Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Technical Paper Volume 2 Issue 4

A new approach to modeling and simulation of mass transfer processes in industrial column apparatuses

Christo Boyadjiev

Institute of Chemical Engineering, Bulgarian Academy of Sciences, Bulgaria

Correspondence: Christo Boyadjiev, Institute of Chemical Engineering, Sofia 1113, Akad. St. Angelov str., bl.103, Bulgaria, Tel (+359-2)979-32-75, Fax (+359-2)870-75-23

Received: May 15, 2018 | Published: August 2, 2018

Citation: Boyadjiev C. A new approach to modeling and simulation of mass transfer processes in industrial column apparatuses. Fluid Mech Res Int. 2018;2(4):156-162. DOI: 10.15406/fmrij.2018.02.00033

Download PDF

Abstract

In the paper is presented a theoretical analysis of the role of the reaction kinetics in chemical engineering for the solution of the main problems in the chemical industry (biotechnology, heat energy), i.e. the optimal design of new devices and the optimal control of active processes. The thermodynamic and hydrodynamic approximations for the modeling of the industrial process rates are presented and analyzed. The linear and non-linear theories are examined. A new approach to modeling and simulating of mass transfer processes in industrial column apparatuses is proposed. This approach is used for the modeling of chemical, absorption, adsorption and catalytic processes in industrial column apparatuses.

Keywords: reaction kinetics, thermodynamic approximation, hydrodynamic approximation, modeling, simulation, mass transfer, column apparatuses

Introduction

The industrial processes are the result of deviations of the systems from their thermodynamic equilibrium and represent the movement of the systems to their thermodynamic equilibrium. In the chemical industry (thermal engineering and biotechnology too) the deviation from thermodynamic equilibrium is a result of reactions. The reactions are the creation or disappearance of a substance in elementary physical volume (equivalent mathematical point) that is in the phase volume (homogeneous) or on the boundary between two phases (heterogeneous).

In industrial column apparatuses the phase velocities and phase boundaries are unknown. This necessitates the creation of a new approach to mass transfer process modeling, where the velocities are replaced by average velocities and the surface reactions are replaced by volume reactions.

Modeling and simulation

The modeling and simulation are a basic approach in the human knowledge and the science for the quantitative description of the processes and phenomena,1−3 using the combination of intuition and logic.4−5 In the mathematics the intuitions are the axioms (unconditional statements that cannot be proven), while the logic is the theorems (logical consequences of the axioms). The proportion between the logic and the intuition is different in the different sciences. In the mathematics the logic predominates. In the natural sciences (physics, chemistry and biology) the role of the intuition increases, but the "axioms" are not always unconditional. In the humanities the role of the logic decreases.

The modeling and simulation offer quantitative (mathematical) descriptions that have different degrees of detail. The lowest level is the thermodynamic (non-equilibrium thermodynamics) that examines the volume of the phase (gas, liquid, solid). The next level is the hydrodynamic, which examines the elementary phase volumes (mechanics of continua), which are much smaller than the phase volumes, but much larger than the intermolecular volumes, i.e. the molecules are indistinguishable. The highest level is the molecular (the kinetic theory of the ideal gas).

Thermodynamic approximations

The reactions deviates the industrial systems from the thermodynamic equilibrium and the industrial processes for its recovery begin. The determining of the rate of these processes is a major problem in the industry, as it is the basis for their optimal design and control. This gives reason to use the thermodynamic laws of irreversible processes such as mathematical structures in the construction of the process models, described by extensive and intense variables (in the case of merging of two identical systems, the extensive variables double their values, while the intensive variables retain their values).

The kinetics of the irreversible processes uses the mathematical structures, resulting from Onsager's "linearity principle".6 According to him, the mean values of the derivatives at the time of the extensive variables depend linearly on the mean deviations of the conjugated intensive variables from their equilibrium states (values). This principle is valid in the vicinity of the equilibrium, and proportionality coefficients are kinetic (rate) constants.
According to the principle of linearity, the mass derivative at time J 0 = dm dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfaOaeyypa0ZaaSaa aeaacaWGKbGaamyBaaqaaiaadsgacaWG0baaaaaa@3F81@  [kg-mol.s−1] depends linearly on the deviation from the thermodynamic equilibrium Δc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGJbaaaa@38D3@  [kg-mol.m−3] of the concentration in two phase volumes or in one phase and the phase boundary, i.e.
J 0 = k 0 Δc, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH9aqpcaWG Rbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqqHuoarca WGJbGaaiilaaaa@42FF@                                                                             (1)
where k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A41@  [m3.s−1] is a proportionality coefficient.

Consider a system that contains two identical volumes in one phase v 1 = v 2 =v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaWG 2bWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqGH9aqpca WG2baaaa@41D8@  [m3]. The system contains a substance whose masses m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaaaa@3A78@  [kg-mol] and concentrations c i = m i v i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg2da9Kqbaoaa laaakeaajugibiaad2gajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbe aaaOqaaKqzGeGaamODaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqa aaaaaaa@4502@  [kg-mol.m−3] are different in two volumes, i=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGPb Gaeyypa0JaaGymaiaacYcacaaIYaGaaiilaaaa@3B51@ . The system is not in thermodynamic equilibrium. Let us assume for certainty c 1 c 2 >0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHsislcaWG Jbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGH+aGpca aIWaGaaiilaaaa@426E@   i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGPb Gaeyypa0JaaGymaiaacYcacaaIYaaaaa@3AA1@ . As a result, the mass of the substance starts to be transferred from volume v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A4E@  to volume v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A4F@  for to achieve the equilibrium. According to the principle of linearity, the mass transfer rate between the two volumes J 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A21@  [kg-moll.s−1] can be represented as:
J 0 = d m 1 dt = d m 2 dt = k 0 ( c 1 c 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfaOaeyypa0ZaaSaa aOqaaKqzGeGaamizaiaad2gajuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0JaeyOeI0scfa4a aSaaaOqaaKqzGeGaamizaiaad2gajuaGdaWgaaqcbasaaKqzadGaaG OmaaWcbeaaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0Jaam4AaKqb aoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqbaoaabmaakeaajugibi aadogajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabgkHi TiaadogajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOGaayjkai aawMcaaKqzGeGaaiilaaaa@5F70@                                      (2)
where k 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A42@ [kg-mol−1.m3.s−1] is a proportionality coefficient. If we replace masses with concentrations m i = v i c i ,i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacqGH9aqpcaWG 2bqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaWGJbqcfa 4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGSaGaaGjbVlaa dMgacqGH9aqpcaaIXaGaaiilaiaaikdaaaa@4B66@ , the mass transfer rate in one phase J MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb aaaa@3755@  [kg-mol.m−3.s−1] between two points with different concentrations is:
J= d c 1 dt = d c 2 dt =k( c 1 c 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamizaiaadogajuaGdaWgaaqc basaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaamizaiaadshaaaGaey ypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamizaiaadogajuaGdaWg aaqcbasaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaamizaiaadshaaa Gaeyypa0Jaam4AaKqbaoaabmaakeaajugibiaadogajuaGdaWgaaqc basaaKqzadGaaGymaaWcbeaajugibiabgkHiTiaadogajuaGdaWgaa qcbasaaKqzadGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaiil aaaa@59C5@                                            (3)
where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb aaaa@3776@  [s−1] is a rate coefficient. This equation is capable of presenting the rate of interphase mass transfer in the case of adsorption or catalytic process, where c 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaa@3A3B@  is the concentration of the substance in the gas phase, while c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaaaa@3A3C@  is the concentration of the substance in the gaseous portion of the solid (capillaries of the adsorbent or catalyst) phase.

In the cases, where the volumes v 1 = v 2 =v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGH9aqpcaWG 2bqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGH9aqpca WG2baaaa@423C@  are in different phases (for example, 1 is a gas phase and 2 is a liquid phase), the thermodynamic equilibrium law has the form c 1 χ c 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHsislcqaH hpWycaWGJbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacq GH9aqpcaaIWaaaaa@4373@ , i.e. this is the Henry’s law and χ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHhp Wyaaa@383D@  is the Henry’s number. If c 1 χ c 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHsislcqaH hpWycaWGJbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacq GH+aGpcaaIWaaaaa@4375@  the mass transfer is from phase 1 to phase 2 and the mass transfer rate between phases is:
J=k( c 1 χ c 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb Gaeyypa0Jaam4AaKqbaoaabmaakeaajugibiaadogajuaGdaWgaaqc basaaKqzadGaaGymaaWcbeaajugibiabgkHiTiabeE8aJjaadogaju aGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOGaayjkaiaawMcaaKqz GeGaaiilaaaa@47E2@                                                                  (4)
where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@  [s−1] is the rate coefficient of the interphase mass transfer.

On the surface between two phases, the thermodynamic equilibrium is immediately established, practically, i.e. C * 1 χ C * 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam 4qaaWcbeqaaiaciJSGQaaaaOWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0Iaeq4Xdm2aaCbiaeaacaWGdbaaleqabaGaiWl1cQcaaaGcdaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@434F@ , where c i * ,i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiacOXUGQaaa aKqzGeGaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaaIYa aaaa@44AD@ , are the equilibrium concentrations on the phase boundary. Thus, the mass transfer rate can be expressed by mass transfer rate in two phases:
J= k 1 ( c 1 c 1 * )= k 2 ( c 2 * c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb Gaeyypa0Jaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqb aoaabmaakeaajugibiaadogajuaGdaWgaaqcbasaaKqzadGaaGymaa WcbeaajugibiabgkHiTiaadogajuaGdaqhaaqcbasaaKqzadGaaGym aaqcbasaaKqzadGaiWfScQcaaaaakiaawIcacaGLPaaajugibiabg2 da9iaadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajuaGdaqa daGcbaqcLbsacaWGJbqcfa4aa0baaKqaGeaajugWaiaaikdaaKqaGe aajugWaiacCbRGQaaaaKqzGeGaeyOeI0Iaam4yaKqbaoaaBaaajeai baqcLbmacaaIYaaaleqaaaGccaGLOaGaayzkaaaaaa@5ECD@ ,                                          (5)
where k i ,i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGSaGaaGjb VlaadMgacqGH9aqpcaaIXaGaaiilaiaaikdaaaa@415D@ [s−1] are mass transfer rate coefficients.
The Onsager principle of linearity represents the thermodynamic approximation of the mathematical description of the kinetics of irreversible processes, but it does not show the way to reach equilibrium, i.e. the mechanism of the process and as a result the rate coefficient is not known. Obviously, this "thermodynamic level" does not allow a real quantitative description of the kinetics of irreversible processes in industry and the next level of detail of the description, the so-called "hydrodynamic level", should be used.

