGNaaGPaVlaaykW7caWGLbWaaWbaaeqabaqcLbmacqGHsi slcqaH+oaEaaqcfaOaaGPaVlaaykW7caWGfbGaam4yaiaaykW7caaM c8UaaiikaiaaykW7cqaHYoGycaaMc8UaaGPaVlabgkHiTiaaykW7ca aMc8UaamOraiaaykW7caaMc8UaaiykamaaCaaabeqaaKqzadGaaGOm aaaaaOqaaKqbakabgUcaRiGaccfacaGGYbGaaGPaVlaaykW7caWGeb GaamOzaiaaykW7caaMc8UaamisamaaBaaabaqcLbmacqaH3oaAcqaH 3oaAaKqbagqaaiabgUcaRiaadgeacaGGQaGaaGPaVlaaykW7caWGgb GaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaadkeacaGGQaGaaGPa VlaaykW7caWGhbGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlGacc facaGGYbGaaGPaVlabe67a4jaaykW7caaMc8+aaiWaaeaacaWGgbGa aGPaVlaadEeadaWgaaqaaiabe67a4bqabaGaaGPaVlabgkHiTiaayk W7caWGMbWaaSbaaeaacqaH+oaEaeqaaiaaykW7caWGhbWaaSbaaeaa jugWaiabeE7aObqcfayabaaacaGL7bGaayzFaaGaaiilaiaaykW7ca aMc8oaaaa@0A36@ .............. (8)

H η η + S c { ( ξ + 1 ) f 2 } H η 2 S c ξ F H + S c S r G η η = S c ξ { F H ξ f ξ H η } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaabaqcLbmacqaH3oaAcqaH3oaAaKqbagqaaiaaykW7caaMc8Ua ey4kaSIaaGPaVlaaykW7caWGtbGaam4yaiaaykW7caaMc8+aaiWaae aacaaMc8UaaGPaVlaacIcacqaH+oaEcaaMc8UaaGPaVlabgUcaRiaa ykW7caaMc8UaaGymaiaaykW7caaMc8UaaiykaiaaykW7caaMc8+aaS aaaeaajugWaiaadAgaaKqbagaajugWaiaaikdaaaqcfaOaaGPaVlaa ykW7aiaawUhacaGL9baacaaMc8UaamisamaaBaaabaqcLbmacqaH3o aAaKqbagqaaiaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7caaIYaGa aGPaVlaaykW7caWGtbGaam4yaiaaykW7caaMc8UaeqOVdGNaaGPaVl aaykW7caWGgbGaaGPaVlaaykW7caWGibGaaGPaVlaaykW7cqGHRaWk caWGtbGaam4yaiaaykW7caaMc8Uaam4uaiaadkhacaaMc8UaaGPaVl aadEeadaWgaaqaaKqzadGaeq4TdGMaeq4TdGgajuaGbeaacaaMc8Ua aGPaVlabg2da9iaaykW7caaMc8Uaam4uaiaadogacaaMc8UaaGPaVl abe67a4jaaykW7caaMc8+aaiWaaeaacaaMc8UaamOraiaaykW7caWG ibWaaSbaaeaacqaH+oaEaeqaaiaaykW7cqGHsislcaaMc8UaamOzam aaBaaabaGaeqOVdGhabeaacaaMc8UaamisamaaBaaabaqcLbmacqaH 3oaAaKqbagqaaiaaykW7aiaawUhacaGL9baaaaa@C1C6@ .................... (9)

Figure 1 The Schematic flow model.

From Eq. (5), the dimensionless boundary conditions are

η = 0 : F = 1 , G = 1 , H = 1 , η : F β , G 0 , H 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aH3oaAcqGH9aqpcaaIWaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caGG6aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOraiabg2da9iaaigda caaMc8UaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGhbGaeyypa0JaaGymai aaykW7caaMc8UaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGibGaeyypa0JaaGymaiaacYcaaOqaaKqb akabeE7aOjabgkziUkabg6HiLkaacQdacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa dAeacqGHsgIRcqaHYoGycaaMc8UaaGPaVlaacYcacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGhbGaeyOKH4QaaGimaiaaykW7caaMc8Uaaiilai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWGibGaeyOKH4QaaGimaiaac6cacaaMc8oaaaa@E79D@

Here f ( ξ , η ) = 0 η F d η + f w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaWGMbGaai ikaiabe67a4jaacYcacqaH3oaAcaGGPaGaeyypa0Zaa8qCaeaacaWG gbGaaGPaVlaadsgacqaH3oaAcaaMc8Uaey4kaSIaamOzamaaBaaaba qcLbmacaWG3baajuaGbeaaaeaacaaIWaaabaGaeq4TdGgacqGHRiI8 aiaaykW7aaa@4EC9@ and f w = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaWGMbWaaS baaeaajugWaiaadEhaaKqbagqaaiaaykW7cqGH9aqpcaaMc8UaaGim aiaac6caaaa@3F4E@ Note that f w = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaWGMbWaaS baaeaajugWaiaadEhaaKqbagqaaiaaykW7cqGH9aqpcaaMc8UaaGim aiaac6caaaa@3F4E@ denotes the impermeable plate, i. e., there is no suction or injection. The momentum Eq. (7), the temperature Eq. (8) and the species concentration Eq. (9) are coupled with each other. Further, the Richardson number Ri, which characterizes the mixed convection effects, Nrepresenting the ratio between the thermal and the solutal buoyancy forces, β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIb aa@381B@ is the velocity ratio parameter, Da is Darcy number, Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcqqHtoWraa a@376A@ is Forchheimer drag coefficient, D f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaca WGMbaaaa@382E@ is the Dufour number and S r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGYbaaaa@3849@ is the Soret number and they are defined, respectively, as

R i = G r Re 2 , N = G r * G r , β = U U 0 , D a = K ε L 2 , Γ = S ε 2 K 1 / 2 , D f = D m k T ν C s C p ( C w C T w T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai aadMgacqGH9aqpdaWcaaqaaiaadEeacaWGYbaabaGaciOuaiaacwga daahaaqabeaajugWaiaaikdaaaaaaKqbakaacYcacaaMc8UaaGPaVl aaykW7caWGobGaeyypa0ZaaSaaaeaacaWGhbGaamOCamaaCaaabeqa aiaacQcaaaaabaGaam4raiaadkhaaaGaaiilaiaaykW7caaMc8UaaG PaVlabek7aIjaaykW7cqGH9aqpcaaMc8+aaSaaaeaacaWGvbWaaSba aeaajugWaiabg6HiLcqcfayabaaabaGaamyvamaaBaaabaqcLbmaca aIWaaajuaGbeaaaaGaaiilaiaaykW7caaMc8UaaGPaVlaadseacaWG HbGaaGPaVlabg2da9iaaykW7daWcaaqaaiaadUeaaeaacqaH1oqzca WGmbWaaWbaaeqabaqcLbmacaaIYaaaaaaajuaGcaaMc8Uaaiilaiaa ykW7caaMc8UaaGPaVlabfo5ahjaaykW7cqGH9aqpcaaMc8+aaSaaae aacaWGtbGaeqyTdu2aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaiaa dUeadaahaaqabeaalmaalyaajuaGbaqcLbmacaaIXaaajuaGbaqcLb macaaIYaaaaaaaaaqcfaOaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7 caWGebGaamOzaiabg2da9iaaykW7caaMc8+aaSaaaeaacaWGebWaaS baaeaajugWaiaad2gaaKqbagqaaiaaykW7caWGRbWaaSbaaeaajugW aiaadsfaaKqbagqaaaqaaiabe27aUjaaykW7caWGdbWaaSbaaeaaju gWaiaadohaaKqbagqaaiaaykW7caWGdbWaaSbaaeaajugWaiaadcha aKqbagqaaaaacaaMc8+aaeWaaeaadaWcaaqaaiaadoeadaWgaaqaaK qzadGaam4DaaqcfayabaGaaGPaVlabgkHiTiaaykW7caWGdbWaaSba aeaajugWaiabg6HiLcqcfayabaaabaGaamivamaaBaaabaqcLbmaca WG3baajuaGbeaacaaMc8UaeyOeI0IaaGPaVlaadsfadaWgaaqaaKqz adGaeyOhIukajuaGbeaaaaaacaGLOaGaayzkaaaaaa@C32F@

and

S r = D m k T ν T m ( T w T C w C ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aadkhacqGH9aqpcaaMc8UaaGPaVpaalaaabaGaamiramaaBaaabaqc LbmacaWGTbaajuaGbeaacaaMc8Uaam4AamaaBaaabaqcLbmacaWGub aajuaGbeaaaeaacqaH9oGBcaaMc8UaamivamaaBaaabaqcLbmacaWG TbaajuaGbeaaaaGaaGPaVpaabmaabaWaaSaaaeaacaWGubWaaSbaae aajugWaiaadEhaaKqbagqaaiaaykW7cqGHsislcaaMc8Uaamivamaa BaaabaqcLbmacqGHEisPaKqbagqaaaqaaiaadoeadaWgaaqaaKqzad Gaam4DaaqcfayabaGaaGPaVlabgkHiTiaaykW7caWGdbWaaSbaaeaa jugWaiabg6HiLcqcfayabaaaaaGaayjkaiaawMcaaOGaaiilaaaa@67A7@ .............. (10)

