Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Review Article Volume 2 Issue 2

Non-Newtonian stagnation point flow due to a stretchable rotating disk

Abhijit Das, B Sahoo

Department of Mathematics, National Institute of Technology, Rourkela, India

Correspondence: Department of Mathematics, National Institute of Technology, Rourkela, Odisha 769008, India

Received: March 13, 2018 | Published: May 7, 2018

Citation: Das A, Sahoo B. Non-Newtonian stagnation point flow due to a stretchable rotating disk. Fluid Mech Res Int. 2018;2(2):73-83. DOI: 10.15406/fmrij.2018.02.00023

Download PDF

Abstract

In this study, steady, three dimensional, laminar stagnation point flow and heat transfer of a non-Newtonian Reiner-Rivlin fluid due to a radially stretchable rotating disk has been investigated for the first time. Analytical solutions of the governing coupled, nonlinear, ordinary differential equations, deduced directly from the Naveir-Stokes equations by means of similarity transformations, are obtained using a highly effective analytical method, called, Homotopy Analysis Method (HAM). A comparison of HAM results with Homotopy Perturbation Method (HPM) is also performed to show the efficiency of HAM over HPM. It has been observed that, increasing stretching in general decreases the magnitude of azimuthal, axial component of velocity and temperature distributions, while the radial component increases near the surface of the disk for small stretching followed by a continuous decrease for large stretching. Also, the radial and tangential stresses are found to be decreasing functions of the stretching parameter.

Keywords: Stagnation flow Stretchable disk HAM Reiner-Rivlin fluid Rotating disk.

Introduction

 In general, it is always difficult to find exact solution of the Navier-Stokes equations, primarily because of their non-linearity. The planner two dimensional stagnation point flow, initially solved by1 and axisymmetric three dimensional stagnation point flow by2,3 are a few of the problems in fluid dynamics which admit exact solution of the Navier-Stokes equations. The stagnation point flow represents the fluid flow in the immediate neighborhood of solid surface at which fluid approaching the surface divides into different streams and it is evident from literature that stagnation flows are studied extensively because of their importance in both theory and practice. From a practical point of view, these flows have applications in forced convection cooling processes where a coolant is impinged on a flat plate. The classical Karman4 problem is another example of an exact solution of the Navier-Stokes equations. In his paper, Karman showed that, the steady, viscous flow around a single disk rotating in an initially stationary fluid is an exact solution of the Navier-Stokes equations reducing the governing system of partial differential equations into a set of ordinary differential equations using the similarity variables which are now known as Karman similarity variables. The subject of flows associated with rotating disks occupies a key position in the field of fluid mechanics because of their immense practical importance. Rotating-disk systems can be used to model the flow and heat transfer associated with the internal-air systems of gas turbines, where disks rotate close to a rotating and stationary surface. In addition, rotating-disk systems are used in electro-chemistry (rotating-disk electrodes), bio and chemical reactors, transport engineering (automobile brakes), rotating-disk cleaners, etc. Hence, after Karman’s4 seminal work, considerable attention has been given to the extensions of his problem, such as, the effects of suction,5 of partial slip,6 of stretching,7 of forced convection8 and many more.

Present study focuses on another important extension of this problem which is the stagnation point flow over a rotating disk, which has long been a subject of investigations. This phenomenon commonly occurs in many engineering and industrial applications such as wastewater treatment, rotating machinery, medical equipment, rotating blades, computer storage devices etc. Moreover, forced flow due to a rotating disk occurs on all blunt rotating bodies moving in a fluid and thus present analysis meets the identified need to evaluate the exact analytical solution of a practical problem. Hannah9 was the first to analyze the flow fields arising from a laminar forced flow impinging on a rotating disk. He obtained an approximate series solution of velocity profiles near the disk surface. Schlichting et al.,10 gave another series solution of velocity components using an integral method. The steady heat transfer in this flow has been investigated by Tien et al.,11 using the velocity functions of Hannah’s9 result. A more general problem of boundary-layer transfer over a rotating axisymmetric bodies, including rotating disk as a special case has been studied by Lee et al.12 A more recent study by Shevchuk et al.,13 investigates the stagnation point solution for a rotating disk with simultaneous orthogonal impingement regarding the heat transfer. One can find a comprehensive review relevant to stagnation flow over a rotating disk in the book.14

This analytical study also explores the effect of surface stretching owing to its several practical applications in the field of metallurgy and chemical engineering. Extrusion processes, fibers spinning, hot rolling, manufacturing of plastic and rubber sheet, continuous casting and glass blowing are examples of industrial applications of stretching of a surface in an ambient fluid. Turkyilmazoglu15 investigated the three dimensional stagnation point flow of viscous, steady boundary layer of an electrically conducting fluid, in the presence of a magnetic field, due to a rotating disk permitting it to stretch radially. Using spectral technique he solved the governing system of equations numerically and found strong dependence of the stagnation velocities and shear stresses on the rotation parameter, stretching parameter and magnetic field parameter. Recently, Shateyi et al.,16 extended and studied the steady stagnation-point flow and heat transfer of an electrically conducted incompressible viscous fluid to the case where the disk surface is convectively heated and radially stretched. Though, the study of viscous stagnation point flow due to a stretchable rotating disk has attained considerable attention, very little attention is given to the non-Newtonian counterpart of the same. Therefore, the objective of the present investigation is to extend this study to the non-Newtonian case considering the Reiner-Rivlin fluid model. This fluid model was introduced by Reiner17 to describe the phenomenon of “dilatancy" and it’s constitutive equation is given by