Hydrodynamic approximation

The processes in the chemical industry and related biotechnologies and heating technologies are realized in one, two and three-phase systems (gas-liquid-solid). They are a result from the reactions, i.e. processes of disappearance or creation of any substance. The reactions are associated with a particular phase and can be homogeneous (occurring in volume of the phase) or heterogeneous (occurring at the interface with another phase). Homogeneous reactions are usually chemical, while heterogeneous reactions may be chemical, catalytic and adsorption. Heterogeneous reaction is the interphase mass transfer too, where on the interphase boundary the substance disappears (created) in one phase and creates (disappears) in the other phase.

The volume reactions lead to different concentrations of the reagents in the phase volumes and as a result two mass transfer processes are realized – convective transfer (caused by the movement of the phases) and diffusion transfer (caused by the concentration gradients in the phases). The mass transfer models are a mass balance in the phases, where components are convective transfer, diffusion transfer and volume reactions (volume mass sources or sings). The surface reactions participate as mass sources or sings in the boundary conditions of the model equations. The models of this complex process are possible to be created on the basis of the mass transfer theory, whose models are created by the models of the hydrodynamics, diffusion and reaction kinetics.

The mass transfer theory combines the chemistry, physics and mathematics and builds its logical structures on three main “axioms”:

  1. The postulate of Stokes for the linear relationship between the stress and deformation rate, which is the basis of the Newtonian fluid dynamics models;
  2. The first law of Fick for the linear relationship between the mass flow and the concentration gradient, which is the basis of the linear theory of the mass transfer;
  3. The first law of Fourier for the linear relationship between the heat flux and the temperature gradient, which is the basis of the linear theories of the heat transfer.

These are the laws of the impulse, mass and energy transfer.

In Boltzmann's kinetic theory of the ideal gas, these axioms are replaced by the “elastic shock” axiom (in a shock between two molecules the direction and the velocity of the movement change, but the sum of their kinetic energies is retained, i.e. there is no loss of kinetic energy) and the rate coefficients are theoretically determined by the average velocity and the average free run of the molecules.

The contemporary mass transfer theory is based on diffusion boundary layer theory.7 This approach substitutes (physically justified) elliptic partial differential equations with parabolic partial differential equations, which facilitates their mathematical solution and offers a mathematical description of physical processes with free (not predetermined) ends.

The diffusion boundary layer theory is developed in the cases of drops and bubbles,8 film flows,9,10 non-linear mass transfer and hydrodynamic stability.11−13

Mass transfer theory

The complex industrial processes are a collection of elementary physical and chemical processes. For example, the chemical absorption in a packed bed column represents a physical absorption of a gas phase component in the liquid phase and a subsequent chemical reaction with a component of the liquid phase. The gas moves in the column like jets and bubbles, while the liquid moves in the form of drops, jets, and flowing films on the surface of the packed bed. As a result, the chemical absorption in a packed bed column is a combination of many elementary physical and chemical processes, as absorption in the systems gas-liquid drops, liquid-gas bubbles, gas-liquid film flow, etc. As an example will be considered the gas absorption in liquid film with free interface.
Let us consider absorption of a slightly soluble gas in a laminar liquid film in a coordinate system (x,y) flowing over a flat vertical interface (y=0).9,10 The hydrodynamic model has the form:
ν 2 u x y 2 +g=0, u x x + u y y =0; y=0, u x =0, u y =0;y= h 0 , u x y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abe27aUjaaykW7juaGdaWcaaGcbaqcLbsacqGHciITjuaGdaahaaWc beqcbasaaKqzadGaaGOmaaaajugibiaadwhajuaGdaWgaaqcbasaaK qzadGaamiEaaWcbeaaaOqaaKqzGeGaeyOaIyRaaGjcVlaadMhajuaG daahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkcaWGNb Gaeyypa0JaaGimaiaaykW7caGGSaGaaGzbVNqbaoaalaaakeaajugi biabgkGi2kaadwhajuaGdaWgaaqcbasaaKqzadGaamiEaaWcbeaaaO qaaKqzGeGaeyOaIyRaamiEaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsa cqGHciITcaWG1bqcfa4aaSbaaKqaGeaajugWaiaadMhaaSqabaaake aajugibiabgkGi2kaadMhaaaGaeyypa0JaaGimaiaacUdaaOqaaKqz GeGaamyEaiabg2da9iaaicdacaaMc8UaaiilaiaaywW7caWG1bqcfa 4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacqGH9aqpcaaIWaGa aGPaVlaacYcacaaMf8UaamyDaKqbaoaaBaaajeaibaqcLbmacaWG5b aaleqaaKqzGeGaeyypa0JaaGimaiaacUdacaaMf8UaamyEaiabg2da 9iaadIgajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaacY cacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaaGjcVlaadwhajuaG daWgaaqcbasaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaeyOaIyRaaG jcVlaadMhaaaGaeyypa0JaaGimaaaaaa@9AB3@                     (6)
and the velocity distribution is:
u x = g 2ν ( 2 h 0 y y 2 ), u y 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacqGH9aqpjuaG daWcaaGcbaqcLbsacaWGNbaakeaajugibiaaikdacqaH9oGBaaqcfa 4aaeWaaOqaaKqzGeGaaGOmaiaadIgajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaajugibiaadMhacqGHsislcaWG5bqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugibiaacYcacaWG 1bqcfa4aaSbaaKqaGeaajugWaiaadMhaaSqabaqcLbsacqGHHjIUca aIWaGaaiOlaaaa@57D6@                                               (7)
If these conditions the convection-diffusion model has the form:
g 2ν ( 2 h 0 y y 2 ) c x =D( 2 c x 2 + 2 c y 2 ), x=0,c= c 0 ;x,c= c * ; y=0, c y =0;y= h 0 ,c= c * , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGda WcaaGcbaqcLbsacaWGNbaakeaajugibiaaikdacqaH9oGBaaqcfa4a aeWaaOqaaKqzGeGaaGOmaiaadIgajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaajugibiaadMhacqGHsislcaWG5bqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaaakiaawIcacaGLPaaajuaGdaWcaaGcbaqcLb sacqGHciITcaWGJbaakeaajugibiabgkGi2kaadIhaaaGaeyypa0Ja amiraKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITjuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadogaaOqaaKqzGeGa eyOaIyRaamiEaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaju gibiabgUcaRKqbaoaalaaakeaajugibiabgkGi2MqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaKqzGeGaam4yaaGcbaqcLbsacqGHciITca WG5bqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaaGccaGLOaGa ayzkaaqcLbsacaGGSaaakeaajugibiaadIhacqGH9aqpcaaIWaGaai ilaiaaywW7caWGJbGaeyypa0Jaam4yaKqbaoaaBaaajeaibaqcLbma caaIWaaaleqaaKqzGeGaai4oaiaaywW7caWG4bGaeyOKH4QaeyOhIu QaaiilaiaaywW7caWGJbGaeyypa0Jaam4yaKqbaoaaCaaaleqajeai baqcLbmacGaDilOkaaaajugibiaacUdaaOqaaKqzGeGaamyEaiabg2 da9iaaicdacaGGSaGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaa dogaaOqaaKqzGeGaeyOaIyRaamyEaaaacqGH9aqpcaaIWaGaai4oai aaywW7caWG5bGaeyypa0JaamiAaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaKqzGeGaaiilaiaaywW7caWGJbGaeyypa0Jaam4yaKqbao aaCaaaleqajeaibaqcLbmacGaAKkOkaaaajugibiaacYcaaaaa@AC98@                               (8)
where the thermodynamically equilibrium exists at the film interface ( y= h 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyEaiabg2da9iaadIgajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaaaOGaayjkaiaawMcaaaaa@3E6D@  and c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaWbaaSqabKqaGeaajugWaiacOHPGQaaaaaaa@3B36@  denotes the equilibrium concentration. The solid interface (y=0) is impenetrable for the diffusing substance with inlet concentration c 0 < c * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqGH8aapcaWG Jbqcfa4aaWbaaSqabKqaGeaajugWaiaacQcaaaaaaa@3F75@ (absorption).

Non-linear mass transfer theory

The theory of the diffusion boundary layer2 is the basis of modern linear mass transfer theory, where the convection-diffusion equation in (8) is linear; i. e. the velocity does not depend on the concentration. In a number of cases, the experimental results for the mass transfer rate are higher than the predictions of the linear theory.11,12 This is due to nonlinear effects, where the mass transfer influences the hydrodynamics and the velocity begin to depend on concentrations. These non-linear effects are related to the induction of secondary flows at the interphase boundaries as a result of interphase mass transfer. Such effects are the effect of large concentration gradients,11 the effect of Marangoni and the effect of Stephan flow.12

The large concentration gradients create an intensive diffusion flux that have a hydrodynamic character, and a secondary flow is induces, directed at the normal of the interphase boundary and results in an additional convective mass transfer.

The effect of Marangoni is a result of the gradient of the surface tension on the interphase surface, as a result of the surface gradient of the temperature or surface active agents concentration on the liquid-gas (liquid) interphase, and induces a tangential flow. As a result of the continuity of the flow, there appears to be a much lower flow in the direction of the normal of the interphase boundary and consequently an additional convective flow. Because of this, this effect is relatively weak and occurs in motionless or slow moving fluids.

The Stephan's flow is a result of a phase transition liquid-steam at the interphase surface when the volume of the liquid (steam) increases (decreases) a thousand times. As a result, there is a secondary flow, directed to the normal of the interphase boundary, and an additional convective mass transfer.

In the above three cases, an additional hydrodynamic effect appears very often because the secondary currents disturb the hydrodynamic stability of the flows and self-organizing dissipative structures occur, which further accelerate the mass transfer.9 To these effects can be added the Benar instability in the case of a positive vertical gradient of the density of gases or liquids resulting from concentration or temperature gradients.12

Modeling of industrial mass transfer processes in column apparatuses

The diffusion boundary theory is not applicable for the modeling of chemical, absorption, adsorption and catalytic processes in column apparatuses, where the velocity distributions and interphase boundaries are unknown.

