Submit manuscript...
International Journal of
eISSN: 2576-4454

Hydrology

Research Article Volume 1 Issue 3

Rainfall intensity-duration-frequency (IDF) models for Uyo City, Nigeria

Ify L Nwaogazie, Martin C Ekwueme

Department of Civil and Environmental Engineering, University of Por1t Harcourt, Choba, Nigeria

Correspondence: Ify L Nwaogazie, Department of Civil and Environmental Engineering, University of Por1t Harcourt, Choba, Nigeria

Received: September 01, 2017 | Published: September 15, 2017

Citation: Nwaogazie IL, Ekwueme MC. Rainfall intensity-duration-frequency (IDF) models for Uyo city, Nigeria. Int J Hydro. 2017;1(3):63-66. DOI: 10.15406/ijh.2017.01.00012

Download PDF

Abstract

Suitable rainfall-Intensity-Duration-Frequency (IDF) models for Uyo City were developed using the statistical method of least-squares. A total of 18 rainfall models were developed based on 10 years rainfall data. These models are categorically grouped into two sets. The first set contains 10 rainfall models which represent inverse relationship between rainfall intensities and duration for specified frequencies called Intensity-Duration-Models. The second set contains 8 rainfall models which represent rainfall intensities and frequencies for specified duration called Intensity-Frequency Model. The two sets of models developed in this research recorded high and positive values of coefficient of correlation, an indication of good curve fitting with values of Intensity-Duration Models ranging from 0.948 to 0.977 and intensity frequency model ranging from 0.641 to 0.938. These set of models developed will serve as valuable tools for predicting rainfall events in Uyo City as well as for use in the design of hydraulic structures, urban drainage and flood control.

Keywords: Rainfall modeling, Intensity, Duration, Frequency, Least squares, Uyo City

Introduction

Rainfall models can be expressed mathematically to represent a relationship between Intensity, Duration & Frequency (IDF). An IDF model provides the basic probabilistic rainfall information for runoff estimation and establishes a statistical basis for design, using the return period as the measure of frequency of failure.1−4 The IDF curves are standard tools of hydrologic risk analysis and design. Rainfall of a place can be completely defined if the intensities, durations and frequencies of the various storms occurring at that place are known. A major problem in rainfall analysis is the interpretation of past record of rainfall events in terms of future probabilities of occurrence.5,6 Whenever an intense rain occurs, its magnitude and duration are generally known from the meteorological readings. This available data can be used to determine the frequencies of the various rains usually referred to as frequency analysis. The frequency-data for storms of various durations so obtained can be represented by Intensity-Duration-frequency Curves. Due to unavailability of rainfall data in most developing countries like Nigeria, rainfall frequency studies are very limited with only few meteorological stations usually at airport across the country. All stations where records exist, because of equipment failures continuous records for upwards of 30 years is very rare.5 Thus, the need for engineers to analyze available data more critically for proper planning and design of hydraulic structures is very necessary.7,8 The aim of this study is to develop and calibrate two sets of rainfall models using observed rainfall amounts and durations. The first is the intensity- duration model of quotient formula while the second is the intensity-return period model of power law. The developed models are to find great application in design of storm-water drains, culverts, erosion protection structures, etc.

Materials and methods

Study area: Uyo city is the state capital of Akwa Ibom, strategically located within the oil rich Niger Delta Southern of Nigeria and bounded to the South by Atlantic Ocean. It has coordinates of latitude 502’N and longitude 7055’E and it is situated at elevation 45 meters above mean sea level (Figure 1).

Figure 1 Map of study area, Uyo Nigeria.

Data collection: The rainfall data for Uyo City were obtained from the archives of the meteorological observatory, Department of Oceanography and Regional Planning, University of Uyo. The rainfall data obtained covered the period between 2002 and 2011.