τ ij =p δ ij +2μ e ij +2 μ c e ik e kj , e jj =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGPbGaamOAaaqabaGccaaI9aGaeyOeI0IaamiCaiabes7a KnaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaaIYaGaeqiVd0 MaamyzamaaBaaaleaacaWGPbGaamOAaaqabaGccqGHRaWkcaaIYaGa eqiVd02aaSbaaSqaaiaadogaaeqaaOGaamyzamaaBaaaleaacaWGPb Gaam4AaaqabaGccaWGLbWaaSbaaSqaaiaadUgacaWGQbaabeaakiaa iYcacaaMf8UaamyzamaaBaaaleaacaWGQbGaamOAaaqabaGccaaI9a GaaGimaaaa@5802@ (1)

Where p is denoting the pressure, μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTbaa@37FC@ is the coefficient of viscosity and μ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGJbaabeaaaaa@3910@ is the coefficient of cross viscosity. The Reiner-Rivlin model does not predict distinct normal stress differences in simple shear flows and thus the model might be unsuitable for fluids having distinct normal stress differences but many geological, biological materials as well as food products and chemicals are adequately described by this model. In fact the most popular models in chemical engineering, food rheology, glaciology and other areas belong to the class of Reiner-Rivlin fluids. For details one can refer the recent works18,19 in which the authors have thoroughly discussed about the Reiner-Rivlin fluid.

In this study, we use the popular and promising technique, called, Homotopy Analysis Method (HAM) devised by Liao,20 to produce approximate analytical solutions for the considered problem. The homotopy analysis method is unique among other perturbation techniques as it allows us to effectively control the region of convergence and rate of convergence of a series solution to a nonlinear differential equation, via control of an initial approximation, an auxiliary linear operator, an auxiliary function and a convergence control parameter. Moreover, many other methods such as homotopy perturbation method, Adomian’s decomposition method, -expansion method etc. are special cases of HAM.21 A few successful implementation of HAM can be found in the works.22–24

The rest of the paper is structured as follows: Section 2 presents the formulation of the problem which is followed by application of HAM to the resulting system of nonlinear differential equations in Section 3. The convergence of the obtained solution series is discussed in Section 4. Results are discussed in Section 5 and finally, conclusions are drawn in Section 6.

Formulation of the problem

 Let us consider steady stagnation point flow of a non-Newtonian Reiner-Rivlin fluid due to a stretchable rotating disk of infinite dimension placed at z=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhacaaI9a GaaGimaaaa@38C6@ . The disk is assumed to rotate with uniform angular velocity Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axbaa@37D4@  which stretches radially with constant rate c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogaaaa@372E@ , (Figure 1). Using cylindrical polar coordinates to describe the flow, let u,v,w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaaISa GaamODaiaaiYcacaWG3baaaa@3AA3@  be the components of velocity along r,ϕ,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaISa Gaeqy1dyMaaGilaiaadQhaaaa@3B70@ respectively. And in view of rotational symmetry taking ϕ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaeqy1dygaaiaai2dacaaIWaaaaa@3C6B@ , the equation of continuity, motion and energy read as:
u r + u r + w z =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamyDaaqaaiabgkGi2kaadkhaaaGaey4kaSYaaSaaaeaacaWG 1baabaGaamOCaaaacqGHRaWkdaWcaaqaaiabgkGi2kaadEhaaeaacq GHciITcaWG6baaaiaai2dacaaIWaaaaa@4530@                                                                             (2)
ρ(u u r v 2 r +w u z )= τ rr r + τ rz z + τ rr τ θθ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWG1bWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamOCaaaa cqGHsisldaWcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaaca WGYbaaaiabgUcaRiaadEhadaWcaaqaaiabgkGi2kaadwhaaeaacqGH ciITcaWG6baaaiaaiMcacaaI9aWaaSaaaeaacqGHciITcqaHepaDda WgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacqGH RaWkdaWcaaqaaiabgkGi2kabes8a0naaBaaaleaacaWGYbGaamOEaa qabaaakeaacqGHciITcaWG6baaaiabgUcaRmaalaaabaGaeqiXdq3a aSbaaSqaaiaadkhacaWGYbaabeaakiabgkHiTiabes8a0naaBaaale aacqaH4oqCcqaH4oqCaeqaaaGcbaGaamOCaaaaaaa@671E@                               (3)
ρ(u v r + uv r +w v z )= τ rθ r + τ θz z + 2 τ rθ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWG1bWaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaamOCaaaa cqGHRaWkdaWcaaqaaiaadwhacaWG2baabaGaamOCaaaacqGHRaWkca WG3bWaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaamOEaaaacaaI PaGaaGypamaalaaabaGaeyOaIyRaeqiXdq3aaSbaaSqaaiaadkhacq aH4oqCaeqaaaGcbaGaeyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiab gkGi2kabes8a0naaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiabgk Gi2kaadQhaaaGaey4kaSYaaSaaaeaacaaIYaGaeqiXdq3aaSbaaSqa aiaadkhacqaH4oqCaeqaaaGcbaGaamOCaaaaaaa@63C1@                                     (4)
ρ(u w r +w w z )= τ zr r + τ zz z + τ rz r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWG1bWaaSaaaeaacqGHciITcaWG3baabaGaeyOaIyRaamOCaaaa cqGHRaWkcaWG3bWaaSaaaeaacqGHciITcaWG3baabaGaeyOaIyRaam OEaaaacaaIPaGaaGypamaalaaabaGaeyOaIyRaeqiXdq3aaSbaaSqa aiaadQhacaWGYbaabeaaaOqaaiabgkGi2kaadkhaaaGaey4kaSYaaS aaaeaacqGHciITcqaHepaDdaWgaaWcbaGaamOEaiaadQhaaeqaaaGc baGaeyOaIyRaamOEaaaacqGHRaWkdaWcaaqaaiabes8a0naaBaaale aacaWGYbGaamOEaaqabaaakeaacaWGYbaaaaaa@5D04@                                               (5)
ρ c p ( u T r +w T z )=k( 1 r T r + 2 T r 2 + 2 T z 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaado gadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadwhadaWcaaqaaiab gkGi2kaadsfaaeaacqGHciITcaWGYbaaaiabgUcaRiaadEhadaWcaa qaaiabgkGi2kaadsfaaeaacqGHciITcaWG6baaaaGaayjkaiaawMca aiaai2dacaWGRbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaam aalaaabaGaeyOaIyRaamivaaqaaiabgkGi2kaadkhaaaGaey4kaSYa aSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGubaabaGaey OaIyRaamOCamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqa aiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadsfaaeaacqGHciITca WG6bWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaaaaa@6078@                                 (6)