The use of the physical approximations of the mechanics of continua for the interphase mass transfer process modeling in industrial column apparatuses is possible if the mass appearance (disappearance) of the reagents on the interphase surfaces of the elementary physical volumes (as a result of the heterogeneous reactions) are replaced by the mass appearance (disappearance) of the reagents in the same elementary physical volumes (as a result of the equivalent homogenous reactions), i.e. the surface mass sources (sinks), caused by absorption, adsorption or catalytic reactions must be replaced with equivalent volume mass sources (sinks). The solution of this problem is related with the creation of new type of convection-diffusion and average-concentration models.13

The convection-diffusion models permit the qualitative analysis of the processes only, because the velocity distribution in the column is unknown. On this base is possible to be obtained the role of the different physical effect in the process and to reject those processes, whose relative influence is less than 1%, i.e. to be made process mechanism identification.

The average-concentration models are obtained from the convection-diffusion models, where average velocities and concentrations are introduced. The velocity distributions are introduced by the parameters in the model, which must to be determined experimentally.

Convection-diffusion type models

In the general case a multicomponent (i=1,2,..., i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGaaiOl aiaac6cacaGGSaGaamyAaKqbaoaaBaaajeaibaqcLbmacaaIWaaale qaaKqzGeGaaiykaaaa@43B9@ and multiphase (j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@3CBB@  for gas, liquid and solid phases) flow in a cylindrical column with radius r 0 [ m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcfa4aamWaaeaacaWG TbaacaGLBbGaayzxaaaaaa@3DBB@  and active zone height l [m] will be considered. If F 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A1D@  is the fluid flow rate in the column and F j ,j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcLbsacaGGSaGaaGjb VlaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maaaa@42A7@ are the phase flow rates [m3.s−1], the parts of the column volume occupied by the gas, liquid and solid phase, respectively, i.e. the phase volumes [m3] in 1 m3 of the column volume (hold-up coefficients of the phases), are:
ε j = F j F 0 ,j=1,2,3, j 3 ε j =1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaamOAaa WcbeaaaOqaaKqzGeGaamOraKqbaoaaBaaajeaibaqcLbmacaaIWaaa leqaaaaajugibiaacYcacaaMf8UaamOAaiabg2da9iaaigdacaGGSa GaaGOmaiaacYcacaaIZaGaaiilaiaaywW7juaGdaaeWbGcbaqcLbsa cqaH1oqzjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaaaKqaGeaaju gWaiaadQgaaKqaGeaajugWaiaaiodaaKqzGeGaeyyeIuoacqGH9aqp caaIXaGaaiilaaaa@5FDE@                                         (9)
The input velocities of the phases in the column u j 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b WcdaqhaaqcbasaaKqzadGaamOAaaqcbasaaKqzadGaaGimaaaaaaa@3C06@  [m.s−1], j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb Gaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaaaa@3C0F@  are possible to be defined as:
u j 0 = F j ε j π r 0 2 ,j=1,2,3; F 0 = j=1 3 F j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b WcdaqhaaqcbasaaKqzadGaamOAaaqcbasaaKqzadGaaGimaaaajugi biabg2da9KqbaoaalaaakeaajugibiaadAeajuaGdaWgaaqcbasaaK qzadGaamOAaaWcbeaaaOqaaKqzGeGaeqyTduwcfa4aaSbaaKqaGeaa jugWaiaadQgaaSqabaqcLbsacqaHapaCcaWGYbWcdaqhaaqcbasaaK qzadGaaGimaaqcbasaaKqzadGaaGOmaaaaaaqcLbsacaGGSaGaaGzb VlaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacU dacaaMf8UaamOraKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaeyypa0tcfa4aaabCaOqaaKqzGeGaamOraKqbaoaaBaaajeaiba qcLbmacaWGQbaaleqaaaqcbasaaKqzadGaamOAaiabg2da9iaaigda aKqaGeaajugWaiaaiodaaKqzGeGaeyyeIuoacaGGUaaaaa@6DBE@                               (10)
The physical elementary column volumes contain the elementary phase volumes ε j ,j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaajugibiaacYcacaaM e8UaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@4382@  and will be presented as mathematical points M( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaeWaaOqaaKqzGeGaamOCaiaacYcacaWG6baakiaawIcacaGL Paaaaaa@3CB8@  in a cylindrical coordinate system ( r,z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacY cacaWG6baaaa@389D@ ), where r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EE@  and z[ m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b qcfa4aamWaaOqaaKqzGeGaamyBaaGccaGLBbGaayzxaaaaaa@3B9A@ are radial and axial coordinates. As a result, the mathematical point M( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb qcfa4aaeWaaOqaaKqzGeGaamOCaiaacYcacaWG6baakiaawIcacaGL Paaaaaa@3CB8@  is equivalent to the elementary phase volumes, too.

The concentrations [kg-mol.m−3] of the reagents (components of the phases) are c ij ,i=1,2,..., i 0 ,j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqzGeGaaiil aiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaac6 cacaGGUaGaaiOlaiaacYcacaWGPbqcfa4aaSbaaKqaGeaajugWaiaa icdaaSqabaqcLbsacaGGSaGaaGjbVlaadQgacqGH9aqpcaaIXaGaai ilaiaaikdacaGGSaGaaG4maaaa@51C9@ , i.e. the quantities of the reagents (kg-mol) in 1 m3 of the phase volumes in the column.

In the cases of a stationary motion of fluids in cylindrical column apparatus, u j ( r,z ), v j ( r,z ),j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaeWaaOqaaKqz GeGaamOCaiaacYcacaWG6baakiaawIcacaGLPaaajugibiaacYcaca aMe8UaamODaKqbaoaaBaaajeaibaqcLbmacaWGQbaaleqaaKqbaoaa bmaakeaajugibiaadkhacaGGSaGaamOEaaGccaGLOaGaayzkaaqcLb sacaGGSaGaaGjbVlaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGG SaGaaG4maaaa@545E@  [m.s−1] are the axial and radial velocity components of the phases in the elementary phase volumes.

The volume reactions [kg-mol.m−3.s−1] in the phases (homogeneous chemical reactions and heterogeneous reactions, as a volume mass source or sink in the phase volumes in the column) are Q ij ( c ij ),j=1,2,3,i=1,2,..., i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqbaoaabmaa keaajugibiaadogajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaS qabaaakiaawIcacaGLPaaajugibiaacYcacaaMe8UaaGjbVlaadQga cqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaMe8 UaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOl aiaac6cacaGGUaGaaiilaiaadMgajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaaaaa@5BD2@ .The reagent concentrations in the elementary phase volumes increase ( Q ij >0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamyuaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaajugi biabg6da+iaaicdacaGGPaaaaa@3EF4@ or decrease ( Q ij <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqzGeGaeyip aWJaaGimaaaa@3D97@ ) and the reaction rates Q ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaaaa@3B4A@  are determined by these concentrations c ij ( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqbaoaabmaa keaajugibiaadkhacaGGSaGaamOEaaGccaGLOaGaayzkaaaaaa@40BD@  [kg-mol.m−3].
The convective transfer in column apparatus is caused by a laminar or turbulent (as a result of large-scale turbulent pulsations) flow. In the elementary phase volume around the point M (r, z) in the column, the mass transfer rate in this volume [kg-mol.m−3.s−1], as a result of the convection is:
u j c ij z + v j c ij r i=1,2,, i 0 ,j=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaSaaaOqaaKqz GeGaeyOaIyRaam4yaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaa WcbeaaaOqaaKqzGeGaeyOaIyRaamOEaaaacqGHRaWkcaWG2bqcfa4a aSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaSaaaOqaaKqzGeGaey OaIyRaam4yaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaa aOqaaKqzGeGaeyOaIyRaamOCaaaacaaMf8UaamyAaiabg2da9iaaig dacaGGSaGaaGOmaiaacYcacqGHMacVcaGGSaGaamyAaKqbaoaaBaaa jeaibaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiaaywW7caWGQbGaey ypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaaaaa@6991@                                      (11)
i.e. convective transfer rate in 1 m3 of the phase volume.

The molecular or turbulent (caused by small-scale turbulent pulsations) diffusive transfer rate [kg-mol.m−3.s−1] is:
D ij ( 2 c ij z 2 + 1 r c ij r + 2 c ij r 2 ),i=1,2,, i 0 ,j=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqbaoaabmaa keaajuaGdaWcaaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqcbasaaK qzadGaaGOmaaaajugibiaadogajuaGdaWgaaqcbasaaKqzadGaamyA aiaadQgaaSqabaaakeaajugibiabgkGi2kaadQhajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqc LbsacaaIXaaakeaajugibiaadkhaaaqcfa4aaSaaaOqaaKqzGeGaey OaIyRaam4yaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaa aOqaaKqzGeGaeyOaIyRaamOCaaaacqGHRaWkjuaGdaWcaaGcbaqcLb sacqGHciITjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaa dogajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaaakeaaju gibiabgkGi2kaadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aaaakiaawIcacaGLPaaajugibiaacYcacaaMf8UaamyAaiabg2da9i aaigdacaGGSaGaaGOmaiaacYcacqGHMacVcaGGSaGaamyAaKqbaoaa BaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiaaywW7caWGQb Gaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaaaaa@8573@                                 (12)
i.e., diffusive transfer rate in 1 m3 of the phase volume and Dij [m2.s−1] are the diffusivities of the reagents ( i=1,2,..., i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGG UaGaaiOlaiaac6cacaGGSaGaamyAaKqbaoaaBaaajeaibaqcLbmaca aIWaaaleqaaaGccaGLOaGaayzkaaaaaa@43FC@  in the phases ( j=1,2,3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaI ZaaakiaawIcacaGLPaaaaaa@3E3A@ .