Data analysis: Selected rainfall durations of 15, 30, 45, 60, 90, 120, 180 and 300 minutes were extracted from the rainfall data and the maximum intensities computed from Equation (1).

i= A t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVlaaysW7 juaGdaWcaaGcbaqcLbsacaWGbbaakeaajugibiaadshaaaGaaCzcaa aa@477A@ (1)

Where i: Intensity in mm/hr; A: Amount of rainfall in mm; t: Duration of rainfall in hours

The resulting intensity values evaluated from Equation (1) are ranked in decreasing order of magnitude such that the largest value is assigned 1. Return period is then computed using the Weilbull’s plotting position formula9 as:

P( x m )= m n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuai aaysW7juaGdaqadaGcbaqcLbsacaWG4bWcdaWgaaqaaKqzadGaamyB aaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGjbVlaaysW7caaMb8Uaey ypa0JaaGjbVlaaysW7juaGdaWcaaGcbaqcLbsacaWGTbaakeaajugi biaad6gacaaMe8Uaey4kaSIaaGjbVlaaigdaaaaaaa@50A9@ (2)

Where: P( x m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiuai aaysW7juaGdaqadaGcbaqcLbsacaWG4bWcdaWgaaqaaKqzadGaamyB aaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaGjbVlaaysW7aaa@4293@ Probability of exceedence of variate x­m­; m: Rank of descending values with largest equal to 1; n: Number of years of record

Rainfall intensities and durations are tabulated against selected frequencies of 1.1, 1.22, 1.38, 1.57, 1.83, 2.2, 2.75, 3.7, 5.5 and 11 years. Next, the inverses of intensities were obtained to establish the relationship between rainfall intensity and duration for specified frequency.

Results

Intensity-duration quotient models: Frequencies of rainfall events calculated as the reciprocal of their corresponding probabilities are as presented in Table 1. Many formulas have been proposed in the past to fit rainfall-Intensity-Duration-Frequency Curves, but most of them are in a form with intensity inversely proportional to duration.510 The quotient model was used for the development of relationship between intensity of rainfall and its duration at specific return period. The quotient model is given by9 as;

i= a t+b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVlaaysW7 juaGdaWcaaGcbaqcLbsacaWGHbaakeaajugibiaadshacaaMe8Uaey 4kaSIaaGjbVlaadkgaaaaaaa@4BDB@ (3)

Where i: rainfall intensity (mm/hr); t: rainfall duration (hr); a, b: regional constants

Equation (3) is linearized by taking its reciprocal to become Equation (4):

y= a 0 + a 1 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyEai abg2da9iaadggalmaaBaaabaqcLbmacaaIWaaaleqaaKqzGeGaey4k aSIaamyyaSWaaSbaaeaajugWaiaaigdaaSqabaqcLbsacaWG4baaaa@4186@ (4)

Where: y=1/i ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyEai abg2da9iaaysW7juaGdaWcgaGcbaqcLbsacaaIXaaakeaajugibiaa dMgaaaGaaGjbVlaacUdaaaa@3FD6@

a 0 =b/a ; a 1 =1/a . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaS WaaSbaaeaajugWaiaaicdaaSqabaqcLbsacqGH9aqpcaaMe8Ecfa4a aSGbaOqaaKqzGeGaamOyaaGcbaqcLbsacaWGHbaaaiaacUdacaaMe8 UaaGjbVlaaysW7caWGHbqcfa4aaSbaaSqaaKqzadGaaGymaaWcbeaa jugibiabg2da9iaaysW7juaGdaWcgaGcbaqcLbsacaaIXaaakeaaju gibiaadggaaaGaaiOlaiaaysW7aaa@5216@

Equation (4) was solved using regression analysis via XLSTAT to produce the intensity duration models shown in Table 2. The rainfall intensity duration curves are shown in Figure 2. Apparently, the quotient model was calibrated by using the rainfall data on intensities and durations (Table 1) to obtain the regional constants of and in Equation (3) as presented in Table 3.

Intensity-return period power models: The power model was employed in developing relationship between rainfall intensity and return period at specified duration. The power model5 is given by:

i=a R b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai abg2da9iaadggacaWGsbWcdaahaaqcfayabeaajugWaiaadkgaaaaa aa@3CFB@ (5)

Where I, rainfall intensity (mm/hr); R, return period (years); &, regional constants

Equation (5) is linearized by logarithmic approach, viz;

logi=loga+blogR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaciiBai aac+gacaGGNbGaamyAaiabg2da9iaaysW7caaMe8UaciiBaiaac+ga caGGNbGaaGjbVlaaysW7caWGHbGaaGjbVlaaysW7cqGHRaWkcaaMe8 UaamOyaiGacYgacaGGVbGaai4zaiaaysW7caaMe8UaamOuaaaa@5259@ (6)

Where: a 1 =band a 0 =loga MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyaS WaaSbaaeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaaMe8UaaGjb VlaadkgacaaMe8UaaGjbVlaadggacaWGUbGaamizaiaaysW7caaMe8 UaamyyaSWaaSbaaeaajugWaiaaicdaaSqabaqcLbsacaaMe8UaaGjb Vlabg2da9iaaysW7ciGGSbGaai4BaiaacEgacaaMe8Uaamyyaaaa@5690@

Regression analysis was equally employed to solve and calibrate Equation (6) using data from (Table 1) to produce the rainfall intensity-frequency models shown in Table 2. The Intensity Frequency Curves are shown in Figure 3.