Where, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfaaaa@371F@  is fluid’s temperature, c p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamiCaaqabaaaaa@384F@  and k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaaaa@3736@ are specific heat constant and thermal conductivity of the fluid respectively. And the boundary conditions are:

u(0)=cr,v(0)=rΩ,w(0)=0,T(0)= T w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaaIOa GaaGimaiaaiMcacaaI9aGaam4yaiaadkhacaaISaGaaGzbVlaadAha caaIOaGaaGimaiaaiMcacaaI9aGaamOCaiabfM6axjaaiYcacaaMf8 Uaam4DaiaaiIcacaaIWaGaaGykaiaai2dacaaIWaGaaGilaiaaywW7 caWGubGaaGikaiaaicdacaaIPaGaaGypaiaadsfadaWgaaWcbaGaam 4Daaqabaaaaa@5393@                               (7)
u()ar,v()0,w()2az,T() T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaaIOa GaeyOhIuQaaGykaiabgkziUkaadggacaWGYbGaaGilaiaaywW7caWG 2bGaaGikaiabg6HiLkaaiMcacqGHsgIRcaaIWaGaaGilaiaaywW7ca WG3bGaaGikaiabg6HiLkaaiMcacqGHsgIRcqGHsislcaaIYaGaamyy aiaadQhacaaISaGaaGzbVlaadsfacaaIOaGaeyOhIuQaaGykaiabgk ziUkaadsfadaWgaaWcbaGaeyOhIukabeaaaaa@5C83@
Where, a is a constant, T w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4Daaqabaaaaa@3847@  is the temperature at the surface of the disk and T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaeyOhIukabeaaaaa@38BC@  is the temperature far away from the disk. Next we use the following similarity transformations:
u=ar F (η),v=arG(η),w=2 aν F(η),θ= T T T w T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaaI9a GaamyyaiaadkhaceWGgbGbauaacaaIOaGaeq4TdGMaaGykaiaaiYca caaMf8UaamODaiaai2dacaWGHbGaamOCaiaadEeacaaIOaGaeq4TdG MaaGykaiaaiYcacaaMf8Uaam4Daiaai2dacqGHsislcaaIYaWaaOaa aeaacaWGHbGaeqyVd4galeqaaOGaamOraiaaiIcacqaH3oaAcaaIPa GaaGilaiaaywW7cqaH4oqCcaaI9aWaaSaaaeaacaWGubGaeyOeI0Ia amivamaaBaaaleaacqGHEisPaeqaaaGcbaGaamivamaaBaaaleaaca WG3baabeaakiabgkHiTiaadsfadaWgaaWcbaGaeyOhIukabeaaaaaa aa@6260@         (8)
where, η= a ν z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjaai2 dadaGcaaqaamaalaaabaGaamyyaaqaaiabe27aUbaaaSqabaGccaWG 6baaaa@3C8B@ and the governing equations are reduced to:
d 3 F d η 3 ( dF dη ) 2 + G 2 +2F d 2 F d η 2 L 2 ( ( d 2 F d η 2 ) 2 +2 dF dη d 3 F d η 3 +3 ( dG dη ) 2 )+1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaG4maaaakiaadAeaaeaacaWGKbGaeq4TdG2a aWbaaSqabeaacaaIZaaaaaaakiabgkHiTmaabmaabaWaaSaaaeaaca WGKbGaamOraaqaaiaadsgacqaH3oaAaaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaam4ramaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacaWGgbWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaamOraaqaaiaadsgacqaH3oaAdaahaaWcbeqaaiaaik daaaaaaOGaeyOeI0YaaSaaaeaacaWGmbaabaGaaGOmaaaadaqadaqa amaabmaabaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaam OraaqaaiaadsgacqaH3oaAdaahaaWcbeqaaiaaikdaaaaaaaGccaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmamaala aabaGaamizaiaadAeaaeaacaWGKbGaeq4TdGgaamaalaaabaGaamiz amaaCaaaleqabaGaaG4maaaakiaadAeaaeaacaWGKbGaeq4TdG2aaW baaSqabeaacaaIZaaaaaaakiabgUcaRiaaiodadaqadaqaamaalaaa baGaamizaiaadEeaaeaacaWGKbGaeq4TdGgaaaGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaaigda caaI9aGaaGimaaaa@742B@ (9)
d 2 G d η 2 +2F dG dη 2 dF dη G+L( d 2 F d η 2 dG dη dF dη d 2 G d η 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadEeaaeaacaWGKbGaeq4TdG2a aWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaaikdacaWGgbWaaSaaae aacaWGKbGaam4raaqaaiaadsgacqaH3oaAaaGaeyOeI0IaaGOmamaa laaabaGaamizaiaadAeaaeaacaWGKbGaeq4TdGgaaiaadEeacqGHRa WkcaWGmbWaaeWaaeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikda aaGccaWGgbaabaGaamizaiabeE7aOnaaCaaaleqabaGaaGOmaaaaaa GcdaWcaaqaaiaadsgacaWGhbaabaGaamizaiabeE7aObaacqGHsisl daWcaaqaaiaadsgacaWGgbaabaGaamizaiabeE7aObaadaWcaaqaai aadsgadaahaaWcbeqaaiaaikdaaaGccaWGhbaabaGaamizaiabeE7a OnaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacaaI9aGaaG imaaaa@64F3@                 (10)
d 2 θ d η 2 +2PrF dθ dη =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiabeI7aXbqaaiaadsgacqaH3oaA daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmaiaadcfacaWGYb GaamOramaalaaabaGaamizaiabeI7aXbqaaiaadsgacqaH3oaAaaGa aGypaiaaicdaaaa@486A@                                                                       (11)