Where G r = g β ( T w 0 T ) L 3 / ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai aadkhacqGH9aqpcaWGNbGaaGPaVlabek7aIjaaykW7caGGOaGaamiv amaaBaaabaqcLbmacaWG3bGaaGimaaqcfayabaGaeyOeI0Iaamivam aaBaaabaqcLbmacqGHEisPaKqbagqaaiaacMcacaaMc8Uaamitamaa CaaabeqaaKqzadGaaG4maaaajuaGcaGGVaGaeqyVd42aaWbaaeqaba qcLbmacaaIYaaaaaaa@5337@ is the Grashof number referring to the wall temperature G r * = g β * ( C w 0 C ) L 3 / ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai aadkhadaahaaqabeaajugWaiaacQcaaaqcfaOaeyypa0Jaam4zaiaa ykW7cqaHYoGydaahaaqabeaajugWaiaacQcaaaqcfaOaaGPaVlaacI cacaWGdbWaaSbaaeaajugWaiaadEhacaaIWaaajuaGbeaacqGHsisl caWGdbWaaSbaaeaajugWaiabg6HiLcqcfayabaGaaiykaiaaykW7ca WGmbWaaWbaaeqabaqcLbmacaaIZaaaaKqbakaac+cacqaH9oGBdaah aaqabeaajugWaiaaikdaaaaaaa@582D@ is the Grashof number referring to the wall species concentration and q = ( k U W ( x ) x ν ) [ A * ( T w T ) F + B * ( T T ) ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmyCay aasaGaeyypa0ZaaeWaaeaadaWcaaqaaiaadUgacaWGvbWaaSbaaeaa jugWaiaadEfaaKqbagqaaiaacIcacaWG4bGaaiykaaqaaiaadIhacq aH9oGBaaaacaGLOaGaayzkaaGaaGPaVlaaykW7daWadaqaaiaadgea caGGQaWaaeWaaeaacaWGubWaaSbaaeaajugWaiaadEhaaKqbagqaai abgkHiTiaadsfadaWgaaqaaKqzadGaeyOhIukajuaGbeaaaiaawIca caGLPaaacaWGgbGaey4kaSIaamOqaiaacQcadaqadaqaaiaadsfacq GHsislcaWGubWaaSbaaeaajugWaiabg6HiLcqcfayabaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaGaaiilaiaaykW7aaa@615E@ is non-uniform heat source/sink. Where A* is space dependent heat source/sink and B* is temperature dependent heat source/sink. The case A* > 0 and B* > 0 corresponds to heat source (generation) and A* < 0, B* < 0 corresponds to heat sink or absorption.
Further the skin friction coefficient ( Re 1 / 2 C f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzamaaCaaabeqaaSWaaSGbaKqbagaajugWaiaaigda aKqbagaajugWaiaaikdaaaaaaKqbakaadoeacaWGMbaacaGLOaGaay zkaaGaaGPaVdaa@42CC@ , the heat transfer ( Re 1 / 2 N u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzamaaCaaabeqaaSWaaSGbaKqbagaajugWaiabgkHi TiaaigdaaKqbagaajugWaiaaikdaaaaaaKqbakaad6eacaWG1baaca GLOaGaayzkaaGaaGPaVdaa@43D3@ and mass transfer ( Re 1 / 2 S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzamaaCaaabeqaaSWaaSGbaKqbagaajugWaiabgkHi TiaaigdaaKqbagaajugWaiaaikdaaaaaaKqbakaadofacaWGObaaca GLOaGaayzkaaGaaGPaVdaa@43CB@ rates are defined as

C f = μ 2 ( u / y ) y = 0 ρ U W 2 = 2 Re 1 / 2 ξ 1 / 2 exp ( ξ ) 1 / 2 F η ( ξ , 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai aadAgacaaMc8Uaeyypa0JaaGPaVlabeY7aTjaaykW7daWcaaqaaiaa ikdacaaMc8+aaeWaaeaadaWcgaqaaiabgkGi2kaadwhaaeaacqGHci ITcaWG5baaaaGaayjkaiaawMcaamaaBaaabaqcLbmacaWG5bGaaGPa Vlabg2da9iaaykW7caaIWaaajuaGbeaaaeaacaaMc8UaeqyWdiNaaG PaVlaadwfadaWgaaqaaiaadEfaaeqaamaaCaaabeqaaKqzadGaaGOm aaaaaaqcfaOaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaikdaca aMc8UaciOuaiaacwgadaahaaqabeaajugWaiabgkHiTiaaykW7caaI XaGaai4laiaaikdaaaqcfaOaaGPaVlabe67a4naaCaaabeqaaKqzad GaeyOeI0IaaGymaiaac+cacaaIYaaaaKqbakaaykW7caaMc8Uaciyz aiaacIhacaGGWbGaaiikaiabe67a4jaacMcadaahaaqabeaalmaaly aajuaGbaqcLbmacqGHsislcaaIXaaajuaGbaqcLbmacaaIYaaaaaaa juaGcaaMc8UaaGPaVlaadAeadaWgaaqaaKqzadGaeq4TdGgajuaGbe aadaqadaqaaiabe67a4jaacYcacaaMc8UaaGimaaGaayjkaiaawMca aiaacYcacaaMc8oaaa@92E3@
i . e . , ( Re ) 1 / 2 C f = 2 ( ξ exp ( ξ ) ) 1 / 2 F η ( ξ , 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAai aac6cacaaMc8UaamyzaiaaykW7caGGUaGaaiilaiaaykW7caaMc8Ua aGPaVlaaykW7daqadaqaaiGackfacaGGLbGaaGPaVdGaayjkaiaawM caamaaCaaabeqaaKqzadGaaGymaiaac+cacaaIYaaaaKqbakaadoea caWGMbGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaikdacaaMc8 +aaeWaaeaacqaH+oaEcaaMc8UaaGPaVlGacwgacaGG4bGaaiiCaiaa cIcacqaH+oaEcaGGPaaacaGLOaGaayzkaaWaaWbaaeqabaqcLbmacq GHsislcaaIXaGaai4laiaaikdaaaqcfaOaaGPaVlaaykW7caWGgbWa aSbaaeaajugWaiabeE7aObqcfayabaWaaeWaaeaacqaH+oaEcaGGSa GaaGPaVlaaicdaaiaawIcacaGLPaaacaaMc8UaaiOlaiaaykW7aaa@7A7C@ .................... (11)
N u = x ( T / y ) y = 0 ( T w T ) = ( Re ξ exp ( ξ ) ) 1 / 2 G η ( ξ , 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai aadwhacaaMc8Uaeyypa0JaaGPaVlabgkHiTiaaykW7caWG4bGaaGPa VpaalaaabaWaaeWaaeaadaWcgaqaaiabgkGi2kaadsfaaeaacqGHci ITcaWG5baaaaGaayjkaiaawMcaamaaBaaabaqcLbmacaWG5bGaaGPa Vlabg2da9iaaykW7caaIWaaajuaGbeaaaeaadaqadaqaaiaadsfada WgaaqaaKqzadGaam4DaaqcfayabaGaaGPaVlabgkHiTiaaykW7caWG ubWaaSbaaeaajugWaiabg6HiLcqcfayabaaacaGLOaGaayzkaaaaai aaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaMc8+aaeWa aeaaciGGsbGaaiyzaiabe67a4jaaykW7ciGGLbGaaiiEaiaacchada qadaqaaiabe67a4bGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaa beqaaKqzadGaaGymaiaac+cacaaIYaaaaKqbakaadEeadaWgaaqaaK qzadGaeq4TdGgajuaGbeaadaqadaqaaiabe67a4jaacYcacaaMc8Ua aGimaaGaayjkaiaawMcaaiaacYcaaaa@828C@
i. e., ( Re ) 1 / 2 N u = ( ξ exp ( ξ ) ) 1 / 2 G η ( ξ , 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaiaaykW7aiaawIcacaGLPaaadaahaaqabeaajugW aiabgkHiTiaaigdacaGGVaGaaGOmaaaajuaGcaWGobGaamyDaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVpaa bmaabaGaeqOVdGNaaGPaVlaaykW7ciGGLbGaaiiEaiaacchacaGGOa GaeqOVdGNaaiykaaGaayjkaiaawMcaamaaCaaabeqaaSWaaSGbaKqb agaajugWaiaaigdaaKqbagaajugWaiaaikdaaaaaaKqbakaaykW7ca aMc8Uaam4ramaaBaaabaqcLbmacqaH3oaAaKqbagqaamaabmaabaGa eqOVdGNaaiilaiaaykW7caaIWaaacaGLOaGaayzkaaGaaGPaVlaayk W7caGGUaGaaGPaVdaa@7268@ ............... (12)
S h = x ( C / y ) y = 0 ( C w C ) = ( Re ξ exp ( ξ ) ) 1 / 2 H η ( ξ , 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aadIgacaaMc8Uaeyypa0JaaGPaVlabgkHiTiaaykW7caWG4bGaaGPa VpaalaaabaWaaeWaaeaadaWcgaqaaiabgkGi2kaadoeaaeaacqGHci ITcaWG5baaaaGaayjkaiaawMcaamaaBaaabaqcLbmacaWG5bGaaGPa Vlabg2da9iaaykW7caaIWaaajuaGbeaaaeaadaqadaqaaiaadoeada WgaaqaaKqzadGaam4DaaqcfayabaGaaGPaVlabgkHiTiaaykW7caWG dbWaaSbaaeaajugWaiabg6HiLcqcfayabaaacaGLOaGaayzkaaaaai aaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaMc8+aaeWa aeaaciGGsbGaaiyzaiabe67a4jaaykW7ciGGLbGaaiiEaiaacchaca GGOaGaeqOVdGNaaiykaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGa aGymaiaac+cacaaIYaaaaKqbakaadIeadaWgaaqaaKqzadGaeq4TdG gajuaGbeaadaqadaqaaiabe67a4jaacYcacaaMc8UaaGimaaGaayjk aiaawMcaaiaacYcaaaa@8222@
i.e., ( Re ) 1 / 2 S h = ( ξ exp ( ξ ) ) 1 / 2 H η ( ξ , 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaiaaykW7aiaawIcacaGLPaaadaahaaqabeaajugW aiabgkHiTiaaigdacaGGVaGaaGOmaaaajuaGcaWGtbGaamiAaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaMc8UaaGPaVpaa bmaabaGaeqOVdGNaaGPaVlaaykW7ciGGLbGaaiiEaiaacchacaGGOa GaeqOVdGNaaiykaaGaayjkaiaawMcaamaaCaaabeqaaSWaaSGbaKqb agaajugWaiaaigdaaKqbagaajugWaiaaikdaaaaaaKqbakaaykW7ca aMc8UaamisamaaBaaabaqcLbmacqaH3oaAaKqbagqaamaabmaabaGa eqOVdGNaaiilaiaaykW7caaIWaaacaGLOaGaayzkaaGaaGPaVlaac6 cacaaMc8oaaa@70D6@ ........... (13)

Method of solution

The arrangement of coupled nonlinear partial differential equations (7) to (9) with boundary condition (10) has been solved numerically by using the implicit finite difference scheme along with Quasi-linearization technique.36 The benefit of this system is that it has the quadratic rate of convergence. Further, using the Quasi-linearization technique the arrangement of coupled nonlinear partial differential equations (7) to (9) with boundary condition (10) is replaced by the following sequence of linear partial differential equation.