The mathematical model of the processes in the column apparatuses, in the physical approximations of the mechanics of continua, represents the mass balances in the phase volumes (phase parts in the elementary column volume) between the convective transfer, the diffusive transfer and the volume mass sources (sinks). The sum total of these three effects (in the cases of stationary processes) is equal to zero:
u j c ij z + v j c ij r = D ij ( 2 c ij z 2 + 1 r c ij r + 2 c ij r 2 )+ Q ij ( c ij ),j=1,2,3,i=1,2,, i 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaSaaaOqaaKqz GeGaeyOaIyRaam4yaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaa WcbeaaaOqaaKqzGeGaeyOaIyRaamOEaaaacqGHRaWkcaWG2bqcfa4a aSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaSaaaOqaaKqzGeGaey OaIyRaam4yaKqbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaa aOqaaKqzGeGaeyOaIyRaamOCaaaacqGH9aqpcaWGebqcfa4aaSbaaK qaGeaajugWaiaadMgacaWGQbaaleqaaKqbaoaabmaakeaajuaGdaWc aaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aajugibiaadogajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqa baaakeaajugibiabgkGi2kaadQhajuaGdaahaaWcbeqcbasaaKqzad GaaGOmaaaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIXaaa keaajugibiaadkhaaaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4yaK qbaoaaBaaajeaibaqcLbmacaWGPbGaamOAaaWcbeaaaOqaaKqzGeGa eyOaIyRaamOCaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacqGHciITju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadogajuaGdaWg aaqcbasaaKqzadGaamyAaiaadQgaaSqabaaakeaajugibiabgkGi2k aadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIca caGLPaaajugibiabgUcaRiaadgfajuaGdaWgaaqcbasaaKqzadGaam yAaiaadQgaaSqabaqcfa4aaeWaaOqaaKqzGeGaam4yaKqbaoaaBaaa jeaibaqcLbmacaWGPbGaamOAaaWcbeaaaOGaayjkaiaawMcaaKqzGe GaaiilaiaaywW7caWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiil aiaaiodacaGGSaGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymaiaacY cacaaIYaGaaiilaabaaaaaaaaapeGaeyOjGWRaaiilaiaadMgajuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaac6caaaa@B3A3@                 (13)

The axial and radial velocity components u j ( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaeWaaOqaaKqz GeGaamOCaiaacYcacaWG6baakiaawIcacaGLPaaaaaa@3FE0@  and v j ( r,z ),j=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aaeWaaOqaaKqz GeGaamOCaiaacYcacaWG6baakiaawIcacaGLPaaajugibiaacYcaca aMe8UaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaa aa@4837@ satisfy the continuity equations
u j z + v j r + v j r =0;z=0, u j u j ( r,0 );r= r 0 , v j ( r 0 ,z )0;j=1,2,3. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaeyOaIyRaamyDaKqbaoaaBaaajeaibaqcLbmacaWGQbaa leqaaaGcbaqcLbsacqGHciITcaWG6baaaiabgUcaRKqbaoaalaaake aajugibiabgkGi2kaadAhajuaGdaWgaaqcbasaaKqzadGaamOAaaWc beaaaOqaaKqzGeGaeyOaIyRaamOCaaaacqGHRaWkjuaGdaWcaaGcba qcLbsacaWG2bqcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaaakeaa jugibiaadkhaaaGaeyypa0JaaGimaiaacUdacaaMf8UaamOEaiabg2 da9iaaicdacaGGSaGaaGzbVlaadwhajuaGdaWgaaqcbasaaKqzadGa amOAaaWcbeaajugibiabggMi6kaadwhajuaGdaWgaaqcbasaaKqzad GaamOAaaWcbeaajuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiaaicda aOGaayjkaiaawMcaaKqzGeGaai4oaiaaywW7caWGYbGaeyypa0Jaam OCaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaiilaiaa ywW7caWG2bqcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaqcfa4aae WaaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aKqzGeGaaiilaiaadQhaaOGaayjkaiaawMcaaKqzGeGaeyyyIORaaG imaiaacUdacaaMf8UaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaa cYcacaaIZaGaaiOlaaaa@8DCF@                       (14)

The model of the mass transfer processes in the column apparatuses includes boundary conditions, which express symmetric concentrations distributions ( r=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamOCaiabg2da9iaaicdaaOGaayjkaiaawMcaaaaa@3B68@ , impenetrability of the column wall ( r= r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamOCaiabg2da9iaadkhajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaaaOGaayjkaiaawMcaaaaa@3E71@ , constant input concentrations c ij 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaDa aaleaacaWGPbGaamOAaaqaaiaaicdaaaaaaa@39A3@ and mass balances at the column input ( z=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamOEaiabg2da9iaaicdaaOGaayjkaiaawMcaaaaa@3B70@ :
r=0, c ij r 0;r= r 0 , c ij r 0; z=0, c ij c ij 0 , u j 0 c ij 0 u j c ij 0 D ij ( c ij z ) Z j =0 ,j=1,2,3,i=1,2,, i 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadkhacqGH9aqpcaaIWaGaaiilaiaaywW7juaGdaWcaaGcbaqcLbsa cqGHciITcaWGJbqcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaale qaaaGcbaqcLbsacqGHciITcaWGYbaaaiabggMi6kaaicdacaGG7aGa aGzbVlaadkhacqGH9aqpcaWGYbqcfa4aaSbaaKqaGeaajugWaiaaic daaSqabaqcLbsacaGGSaGaaGzbVNqbaoaalaaakeaajugibiabgkGi 2kaadogajuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaaake aajugibiabgkGi2kaadkhaaaGaeyyyIORaaGimaiaacUdaaOqaaKqz GeGaamOEaiabg2da9iaaicdacaGGSaGaaGzbVlaadogajuaGdaWgaa qcbasaaKqzadGaamyAaiaadQgaaSqabaqcLbsacqGHHjIUcaWGJbWc daqhaaqcbasaaKqzadGaamyAaiaadQgaaKqaGeaajugWaiaaicdaaa qcLbsacaGGSaGaaGzbVlaadwhalmaaDaaajeaibaqcLbmacaWGQbaa jeaibaqcLbmacaaIWaaaaKqzGeGaam4yaSWaa0baaKqaGeaajugWai aadMgacaWGQbaajeaibaqcLbmacaaIWaaaaKqzGeGaeyyyIORaamyD aKqbaoaaBaaaleaajugibiaadQgaaSqabaqcLbsacaWGJbWcdaqhaa qcbasaaKqzadGaamyAaiaadQgaaKqaGeaajugWaiaaicdaaaqcLbsa cqGHsislcaWGebqcfa4aaSbaaSqaaKqzGeGaamyAaiaadQgaaSqaba qcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabgkGi2kaadogajuaG daWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaaakeaajugibiabgk Gi2kaadQhaaaaakiaawIcacaGLPaaajuaGdaWgaaWcbaqcLbsacaWG Abqcfa4aaSbaaKGaGeaajugWaiaadQgaaWqabaqcLbsacqGH9aqpca aIWaaaleqaaKqzGeGaaiilaiaaywW7caWGQbGaeyypa0JaaGymaiaa cYcacaaIYaGaaiilaiaaiodacaGGSaGaaGzbVlaadMgacqGH9aqpca aIXaGaaiilaiaaikdacaGGSaGaeyOjGWRaaiilaiaadMgajuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugibiaac6caaaaa@BFFD@ (15)