with the boundary conditions
F(0)=0,G(0)=ω, F (0)=s,θ(0)=1 F ()1,G()0,θ()0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGgbGaaGikaiaaicdacaaIPaGaaGypaiaaicdacaaISaGaaGzb VlaadEeacaaIOaGaaGimaiaaiMcacaaI9aGaeqyYdCNaaGilaiaayw W7ceWGgbGbauaacaaIOaGaaGimaiaaiMcacaaI9aGaam4CaiaaiYca caaMf8UaeqiUdeNaaGikaiaaicdacaaIPaGaaGypaiaaigdaaeaace WGgbGbauaacaaIOaGaeyOhIuQaaGykaiabgkziUkaaigdacaaISaGa aGzbVlaadEeacaaIOaGaeyOhIuQaaGykaiabgkziUkaaicdacaaISa GaaGzbVlabeI7aXjaaiIcacqGHEisPcaaIPaGaeyOKH4QaaGimaaaa aaa@696D@ (12)
where ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiEcaaaa@36F7@  denotes derivatives with respect to η, s= c a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqabiaaae aacqaH3oaAcaGGSaaabaGaam4Caiaai2dadaWcaaqaaiaadogaaeaa caWGHbaaaaaaaaa@3C4C@  is the stretching parameter, ω= Ω a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dadaWcaaqaaiabfM6axbqaaiaadggaaaaaaa@3B5E@  is the rotation number, Pr= μ c p k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGYb GaaGypamaalaaabaGaeqiVd0Maam4yamaaBaaaleaacaWGWbaabeaa aOqaaiaadUgaaaaaaa@3DA2@  is the Prandtl number and L= μ c a μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a WaaSaaaeaacqaH8oqBdaWgaaWcbaGaam4yaaqabaGccaWGHbaabaGa eqiVd0gaaaaa@3D5E@  is the non-Newtonian parameter.

The heat transfer from the disk’s surface to the fluid is computed by the application of Fourier’s law, q=k ( T z ) w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghacaaI9a GaeyOeI0Iaam4AamaabmaabaWaaSaaaeaacqGHciITcaWGubaabaGa eyOaIyRaamOEaaaaaiaawIcacaGLPaaadaWgaaWcbaGaam4Daaqaba aaaa@4145@  which upon introducing the transformed variables become
k( T w T ) a ν dθ(0) dη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadU gacaaIOaGaamivamaaBaaaleaacaWG3baabeaakiabgkHiTiaadsfa daWgaaWcbaGaeyOhIukabeaakiaaiMcadaGcaaqaamaalaaabaGaam yyaaqaaiabe27aUbaaaSqabaGcdaWcaaqaaiaadsgacqaH4oqCcaaI OaGaaGimaiaaiMcaaeaacaWGKbGaeq4TdGgaaaaa@4936@                                                                   (13)
By rewriting the heat transfer results in terms of the Nusselt number defined as N u = q ν a k( T w T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamyDaaqabaGccaaI9aWaaSaaaeaacaWGXbWaaOaaaeaadaWc aaqaaiabe27aUbqaaiaadggaaaaaleqaaaGcbaGaam4AaiaaiIcaca WGubWaaSbaaSqaaiaadEhaaeqaaOGaeyOeI0IaamivamaaBaaaleaa cqGHEisPaeqaaOGaaGykaaaaaaa@44B6@ , we get
N u = dθ(0) dη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamyDaaqabaGccaaI9aGaeyOeI0YaaSaaaeaacaWGKbGaeqiU deNaaGikaiaaicdacaaIPaaabaGaamizaiabeE7aObaaaaa@4160@                                                                                (14)
In terms of variables of the analysis, the expressions for the tangential shear stress τ θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacqaH4oqCaeqaaaaa@39ED@  and radial shear stress τ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGYbaabeaaaaa@392E@  are given by
τ θ = τ θz aμr a ν | z=0 = G (0)L G (0) F (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacqaH4oqCaeqaaOGaaGypamaalaaabaGaeqiXdq3aaSbaaSqa aiabeI7aXjaadQhaaeqaaaGcbaGaamyyaiabeY7aTjaadkhadaGcaa qaamaalaaabaGaamyyaaqaaiabe27aUbaaaSqabaaaaOGaaGiFamaa BaaaleaacaWG6bGaaGypaiaaicdaaeqaaOGaaGypaiqadEeagaqbai aaiIcacaaIWaGaaGykaiabgkHiTiaadYeaceWGhbGbauaacaaIOaGa aGimaiaaiMcaceWGgbGbauaacaaIOaGaaGimaiaaiMcaaaa@5509@        (15)
And
τ r = τ rz aμr a ν | z=0 = F (0)L F (0) F (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGYbaabeaakiaai2dadaWcaaqaaiabes8a0naaBaaaleaa caWGYbGaamOEaaqabaaakeaacaWGHbGaeqiVd0MaamOCamaakaaaba WaaSaaaeaacaWGHbaabaGaeqyVd4gaaaWcbeaaaaGccaaI8bWaaSba aSqaaiaadQhacaaI9aGaaGimaaqabaGccaaI9aGabmOrayaafyaafa GaaGikaiaaicdacaaIPaGaeyOeI0IaamitaiqadAeagaqbgaqbaiaa iIcacaaIWaGaaGykaiqadAeagaqbaiaaiIcacaaIWaGaaGykaaaa@539F@                                       (16)

Figure 1 Schematic diagram of the flow domain.