F η η i + 1 + A 1 i F η i + 1 + A 2 i F i + 1 + A 3 i F ξ i + 1 + A 4 i G i + 1 + A 5 i H i + 1 = A 6 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aaDaaabaqcLbmacqaH3oaAcqaH3oaAaKqbagaajugWaiaadMgacqGH RaWkcaaIXaaaaKqbakabgUcaRiaaykW7caaMc8UaamyqamaaDaaaba qcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaMc8Ua amOramaaDaaabaqcLbmacqaH3oaAaKqbagaajugWaiaadMgacqGHRa WkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7caWG bbWaa0baaeaajugWaiaaikdaaKqbagaajugWaiaadMgaaaqcfaOaaG PaVlaaykW7caWGgbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIaaGym aaaajuaGcaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaamyqamaaDa aabaqcLbmacaaIZaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaM c8UaamOramaaDaaabaqcLbmacqaH+oaEaKqbagaajugWaiaadMgacq GHRaWkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7 caWGbbWaa0baaeaajugWaiaaisdaaKqbagaajugWaiaadMgaaaqcfa OaaGPaVlaaykW7caWGhbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIa aGymaaaajuaGcaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8Uaamyqam aaDaaabaqcLbmacaaI1aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7 caaMc8UaamisamaaCaaabeqaaKqzadGaamyAaiabgUcaRiaaigdaaa qcfaOaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaadgeadaWgaaqa aKqzadGaaGOnaaqcfayabaGaaiilaaaa@BAD4@ ........ (14)
G η η i + 1 + B 1 i G η i + 1 + B 2 i G i + 1 + B 3 i G ξ i + 1 + B 4 i F i + 1 + B 5 i H η η i + 1 = B 6 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4ram aaDaaabaqcLbmacqaH3oaAcqaH3oaAaKqbagaajugWaiaadMgacqGH RaWkcaaIXaaaaKqbakabgUcaRiaaykW7caaMc8UaamOqamaaDaaaba qcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaMc8Ua am4ramaaDaaabaqcLbmacqaH3oaAaKqbagaajugWaiaadMgacqGHRa WkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7caWG cbWaa0baaeaajugWaiaaikdaaKqbagaajugWaiaadMgaaaqcfaOaaG PaVlaaykW7caWGhbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIaaGym aaaajuaGcaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaamOqamaaDa aabaqcLbmacaaIZaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaM c8Uaam4ramaaDaaabaqcLbmacqaH+oaEaKqbagaajugWaiaadMgacq GHRaWkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7 caWGcbWaa0baaeaajugWaiaaisdaaKqbagaajugWaiaadMgaaaqcfa OaaGPaVlaaykW7caWGgbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIa aGymaaaajuaGcqGHRaWkcaaMc8UaaGPaVlaadkeadaqhaaqaaKqzad GaaGynaaqcfayaaKqzadGaamyAaaaajuaGcaaMc8UaaGPaVlaadIea daqhaaqaaKqzadGaeq4TdGMaeq4TdGgajuaGbaqcLbmacaWGPbGaey 4kaSIaaGymaaaajuaGcaaMc8UaaGPaVlabg2da9iaaykW7caaMc8Ua amOqamaaBaaabaqcLbmacaaI2aaajuaGbeaacaGGSaaaaa@BCDB@ ............... (15)
H η η i + 1 + C 1 i H η i + 1 + C 2 i H i + 1 + C 3 i H ξ i + 1 + C 4 i F i + 1 + C 5 i G η η i + 1 = C 6 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaDaaabaqcLbmacqaH3oaAcqaH3oaAaKqbagaajugWaiaadMgacqGH RaWkcaaIXaaaaKqbakabgUcaRiaaykW7caaMc8Uaam4qamaaDaaaba qcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaMc8Ua amisamaaDaaabaqcLbmacqaH3oaAaKqbagaajugWaiaadMgacqGHRa WkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7caWG dbWaa0baaeaajugWaiaaikdaaKqbagaajugWaiaadMgaaaqcfaOaaG PaVlaaykW7caWGibWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIaaGym aaaajuaGcaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8Uaam4qamaaDa aabaqcLbmacaaIZaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaM c8UaamisamaaDaaabaqcLbmacqaH+oaEaKqbagaajugWaiaadMgacq GHRaWkcaaIXaaaaKqbakaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7 caWGdbWaa0baaeaajugWaiaaisdaaKqbagaajugWaiaadMgaaaqcfa OaaGPaVlaaykW7caWGgbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIa aGymaaaajuaGcqGHRaWkcaaMc8UaaGPaVlaadoeadaqhaaqaaKqzad GaaGynaaqcfayaaKqzadGaamyAaaaajuaGcaaMc8UaaGPaVlaadEea daqhaaqaaKqzadGaeq4TdGMaeq4TdGgajuaGbaqcLbmacaWGPbGaey 4kaSIaaGymaaaajuaGcaaMc8UaaGPaVlabg2da9iaaykW7caaMc8Ua am4qamaaBaaabaqcLbmacaaI2aaajuaGbeaacaGGUaaaaa@BCE6@ ........... (16)

The coefficient functions with iterative index i are known and the functions with iterative index (i+1) are to be determined. The corresponding boundary conditions are given by

F i + 1 ( ξ , 0 ) = 1 , G i + 1 ( ξ , 0 ) = 1 , H i + 1 ( ξ , 0 ) = 1 at η = 0 , F i + 1 ( ξ , η ) = β , G i + 1 ( ξ , η ) = 0 , H i + 1 ( ξ , η ) = 0 at η η . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGgbWaaWbaaeqabaqcLbmacaWGPbGaey4kaSIaaGymaaaajuaGcaGG OaGaeqOVdGNaaiilaiaaicdacaGGPaGaeyypa0JaaGymaiaacYcaca aMf8Uaam4ramaaCaaabeqaaKqzadGaamyAaiabgUcaRiaaigdaaaqc faOaaiikaiabe67a4jaacYcacaaIWaGaaiykaiabg2da9iaaigdaca GGSaGaaGzbVlaadIeadaahaaqabeaajugWaiaadMgacqGHRaWkcaaI XaaaaKqbakaacIcacqaH+oaEcaGGSaGaaGimaiaacMcacqGH9aqpca aIXaGaaGzbVlaabggacaqG0bGaaGPaVlaaykW7caaMc8Uaeq4TdGMa aGPaVlabg2da9iaaykW7caaIWaGaaiilaaGcbaqcfaOaamOramaaCa aabeqaaKqzadGaamyAaiabgUcaRiaaigdaaaqcfaOaaiikaiabe67a 4jaacYcacqaH3oaAcaGGPaGaeyypa0JaeqOSdiMaaiilaiaaykW7ca aMc8UaaGPaVlaadEeadaahaaqabeaajugWaiaadMgacqGHRaWkcaaI XaaaaKqbakaacIcacqaH+oaEcaGGSaGaeq4TdGMaaiykaiabg2da9i aaicdacaGGSaGaaGPaVlaaykW7caaMc8UaamisamaaCaaabeqaaKqz adGaamyAaiabgUcaRiaaigdaaaqcfaOaaiikaiabe67a4jaacYcacq aH3oaAcaGGPaGaeyypa0JaaGimaiaaywW7caqGHbGaaeiDaiaaywW7 cqaH3oaAcqGHsgIRcqaH3oaAdaWgaaqaaKqzadGaeyOhIukajuaGbe aacaGGUaGaaGPaVdaaaa@ADE6@ ................... (17)