Average-concentration type models

The average-concentration model will be presented on the bases of the convection-diffusion model of the one-phase system in the case of u=u( r ),v=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b Gaeyypa0JaamyDaKqbaoaabmaakeaajugibiaadkhaaOGaayjkaiaa wMcaaKqzGeGaaiilaiaaysW7caWG2bGaeyypa0JaaGimaaaa@42B7@  and a pseudo-first-order chemical reaction:
u c z =D( 2 c z 2 + 1 r c r + 2 c r 2 )kc; r=0, c r 0;r= r 0 , c r 0;z=0,c c 0 , u 0 c 0 u c 0 D c z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadwhajuaGdaWcaaGcbaqcLbsacqGHciITcaWGJbaakeaajugibiab gkGi2kaadQhaaaGaeyypa0JaamiraKqbaoaabmaakeaajuaGdaWcaa GcbaqcLbsacqGHciITjuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa jugibiaadogaaOqaaKqzGeGaeyOaIyRaamOEaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaaaajugibiabgUcaRKqbaoaalaaakeaajugi biaaigdaaOqaaKqzGeGaamOCaaaajuaGdaWcaaGcbaqcLbsacqGHci ITcaWGJbaakeaajugibiabgkGi2kaadkhaaaGaey4kaSscfa4aaSaa aOqaaKqzGeGaeyOaIyBcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa qcLbsacaWGJbaakeaajugibiabgkGi2kaadkhajuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaaaaaakiaawIcacaGLPaaajugibiabgkHiTi aadUgacaWGJbGaai4oaaGcbaqcLbsacaWGYbGaeyypa0JaaGimaiaa cYcacaaMf8Ecfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4yaaGcbaqcLb sacqGHciITcaWGYbaaaiabggMi6kaaicdacaGG7aGaaGzbVlaadkha cqGH9aqpcaWGYbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLb sacaGGSaGaaGzbVNqbaoaalaaakeaajugibiabgkGi2kaadogaaOqa aKqzGeGaeyOaIyRaamOCaaaacqGHHjIUcaaIWaGaai4oaiaaywW7ca WG6bGaeyypa0JaaGimaiaacYcacaaMf8Uaam4yaiabggMi6kaadoga juaGdaahaaWcbeqcbasaaKqzadGaaGimaaaajugibiaacYcacaaMf8 UaamyDaKqbaoaaCaaaleqajeaibaqcLbmacaaIWaaaaKqzGeGaam4y aKqbaoaaCaaaleqajeaibaqcLbmacaaIWaaaaKqzGeGaeyyyIORaam yDaiaadogajuaGdaahaaWcbeqcbasaaKqzadGaaGimaaaajugibiab gkHiTiaadseajuaGdaWcaaGcbaqcLbsacqGHciITcaWGJbaakeaaju gibiabgkGi2kaadQhaaaGaaiOlaaaaaa@B72B@   (16)
The average values of the velocity and concentration at the column cross-sectional area in one-phase systems are:
u ¯ = 2 r 0 2 0 r 0 ru( r ) dr , c ¯ ( z )= 2 r 0 2 0 r 0 rc( r,z ) dr . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG1b GbaebacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIYaaakeaajugibiaa dkhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaaqcfa4aa8qCaOqaaKqzGeGaamOCaiaa dwhajuaGdaqadaGcbaqcLbsacaWGYbaakiaawIcacaGLPaaajugibi aabccacaWGKbGaamOCaaqcbasaaKqzadGaaGimaaWcbaqcLbsacaWG Ybqcfa4aaSbaaKGaGeaajugWaiaaicdaaWqabaaajugibiabgUIiYd GaaiilaiaaywW7ceWGJbGbaebajuaGdaqadaGcbaqcLbsacaWG6baa kiaawIcacaGLPaaajugibiabg2da9Kqbaoaalaaakeaajugibiaaik daaOqaaKqzGeGaamOCaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqa aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajuaGdaWdXbGcba qcLbsacaWGYbGaam4yaKqbaoaabmaakeaajugibiaadkhacaGGSaGa amOEaaGccaGLOaGaayzkaaqcLbsacaqGGaGaamizaiaadkhaaKqaGe aajugWaiaaicdaaSqaaKqzGeGaamOCaKqbaoaaBaaajiaibaqcLbma caaIWaaameqaaaqcLbsacqGHRiI8aiaac6caaaa@7C0C@                                               (17)
The functions u( r ),c( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamOCaaGaayjkaiaawMcaaiaacYcacaaMe8Uaam4yamaabmaa baGaamOCaiaacYcacaWG6baacaGLOaGaayzkaaaaaa@40C4@  can be presented with the help of the average functions (17):
u( r )= u ¯ u ˜ ( r ),c( r,z )= c ¯ ( z ) c ˜ ( r,z ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq+gjugibi aadwhajuaGdaqadaGcbaqcLbsacaWGYbaakiaawIcacaGLPaaajugi biabg2da9iqadwhagaqeaiqadwhagaacaKqbaoaabmaakeaajugibi aadkhaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaywW7caWGJbqcfa4a aeWaaOqaaKqzGeGaamOCaiaacYcacaWG6baakiaawIcacaGLPaaaju gibiabg2da9iqadogagaqeaKqbaoaabmaakeaajugibiaadQhaaOGa ayjkaiaawMcaaKqzGeGabm4yayaaiaqcfa4aaeWaaOqaaKqzGeGaam OCaiaacYcacaWG6baakiaawIcacaGLPaaajugibiaacYcaaaa@5B1B@              (18)
where u ˜ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG1b GbaGaajuaGdaqadaGcbaqcLbsacaWGYbaakiaawIcacaGLPaaaaaa@3B3F@  and c ˜ ( r,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGJb GbaGaajuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiaadQhaaOGaayjk aiaawMcaaaaa@3CDC@ represent the radial non-uniformity of the velocity and concentration and satisfy the following conditions:
2 r 0 2 0 r 0 r  u ˜ ( r ) dr=1 , 2 r 0 2 0 r 0 r  c ˜ ( r,z ) dr =1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGOmaaGcbaqcLbsacaWGYbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaWcdaahaaqcbasabeaajugWaiaaikdaaaaaaKqbao aapehakeaajugibiaadkhacaqGGaGabmyDayaaiaqcfa4aaeWaaOqa aKqzGeGaamOCaaGccaGLOaGaayzkaaqcLbsacaqGGaGaamizaiaadk hacqGH9aqpcaaIXaaajeaibaqcLbmacaaIWaaaleaajugibiaadkha juaGdaWgaaqccasaaKqzadGaaGimaaadbeaaaKqzGeGaey4kIipaca GGSaGaaGzbVNqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaamOC aKqbaoaaBaaajeaibaqcLbmacaaIWaaajeaibeaajuaGdaahaaqcba sabeaajugWaiaaikdaaaaaaKqbaoaapehakeaajugibiaadkhacaqG GaGabm4yayaaiaqcfa4aaeWaaOqaaKqzGeGaamOCaiaacYcacaWG6b aakiaawIcacaGLPaaajugibiaabccacaWGKbGaamOCaaqcbasaaKqz adGaaGimaaWcbaqcLbsacaWGYbqcfa4aaSbaaKGaGeaajugWaiaaic daaWqabaaajugibiabgUIiYdGaeyypa0JaaGymaiaac6caaaa@771F@                                                    (19)
The introduction of the average values of the velocity and concentration (18) in the convection-diffusion model (16) leads to the average-concentration model:
α u ¯ d c ¯ dz + dα dz u ¯ c ¯ =D d 2 c ¯ d z 2 k c ¯ ;z=0, c ¯ ( 0 )= c 0 , d c ¯ dz =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaqPdjugibi abeg7aHjqadwhagaqeaKqbaoaalaaakeaajugibiaadsgacaaMc8Ua bm4yayaaraaakeaajugibiaadsgacaaMc8UaamOEaaaacqGHRaWkju aGdaWcaaGcbaqcLbsacaWGKbGaeqySdegakeaajugibiaadsgacaWG 6baaaiqadwhagaqeaiaaykW7ceWGJbGbaebacqGH9aqpcaWGebqcfa 4aaSaaaOqaaKqzGeGaamizaKqbaoaaCaaaleqajeaibaqcLbmacaaI YaaaaKqzGeGabm4yayaaraaakeaajugibiaadsgacaWG6bqcfa4aaW baaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaeyOeI0Iaam4Aaiqa dogagaqeaiaaykW7caGG7aGaaGzbVlaadQhacqGH9aqpcaaIWaGaai ilaiaaywW7ceWGJbGbaebajuaGdaqadaGcbaqcLbsacaaIWaaakiaa wIcacaGLPaaajugibiabg2da9iaadogajuaGdaahaaWcbeqcbasaaK qzadGaaGimaaaajugibiaaykW7caGGSaGaaGzbVNqbaoaalaaakeaa jugibiaadsgacaaMc8Uabm4yayaaraaakeaajugibiaadsgacaaMc8 UaamOEaaaacqGH9aqpcaaIWaGaaiilaaaa@806C@                     (20)
where
α( z )= 2 r 0 2 0 r 0 r u ˜ ( r ) c ˜ ( r,z )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaqadaGcbaqcLbsacaWG6baakiaawIcacaGLPaaajugibiab g2da9KqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaamOCaSWaaS baaKqaGeaajugWaiaaicdaaKqaGeqaaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaaaajuaGdaWdXbGcbaqcLbsacaWGYbGabmyDayaaiaqcfa 4aaeWaaOqaaKqzGeGaamOCaaGccaGLOaGaayzkaaqcLbsaceWGJbGb aGaajuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiaadQhaaOGaayjkai aawMcaaKqzGeGaamizaiaadkhaaKqaGeaajugWaiaaicdaaSqaaKqz GeGaamOCaKqbaoaaBaaajiaibaqcLbmacaaIWaaameqaaaqcLbsacq GHRiI8aaaa@5F1C@                                                                                            (21)
represents effect of the radial non-uniformity u ˜ (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG1b GbaGaacaGGOaaeaaaaaaaaa8qacaWGYbWdaiaacMcaaaa@3A0D@  of the velocity.