HAM solution

 For this problem, due to the boundary conditions (12), we choose the base function { η m e nη |m0n0} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiUhacqaH3o aAdaahaaWcbeqaaiaad2gaaaGccaWGLbWaaWbaaSqabeaacqGHsisl caWGUbGaeq4TdGgaaOGaaGiFaiaad2gacqGHLjYScaaIWaGaamOBai abgwMiZkaaicdacaaI9baaaa@47BF@  to express F(η),G(η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaaIOa Gaeq4TdGMaaGykaiaaiYcacaWGhbGaaGikaiabeE7aOjaaiMcaaaa@3EB5@  and θ(η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaaiI cacqaH3oaAcaaIPaaaaa@3B0D@ . And the initial approximations are chosen as
F 0 (η)=(s1)+η(s1) e η , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGimaaqabaGccaaIOaGaeq4TdGMaaGykaiaai2dacaaIOaGa am4CaiabgkHiTiaaigdacaaIPaGaey4kaSIaeq4TdGMaeyOeI0IaaG ikaiaadohacqGHsislcaaIXaGaaGykaiaadwgadaahaaWcbeqaaiab gkHiTiabeE7aObaakiaaiYcaaaa@4BCE@                                                     (17)
G 0 (η)=ω e η . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeadaWgaa WcbaGaaGimaaqabaGccaaIOaGaeq4TdGMaaGykaiaai2dacqaHjpWD caWGLbWaaWbaaSqabeaacqGHsislcqaH3oaAaaGccaaIUaaaaa@4219@                                                                                (18)
θ 0 (η)= e η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaakiaaiIcacqaH3oaAcaaIPaGaaGypaiaadwga daahaaWcbeqaaiabgkHiTiabeE7aObaaaaa@4074@                                                                                    (19)
and the auxiliary linear operators L F (f), L G (f) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamOraaqabaGccaaIOaGaamOzaiaaiMcacaaISaGaamitamaa BaaaleaacaWGhbaabeaakiaaiIcacaWGMbGaaGykaaaa@3F41@  and L θ (f) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaeqiUdehabeaakiaaiIcacaWGMbGaaGykaaaa@3B53@  as:
L F (f)= f + f , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamOraaqabaGccaaIOaGaamOzaiaaiMcacaaI9aGabmOzayaa fyaafyaafaGaey4kaSIabmOzayaafyaafaGaaGilaaaa@3ED6@                                                                         (20)
L G (f)= f + f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaam4raaqabaGccaaIOaGaamOzaiaaiMcacaaI9aGabmOzayaa fyaafaGaey4kaSIabmOzayaafaaaaa@3E0B@                                                                            (21)
L θ (f)= f + f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaeqiUdehabeaakiaaiIcacaWGMbGaaGykaiaai2daceWGMbGb auGbauaacqGHRaWkceWGMbGbauaaaaa@3EF5@                                                                            (22)
with the following properties
L F ( c 1 + c 2 η+ c 3 e η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamOraaqabaGccaaIOaGaam4yamaaBaaaleaacaaIXaaabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccqaH3oaAcqGHRa WkcaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaamyzamaaCaaaleqabaGa eyOeI0Iaeq4TdGgaaOGaaGykaiaai2dacaaIWaaaaa@47B6@                                                                 (23)
L G ( c 4 + c 5 e η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaam4raaqabaGccaaIOaGaam4yamaaBaaaleaacaaI0aaabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGynaaqabaGccaWGLbWaaWbaaS qabeaacqGHsislcqaH3oaAaaGccaaIPaGaaGypaiaaicdaaaa@4354@                                                                         (24)
L θ ( c 6 + c 7 e η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaeqiUdehabeaakiaaiIcacaWGJbWaaSbaaSqaaiaaiAdaaeqa aOGaey4kaSIaam4yamaaBaaaleaacaaI3aaabeaakiaadwgadaahaa WcbeqaaiabgkHiTiabeE7aObaakiaaiMcacaaI9aGaaGimaaaa@4442@                                                                         (25)
where, c i ,i=17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamyAaaqabaGccaaISaGaamyAaiaai2dacaaIXaGaeyOeI0Ia aG4naaaa@3D26@  are arbitrary constants.
The zero-order deformation equations are constructed as follows:
(1q) L F [ F ^ (η;q) F 0 (η)]=q H ^ F F N F [ F ^ (η;q), G ^ (η;q), θ ^ (η;q)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaIXa GaeyOeI0IaamyCaiaaiMcacaWGmbWaaSbaaSqaaiaadAeaaeqaaOGa aG4waiqadAeagaqcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcacq GHsislcaWGgbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOjaa iMcacaaIDbGaaGypaiaadghaceWGibGbaKaadaWgaaWcbaGaamOraa qabaGccqWIpecAdaWgaaWcbaGaamOraaqabaGccaWGobWaaSbaaSqa aiaadAeaaeqaaOGaaG4waiqadAeagaqcaiaaiIcacqaH3oaAcaaI7a GaamyCaiaaiMcacaaISaGabm4rayaajaGaaGikaiabeE7aOjaaiUda caWGXbGaaGykaiaaiYcacuaH4oqCgaqcaiaaiIcacqaH3oaAcaaI7a GaamyCaiaaiMcacaaIDbaaaa@65F9@ (26)
(1q) L G [ G ^ (η;q) G 0 (η)]=q H ^ G G N G [ F ^ (η;q), G ^ (η;q), θ ^ (η;q)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaIXa GaeyOeI0IaamyCaiaaiMcacaWGmbWaaSbaaSqaaiaadEeaaeqaaOGa aG4waiqadEeagaqcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcacq GHsislcaWGhbWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOjaa iMcacaaIDbGaaGypaiaadghaceWGibGbaKaadaWgaaWcbaGaam4raa qabaGccqWIpecAdaWgaaWcbaGaam4raaqabaGccaWGobWaaSbaaSqa aiaadEeaaeqaaOGaaG4waiqadAeagaqcaiaaiIcacqaH3oaAcaaI7a GaamyCaiaaiMcacaaISaGabm4rayaajaGaaGikaiabeE7aOjaaiUda caWGXbGaaGykaiaaiYcacuaH4oqCgaqcaiaaiIcacqaH3oaAcaaI7a GaamyCaiaaiMcacaaIDbaaaa@65FF@  (27)
(1q) L θ [ θ ^ (η;q) θ 0 (η)]=q H ^ θ θ N θ [ F ^ (η;q), G ^ (η;q), θ ^ (η;q)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaaIXa GaeyOeI0IaamyCaiaaiMcacaWGmbWaaSbaaSqaaiabeI7aXbqabaGc caaIBbGafqiUdeNbaKaacaaIOaGaeq4TdGMaaG4oaiaadghacaaIPa GaeyOeI0IaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7a OjaaiMcacaaIDbGaaGypaiaadghaceWGibGbaKaadaWgaaWcbaGaeq iUdehabeaakiabl+qiOnaaBaaaleaacqaH4oqCaeqaaOGaamOtamaa BaaaleaacqaH4oqCaeqaaOGaaG4waiqadAeagaqcaiaaiIcacqaH3o aAcaaI7aGaamyCaiaaiMcacaaISaGabm4rayaajaGaaGikaiabeE7a OjaaiUdacaWGXbGaaGykaiaaiYcacuaH4oqCgaqcaiaaiIcacqaH3o aAcaaI7aGaamyCaiaaiMcacaaIDbaaaa@6B7B@  (28)
and the relevant boundary conditions are given by:
F ^ (0;q)=0, G ^ (0;q)=ω, F ^ (η;q) η | η=0 =s, θ ^ (0;q)=1 F ^ (η;q) η | η 1, G ^ (;q)0, θ ^ (;q)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aaceWGgbGbaKaacaaIOaGaaGimaiaaiUdacaWGXbGaaGykaiaai2da caaIWaGaaGilaiaaywW7ceWGhbGbaKaacaaIOaGaaGimaiaaiUdaca WGXbGaaGykaiaai2dacqaHjpWDcaaISaGaaGzbVpaalaaabaGaeyOa IyRabmOrayaajaGaaGikaiabeE7aOjaaiUdacaWGXbGaaGykaaqaai abgkGi2kabeE7aObaacaaI8bWaaSbaaSqaaiabeE7aOjaai2dacaaI Waaabeaakiaai2dacaWGZbGaaGilaiaaywW7cuaH4oqCgaqcaiaaiI cacaaIWaGaaG4oaiaadghacaaIPaGaaGypaiaaigdaaeaadaWcaaqa aiabgkGi2kqadAeagaqcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiM caaeaacqGHciITcqaH3oaAaaGaaGiFamaaBaaaleaacqaH3oaAcqGH sgIRcqGHEisPaeqaaOGaeyOKH4QaaGymaiaaiYcacaaMf8Uabm4ray aajaGaaGikaiabg6HiLkaaiUdacaWGXbGaaGykaiabgkziUkaaicda caaISaGaaGzbVlqbeI7aXzaajaGaaGikaiabg6HiLkaaiUdacaWGXb GaaGykaiabgkziUkaaicdacaaIUaaaaaaa@8B86@           (29)
Where the nonlinear differential operators, N F , N G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamOraaqabaGccaaISaGaamOtamaaBaaaleaacaWGhbaabeaa aaa@3A9B@  and N θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaeqiUdehabeaaaaa@38FB@  are defined by:
N F = 3 F ^ (η;q) η 3 ( F ^ (η;q) η ) 2 + ( G ^ (η;q) ) 2 +2 F ^ (η;q) 2 F ^ (η;q) η 2 L 2 ( ( 2 F ^ (η;q) η 2 ) 2 +2 F ^ (η;q) η 3 F ^ (η;q) η 3 +3 ( G ^ (η;q) η ) 2 +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGobWaaSbaaSqaaiaadAeaaeqaaOGaaGypamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIZaaaaOGabmOrayaajaGaaGikaiabeE7aOj aaiUdacaWGXbGaaGykaaqaaiabgkGi2kabeE7aOnaaCaaaleqabaGa aG4maaaaaaGccqGHsisldaqadaqaamaalaaabaGaeyOaIyRabmOray aajaGaaGikaiabeE7aOjaaiUdacaWGXbGaaGykaaqaaiabgkGi2kab eE7aObaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRa WkdaqadaqaaiqadEeagaqcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaa iMcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIYaGabmOrayaajaGaaGikaiabeE7aOjaaiUdacaWGXbGaaGykamaa laaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGabmOrayaajaGaaG ikaiabeE7aOjaaiUdacaWGXbGaaGykaaqaaiabgkGi2kabeE7aOnaa CaaaleqabaGaaGOmaaaaaaGccqGHsislaeaadaWcaaqaaiaadYeaae aacaaIYaaaamaabmaabaWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaa leqabaGaaGOmaaaakiqadAeagaqcaiaaiIcacqaH3oaAcaaI7aGaam yCaiaaiMcaaeaacqGHciITcqaH3oaAdaahaaWcbeqaaiaaikdaaaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmamaalaaabaGaeyOaIyRabmOrayaajaGaaGikaiabeE7aOjaaiUda caWGXbGaaGykaaqaaiabgkGi2kabeE7aObaadaWcaaqaaiabgkGi2o aaCaaaleqabaGaaG4maaaakiqadAeagaqcaiaaiIcacqaH3oaAcaaI 7aGaamyCaiaaiMcaaeaacqGHciITcqaH3oaAdaahaaWcbeqaaiaaio daaaaaaOGaey4kaSIaaG4mamaabmaabaWaaSaaaeaacqGHciITceWG hbGbaKaacaaIOaGaeq4TdGMaaG4oaiaadghacaaIPaaabaGaeyOaIy Raeq4TdGgaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@A96C@  (30)