The coefficients in equation (14) to (16) are given by

A 1 i = { ( 1 + ξ ) f 2 + ξ f ξ } ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaabaqcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqzGeGa eyypa0JaaGPaVlaaykW7caGG7bGaaGPaVNqbaoaabmaabaqcLbsaca aMc8UaaGymaiaaykW7cqGHRaWkcaaMc8UaeqOVdGhajuaGcaGLOaGa ayzkaaWaaSaaaeaajugibiaadAgaaKqbagaajugibiaaikdaaaGaaG PaVlabgUcaRiaaykW7caaMc8UaaGPaVlabe67a4jaaykW7caWGMbqc fa4aaSbaaeaajugWaiabe67a4bqcfayabaqcLbsacaaMc8UaaGPaVl aac2hacaaMc8Uaai4oaaaa@68A5@
A 2 i = ( 2 ξ F + ξ F ξ + M 2 ξ e ξ Re + ξ e ξ D a Re + 2 ξ Γ F ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaabaqcLbmacaaIYaaajuaGbaqcLbmacaWGPbaaaKqzGeGa eyypa0JaaGPaVlaaykW7cqGHsislcaaMc8Ecfa4aaeWaaeaajugibi aaykW7caaIYaGaaGPaVlabe67a4jaaykW7caaMc8UaamOraiaaykW7 caaMc8Uaey4kaSIaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVlaadA eajuaGdaWgaaqaaKqzGeGaeqOVdGhajuaGbeaajugibiaaykW7caaM c8Uaey4kaSIaaGPaVlaaykW7caWGnbqcfa4aaWbaaeqabaqcLbmaca aIYaaaaKqzGeGaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVlaadwga juaGdaahaaqabeaajugWaiabgkHiTiabe67a4baajugibiaaykW7ca aMc8UaciOuaiaacwgacaaMc8UaaGPaVlabgUcaRKqbaoaalaaabaqc LbsacqaH+oaEcaaMc8UaaGPaVlaadwgajuaGdaahaaqabeaajugWai abgkHiTiabe67a4baaaKqbagaajugibiaadseacaWGHbGaaGPaVlaa ykW7ciGGsbGaaiyzaaaacaaMc8UaaGPaVlabgUcaRiaaikdacaaMc8 UaaGPaVlabe67a4jaaykW7caaMc8Uaeu4KdCKaaGPaVlaaykW7caWG gbaajuaGcaGLOaGaayzkaaqcLbsacaaMc8Uaai4oaaaa@AAC5@
A 3 i = ξ F ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaabaqcLbmacaaIZaaajuaGbaqcLbmacaWGPbaaaKqzGeGa eyypa0JaeyOeI0IaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVlaadA eacaaMc8Uaai4oaaaa@49FB@
A 4 i = ξ R i ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaabaqcLbmacaaI0aaajuaGbaqcLbmacaWGPbaaaKqzGeGa aGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlabe67a4jaaykW7ciGGsb GaamyAaiaaykW7caaMc8Uaai4oaiaaykW7aaa@4EAB@
A 5 i = ξ R i N ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaabaqcLbmacaaI1aaajuaGbaqcLbmacaWGPbaaaKqzGeGa aGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlabe67a4jaaykW7caWGsb GaamyAaiaaykW7caWGobGaai4oaiaaykW7aaa@4DF3@
A 6 i = ( ξ F 2 + ξ F F ξ + M 2 ξ e ξ Re β + β 2 ξ + ξ Γ F 2 + ξ e ξ β D a Re + ξ Γ β 2 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyqaK qbaoaaDaaakeaajugWaiaaiAdaaOqaaKqzadGaamyAaaaajugibiab g2da9iaaykW7caaMc8UaeyOeI0IaaGPaVNqbaoaabmaakeaajugibi aaykW7cqaH+oaEcaaMc8UaaGPaVlaadAeajuaGdaahaaWcbeqaaKqz adGaaGOmaaaajugibiaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7cq aH+oaEcaaMc8UaaGPaVlaadAeacaaMc8UaaGPaVlaadAeajuaGdaWg aaWcbaqcLbmacqaH+oaEaSqabaqcLbsacaaMc8UaaGPaVlabgUcaRi aaykW7caaMc8UaamytaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqz GeGaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVlaadwgajuaGdaahaa WcbeqaaKqzadGaeyOeI0IaeqOVdGhaaKqzGeGaaGPaVlaaykW7ciGG sbGaaiyzaiaaykW7caaMc8UaeqOSdiMaaGPaVlaaykW7cqGHRaWkca aMc8UaaGPaVlabek7aILqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqz GeGaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPaVlabgUcaRiaaykW7ca aMc8UaeqOVdGNaaGPaVlaaykW7cqqHtoWrcaaMc8UaaGPaVlaadAea juaGdaahaaWcbeqaaKqzadGaaGOmaaaajugibiaaykW7caaMc8Uaey 4kaSIaaGPaVlaaykW7juaGdaWcaaGcbaqcLbsacqaH+oaEcaaMc8Ua aGPaVlaadwgajuaGdaahaaWcbeqaaKqzadGaeyOeI0IaeqOVdGhaaK qzGeGaaGPaVlaaykW7cqaHYoGyaOqaaKqzGeGaamiraiaadggacaaM c8UaaGPaVlGackfacaGGLbaaaiaaykW7caaMc8Uaey4kaSIaaGPaVl aaykW7cqaH+oaEcaaMc8UaaGPaVlabfo5ahjaaykW7caaMc8UaeqOS diwcfa4aaWbaaSqabeaajugWaiaaikdaaaaakiaawIcacaGLPaaaju gibiaaykW7caGG7aGaaGPaVdaa@E4EE@
B 1 i = Pr { ( 1 + ξ ) f 2 + ξ F ξ } ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqbakabg2da 9iaaykW7caaMc8UaciiuaiaackhacaaMc8UaaGPaVlaacUhacaaMc8 UaaiikaiaaykW7caaIXaGaaGPaVlabgUcaRiaaykW7cqaH+oaEcaaM c8UaaiykaiaaykW7daWcaaqaaiaadAgaaeaacaaIYaaaaiaaykW7cq GHRaWkcaaMc8UaeqOVdGNaaGPaVlaadAeadaWgaaqaaiabe67a4bqa baGaaGPaVlaac2hacaaMc8UaaGPaVlaacUdacaaMc8oaaa@681E@
B 2 i = ( 2 Pr ξ F B * ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaIYaaajuaGbaqcLbmacaWGPbaaaKqbakabg2da 9iaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7daqadaqaaiaaikdaca aMc8UaaGPaVlGaccfacaGGYbGaaGPaVlaaykW7cqaH+oaEcaaMc8Ua aGPaVlaadAeacqGHsislcaaMc8UaaGPaVlaadkeacaGGQaGaaGPaVl aaykW7aiaawIcacaGLPaaacaGG7aaaaa@5DDC@
B 3 i = Pr ξ F ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaIZaaajuaGbaqcLbmacaWGPbaaaKqbakabg2da 9iaaykW7cqGHsislciGGqbGaaiOCaiaaykW7cqaH+oaEcaaMc8Uaam OraiaaykW7caaMc8Uaai4oaaaa@4B53@
B 4 i = ( 2 Pr ξ G + Pr ξ G ξ A * + 2 Pr M 2 Re ξ e ξ E c ( β F ) ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaI0aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsisldaqadaqaaiaaikdaca aMc8UaaGPaVlGaccfacaGGYbGaaGPaVlaaykW7cqaH+oaEcaaMc8Ua aGPaVlaadEeacqGHRaWkciGGqbGaaiOCaiaaykW7caaMc8UaeqOVdG NaaGPaVlaaykW7caWGhbWaaSbaaeaajugWaiabe67a4bqcfayabaGa eyOeI0IaamyqaiaacQcacqGHRaWkcaaIYaGaaGPaVlaaykW7ciGGqb GaaiOCaiaaykW7caaMc8UaamytamaaCaaabeqaaKqzadGaaGOmaaaa juaGcaaMc8UaaGPaVlGackfacaGGLbGaaGPaVlaaykW7cqaH+oaEca aMc8UaaGPaVlaadwgadaahaaqabeaajugWaiabgkHiTiabe67a4baa juaGcaaMc8UaaGPaVlaadweacaWGJbGaaGPaVlaaykW7caGGOaGaeq OSdiMaeyOeI0IaamOraiaacMcacaaMc8UaaGPaVdGaayjkaiaawMca aiaaykW7caGG7aaaaa@972C@
B 5 i = Pr D f ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaI1aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7ciGGqbGaaiOCaiaaykW7caaMc8 UaamiraiaadAgacaGG7aGaaGPaVdaa@4CA4@
B 6 i = 2 Pr ξ F G Pr ξ F G ξ Pr M 2 ξ e ξ Re E c ( β 2 F 2 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aaDaaabaqcLbmacaaI2aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaIYaGaaGPaVlaayk W7ciGGqbGaaiOCaiaaykW7caaMc8UaeqOVdGNaaGPaVlaaykW7caWG gbGaaGPaVlaaykW7caWGhbGaaGPaVlaaykW7cqGHsislcaaMc8UaaG PaVlGaccfacaGGYbGaaGPaVlaaykW7cqaH+oaEcaaMc8UaamOraiaa ykW7caWGhbWaaSbaaeaacqaH+oaEaeqaaiabgkHiTiGaccfacaGGYb GaaGPaVlaaykW7caWGnbWaaWbaaeqabaqcLbmacaaIYaaaaKqbakaa ykW7caaMc8UaeqOVdGNaaGPaVlaaykW7caWGLbWaaWbaaeqabaqcLb macqGHsislcqaH+oaEaaqcfaOaaGPaVlaaykW7ciGGsbGaaiyzaiaa ykW7caaMc8UaamyraiaadogacaaMc8UaaGPaVlaacIcacqaHYoGyda ahaaqabeaajugWaiaaikdaaaqcfaOaeyOeI0IaamOramaaCaaabeqa aKqzadGaaGOmaaaajuaGcaGGPaGaaGPaVlaaykW7caGG7aGaaGPaVd aa@9DD8@
C 1 i = S c { ( 1 + ξ ) f 2 + ξ f ξ } ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaDaaabaqcLbmacaaIXaaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7 caaMc8Uaeyypa0JaaGPaVlaaykW7caWGtbGaam4yaiaaykW7caaMc8 Uaai4EaiaaykW7caGGOaGaaGPaVlaaigdacaaMc8Uaey4kaSIaaGPa Vlabe67a4jaaykW7caGGPaGaaGPaVpaalaaabaqcLbmacaWGMbaaju aGbaqcLbmacaaIYaaaaKqbakaaykW7cqGHRaWkcaaMc8UaeqOVdGNa aGPaVlaadAgadaWgaaqaaiabe67a4bqabaGaaGPaVlaac2hacaaMc8 UaaGPaVlaacUdacaaMc8oaaa@6EC1@
C 2 i = 2 S c ξ F ; C 3 i = S c ξ F ; C 4 i = 2 S c ξ H ξ S c H ξ ; C 5 i = S r S c ; C 6 i = S c ξ F H ξ 2 S c ξ F H . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGdbWaa0baaeaajugWaiaaikdaaKqbagaajugWaiaadMgaaaqcfaOa aGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlabgkHiTiaaikdacaaMc8 UaaGPaVlaadofacaWGJbGaaGPaVlaaykW7cqaH+oaEcaaMc8UaaGPa VlaadAeacaaMc8UaaGPaVlaacUdaaeaacaWGdbWaa0baaeaajugWai aaiodaaKqbagaajugWaiaadMgaaaqcfaOaaGPaVlaaykW7cqGH9aqp caaMc8UaaGPaVlabgkHiTiaaykW7caWGtbGaam4yaiaaykW7cqaH+o aEcaaMc8UaamOraiaaykW7caGG7aaabaGaam4qamaaDaaabaqcLbma caaI0aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaMc8Uaeyypa0 JaaGPaVlaaykW7cqGHsislcaaMc8UaaGOmaiaaykW7caWGtbGaam4y aiaaykW7cqaH+oaEcaaMc8UaamisaiabgkHiTiaaykW7caaMc8Uaeq OVdGNaaGPaVlaaykW7caWGtbGaam4yaiaaykW7caaMc8Uaamisamaa BaaabaGaeqOVdGhabeaacaaMc8UaaGPaVlaacUdacaaMc8oabaGaam 4qamaaDaaabaqcLbmacaaI1aaajuaGbaqcLbmacaWGPbaaaKqbakaa ykW7caaMc8Uaeyypa0JaaGPaVlaadofacaWGYbGaaGPaVlaaykW7ca WGtbGaam4yaiaaykW7caaMc8Uaai4oaaGcbaqcfaOaam4qamaaDaaa baqcLbmacaaI2aaajuaGbaqcLbmacaWGPbaaaKqbakaaykW7caaMc8 Uaeyypa0JaaGPaVlaaykW7cqGHsislcaaMc8Uaam4uaiaadogacaaM c8UaaGPaVlabe67a4jaaykW7caaMc8UaamOraiaaykW7caaMc8Uaam isamaaBaaabaqcLbmacqaH+oaEaKqbagqaaiaaykW7caaMc8UaeyOe I0IaaGOmaiaaykW7caaMc8Uaam4uaiaadogacaaMc8UaaGPaVlabe6 7a4jaaykW7caaMc8UaamOraiaaykW7caaMc8Uaamisaiaac6caaaaa @EECA@