Generalized variables

The use of the generalized variables
r= r 0 R,z=lZ,u( r )= u ¯ U( R ), u ˜ ( r )= u( r ) u ¯ =U( R ), c( r,z )= c 0 C( R,Z ), c ¯ ( z )= c 0 C ¯ ( Z ), c ˜ ( r,z )= c( r,z ) c ¯ ( z ) = C( R,Z ) C ¯ ( Z ) , C ¯ ( Z )=2 0 1 RC( R,Z )dR ,α( z )=α( lZ )=A( Z )=2 0 1 RU( R ) C( R,Z ) C ¯ ( Z ) dR , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadkhacqGH9aqpcaWGYbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baqcLbsacaWGsbGaaiilaiaaywW7caWG6bGaeyypa0JaamiBaiaadQ facaGGSaGaaGzbVlaadwhajuaGdaqadaGcbaqcLbsacaWGYbaakiaa wIcacaGLPaaajugibiabg2da9iqadwhagaqeaiaadwfajuaGdaqada GcbaqcLbsacaWGsbaakiaawIcacaGLPaaajugibiaacYcacaaMf8Ua bmyDayaaiaqcfa4aaeWaaOqaaKqzGeGaamOCaaGccaGLOaGaayzkaa qcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWG1bqcfa4aaeWaaOqa aKqzGeGaamOCaaGccaGLOaGaayzkaaaabaqcLbsaceWG1bGbaebaaa Gaeyypa0JaamyvaKqbaoaabmaakeaajugibiaadkfaaOGaayjkaiaa wMcaaKqzGeGaaiilaaGcbaqcLbsacaWGJbqcfa4aaeWaaOqaaKqzGe GaamOCaiaacYcacaWG6baakiaawIcacaGLPaaajugibiabg2da9iaa dogajuaGdaahaaWcbeqcbasaaKqzadGaaGimaaaajugibiaadoeaju aGdaqadaGcbaqcLbsacaWGsbGaaiilaiaadQfaaOGaayjkaiaawMca aKqzGeGaaiilaiaaywW7ceWGJbGbaebajuaGdaqadaGcbaqcLbsaca WG6baakiaawIcacaGLPaaajugibiabg2da9iaadogajuaGdaahaaWc beqcbasaaKqzadGaaGimaaaajugibiqadoeagaqeaKqbaoaabmaake aajugibiaadQfaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaywW7ceWG JbGbaGaajuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiaadQhaaOGaay jkaiaawMcaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4yaKqb aoaabmaakeaajugibiaadkhacaGGSaGaamOEaaGccaGLOaGaayzkaa aabaqcLbsaceWGJbGbaebajuaGdaqadaGcbaqcLbsacaWG6baakiaa wIcacaGLPaaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGdb qcfa4aaeWaaOqaaKqzGeGaamOuaiaacYcacaWGAbaakiaawIcacaGL PaaaaeaajugibiqadoeagaqeaKqbaoaabmaakeaajugibiaadQfaaO GaayjkaiaawMcaaaaajugibiaacYcaaOqaaKqzGeGabm4qayaaraqc fa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaqcLbsacqGH9a qpcaaIYaqcfa4aa8qCaOqaaKqzGeGaamOuaiaadoeajuaGdaqadaGc baqcLbsacaWGsbGaaiilaiaacQfaaOGaayjkaiaawMcaaKqzGeGaam izaiaadkfaaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaigdaaKqz GeGaey4kIipacaGGSaGaaGzbVlabeg7aHLqbaoaabmaakeaajugibi aadQhaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaeqySdewcfa4aaeWa aOqaaKqzGeGaamiBaiaadQfaaOGaayjkaiaawMcaaKqzGeGaeyypa0 JaamyqaKqbaoaabmaakeaajugibiaadQfaaOGaayjkaiaawMcaaKqz GeGaeyypa0JaaGOmaKqbaoaapehakeaajugibiaadkfacaWGvbqcfa 4aaeWaaOqaaKqzGeGaamOuaaGccaGLOaGaayzkaaqcfa4aaSaaaOqa aKqzGeGaam4qaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamOwaa GccaGLOaGaayzkaaaabaqcLbsaceWGdbGbaebajuaGdaqadaGcbaqc LbsacaWGAbaakiaawIcacaGLPaaaaaqcLbsacaWGKbGaamOuaaqcba saaKqzadGaaGimaaqcbasaaKqzadGaaGymaaqcLbsacqGHRiI8aiaa cYcaaaaa@00CF@            (22)
leads to:
U C Z =Fo( ε 2 C Z 2 + 1 R C R + 2 C R 2 )DaC;ε= Fo 1 Pe 1 ; R=0, C R 0;R=1, C R 0;Z=0,C1,1U Pe 1 C Z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadwfajuaGdaWcaaGcbaqcLbsacqGHciITcaWGdbaakeaajugibiab gkGi2kaadQfaaaGaeyypa0JaciOraiaac+gajuaGdaqadaGcbaqcLb sacqaH1oqzjuaGdaWcaaGcbaqcLbsacqGHciITjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajugibiaadoeaaOqaaKqzGeGaeyOaIyRaam OwaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiabgUca RKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamOuaaaajuaGda WcaaGcbaqcLbsacqGHciITcaWGdbaakeaajugibiabgkGi2kaadkfa aaGaey4kaSscfa4aaSaaaOqaaKqzGeGaeyOaIyBcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaqcLbsacaWGdbaakeaajugibiabgkGi2kaa dkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaakiaawIcaca GLPaaajugibiabgkHiTiGacseacaGGHbGaam4qaiaacUdacaaMf8Ua eqyTduMaeyypa0JaciOraiaac+gajuaGdaahaaWcbeqcbasaaKqzad GaeyOeI0IaaGymaaaajugibiGaccfacaGGLbqcfa4aaWbaaSqabKqa GeaajugWaiabgkHiTiaaigdaaaqcLbsacaGG7aaakeaajugibiaadk facqGH9aqpcaaIWaGaaiilaiaaywW7juaGdaWcaaGcbaqcLbsacqGH ciITcaWGdbaakeaajugibiabgkGi2kaadkfaaaGaeyyyIORaaGimai aacUdacaaMf8UaamOuaiabg2da9iaaigdacaGGSaGaaGzbVNqbaoaa laaakeaajugibiabgkGi2kaadoeaaOqaaKqzGeGaeyOaIyRaamOuaa aacqGHHjIUcaaIWaGaai4oaiaaywW7caWGAbGaeyypa0JaaGimaiaa cYcacaaMf8Uaae4qaiabggMi6kaaigdacaGGSaGaaGzbVlaabgdacq GHHjIUcaWGvbGaeyOeI0IaciiuaiaacwgajuaGdaahaaWcbeqcbasa aKqzadGaeyOeI0IaaGymaaaajuaGdaWcaaGcbaqcLbsacqGHciITca WGdbaakeaajugibiabgkGi2kaadQfaaaGaaiOlaaaaaa@BAC7@                         (23)
A( Z ) d C ¯ dZ + dA dZ C ¯ = Pe 1 d 2 C ¯ d Z 2 Da C ¯ ;Z=0, C ¯ =1, d C ¯ dZ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaqcfa4aaSaa aOqaaKqzGeGaamizaiqadoeagaqeaaGcbaqcLbsacaWGKbGaamOwaa aacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGKbGaamyqaaGcbaqcLbsa caWGKbGaamOwaaaaceWGdbGbaebacqGH9aqpciGGqbGaaiyzaKqbao aaCaaaleqajeaibaqcLbmacqGHsislcaaIXaaaaKqbaoaalaaakeaa jugibiaadsgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibi qadoeagaqeaaGcbaqcLbsacaWGKbGaamOwaKqbaoaaCaaaleqajeai baqcLbmacaaIYaaaaaaajugibiabgkHiTiGacseacaGGHbGabm4qay aaraGaai4oaiaaywW7caWGAbGaeyypa0JaaGimaiaacYcacaaMf8Ua bm4qayaaraGaeyypa0JaaGymaiaacYcacaaMf8Ecfa4aaSaaaOqaaK qzGeGaamizaiqadoeagaqeaaGcbaqcLbsacaWGKbGaamOwaaaacqGH 9aqpcaaIWaGaaiOlaaaa@7143@                                  (24)
In (23, 24) Fo, Pe and Da are the Fourier, Peclet and Damkohler numbers, respectively:13,19
Fo= Dl u 0 r 0 2 ,Pe= u ¯ l D ,Da= kl u ¯ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGgb Gaai4Baiabg2da9KqbaoaalaaakeaajugibiaadseacaWGSbaakeaa jugibiaadwhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi aadkhajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOm aaaaaaqcLbsacaGGSaGaaGzbVlaaccfacaGGLbGaeyypa0tcfa4aaS aaaOqaaKqzGeGabmyDayaaraGaamiBaaGcbaqcLbsacaWGebaaaiaa cYcacaaMf8UaaiiraiaacggacqGH9aqpjuaGdaWcaaGcbaqcLbsaca WGRbGaamiBaaGcbaqcLbsaceWG1bGbaebaaaGaaeOlaaaa@5B88@                                                                                        (25)
In industrial columns the order of magnitude of the parameters values is:
Pe 1 < 10 4 ,ε= h 0 l > 10 1 ,Fo< 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGqb GaaiyzaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislcaaIXaaaaKqz GeGaeyipaWJaaGymaiaaicdajuaGdaahaaWcbeqcbasaaKqzadGaey OeI0IaaGinaaaajugibiaacYcacaaMf8UaeqyTduMaeyypa0tcfa4a aSaaaOqaaKqzGeGaamiAaKqbaoaaBaaajeaibaqcLbmacaaIWaaale qaaaGcbaqcLbsacaWGSbaaaiabg6da+iaaigdacaaIWaqcfa4aaWba aSqabKqaGeaajugWaiabgkHiTiaaigdaaaqcLbsacaGGSaGaaGzbVl GacAeacaGGVbGaeyipaWJaaGymaiaaicdajuaGdaahaaWcbeqcbasa aKqzadGaeyOeI0IaaGOmaaaaaaa@5FB2@                                                                        (26)
and the models (23, 24) have convective forms:
U C Z =DaC;Z=0,C1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb qcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4qaaGcbaqcLbsacqGHciIT caWGAbaaaiabg2da9iabgkHiTiGacseacaGGHbGaam4qaiaacUdaca aMf8UaamOwaiabg2da9iaaicdacaGGSaGaaGzbVlaadoeacqGHHjIU caaIXaGaaiOlaaaa@4D34@                                                                                    (27)
A( Z ) d C ¯ dZ + dA dZ C ¯ =Da C ¯ ;Z=0, C ¯ =1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaqcfa4aaSaa aOqaaKqzGeGaamizaiqadoeagaqeaaGcbaqcLbsacaWGKbGaamOwaa aacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGKbGaamyqaaGcbaqcLbsa caWGKbGaamOwaaaaceWGdbGbaebacqGH9aqpcqGHsislciGGebGaai yyaiqadoeagaqeaiaacUdacaaMf8UaamOwaiabg2da9iaaicdacaGG SaGaaGzbVlqadoeagaqeaiabg2da9iaaigdacaGGUaaaaa@564D@                                                                    (28)

Very often in industrial conditions, an axial modification of the radial non-uniformity of the axial velocity component is realized:
u n ( r, z n )= u 0 U n ( R, Z n ), U n ( R, Z n )= a n b n R 2 , a n =20.1n, b n =2( 10.1n ),0.1n Z n 0.1( n+1 )n=0,1,...,9,0R1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadwhajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajuaGdaqadaGc baqcLbsacaWGYbGaaiilaiaadQhajuaGdaWgaaqcbasaaKqzadGaam OBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamyDaKqbaoaa CaaaleqajeaibaqcLbmacaaIWaaaaKqzGeGaamyvaKqbaoaaBaaaje aibaqcLbmacaWGUbaaleqaaKqbaoaabmaakeaajugibiaadkfacaGG SaGaaiOwaKqbaoaaBaaajeaibaqcLbmacaWGUbaaleqaaaGccaGLOa GaayzkaaqcLbsacaGGSaGaaGPaVlaaykW7caWGvbqcfa4aaSbaaKqa GeaajugWaiaad6gaaSqabaqcfa4aaeWaaOqaaKqzGeGaamOuaiaacY cacaWGAbqcfa4aaSbaaKqaGeaajugWaiaad6gaaSqabaaakiaawIca caGLPaaajugibiabg2da9iaadggajuaGdaWgaaqcbasaaKqzadGaam OBaaWcbeaajugibiabgkHiTiaadkgajuaGdaWgaaqcbasaaKqzadGa amOBaaWcbeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaacYcacaaMf8UaamyyaKqbaoaaBaaajeaibaqcLbma caWGUbaaleqaaKqzGeGaeyypa0JaaGOmaiabgkHiTiaaicdacaGGUa GaaGymaiaad6gacaGGSaGaaGzbVdGcbaqcLbsacaWGIbqcfa4aaSba aKqaGeaajugWaiaad6gaaSqabaqcLbsacqGH9aqpcaaIYaqcfa4aae WaaOqaaKqzGeGaaGymaiabgkHiTiaaicdacaGGUaGaaGymaiaad6ga aOGaayjkaiaawMcaaKqzGeGaaiilaiaaicdacaGGUaGaaGymaiaad6 gacqGHKjYOcaWGAbqcfa4aaSbaaKqaGeaajugWaiaad6gaaSqabaqc LbsacqGHKjYOcaaIWaGaaiOlaiaaigdajuaGdaqadaGcbaqcLbsaca WGUbGaey4kaSIaaGymaaGccaGLOaGaayzkaaqcLbsacaaMf8UaamOB aiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6 cacaGGSaGaaGyoaiaacYcacaaMf8UaaGimaiabgsMiJkaadkfacqGH KjYOcaaIXaaaaaa@B803@                          (29)
and the model (27) has the form:
U n C n Z n =Da C n ;0.1n Z n 0.1( n+1 ); Z n =0.1n, C n ( R, Z n )= C n1 ( R, Z n );n=0,1,...,9; Z 0 =0, C 0 ( R, Z 0 )1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadwfajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajuaGdaWcaaGc baqcLbsacqGHciITcaWGdbqcfa4aaSbaaKqaGeaajugWaiaad6gaaS qabaaakeaajugibiabgkGi2kaadQfajuaGdaWgaaqcbasaaKqzadGa amOBaaWcbeaaaaqcLbsacqGH9aqpcqGHsislciGGebGaaiyyaiaado eajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajugibiaacUdacaaM f8UaaGimaiaac6cacaaIXaGaamOBaiabgsMiJkaadQfajuaGdaWgaa qcbasaaKqzadGaamOBaaWcbeaajugibiabgsMiJkaaicdacaGGUaGa aGymaKqbaoaabmaakeaajugibiaad6gacqGHRaWkcaaIXaaakiaawI cacaGLPaaajugibiaacUdaaOqaaKqzGeGaamOwaKqbaoaaBaaajeai baqcLbmacaWGUbaaleqaaKqzGeGaeyypa0JaaGimaiaac6cacaaIXa GaamOBaiaacYcacaaMf8Uaae4qaKqbaoaaBaaajeaibaqcLbmacaWG UbaaleqaaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamOwaKqbao aaBaaajeaibaqcLbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaWGdbqcfa4aaSbaaKqaGeaajugWaiaad6gacqGHsislca aIXaaaleqaaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamOwaKqb aoaaBaaajeaibaqcLbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLb sacaGG7aGaaGzbVlaad6gacqGH9aqpcaaIWaGaaiilaiaaigdacaGG SaGaaiOlaiaac6cacaGGUaGaaiilaiaaiMdacaGG7aaakeaajugibi aadQfajuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaeyypa0Ja aGimaiaacYcacaaMf8Uaae4qaKqbaoaaBaaajeaibaqcLbmacaaIWa aaleqaaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamOwaKqbaoaa BaaajeaibaqcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaqcLbsacq GHHjIUcaaIXaGaaiOlaaaaaa@AF1A@ (30)