S/No

Rainfall intensity, mm/hr

 

 

 

 

 

 

 

Ranking

Frequency

 

duration, minute

 

 

 

 

 

 

 

 

 

15

30

45

60

90

120

180

300

1

172.573

124.663

86.427

121.83

87.0773

61.1585

56.211

41.9269

1

11

2

163.409

119.978

82.8496

112.5281

85.0476

59.8105

53.0503

38.80302

2

5.5

3

151.708

104.28

78.864

100.342

83.4075

57.7255

51.777

38.2766

3

3.7

4

139.422

98.4352

73.3573

91.2015

80.5089

54.0191

51.1037

35.9584

4

2.75

5

128.458

92.7854

68.7327

85.167

79.2747

52.0555

49.9207

35.4334

5

2.2

6

119.173

82.7512

64.6732

79.2391

74.2752

49.7316

49.1423

30.06

6

1.83

7

108.857

74.9842

59.8449

70.5582

65.5146

48.1305

47.1733

27.9932

7

1.57

8

98.6088

67.3948

56.9279

62.77

60.8361

44.1305

46.2993

26.2766

8

1.38

9

51.1012

40.5122

34.7056

30.1114

34.9794

24.611

24.4176

17.9222

9

1.22

10

33.258

22.2692

19.1185

18.3389

19.113

10.76755

9.7309

4.9919

10

1.1

Table 1 Rainfall ranking and corresponding intensity

S/No

Duration

Intensity frequency model*

Parameters ±

1

15

i=89.4829 R 0.3374 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaMb8UaaGioaiaaiMda caGGUaGaaGinaiaaiIdacaaIYaGaaGyoaiaadkfalmaaCaaabeqaaK qzadGaaGimaiaac6cacaaIZaGaaG4maiaaiEdacaaI0aaaaaaa@4BF9@

CC: 0.920

GF: 0.846

2

30

i=60.1672 R 0.3758 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaI2aGaaGimaiaac6ca caaIXaGaaGOnaiaaiEdacaaIYaGaamOuaSWaaWbaaeqabaqcLbmaca aIWaGaaiOlaiaaiodacaaI3aGaaGynaiaaiIdaaaaaaa@4A63@

CC: 0.914

GF: 0.836

3

45

i=53.804 R 0.2396 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaMb8UaaGynaiaaioda caGGUaGaaGioaiaaicdacaaI0aGaamOuaSWaaWbaaeqabaqcLbmaca aIWaGaaiOlaiaaikdacaaIZaGaaGyoaiaaiAdaaaaaaa@4B2E@

CC: 0.641

GF: 0.886

4

60

i=56.1293 R 0.3884 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaMb8UaaGynaiaaiAda caGGUaGaaGymaiaaikdacaaI5aGaaG4maiaadkfalmaaCaaabeqaaK qzadGaaGimaiaac6cacaaIZaGaaGioaiaaiIdacaaI0aaaaaaa@4BF1@

CC: 0.929

GF: 0.864

5

90

i=58.7314 R 0.2173 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaMb8UaaGynaiaaiIda caGGUaGaaG4naiaaiodacaaIXaGaaGinaiaadkfalmaaCaaabeqaaK qzadGaaGimaiaac6cacaaIYaGaaGymaiaaiEdacaaIZaaaaaaa@4BE9@

CC: 0.850

GF: 0.722

6

120

i=42.1231 R 0.1952 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaMb8UaaGinaiaaikda caGGUaGaaGymaiaaikdacaaIZaGaaGymaiaadkfalmaaCaaabeqaaK qzadGaaGimaiaac6cacaaIXaGaaGyoaiaaiwdacaaIYaaaaaaa@4BDE@