The subsequent arrangement of linear partial differential equations (14) to (16) were discretized utilizing second order central difference formula in η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG gaaa@3831@ -direction (boundary layer) and backward difference formula in ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG haaa@3848@ - direction (streamwise). At every iteration step, the equations were then transformed to a set of linear algebraic equations, with a structure of block tri-diagonal which is solved using Varga’s algorithm.37 To ensure the convergence of the numerical solution to the exact solution, a proper and optimal value for step sizes Δ η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyiLdq Kaeq4TdGgaaa@3998@ and Δ ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyiLdq KaeqOVdGhaaa@39AF@ have been taken as 0.001 and 0.001, respectively. Moreover, a grid independent study was carried out to examine the effect of the step size Δη and the edge of the boundary layer η on the solution in the quest for their optimization. The ηmax i.e. η was so chosen that the solution shows negligible changes for η larger than ηmax. A step size of Δη = 0.001 was found to be satisfactory for a convergence criteria with an absolute error less than 10-5 in all cases and the value of η = 10 was found to be sufficiently large for the velocity to reach the relevant freestream velocity. The outcomes exhibited here are independent of the step sizes at least up to the fifth decimal place. A convergence criterion based on the relative contrast between the current and previous iteration values. When the difference reaches less than 10-5 at all grid points, the solution is assumed to have converged and the iterative process is terminated.

i. e.,

Max { | ( F η ) w i + 1 ( F η ) w i | , | ( G η ) w i + 1 ( G η ) w i | , | ( H η ) w i + 1 ( H η ) w i | } < 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aadaabdaqaamaabmaabaGaamOramaaBaaabaqcLbmacqaH3oaAaKqb agqaaaGaayjkaiaawMcaamaaBaaabaqcLbmacaWG3baajuaGbeaada ahaaqabeaajugWaiaadMgacqGHRaWkcaaIXaaaaKqbakaaykW7cqGH sislcaaMc8+aaeWaaeaacaWGgbWaaSbaaeaajugWaiabeE7aObqcfa yabaaacaGLOaGaayzkaaWaaSbaaeaajugWaiaadEhaaKqbagqaamaa CaaabeqaaKqzadGaamyAaaaaaKqbakaawEa7caGLiWoacaGGSaGaaG PaVpaaemaabaWaaeWaaeaacaWGhbWaaSbaaeaajugWaiabeE7aObqc fayabaaacaGLOaGaayzkaaWaaSbaaeaajugWaiaadEhaaKqbagqaam aaCaaabeqaaKqzadGaamyAaiabgUcaRiaaigdaaaqcfaOaaGPaVlab gkHiTiaaykW7daqadaqaaiaadEeadaWgaaqaaKqzadGaeq4TdGgaju aGbeaaaiaawIcacaGLPaaadaWgaaqaaKqzadGaam4DaaqcfayabaWa aWbaaeqabaGaamyAaaaaaiaawEa7caGLiWoacaGGSaWaaqWaaeaada qadaqaaiaadIeadaWgaaqaaKqzadGaeq4TdGgajuaGbeaaaiaawIca caGLPaaadaWgaaqaaKqzadGaam4DaaqcfayabaWaaWbaaeqabaqcLb macaWGPbGaey4kaSIaaGymaaaajuaGcaaMc8UaeyOeI0IaaGPaVpaa bmaabaGaamisamaaBaaabaqcLbmacqaH3oaAaKqbagqaaaGaayjkai aawMcaamaaBaaabaqcLbmacaWG3baajuaGbeaadaahaaqabeaacaWG PbaaaaGaay5bSlaawIa7aiaaykW7aiaawUhacaGL9baacqGH8aapca aMc8UaaGymaiaaicdadaahaaqabeaajugWaiabgkHiTiaaykW7caaI 1aaaaaaa@A197@ ................ (18)

To assess the accuracy of the solution, the results have been compared with the results obtained by El-Azaz,21 Ishak25 and Mukhopadhyay27 and results reveal excellent agreement as shown in Table 1.            

Pr

1

2

3

5

10

Ishak [25]

0.9548

1.4715

1.8691

2.5001

3.6604

Swati [27]

0.9547

1.4714

1.8691

2.5001

3.6603

El-Aziz [21]

0.9548

---------

1.8691

2.5001

3.6604

Present study

0.9549

1.4714

1.8691

2.5002

3.6602

Table 1 Values of [ g η ( 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aacqGHsislcaWGNbWaaSbaaeaajugWaiabeE7aObqcfayabaWaaeWa aeGabaaRjiaaicdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@40D3@ for varius values of Prandtl number Pr with Re = 0, Γ = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC Kaeyypa0JaaGimaiaacYcacaaMc8oaaa@3BE7@ D f = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaca WGMbGaeyypa0JaaGimaiaacYcacaaMc8oaaa@3C29@ and N = 0, S r = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGYbGaeyypa0JaaGimaiaacYcacaaMc8oaaa@3C44@ R i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaca WGPbGaeyypa0JaaGimaiaaykW7aaa@3B8A@

In support of non-similar solutions, the numerical solutions for ( Re 1 / 2 C f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaSWaaWbaaKqbagqabaWcdaWcgaqcfayaaKqzadGa aGymaaqcfayaaKqzadGaaGOmaaaaaaqcfaOaam4qaiaadAgaaiaawI cacaGLPaaacaaMc8oaaa@4365@ , ( Re 1 / 2 N u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaSWaaWbaaKqbagqabaWcdaWcgaqcfayaaKqzadGa eyOeI0IaaGymaaqcfayaaKqzadGaaGOmaaaaaaqcfaOaamOtaiaadw haaiaawIcacaGLPaaacaaMc8oaaa@446C@ and ( Re 1 / 2 S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVpaabm aabaGaciOuaiaacwgadaahaaWcbeqaamaalyaabaGaeyOeI0IaaGym aaqaaiaaikdaaaaaaOGaam4uaiaadIgaaiaawIcacaGLPaaacaaMc8 oaaa@40CC@ are presented for various values of physical parameters as shown in Table 2.

Ec

Da

S r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadk haaaa@37C6@

B*

Sc

( Re ) 1 / 2 C f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaaGym aiaac+cacaaIYaaaaKqbakaadoeadaWgaaqaaKqzadGaamOzaaqcfa yabaaaaa@4167@

( Re ) 1 / 2 N u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaeyOe I0IaaGymaiaac+cacaaIYaaaaKqbakaad6eacaWG1bGaaGPaVdaa@421C@

( Re ) 1 / 2 S h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaeyOe I0IaaGymaiaac+cacaaIYaaaaKqbakaaykW7caWGtbGaamiAaaaa@4214@

-0.5

1

0.5

0.3

0.94

2.71344

9.80420

0.1234

0.0

1

0.3

0.3

0.94

3.61032

7.39947

0.8046

0.5

1

0.3

0.3

0.94

4.78540

4.50121

1.6111

0.5

1

0.3

0.3

0.94

4.78540

4.50121

1.6111

-0.5

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3768@

0.3

0.3

0.94

4.27709

10.40794

0.0658

0.0

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3768@

0.3

0.3

0.94

5.71065

7.55976

0.8893

0.5

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3768@

0.3

0.3

0.94

7.83338

3.75340

1.9478

0.3

1

0.3

-0.3

0.94

4.59655

4.95243

1.4812

0.3

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3768@

0.3

-0.3

0.94

7.57692

4.23672

1.8116

0.5

1

0.5

0.3

0.94

4.49791

5.02617

0.8109

0.5

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@3768@

0.5

0.3

0.94

7.35792

4.44318

1.1958

Table 2 Values of ( Re ) 1 / 2 C f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGPaVp aabmaabaGaciOuaiaacwgaaiaawIcacaGLPaaadaahaaqabeaajugW aiaaigdacaGGVaGaaGOmaaaajuaGcaWGdbWaaSbaaeaacaWGMbaabe aacaaMc8oaaa@42C1@ , ( Re ) 1 / 2 N u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaeyOe I0IaaGymaiaac+cacaaIYaaaaKqbakaad6eacaWG1bGaaGPaVdaa@421C@ , ( Re ) 1 / 2 S h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaciGGsbGaaiyzaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaeyOe I0IaaGymaiaac+cacaaIYaaaaKqbakaaykW7caWGtbGaamiAaiaayk W7aaa@439F@ for different values of Eckert number Ec, Darcy number Da, magnetic field M, Sr and B*with A * = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aacQcacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3BD8@ N= 0.5 β = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3C07@ Df = 0.3, M = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai abg2da9iaaigdacaGGSaaaaa@39C8@ ξ = 1 , R i = 10 , Re = 10. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0JaaGymaiaacYcacaWGsbGaamyAaiabg2da9iaaigdacaaI WaGaaiilaiGackfacaGGLbGaeyypa0JaaGymaiaaicdacaGGUaGaaG PaVdaa@4621@