Model equation solution

The solution of (27) C( R,Z )= C n ( R, Z n ), Z n =0.1( n+1 ),n=0,1,...,9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi aadoeajuaGdaqadaGcbaqcLbsacaWGsbGaaiilaiaadQfaaOGaayjk aiaawMcaaKqzGeGaeyypa0Jaam4qaKqbaoaaBaaajeaibaqcLbmaca WGUbaaleqaaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamOwaKqb aoaaBaaajeaibaqcLbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLb sacaGGSaGaaGjbVlaadQfajuaGdaWgaaqcbasaaKqzadGaamOBaaWc beaajugibiabg2da9iaaicdacaGGUaGaaGymaKqbaoaabmaakeaaju gibiaad6gacqGHRaWkcaaIXaaakiaawIcacaGLPaaajugibiaacYca caaMe8UaamOBaiabg2da9iaaicdacaGGSaGaaGymaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaaGyoaaaa@6588@  in the case Da=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGeb Gaaiyyaiabg2da9iaaigdaaaa@39F6@  is presented on the Figure 1. This solution C( R,Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi aadoeajuaGdaqadaGcbaqcLbsacaWGsbGaaiilaiaadQfaaOGaayjk aiaawMcaaaaa@3D28@  permits to be obtained in (22) the average (conditionally called “theoretical”) concentration distribution C ¯ ( Z )= C ¯ n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebajuaGdaqadaGcbaqcLbsacaWGAbaakiaawIcacaGLPaaajugi biabg2da9iqadoeagaqeaKqbaoaaBaaajeaibaqcLbmacaWGUbaale qaaKqbaoaabmaakeaajugibiaadQfajuaGdaWgaaqcbasaaKqzadGa amOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaysW7caWGAb qcfa4aaSbaaKqaGeaajugWaiaad6gaaSqabaqcLbsacqGH9aqpcaaI WaGaaiOlaiaaigdajuaGdaqadaGcbaqcLbsacaWGUbGaey4kaSIaaG ymaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGjbVlaad6gacqGH9aqp caaIWaGaaiilaiaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilai aaiMdaaaa@61F0@  in the column (the points on the Figure 2) and function A( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaaaaa@3AE5@ (the points on the Figure 3).
From Figure 3 is seen, that the function A( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaaaaa@3AE5@  is possible to be presented as a quadratic approximation:
A( Z )= a 0 + a 1 Z+ a 2 Z 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaqcLbsacqGH 9aqpcaWGHbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacq GHRaWkcaWGHbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa caWGAbGaey4kaSIaamyyaKqbaoaaBaaajeaibaqcLbmacaaIYaaale qaaKqzGeGaamOwaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqz GeGaaiilaaaa@50D0@ (31)

where the (conditionally called “theoretical”) values of a 0 , a 1 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGSaGaaGjb VlaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacY cacaaMe8UaamyyaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaa @4736@  are presented in the Table 1. As a result, in the case of axial modification of the radial non-uniformity of the velocity, the model (27) has the form:
( a 0 + a 1 Z+ a 2 Z 2 ) d C ¯ dZ +( a 1 +2 a 2 Z ) C ¯ =Da C ¯ ;Z=0, C ¯ =1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaey4kaSIaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaK qzGeGaamOwaiabgUcaRiaadggajuaGdaWgaaqcbasaaKqzadGaaGOm aaWcbeaajugibiaadQfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaa aaaOGaayjkaiaawMcaaKqbaoaalaaakeaajugibiaadsgaceWGdbGb aebaaOqaaKqzGeGaamizaiaadQfaaaGaey4kaSscfa4aaeWaaOqaaK qzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGa ey4kaSIaaGOmaiaadggajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbe aajugibiaadQfaaOGaayjkaiaawMcaaKqzGeGabm4qayaaraGaeyyp a0JaeyOeI0IaamiraiaadggaceWGdbGbaebacaGG7aGaaGzbVlaadQ facqGH9aqpcaaIWaGaaiilaiaaywW7ceWGdbGbaebacqGH9aqpcaaI XaGaaiilaaaa@7032@ (32)
where the parameters a 0 , a 1 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiaacYcacaaMe8UaamyyamaaBaaaleaacaaI XaaabeaakiaacYcacaaMe8UaamyyamaaBaaaleaacaaIYaaabeaaaa a@3FEB@  must be obtained, using experimental data.

Figure 1 Concentration distributions C( Z )= C n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi aadoeajuaGdaqadaGcbaqcLbsacaWGAbaakiaawIcacaGLPaaajugi biabg2da9iaadoeajuaGdaWgaaqcKfaG=haajugWaiaad6gaaSqaba qcfa4aaeWaaOqaaKqzGeGaamOwaKqbaoaaBaaajqwaa+FaaKqzadGa amOBaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaysW7caWGAb qcfa4aaSbaaKazba4=baqcLbmacaWGUbaaleqaaKqzGeGaeyypa0Ja aGimaiaac6cacaaIXaqcfa4aaeWaaOqaaKqzGeGaamOBaiabgUcaRi aaigdaaOGaayjkaiaawMcaaKqzGeGaaiilaiaaysW7caWGUbGaeyyp a0JaaGimaiaacYcacaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaaI5aGaaiOlaaaa@6875@

Figure 2 Average concentration distribution: “theoretical” values (as solution of (eq. 27) and (eq. 22)) C ¯ ( Z )= C ¯ n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi qadoeagaqeaKqbaoaabmaakeaajugibiaadQfaaOGaayjkaiaawMca aKqzGeGaeyypa0Jabm4qayaaraqcfa4aaSbaaKqaGeaajugWaiaad6 gaaSqabaqcfa4aaeWaaOqaaKqzGeGaamOwaKqbaoaaBaaajeaibaqc LbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGjbVl aadQfajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajugibiabg2da 9iaaicdacaGGUaGaaGymaKqbaoaabmaakeaajugibiaad6gacqGHRa WkcaaIXaaakiaawIcacaGLPaaajugibiaacYcacaaMe8UaamOBaiab g2da9iaaicdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaaGyoaaaa@62AA@ (points); C ¯ ( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebajuaGdaqadaGcbaqcLbsacaWGAbaakiaawIcacaGLPaaaaaa@3AFF@ as a solution of (eq. 32) for “experimental” values of a 0 , a 1 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGSaGaaGjb VlaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacY cacaaMe8UaamyyaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaa @4736@  (line).

Figure 3 Function A( Z )= A n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi aadgeajuaGdaqadaGcbaqcLbsacaWGAbaakiaawIcacaGLPaaajugi biabg2da9iaadgeajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaaju aGdaqadaGcbaqcLbsacaWGAbqcfa4aaSbaaKqaGeaajugWaiaad6ga aSqabaaakiaawIcacaGLPaaajugibiaacYcacaaMe8UaamOwaKqbao aaBaaajeaibaqcLbmacaWGUbaaleqaaKqzGeGaeyypa0JaaGimaiaa c6cacaaIXaqcfa4aaeWaaOqaaKqzGeGaamOBaiabgUcaRiaaigdaaO GaayjkaiaawMcaaKqzGeGaaiilaiaaysW7caWGUbGaeyypa0JaaGim aiaacYcacaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaI5a aaaa@6276@  (eq. 22) (points); A( Z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaeWaaOqaaKqzGeGaamOwaaGccaGLOaGaayzkaaaaaa@3AE5@  as a quadratic approximation (eq. 31) (line).