CC: 0.902

GF: 0.821

7

180

i=44.4672 R 0.1090 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaisdacaaI0aGaaiOlaiaaisda caaI2aGaaG4naiaaikdacaWGsbWcdaahaaqabeaajugWaiaaicdaca GGUaGaaGymaiaaicdacaaI5aGaaGimaaaaaaa@48CE@

CC: 0.938

GF: 0.881

8

300

i=17.9242 R 0.4824 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlabg2da9iaaysW7caaIXaGaaG4naiaac6ca caaI5aGaaGOmaiaaisdacaaIYaGaamOuaSWaaWbaaeqabaqcLbmaca aIWaGaaiOlaiaaisdacaaI4aGaaGOmaiaaisdaaaaaaa@4A61@

CC: 0.703

 

 

 

GF: 0.494

Table 2 Summary of all intensity-return period power models

*Intensity-Frequency models same as Intensity-Return period power model.
 Regression parameters: CC, Coefficient of Correlation; GF, Goodness of Fit

S/N

Frequency

Intensity duration model

Parameters ±

1

11

i= 16393.4 t+106.213 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI2aGaaG4mai aaiMdacaaIZaGaaiOlaiaaisdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaicdacaaI2aGaaiOlaiaaikdacaaIXaGaaG 4maaaaaaa@576B@

CC: 0.948

i= 15060.2 t+99.247 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI1aGaaGimai aaiAdacaaIWaGaaiOlaiaaikdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGyoaiaaiMdacaGGUaGaaGOmaiaaisdacaaI3aaaaa aa@56B7@

GF: 0.898

2

5.5

CC: 0.970

GF: 0.942

3

3.7

i= 15479.9 t+114.721 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI1aGaaGinai aaiEdacaaI5aGaaiOlaiaaiMdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaigdacaaI0aGaaiOlaiaaiEdacaaIYaGaaG ymaaaaaaa@5777@

CC: 0.969

GF: 0.939

4

2.8

i= 14881 t+118.601 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI0aGaaGioai aaiIdacaaIXaaakeaajugibiaadshacaaMe8Uaey4kaSIaaGjbVlaa igdacaaIXaGaaGioaiaac6cacaaI2aGaaGimaiaaigdaaaaaaa@55FF@

CC: 0.966

GF: 0.934

5

2.2

i= 15432.1 t+135.185 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI1aGaaGinai aaiodacaaIYaGaaiOlaiaaigdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaiodacaaI1aGaaiOlaiaaigdacaaI4aGaaG ynaaaaaaa@576B@

CC: 0.959

GF: 0.920

6

1.8

i= 14513.8 t+135.849 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI0aGaaGynai aaigdacaaIZaGaaiOlaiaaiIdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaiodacaaI1aGaaiOlaiaaiIdacaaI0aGaaG yoaaaaaaa@5778@

CC: 0.958

i= 12285 t+119.533 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaIYaGaaGOmai aaiIdacaaI1aaakeaajugibiaadshacaaMe8Uaey4kaSIaaGjbVlaa igdacaaIXaGaaGyoaiaac6cacaaI1aGaaG4maiaaiodaaaaaaa@5600@

GF: 0.918

7

1.57

CC: 0.963

GF: 0.928

8

1.38

i= 11890.6 t+145.66 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaIXaGaaGioai aaiMdacaaIWaGaaiOlaiaaiAdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaisdacaaI1aGaaiOlaiaaiAdacaaI2aaaaa aa@56B9@

CC: 0.954

GF: 0.910

9

1.22

i= 8695.65 t+190.87 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaiIdacaaI2aGaaGyoai aaiwdacaGGUaGaaGOnaiaaiwdaaOqaaKqzGeGaamiDaiaaysW7cqGH RaWkcaaMe8UaaGymaiaaiMdacaaIWaGaaiOlaiaaiIdacaaI3aaaaa aa@56CA@

CC: 0.955

i= 1776.2 t+34.94 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyAai aaysW7caaMe8UaaGjbVlaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7 caaMe8UaaGjbVNqbaoaalaaakeaajugibiaaigdacaaI3aGaaG4nai aaiAdacaGGUaGaaGOmaaGcbaqcLbsacaWG0bGaaGjbVlabgUcaRiaa ysW7caaIZaGaaGinaiaac6cacaaI5aGaaGinaaaaaaa@5541@

GF: 0.913

10

1.1

 

 

CC: 0.977

 

 

 

GF: 0.955

Table 3 Uyo City rainfall intensity-duration models for specified frequencies

 Rainfall intensity is given in mm/hr and duration in minutes
Regression parameters: CC, Coefficient of Correlation; GF, Goodness of Fit

Figure 2 Inverse of Rainfall Intensity duration curves for specified frequencies for Uyo City.