Results and discussion

The numerical computations have been carried out for various values of N ( 0 N 10 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6eaca GGOaGaaGimaiabgsMiJkaad6eacqGHKjYOcaaIXaGaaGimaiaacMca caGGSaaaaa@3FC2@ R i ( 1 R i 20 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkfaca WGPbGaaGPaVlaaykW7caGGOaGaaGPaVlaaykW7cqGHsislcaaIXaGa aGPaVlaaykW7cqGHKjYOcaaMc8UaaGPaVlaadkfacaWGPbGaaGPaVl aaykW7cqGHKjYOcaaMc8UaaGPaVlaaikdacaaIWaGaaGPaVlaaykW7 caGGPaGaaGPaVlaacYcaaaa@59B9@ Re ( 10 Re 50 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakGackfaca GGLbGaaGPaVlaaykW7caGGOaGaaGPaVlaaykW7caaIXaGaaGimaiaa ykW7caaMc8UaeyizImQaaGPaVlaaykW7ciGGsbGaaiyzaiaaykW7ca aMc8UaeyizImQaaGPaVlaaykW7caaI1aGaaGimaiaaykW7caaMc8Ua aiykaiaacYcaaaa@57F6@ β ( 0.5 β 1.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIj aacIcacaaIWaGaaiOlaiaaiwdacqGHKjYOcqaHYoGycqGHKjYOcaaI XaGaaiOlaiaaiwdacaGGPaaaaa@42D5@ ξ ( 0 ξ 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabe67a4j aacIcacaaIWaGaeyizImQaeqOVdGNaeyizImQaaGymaiaacMcacaGG Saaaaa@40E7@ Γ ( 2 Γ 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahj aaykW7caaMc8UaaiikaiabgkHiTiaaikdacaaMc8UaeyizImQaaGPa Vlabfo5ahjaaykW7cqGHKjYOcaaMc8UaaGOmaiaacMcacaGGSaaaaa@4A64@ A * ( 0.3 A * 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadgeaca GGQaGaaiikaiabgkHiTiaaicdacaGGUaGaaG4maiabgsMiJkaadgea caGGQaGaeyizImQaaGymaiaacMcacaGGSaaaaa@42A6@ S c ( 0.22 S c 2.57 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGJbGaaiikaiaaicdacaGGUaGaaGOmaiaaikdacqGHKjYOcaWGtbGa am4yaiabgsMiJkaaikdacaGGUaGaaGynaiaaiEdacaGGPaGaaiilaa aa@453F@ S r ( 1 S r 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadofaca WGYbGaaiikaiabgkHiTiaaigdacqGHKjYOcaWGtbGaamOCaiabgsMi JkaaigdacaGGPaGaaGPaVlaacYcaaaa@4379@ D f   ( 1 D f 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaca WGMbaeaaaaaaaaa8qacaGGGcGaaiikaiaaigdacqGHsislcqGHKjYO caWGebGaamOzaiabgsMiJkaaigdacaGGPaaaaa@424B@ D a ( 1 D a 100000 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaca WGHbGaaiikaiaaigdacaaMc8UaeyizImQaamiraiaadggacqGHKjYO caaIXaGaaGimaiaaicdacaaIWaGaaGimaiaaicdacaGGPaGaaiilaa aa@45ED@ B * ( 1 B * 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeaca GGQaGaaGPaVlaaykW7caGGOaGaeyOeI0IaaGymaiaaykW7cqGHKjYO caaMc8UaamOqaiaacQcacaaMc8UaeyizImQaaGPaVlaaigdacaGGPa Gaaiilaaaa@4A7C@ E c ( 1 E c 2 ) , M ( 1 M 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweaca WGJbGaaGPaVlaaykW7caGGOaGaeyOeI0IaaGymaiaaykW7cqGHKjYO caaMc8UaamyraiaadogacaaMc8UaeyizImQaaGPaVlaaikdacaGGPa GaaiilaiaaykW7caaMc8UaaGPaVlaad2eacaaMc8UaaiikaiabgkHi TiaaigdacaaMc8UaeyizImQaaGPaVlaad2eacaaMc8UaeyizImQaaG PaVlaaigdacaGGPaGaaiOlaaaa@60CB@ The edge of the boundary layer η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG 2aaSbaaeaajugWaiabg6HiLcqcfayabaaaaa@3B7F@ has been taken between 4.0 and 10.0 based on the values of the physical parameters of the profiles.

The effect of non-similar parameter or stream wise co-ordinate ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGPaVdaa@39D3@ on velocity ( F ( ξ , η ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaamOraiaacIcacqaH+oaEcaGGSaGaeq4TdGMaaiykaiaa ykW7aiaawIcacaGLPaaacaGGSaaaaa@4216@ temperature ( G ( ξ , η ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8Uaam4raiaacIcacqaH+oaEcaGGSaGaeq4TdGMaaiykaiaa ykW7aiaawIcacaGLPaaacaGGSaaaaa@4217@ and species concentration profiles ( H ( ξ , η ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaamisaiaacIcacqaH+oaEcaGGSaGaeq4TdGMaaiykaiaa ykW7aiaawIcacaGLPaaaaaa@4168@ is displayed in Figure 2. The velocity overshoot is observed with increasing values of stream wise coordinate ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGPaVdaa@39D3@ while the temperature and concentration profiles decrease with increasing values of stream wise coordinate or non-similarity variable ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGPaVdaa@39D3@ . This is due to the fact that the stream wise coordinate act as the favourable pressure gradient in flow velocity which increases the flow rate while decreases the thickness of momentum and concentration boundary layer.

Figure 3 illustrate the variations of velocity profile distributions for different values of M, β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi gaaa@3826@ and Da. It is clearly seen that the velocity profile increases with an increase in β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi gaaa@3826@ . Here β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi gaaa@3826@ is ratio of ambient velocity to the reference velocity. For β < 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaeyipaWJaaGymaiaacYcaaaa@3A95@ the velocity profile decreases, this is due to fact that the reference velocity U 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39F6@ dominates over the ambient velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacqGHEisPaKqbagqaaaaa@3AAD@ . Further for β > 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaeyOpa4JaaGymaiaacYcaaaa@3A99@ the velocity overshoot is observed, this is due to the fact that ambient velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacqGHEisPaKqbagqaaaaa@3AAD@ dominates over the reference velocity U 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyvam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@39F6@ . The velocity profile increases with decrease of magnetic parameter M. physically, the presence of magnetic parameter produces the Lorenz force which reduces the movement of the fluid flow. Thus velocity profile decreases. Further, the velocity profile increases with increasing values of Darcy number Da. With porous medium (Da = 1) the movement of the fluid increases which results in reduced velocity profile while in absence of porous medium ( D a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyOKH4QaeyOhIuQaaiykaaaa@3CEA@ the velocity profile enhanced.

The variations of Forchheimer’s drag coefficient ( Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaGGOaGaaG PaVlabfo5ahjaaykW7caGGPaGaaGPaVdaa@3D64@ and Darcy number ( D a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaGGOaGaam iraiaadggacaGGPaGaaGPaVdaa@3A95@ on velocity profile F ( ξ , η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOram aabmaabaGaeqOVdGNaaiilaiaaykW7cqaH3oaAaiaawIcacaGLPaaa aaa@3E83@ when Re = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciOuai aacwgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B71@ β = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3C07@ R i = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai aadMgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B75@ Pr = 7 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhacqGH9aqpcaaI3aGaaiilaaaa@3AC8@ D f = 0.5 , S r = 0.5 , N = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadAgacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUaGaaGynaiaaykW7 caGGSaGaaGPaVlaadofacaWGYbGaaGPaVlabg2da9iaaykW7caaIWa GaaiOlaiaaiwdacaGGSaGaaGPaVlaad6eacaaMc8Uaeyypa0JaaGPa VlaaicdacaGGUaGaaGynaiaacYcaaaa@5461@ ξ = 1 , S c = 0.94 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0JaaGymaiaacYcacaaMc8Uaam4uaiaadogacqGH9aqpcaaI WaGaaiOlaiaaiMdacaaI0aGaaGPaVdaa@4382@ are displayed in Figure 4. The velocity profile increases with decreasing values of the Forchheimer’s drag coefficient ( Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcaGGOaGaaG PaVlabfo5ahjaaykW7caGGPaaaaa@3BD9@ . The physical reason is that the increase in the inertia or non-Darcy parameter intends of porous medium which resist the fluid motion, this results in reduced velocity profile. Further, the velocity profile increases in porous medium ( D a = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyypa0JaaGymaiaacMcaaaa@3B4D@ and decreases in absence of porous medium ( D a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyOKH4QaeyOhIuQaaiykaaaa@3CEA@ . Physically, the presence of porous medium reduces the velocity of the fluid.

Figure 2 Effects of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ on velocity profile for Re=10, Ri=10, N=0.5, Ec=0.3, Df=0.5, A*=0.3, B*= 0.3, Sr= 0.5, Sc= 0.94, M= 0.5, Da= 1, Pr= 7.0, β= 0.5, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ = 1 and Г= 0.5.

Figure 3 Effects of M, β and Da on velocity profile for Re= 10, Ri = 10, N= 0.5, Ec = 0.3, Df = 0.5, A*= 0.5, B*= 0.5, Sr = 0.5, Sc= 0.94, Pr =7.0, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ = 1 and Г= 0.5

Figure 4 Effects of Г and Da on Velocity profile for Re =10, Ri= 10, N= 0.5, Ec= 0.3, Df = 0.5, A*= 0.5, B* = 0.5, Sr = 0.5, Sc= 0.94, Pr= 7.0, M =1, β= 0.5, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ = 1 and Г= 0.5.

The effects of various values of Dufour number Df and magnetic parameter M on temperature profile is shown in Figure 5. Generally, Dufour number is heat diffusion due to concentration differences. It is clearly observed from Figure 5 that the velocity profile increases with increasing values of the Dufour number Df. Physically, the Dufour term occur in momentum equation which results in increased temperature profile with increasing values of the Dufour number Df. Further, the temperature profile increases with increasing values of the magnetic parameter M. This is due to fact that the inclusion of the magnetic parameter results in Lorenz force which reduces the fluid motion and enhances the temperature of the fluid. Thus, momentum boundary layer thickness and temperature profile increases.