N G = 2 G ^ (η;q) η 2 +2 F ^ (η;q) G ^ (η;q) η 2 F ^ (η;q) η G ^ (η;q) +L( 2 F ^ (η;q) η 2 G ^ (η;q) η F ^ (η;q) η 2 G ^ (η;q) η 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGobWaaSbaaSqaaiaadEeaaeqaaOGaaGypamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGabm4rayaajaGaaGikaiabeE7aOj aaiUdacaWGXbGaaGykaaqaaiabgkGi2kabeE7aOnaaCaaaleqabaGa aGOmaaaaaaGccqGHRaWkcaaIYaGabmOrayaajaGaaGikaiabeE7aOj aaiUdacaWGXbGaaGykamaalaaabaGaeyOaIyRabm4rayaajaGaaGik aiabeE7aOjaaiUdacaWGXbGaaGykaaqaaiabgkGi2kabeE7aObaacq GHsislcaaIYaWaaSaaaeaacqGHciITceWGgbGbaKaacaaIOaGaeq4T dGMaaG4oaiaadghacaaIPaaabaGaeyOaIyRaeq4TdGgaaiqadEeaga qcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcaaeaacqGHRaWkcaWG mbWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki qadAeagaqcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcaaeaacqGH ciITcqaH3oaAdaahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHci ITceWGhbGbaKaacaaIOaGaeq4TdGMaaG4oaiaadghacaaIPaaabaGa eyOaIyRaeq4TdGgaaiabgkHiTmaalaaabaGaeyOaIyRabmOrayaaja GaaGikaiabeE7aOjaaiUdacaWGXbGaaGykaaqaaiabgkGi2kabeE7a ObaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiqadEeaga qcaiaaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcaaeaacqGHciITcqaH 3oaAdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaaaa@98AC@             (31)
N θ = 2 θ ^ (η;q) η 2 +2Pr F ^ (η;q) θ ^ (η;q) η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaeqiUdehabeaakiaai2dadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiqbeI7aXzaajaGaaGikaiabeE7aOjaaiUdacaWGXb GaaGykaaqaaiabgkGi2kabeE7aOnaaCaaaleqabaGaaGOmaaaaaaGc cqGHRaWkcaaIYaGaamiuaiaadkhaceWGgbGbaKaacaaIOaGaeq4TdG MaaG4oaiaadghacaaIPaWaaSaaaeaacqGHciITcuaH4oqCgaqcaiaa iIcacqaH3oaAcaaI7aGaamyCaiaaiMcaaeaacqGHciITcqaH3oaAaa aaaa@5AF7@                                           (32)
Clearly, when q varies from 0 to 1, F ^ (η;q), G ^ (η;q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeagaqcai aaiIcacqaH3oaAcaaI7aGaamyCaiaaiMcacaaISaGabm4rayaajaGa aGikaiabeE7aOjaaiUdacaWGXbGaaGykaaaa@424B@ and θ ^ (η;q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja GaaGikaiabeE7aOjaaiUdacaWGXbGaaGykaaaa@3CD8@  varies from the initial approximations F 0 (η), G 0 (η), θ 0 (η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGimaaqabaGccaaIOaGaeq4TdGMaaGykaiaaiYcacaWGhbWa aSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOjaaiMcacaaISaGaeq iUde3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabeE7aOjaaiMcaaaa@4702@  to the original solutions F(η),G(η),θ(η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaaIOa Gaeq4TdGMaaGykaiaaiYcacaWGhbGaaGikaiabeE7aOjaaiMcacaaI SaGaeqiUdeNaaGikaiabeE7aOjaaiMcaaaa@4432@ . Next, following the procedure similar to Liao11, we have the high order approximations for F m , G m , θ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyBaaqabaGccaaISaGaam4ramaaBaaaleaacaWGTbaabeaa kiaaiYcacqaH4oqCdaWgaaWcbaGaamyBaaqabaaaaa@3E6D@ , called, m th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaahaa WcbeqaaiaadshacaWGObaaaaaa@394B@ -order deformation equations
L F [ F m (η) χ m F m1 (η)]= H ^ F F R m F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamOraaqabaGccaaIBbGaamOramaaBaaaleaacaWGTbaabeaa kiaaiIcacqaH3oaAcaaIPaGaeyOeI0Iaeq4Xdm2aaSbaaSqaaiaad2 gaaeqaaOGaamOramaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGc caaIOaGaeq4TdGMaaGykaiaai2facaaI9aGabmisayaajaWaaSbaaS qaaiaadAeaaeqaaOGaeS4dHG2aaSbaaSqaaiaadAeaaeqaaOGaamOu amaaDaaaleaacaWGTbaabaGaamOraaaaaaa@50F0@                                              (33)
L G [ G m (η) χ m G m1 (η)]= H ^ G G R m G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaam4raaqabaGccaaIBbGaam4ramaaBaaaleaacaWGTbaabeaa kiaaiIcacqaH3oaAcaaIPaGaeyOeI0Iaeq4Xdm2aaSbaaSqaaiaad2 gaaeqaaOGaam4ramaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGc caaIOaGaeq4TdGMaaGykaiaai2facaaI9aGabmisayaajaWaaSbaaS qaaiaadEeaaeqaaOGaeS4dHG2aaSbaaSqaaiaadEeaaeqaaOGaamOu amaaDaaaleaacaWGTbaabaGaam4raaaaaaa@50F6@                                             (34)