Figure 3 Rainfall Intensity return period power model for specified durations, option -1.

Discussion

The first set of rainfall models involved finding solution of the quotient formula of Equation (3) using available rainfall intensity duration data for specified frequencies of 1.1-11 years. A total of 10 rainfall models were developed as presented in Table 3 with high and positive values of coefficient of correlations of 0.948 to 0.977. The second set of rainfall models involved finding solution of the power model of Equation (5) using rainfall intensities frequency data for specified durations of 15-300 minutes. A total of 8 models were obtained as presented in Table 2 with moderate to high positive values of coefficients of correlation of 0.641 to 0.938 indicating good curve fittings. The plots of intensities against duration for the specified frequencies in Figure 2 and intensities against frequencies for the specified durations in Figure 3 formed a good basis for the predicted results. On the basis of these plots, Uyo city rainfall pattern can be characterized by the following observations. a. The curves are parallel; they do not cross each other; b. High and positive values of coefficients of correlation indicate best curve fittings; c. Higher return periods correspond with higher rainfall intensities for a given duration.11

Conclusion

Based on the results of this study the following conclusion can be drawn:

  1. The IDF models for Uyo City and their graphical equivalents have been developed from extracted rainfall data subjected to regression analyses which gave high and positive coefficient of correlation values as indication of good curve fitting.
  2. The IDF models as derived are similar to those encountered in Engineering practice which will serve as valuable and reliable tools for engineers and hydrologists for predicting rainfall events as well as basic rainfall information for design of drains in Uyo City.

Acknowledgement

None.

Conflict of interest

None.

References

  1. Nwaogazie IL, Ologhadien I. Rainfall Intensity-Duration-Frequency Models for Selected Cities in Southern Nigeria. Standard Scientific Research and Essays. 2014;2(10):509−515.
  2. Abubakari S. Development of Intensity-Duration-Frequency Curves for Kumasi. MSc Thesis: Kwame Nkrumah University of Science and Technology, Ghana; 2013. p. 1‒112.
  3. Akpan SU, Okoro BC. Developing Rainfall Intensity-Duration-Frequency Models for Calabar City, South-South, Nigeria. American Journal of Engineering Research. 2013;2(6):19−24.
  4. Nwadike CN. Developing Rainfall Models for Enugu City. MEng Thesis, Dept of Civil Engineering, Imo, Nigeria: Federal University of Technology, Owerri (FUTO); 2008.
  5. Nwaogazie IL, Duru EO. Developing Rainfall-Intensity-Duration-Frequency Models for Port Harcourt City. NSE Technical Transaction. 2002;37(2):19‒32.
  6. Udo Inyang CU, Edem DI. Analysis of Rainfall Trends in Akwa Ibom State, Nigeria. Journal of Environment and Earth Science. 2012;2(8):1−12.
  7. FMW H. Federal Republic of Nigeria Highway Design Manual (Part-1), Federal Ministry of Works; 2006.
  8. Okonkwo GI, Mbajiorgu CC. Rainfall Intensity-Duration-Frequency Analysis for Southeastern Nigeria. Agric Eng Int: The CIGR journal. 2010;12(1):22‒30.
  9. Nwaogazie IL. Probability and Statistics for Science and Engineering Practice. Enugu, Nigeria: De- Adroit Innovation; 2011. p. 1−288.
  10. Nwaogazie Ify L, Okonkwo S, Chukwuemeka. Rainfall-Intensity-Duration-Frequency Modeling and Comparative Analysis of Developed Models for Abakaliki, Ebonyi State, Nigeria. International Journal of Trend in Research and Development. 2017;4(2):776‒783.
  11. Nwoke UH. Rainfall Intensity-Frequency Regime for Owerri South-East Nigeria. Continental J. Environmental Sciences. 2013;7(1): 1−7.
Creative Commons Attribution License

©2017 Nwaogazie, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.