The effects of Soret number Sr and Schmidt number Sc on species concentration profile ( H ( ξ , η ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaamisaiaacIcacqaH+oaEcaGGSaGaeq4TdGMaaiykaiaa ykW7aiaawIcacaGLPaaaaaa@4168@ when Re = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciOuai aacwgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B71@ β = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3C07@ R i = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai aadMgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B75@ Pr = 7 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhacqGH9aqpcaaI3aGaaiilaaaa@3AC8@ D f = 0.5 , D a = 1 , N = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadAgacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUaGaaGynaiaaykW7 caGGSaGaaGPaVlaadseacaWGHbGaaGPaVlabg2da9iaaykW7caaIXa GaaiilaiaaykW7caWGobGaaGPaVlabg2da9iaaykW7caaIWaGaaiOl aiaaiwdacaGGSaaaaa@52D1@ ξ = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0JaaGymaiaacYcaaaa@3AB9@ E c = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadogacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3C16@ Γ = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC Kaeyypa0JaaGimaiaac6cacaaI1aGaaGPaVdaa@3CA9@ is displayed in Figure 6. The species concentration profile increases with increasing values of the Soret number Sr. Physically, the Soret number is mass diffusion due to temperature variations in the flow. In addition, the Soret number term occur in concentration which results in enhanced species concentration with increase of Soret number. Here, the realistic values of Schmidt number Sc = 0.66 and 0.94, representing the diffusion of species of most common interest such as Propyl Benzene Hydrogen and water vapour at 25˚C at one atmospheric pressure. Moreover, increase in Schmidt number decreases the species concentration profile. This is due to the fact that the increase in Schmidt number Sc means decrease of diffusivity that result in decrease of species concentration profile.

Figure 5 Effects of Df and M on temperature profile for Re =10, Ri =10, N =0.5,Ec =0.3, A* = 0.5, B* = 0.5, Sr = 0.5, Sc= 0.66, Pr = 7.0, Da =1, β = 0.5, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ = 1 and Г = 0.5.

Figure 6 Effects of Sr and Sc on concentration profile for Re = 10, Ri = 10, N= 0.5, Ec= 0.3, A* =0.5, B* =0.5, Df = 0.5, M =1, Pr =7.0, Da =1, β = 0.5, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@37B9@ = 1 and Г = 0.5.

Figure 7 shows the effects of space dependent heat source/sink parameter A* and magnetic parameter M on skin friction coefficient ( Re 1 / 2 C f ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgadaahaaqabeaajugWaiaaigdacaGGVaGa aGOmaaaajuaGcaWGdbGaamOzaaGaayjkaiaawMcaaiaac6caaaa@41C6@ It is clearly seen that the skin friction coefficient increases with decrease of magnetic parameter. This is due to the inclusion of magnetic field in the flow region which results in a force called Lorenz force which causes to decrease the skin friction coefficient. Moreover, the skin friction coefficient increases with increase in A*. The inclusion of space dependent heat source A* has ability to increase the friction between the wall and fluid layers. Because of increase in friction, the fluid velocity is reduced and skin friction coefficient is enhanced. In particularly, for Re = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciOuai aacwgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B71@ β = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3C07@ R i = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai aadMgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B75@ Pr = 7 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhacqGH9aqpcaaI3aGaaiilaaaa@3AC8@ D f = 0.3 , D a = 1 , N = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadAgacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUaGaaG4maiaaykW7 caGGSaGaaGPaVlaadseacaWGHbGaaGPaVlabg2da9iaaykW7caaIXa GaaiilaiaaykW7caWGobGaaGPaVlabg2da9iaaykW7caaIWaGaaiOl aiaaiwdacaGGSaaaaa@52CF@ ξ = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0JaaGymaiaacYcaaaa@3AB9@ E c = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadogacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3C16@ S r = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aadkhacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3C33@ S c = 0.94 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aadogacqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI0aGaaiilaaaa@3CE8@ Γ = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC Kaeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3BCE@ the skin friction coefficient increases around 12% and 15% with M = 0 and MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai abg2da9iaaicdacaaMc8UaaGPaVlaabggacaqGUbGaaeizaiaaykW7 caaMc8oaaa@41FF@ M = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai abg2da9iaaigdaaaa@3918@ , respectively.

Figure 7 Effects of M and A* on skin friction coefficient for Re = 10, Ri = 10, N =0.5, Ec =0.3, B* = 0.3, Sr = 0.3, Pr =7, Da =1, Г = 0.5 and Sc = 0.94.

The effects of Eckert number Ec and Darcy number Da on skin friction coefficient ( Re 1 / 2 C f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgalmaaCaaajuaGbeqaaKqzadGaaGymaiaa c+cacaaIYaaaaKqbakaadoeacaWGMbaacaGLOaGaayzkaaaaaa@41AD@ is displayed in Figure 8. It is clearly seen that the skin friction coefficient ( Re 1 / 2 C f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgalmaaCaaajuaGbeqaaKqzadGaaGymaiaa c+cacaaIYaaaaKqbakaadoeacaWGMbaacaGLOaGaayzkaaaaaa@41AD@ increases with Eckert number Ec. Eckert number characterizes the viscous dissipation in which the viscosity of the fluid takes the energy from motion of the fluid and converts it into internal energy which results in enhanced heat transfer that increases the fluid motion. Thus the skin friction coefficient increases with increase in Ec. Furthermore, skin friction coefficient increases in absence of porous medium while decreases in presence of porous medium. Skin friction coefficient ( Re 1 / 2 C f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgalmaaCaaajuaGbeqaaKqzadGaaGymaiaa c+cacaaIYaaaaKqbakaadoeacaWGMbaacaGLOaGaayzkaaaaaa@41AD@ increase approximately about 58% and 64% as Ec increases from E c = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadogacqGH9aqpcqGHsislcaaIWaGaaiOlaiaaiwdaaaa@3C55@ to E c = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadogacqGH9aqpcaaIWaGaaiOlaiaaiwdaaaa@3B68@ corresponding to the Darcy number D a = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadggacqGH9aqpcaaIXaaaaa@39F5@ and D a , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadggacqGHsgIRcqGHEisPcaGGSaaaaa@3C41@ respectively.

Figure 8 Effects of Ec and Da on skin friction coefficient for Re = 10, Ri = 10, N =0.5, Ec =0.5, Df =0.3, β=0.5, A* = 0.3, B*= 0.3, Sr =0.3, Pr =7, M =1, Г = 0.5 and Sc = 0.94.

The influence of temperature dependent heat source/sink B* and Darcy number Da on heat transfer rate ( Re 1 / 2 N u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgadaahaaqabeaajugWaiabgkHiTiaaigda caGGVaGaaGOmaaaajuaGcaWGobGaamyDaaGaayjkaiaawMcaaaaa@421B@ when Re = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciOuai aacwgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B71@ β = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi Maeyypa0JaaGimaiaac6cacaaI1aGaaiilaaaa@3C07@ R i = 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai aadMgacqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3B75@ Pr = 7 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhacqGH9aqpcaaI3aGaaiilaaaa@3AC8@ D f = 0.3 , M = 1 , N = 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamirai aadAgacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUaGaaG4maiaaykW7 caGGSaGaaGPaVlaad2eacaaMc8Uaeyypa0JaaGPaVlaaigdacaGGSa GaaGPaVlaad6eacaaMc8Uaeyypa0JaaGPaVlaaicdacaGGUaGaaGyn aiaacYcaaaa@51F2@ ξ = 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG Naeyypa0JaaGymaiaacYcaaaa@3AB9@ E c = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyrai aadogacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3C16@ A * = 0.3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai aacQcacqGH9aqpcaaIWaGaaiOlaiaaiodacaGGSaaaaa@3BD8@ S c = 0.94 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaado gacqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI0aGaaiilaaaa@3C5A@ Γ = 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC Kaeyypa0JaaGimaiaac6cacaaI1aGaaGPaVdaa@3CA9@ is displayed in Figure 9. It is predicted that the heat transfer rate ( Re 1 / 2 N u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgadaahaaqabeaajugWaiabgkHiTiaaigda caGGVaGaaGOmaaaajuaGcaWGobGaamyDaaGaayjkaiaawMcaaaaa@421B@ increases with decreasing values of B*. Physically, increase in B* increases the temperature of the fluid which results in reduce of heat transfer rate. Further, the heat transfer rate increases in presence of porous medium ( D a = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyypa0JaaGymaiaacMcaaaa@3B4E@ and opposite impact is observed in absence of porous medium ( D a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyOKH4QaeyOhIuQaaiykaaaa@3CEA@ . For instance, the heat transfer rate decreases approximately 14% and 17% as Da increase from ( D a = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyypa0JaaGymaiaacMcaaaa@3B4E@ and ( D a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadseacaWGHbGaeyOKH4QaeyOhIuQaaiykaaaa@3CEA@ with B* = -0.3 and B* = 0.3 respectively.

Figure 9 Effects of B* and Da on heat transfer rate for Re = 10, Ri = 10, N =0.5, Ec =0.3, Df =0.3, β=0.5, , M =1, Sr =0.3, Pr =7, A* = 0.3, Г = 0.5 and Sc = 0.94.

The effect of Soret number Sr and Darcy number Da on mass transfer rate ( Re 1 / 2 S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0Ia aGymaiaac+cacaaIYaaaaKqbakaadofacaWGObaacaGLOaGaayzkaa aaaa@42AC@ is shown in Figure 10. The mass transfer rate ( Re 1 / 2 S h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaaMc8UaciOuaiaacwgalmaaCaaajuaGbeqaaKqzadGaeyOeI0Ia aGymaiaac+cacaaIYaaaaKqbakaadofacaWGObaacaGLOaGaayzkaa aaaa@42AC@ increases with decrease of the Soret number. Soret number is temperature gradient produce a mass flux. Physically, the Soret number is linearly proportional to the temperature difference. For higher values of temperature difference, the Soret number increases which results in decrease of mass transfer rate. Further, the mass transfer rate decreases in presence of porous medium. The mass transfer rate increases about 10% with Darcy number Da increase from 1 to , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOhIu Qaaiilaaaa@38A6@ respectively.

Figure 10 Effects of Sr and Da mass transfer for Re = 10, Ri = 10, N =0.5, Ec =0.5, Df =0.3, β=0.5, B*= 0.3, M =1, Pr = 7, A*= 0.3, Г = 0.5 and Sc = 0.94.