Parameters

“Theoretical” values

“Experimental” values

a0

1.0387

0.8582

a1

0.3901

0.4505

a2

−0.4230

−0.4343

Table 1 Parameters a 0 , a 1 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGSaGaaGjb VlaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacY cacaaMe8UaamyyaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaaa @4736@

Parameter identification

The obtained value of the function C ¯ ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebajuaGdaqadaGcbaqcLbsacaaIXaaakiaawIcacaGLPaaaaaa@3ADB@ (Figure 2) permit to be obtained the artificial experimental data C ¯ exp m ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebalmaaDaaajeaibaqcLbmaciGGLbGaaiiEaiaacchaaKqaGeaa jugWaiaad2gaaaqcfa4aaeWaaOqaaKqzGeGaaGymaaGccaGLOaGaay zkaaaaaa@4185@  for the column end ( (Z=1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaamOwaiabg2da9iaaigdacaGGPaaaaa@3A7F@ ):
C ¯ exp m ( 1 )=( 0.95+0.1 B m ) C ¯ ( 1 ),m=1,...,10, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebalmaaDaaajeaibaqcLbmaciGGLbGaaiiEaiaacchaaKqaGeaa jugWaiaad2gaaaqcfa4aaeWaaOqaaKqzGeGaaGymaaGccaGLOaGaay zkaaqcLbsacqGH9aqpjuaGdaqadaGcbaqcLbsacaaIWaGaaiOlaiaa iMdacaaI1aGaey4kaSIaaGimaiaac6cacaaIXaGaamOqaKqbaoaaBa aaleaajugibiaad2gaaSqabaaakiaawIcacaGLPaaajugibiqadoea gaqeaKqbaoaabmaakeaajugibiaaigdaaOGaayjkaiaawMcaaKqzGe GaaiilaiaaywW7caWGTbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOl aiaac6cacaGGSaGaaGymaiaaicdacaGGSaaaaa@5ED7@ (33)
where 0 B m 1,m=0,1,...,10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIWa GaeyizImQaamOqaKqbaoaaBaaajeaibaqcLbmacaWGTbaaleqaaKqz GeGaeyizImQaaGymaiaacYcacaaMe8UaamyBaiabg2da9iaaicdaca GGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaaGymaiaa icdaaaa@4B04@ are obtained by a generator of random numbers. The obtained artificial experimental data (33) are used for the illustration of the parameters ( a 0 , a 1 , a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaaysW7caWGHbWaaSba aSqaaiaaigdaaeqaaOGaaiilaiaaysW7caWGHbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaaaaa@417E@ identification in the average concentrations model (32) by the minimization of the least-squares function:
Q( a 0 , a 1 , a 2 )= m=1 10 [ C ¯ (1, a 0 , a 1 , a 2 ) C ¯ exp m (1) ] 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGrb GaaiikaiaadggajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaacYcacaaMe8UaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaale qaaKqzGeGaaiilaiaaysW7caWGHbqcfa4aaSbaaKqaGeaajugWaiaa ikdaaSqabaqcLbsacaGGPaGaeyypa0tcfa4aaabCaOqaaKqbaoaadm aakeaajugibiqadoeagaqeaiaacIcacaaIXaGaaiilaiaadggajuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaacYcacaaMe8Uaam yyaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiaa ysW7caWGHbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsaca GGPaGaeyOeI0Iabm4qayaaraqcfa4aa0baaKqaGeaajugWaiGacwga caGG4bGaaiiCaaqcbasaaKqzadGaamyBaaaajugibiaacIcacaaIXa GaaiykaaGccaGLBbGaayzxaaaajeaibaqcLbmacaWGTbGaeyypa0Ja aGymaaqcbasaaKqzadGaaGymaiaaicdaaKqzGeGaeyyeIuoajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaacYcaaaa@7CD5@ (34)

where the value of C ¯ (1, a 0 , a 1 , a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebacaGGOaGaaGymaiaacYcacaWGHbqcfa4aaSbaaKqaGeaajugW aiaaicdaaSqabaqcLbsacaGGSaGaaGjbVlaadggajuaGdaWgaaqcba saaKqzadGaaGymaaWcbeaajugibiaacYcacaaMe8UaamyyaKqbaoaa BaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaiykaaaa@4B69@  is obtained after the solution of (32) for Z=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGAb Gaeyypa0JaaGymaaaa@3925@ , m=0,1,...,10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb Gaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaac6cacaGGUaGaaiOl aiaacYcacaaIXaGaaGimaaaa@3F8E@  are the numbers of the artificial experimental data (33). The obtained “experimental” parameter values are presented on the Table 1.

The obtained (“experimental”) parameter values are used for the solution of (32) and the result (the line) is compared with the average (“theoretical”) concentration values C ¯ ( Z )= C ¯ n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi qadoeagaqeaKqbaoaabmaakeaajugibiaadQfaaOGaayjkaiaawMca aKqzGeGaeyypa0Jabm4qayaaraqcfa4aaSbaaKqaGeaajugWaiaad6 gaaSqabaqcfa4aaeWaaOqaaKqzGeGaamOwaKqbaoaaBaaajeaibaqc LbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGjbVl aadQfajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajugibiabg2da 9iaaicdacaGGUaGaaGymaKqbaoaabmaakeaajugibiaad6gacqGHRa WkcaaIXaaakiaawIcacaGLPaaajugibiaacYcacaaMe8UaamOBaiab g2da9iaaicdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaaGyoaiaac6caaaa@635C@ (points) (as solution of (27) and (22)) on the Figure 2.

Influence of the model parameter

The model (32), with “experimental” parameters values of a 0 , a 1 , a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiaacYcacaaMe8UaamyyamaaBaaaleaacaaI XaaabeaakiaacYcacaaMe8UaamyyamaaBaaaleaacaaIYaaabeaaaa a@3FEB@ in the Table 1, is used for the calculation the average concentrations in the case Da=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGeb Gaaiyyaiabg2da9iaaikdaaaa@39F5@ and the result (line) is compared (Figure 4) with the average (“theoretical”) concentration values C ¯ ( Z )= C ¯ n ( Z n ), Z n =0.1( n+1 ),n=0,1,...,9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW4kjugibi qadoeagaqeaKqbaoaabmaakeaajugibiaadQfaaOGaayjkaiaawMca aKqzGeGaeyypa0Jabm4qayaaraqcfa4aaSbaaKqaGeaajugWaiaad6 gaaSqabaqcfa4aaeWaaOqaaKqzGeGaamOwaKqbaoaaBaaajeaibaqc LbmacaWGUbaaleqaaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaGjbVl aadQfajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaajugibiabg2da 9iaaicdacaGGUaGaaGymaKqbaoaabmaakeaajugibiaad6gacqGHRa WkcaaIXaaakiaawIcacaGLPaaajugibiaacYcacaaMe8UaamOBaiab g2da9iaaicdacaGGSaGaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaaGyoaaaa@62AA@  (as solutions of (27) and (22)) (points) for this case.

Figure 4 Average concentration distribution C ¯ (Z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGdb GbaebacaGGOaGaaiOwaiaacMcaaaa@399D@ : effect of the chemical reaction rate ( Da=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGeb Gaaiyyaiabg2da9iaaikdaaaa@39F5@ ).

Conclusion

The presented numerical analysis of the industrial column chemical reactors shows,14 that average-concentration model, where the radial velocity component is equal to zero (in the cases of a constant velocity radial non-uniformity along the column height), is possible to be used in the cases of an axial modification of the radial non-uniformity of the axial velocity component. The use of experimental data, for the average concentration at the column end, for a concrete process, permits to be obtained the model parameters ( a 0 , a 1 , a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaaiilaiaaysW7caWGHbqcfa4aaSbaaKqaGeaajugWaiaaigdaaS qabaqcLbsacaGGSaGaaGjbVlaadggajuaGdaWgaaqcbasaaKqzadGa aGOmaaWcbeaaaOGaayjkaiaawMcaaaaa@4961@ , related with the radial non-uniformity of the velocity. These parameter values permit to be used the average concentration model for modeling of different processes (different values of the parameter Da MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGeb Gaaiyyaaaa@3835@ , i.e. different values of the column height, average velocity, reagent diffusivity and chemical reaction rate constant).his approach is used for the modeling of chemical, absorption, adsorption and catalytic processes in industrial column apparatuses.14−19

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest in publishing the article.

References

  1. Chr Boyadjiev. Fundamentals of modeling and simulation in chemical engineering and chemical technology. IHI-BAS, Sofia, Bulgaria; 1993.
  2. Chr Boyadjiev. Theoretical Chemical Engineering. Modeling and simulation. Berlin, Heidelberg: Springer; 2010.
  3. Hr Boyadzhiev. Fundamentals of modeling and simulation in chemical industry. International Scientific Journal Mathematical Modeling. 2017;1(1):7−9.
  4. EL Feinberg. Two cultures; Intuition and logic in art and science. 1992. 251p.
  5. Chr Boyadjiev. Some Thoughts on Logic and Intuition in Science and Chemical Engineering. Open Access Library Journal. 2014;1(6):1−5.
  6. J Keizer. Statistical Thermodynamics of Nonequilibrium Processes. New York: Springer; 1987. 506p.
  7. LD Landau. EM Lifshitz. Fluid Mechanics. 3rd ed. UK: Pergamon press; 1989. 400p.
  8. VG Levich. Physicochemical Hydrodynamics. New York; Prentice Hall; 1962.
  9. Chr Boyadjiev, V Beschkov. Mass Transfer in Liquid Film Flows. Moscow: Publ House Bulg; 1984. 128p.
  10. Chr Boyadjiev, V Beschkov. Mass Transfer in Liquid Film Flows (in Russian). Moscow: Publ House Bulg; 1988. 137p.
  11. VS Krylov, Chr Boyadjiev. Non-Linear Mass Transfer (Russian). Russia: Institute of Thermophysics; 1996.
  12. Chr B Boyadjiev, VN Babak. Non-Linear Mass Transfer and Hydrodynamic Stability. New York: ELSEVIER; 2000. 516p.
  13. Chr Boyadjiev, M Doichinova, B Boyadjiev, et al. Modeling of Column Apparatus Processes. 1st ed. Berlin: Springer; 2016. 313p.
  14. B Boyadjiev, Chr Boyadjiev. New Models of Industrial Column Chemical Reactors. Bulgarian Chemical Communications. 2017;49(3):706−710.
  15. B Boyadjiev, Chr Boyadjiev. New Models of Industrial Column Absorbers. 1. Co-current absorption processes. Bulgarian Chemical Communications. 2017;49(3):711−719.
  16. B Boyadjiev, Chr Boyadjiev. New Models of Industrial Column Absorbers. 2. Counter-current absorption processes. Bulgarian Chemical Communications. 2017;49(3):720−728.
  17. B Boyadjiev, Chr. Boyadjiev. New Models of Industrial Column Adsorbers. J Eng Thermophysics. 2018;27(1):82−97.
  18. B Boyadjiev, Chr Boyadjiev. A New Approach for Modeling of Industrial Catalytic Columns. J Eng Thermophysics. (In press). 2018.
  19. Chr Boyadjiev, M Doichinova, B Boyadjiev, et al. Modeling of Column Apparatus Processes. 2nd ed. Berlin: Springer; 2018. 456p.
Creative Commons Attribution License

©2018 Boyadjiev. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.