Conclusion

A numerical study is carried out for the MHD mixed convection flow over exponentially stretching surface through Darcy-Forchheimerporous medium in presence of cross diffusion (Dufour and Soret) and non-uniform heat source/sink. The resulting set of dimensionless coupled nonlinear partial differential equation was solved by using an implicit finite difference scheme in combination with Quasi-linearization technique. From this numerical investigation the following conclusions are drawn.

  1. The velocity profile increases in presence of porous medium as compared to absence of porous medium.
  2. The velocity profile decreases with increase of magnetic parameter.
  3. The temperature profile increases with increase of magnetic parameter.
  4. The skin friction coefficient increases with space dependent heat source parameter.
  5. In presence of porous medium the heat transfer rate increases.
  6. The mass transfer rate increases with increase of Darcy number.

Nomenclature

CSpecies concentration (kg m-3)
C f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaabaqcLbmacaWGMbaajuaGbeaaaaa@3A14@ Local skin-friction coefficient
C p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaabaqcLbmacaWGWbaajuaGbeaaaaa@3A1E@ Specific heat at constant pressure (J K-1kg-1)
C w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3A25@ Concentration at the wall (kg m-3)
C w 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaam4DaiaaicdaaKqbagqaaaaa@3AD4@ Reference concentration
C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadoeada WgaaqaaKqzadGaeyOhIukajuaGbeaaaaa@3A90@ Ambient species concentration
D f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadseaca WGMbaaaa@382E@ Dufour number
Da Darcy number
f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzaa aa@376F@ Dimensionless stream function
F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOraa aa@3750@ Dimensionless velocity
g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zaa aa@3770@ Acceleration due to gravity (ms-2 )
G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4raa aa@3751@ Dimensionless temperature
G r , G r * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai aadkhacaGGSaGaaGPaVlaaykW7caWGhbGaamOCamaaCaaabeqaaKqz adGaaiOkaaaaaaa@3FCE@ Grashof numbers due to temperature and species concentration, respectively
H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaa aa@3752@ Dimensionless species concentration
 L  Characteristic length (m)
M  Magnetic field parameter
Ratio of buoyancy forces
N u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai aadwhaaaa@3851@ Nusselt number
Pr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaciiuai aackhaaaa@3850@ Prandtl number ( ν / α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada Wcgaqaaiabe27aUbqaaiabeg7aHbaaaiaawIcacaGLPaaaaaa@3AED@
Sr Soret number
S c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aadogaaaa@3844@ Schmidt number ( ν / D m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada Wcgaqaaiabe27aUbqaaiaadseadaWgaaWcbaGaamyBaaqabaaaaaGc caGLOaGaayzkaaaaaa@3B3F@
T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivaa aa@375D@ Temperature (K)
T w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3A36@ Temperature at the wall (K)
T w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaabaqcLbmacaWG3baajuaGbeaaaaa@3A36@ Reference temperature
T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqaaKqzadGaeyOhIukajuaGbeaaaaa@3AA1@ Ambient temperature (K)
u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDaa aa@377E@ Velocity component in the x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVlaadI hacaaMc8oaaa@3A09@ direction (m s-1)
v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODaa aa@377F@ Velocity component in the y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVlaadM hacaaMc8oaaa@3A0A@ direction(m s-1)
x , y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai aacYcacaaMc8UaamyEaaaa@3ABA@ Cartesian coordinates (m)

Greek symbols

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde gaaa@3823@ Thermal diffusivity (m2 s-1)
β , β * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaaiilaiaaykW7cqaHYoGydaahaaqabeaajugWaiaacQcaaaaaaa@3DFF@ Volumetric coefficients of the thermal and concentration expansions,
respectively (K-1)
ξ , η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaiilaiaaykW7cqaH3oaAaaa@3C2E@ Transformed variables
μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 gaaa@383A@ Dynamic viscosity (kg m-1 s-1)
ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 gaaa@383C@ Kinematic viscosity (m2 s-1)
ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ Density (kg m-3)
ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK haaa@3852@ Streamfunction
Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajuaGcqqHtoWrca aMc8oaaa@38F5@ Forchheimer’s drag parameter

Subscripts

w Condition at the wall
e   Free stream condition
ξ , η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaiilaiaaykW7cqaH3oaAaaa@3C2E@ The partial derivatives with respect to these variables, respectively.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Darcy H. Les fontaines publiques de la ville de Dijon. Paris, France, 1856.
  2. D Srinivasacharya, Ch RamReddy. Cross–Diffusion Effects on Mixed Convection from an Exponentially Stretching Surface in Non–Darcy Porous Medium. Heat Transfer–Asian Research. 2013;42(2):111–124.
  3. D Srinivasacharya, O Surender. Mixed Convection Over a Vertical Plate in a Doubly Stratified Fluid–Saturated Non–Darcy Porous Medium with Cross–Diffusion Effects. Heat Transfer–Asian Research. 2014;43(8):677–690.
  4. MK Partha, PVSN Murthy, GP Raja Sekhar. Soret and Dufour Effects in a Non–Darcy Porous Medium. Journal of Heat transfer. 2006;128(6):605–610.
  5. Tasawar Hayat, Farwa Haider, Taseer Muhammad, et al. On Darcy–Forchheimer flow of viscoelastic nanofluids:A comparative study. Journal of Molecular liquids. 2017;233:278–287.
  6. Giuseppe Sposito, Michele Ciofalo (2006) One dimensional mixed MHD convection. International Journal of Heat and Mass Transfer. 2006;49:2939–2949.
  7. Anuar Ishak, Roslinda Nazar, Ioan Pop. MHD mixed convection boundary layer flow towards a stretching vertical surface with constant wall temperature. International Journal of Heat and Mass Transfer. 2010;23–24(5):5330–5334.
  8. R. Kandasamy, K. Periasamy, KK Sivagnana Prabhu. Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. International Journal of Heat and Mass Transfer. 2005;48:4557–4561.
  9. Nasir Ali, Sami Ullah Khan, Muhammad Sajid, et al. MHD flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium. Alexandria Engineering Journal. 2016;55:915–924.
  10. ERG Eckert, RM Drake. Analysis of Heat and Mass Transfer. New York: McGraw Hill; 1972.
  11. A Postelnicu. Influence of magnetic field on heat and mass transfer from vertical surfaces in porous media considering Soret and Dufour effects. International Journal of Heat and Mass Transfer. 2004;47:1467–1472.
  12. T Hayat, M Mustafa, I Pop. Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid. Commun. Nonlinear Sci Numer Simul. 2010;15:1183–1196.
  13.  D Pal, H Mondal. Influence of chemical reaction and thermal radiation on mixed convection heat and mass transfer over a stretching sheet in Darcian porous medium with Soret and Dufour effects. Energy Convers Manage. 2012;62:102–108.
  14. LJ Crane. Flows past a stretching plate. Z Angew Math Phys (ZAMP). 1970;21(4):645–647.
  15. PS Gupta, AS Gupta. Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng. 1977;55(6):744–746.
  16. CK Chen, MI Char. Heat transfer of a continuous stretching surface with suction or blowing. J Math Anal Appl. 1988;135:568–580.
  17. CH Chen. Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transfer. 1998;33(5–6):471–476.
  18. PM Patil, S Roy, AJ Chamkha. Mixed convection flow over a vertical power law stretching sheet. Int J Numer Methods Heat Fluid Flow. 2010;20(4):445–458.
  19. PM Patil. Effects of surface mass transfer on steady mixed convection flow from vertical stretching sheet with variable wall temperature and concentration. Int J Num Heat Fluid Flow. 2012;22(3):287–305.
  20. E Magyari, B Keller. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D:Appl Phys. 2000;32(5):577–585.
  21. MA El–Aziz. Viscous dissipation effect on mixed convection flow of a micro polar fluid over an exponentially stretching sheet. Canadian Journal of Physics. 2009;87(4):359–368.
  22. M Sajid, T Hayat. Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int Comm Heat Mass Transfer. 2008;35:347–356.
  23. B Bidin, R Nazar. Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur J Sci Res. 2009;33(4):710–717.
  24. Dulal. Pal. Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field. Appl Math Comput. 2010;217:2356–2369.
  25. A Ishak. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana. 2011. 40:391–395.
  26. S Mukhopadhyay, RSR Gorla. Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presenceof thermal radiation. Heat Mass Transfer. 2012;48(10):1773–1781.
  27. Swati Mukhopadhyay. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Engineering Journal. 2013;4:485– 491.
  28. Hunegnaw Dessie, Naikoti Kishan. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink. Ain Shams Engineering Journal. 2014;5:967–977.
  29. D Bhukta, GC Dash, SR Mishra, et al. Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non–uniform heat source/sink. Ain Shams Engineering Journal. 2015.
  30. PM Patil, DN Latha, S. Roy, et al. Double diffusive mixed convection flow from a vertical exponentially stretching surface in presence of the viscous dissipation. International Journal of Heat and Mass Transfer. 2017;112:758–766.
  31. PM Patil, S Roy, E Momoniat. Thermal diffusion and diffusion–thermo effects on mixed convection from an exponentially impermeable stretching surface. International Journal of Heat and Mass Transfer. 2016;100:482–489.
  32. PM Patil, S Roy, I Pop. Flow and Heat Transfer over a Moving Vertical Plate in a Parallel Free Stream:Role of Internal Heat Generation or Absorption. Chemical Engineering Communications. 2012;199(5):650–658.
  33. PM Patil. Effects of thermophoresis on mixed convection flow from a moving vertical plate in a parallel free stream in the presence of thermal radiation. IOSR Journal of Mathematics. 2013;7(4):82–92.
  34. PM Patil. Chemical reaction effects on free convective flow of a polar fluid from a vertical plate with uniform heat and mass fluxes. IOSR Journal of Mathematics. 2013;6(5):66–85.
  35. K Inouye, A Tate. Finite difference version Quasi–linearization applied to boundary layer equations. AIAA J. 1976;12(4):558– 560.
  36. H Schlichting, K Gersten. Boundary Layer Theory. New York, USA: Springer; 2000.
  37. RS Varga. Matrix Iterative Analysis. USA: Prentice Hall; 2000.
Creative Commons Attribution License

©2017 Patil, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.