L θ [ θ m (η) χ m θ m1 (η)]= H ^ θ θ R m θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaeqiUdehabeaakiaaiUfacqaH4oqCdaWgaaWcbaGaamyBaaqa baGccaaIOaGaeq4TdGMaaGykaiabgkHiTiabeE8aJnaaBaaaleaaca WGTbaabeaakiabeI7aXnaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqa baGccaaIOaGaeq4TdGMaaGykaiaai2facaaI9aGabmisayaajaWaaS baaSqaaiabeI7aXbqabaGccqWIpecAdaWgaaWcbaGaeqiUdehabeaa kiaadkfadaqhaaWcbaGaamyBaaqaaiabeI7aXbaaaaa@5672@                                                (35)
F m (0)= G m (0)= F m (0)= θ m (0)= F m ()= G m ()= θ m ()=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyBaaqabaGccaaIOaGaaGimaiaaiMcacaaI9aGaam4ramaa BaaaleaacaWGTbaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaWGgb WaaSbaaSqaaiqad2gagaqbaaqabaGccaaIOaGaaGimaiaaiMcacaaI 9aGaeqiUde3aaSbaaSqaaiaad2gaaeqaaOGaaGikaiaaicdacaaIPa GaaGypaiaadAeadaWgaaWcbaGabmyBayaafaaabeaakiaaiIcacqGH EisPcaaIPaGaaGypaiaadEeadaWgaaWcbaGaamyBaaqabaGccaaIOa GaeyOhIuQaaGykaiaai2dacqaH4oqCdaWgaaWcbaGaamyBaaqabaGc caaIOaGaeyOhIuQaaGykaiaai2dacaaIWaaaaa@5D04@   (36)
where, R m F , R m G , R m θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqhaa WcbaGaamyBaaqaaiaadAeaaaGccaaISaGaamOuamaaDaaaleaacaWG TbaabaGaam4raaaakiaaiYcacaWGsbWaa0baaSqaaiaad2gaaeaacq aH4oqCaaaaaa@40F5@  are given by:
R m F = 3 F m1 (η) η 3 n=0 m1 ( F n (η) η F m1n (η) η + G n (η) G mn1 (η)2 F n (η) 2 F m1n (η) η 2 ) L 2 n=0 m1 ( 2 F n (η) η 2 2 F m1n (η) η 2 +2 F n (η) η 3 F m1n (η) η 3 +3 G n (η) η G m1n (η) η )+1 χ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGsbWaa0baaSqaaiaad2gaaeaacaWGgbaaaOGaaGypamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIZaaaaOGaamOramaaBaaaleaaca WGTbGaeyOeI0IaaGymaaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiab gkGi2kabeE7aOnaaCaaaleqabaGaaG4maaaaaaGccqGHsisldaaeWb qabSqaaiaad6gacaaI9aGaaGimaaqaaiaad2gacqGHsislcaaIXaaa niabggHiLdGcdaqadaqaamaalaaabaGaeyOaIyRaamOramaaBaaale aacaWGUbaabeaakiaaiIcacqaH3oaAcaaIPaaabaGaeyOaIyRaeq4T dGgaamaalaaabaGaeyOaIyRaamOramaaBaaaleaacaWGTbGaeyOeI0 IaaGymaiabgkHiTiaad6gaaeqaaOGaaGikaiabeE7aOjaaiMcaaeaa cqGHciITcqaH3oaAaaGaey4kaSIaam4ramaaBaaaleaacaWGUbaabe aakiaaiIcacqaH3oaAcaaIPaGaam4ramaaBaaaleaacaWGTbGaeyOe I0IaamOBaiabgkHiTiaaigdaaeqaaOGaaGikaiabeE7aOjaaiMcacq GHsislcaaIYaGaamOramaaBaaaleaacaWGUbaabeaakiaaiIcacqaH 3oaAcaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WGgbWaaSbaaSqaaiaad2gacqGHsislcaaIXaGaeyOeI0IaamOBaaqa baGccaaIOaGaeq4TdGMaaGykaaqaaiabgkGi2kabeE7aOnaaCaaale qabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaacqGHsisldaWcaaqa aiaadYeaaeaacaaIYaaaamaaqahabeWcbaGaamOBaiaai2dacaaIWa aabaGaamyBaiabgkHiTiaaigdaa0GaeyyeIuoakmaabmaabaWaaSaa aeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWGgbWaaSbaaSqaai aad6gaaeqaaOGaaGikaiabeE7aOjaaiMcaaeaacqGHciITcqaH3oaA daahaaWcbeqaaiaaikdaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbe qaaiaaikdaaaGccaWGgbWaaSbaaSqaaiaad2gacqGHsislcaaIXaGa eyOeI0IaamOBaaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiabgkGi2k abeE7aOnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIYaWaaSaa aeaacqGHciITcaWGgbWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiabeE 7aOjaaiMcaaeaacqGHciITcqaH3oaAaaWaaSaaaeaacqGHciITdaah aaWcbeqaaiaaiodaaaGccaWGgbWaaSbaaSqaaiaad2gacqGHsislca aIXaGaeyOeI0IaamOBaaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiab gkGi2kabeE7aOnaaCaaaleqabaGaaG4maaaaaaGccqGHRaWkcaaIZa WaaSaaaeaacqGHciITcaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaaGik aiabeE7aOjaaiMcaaeaacqGHciITcqaH3oaAaaWaaSaaaeaacqGHci ITcaWGhbWaaSbaaSqaaiaad2gacqGHsislcaaIXaGaeyOeI0IaamOB aaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiabgkGi2kabeE7aObaaai aawIcacaGLPaaacqGHRaWkcaaIXaGaeyOeI0Iaeq4Xdm2aaSbaaSqa aiaad2gaaeqaaaaaaaa@E932@  (37)
R m G = 2 G m1 (η) η 2 +2 n=0 m1 ( 2 F n (η) G m1n (η) η 2 F n (η) η G m1n (η) ) +L n=0 m1 ( 2 F n (η) η 2 G m1n (η) η F n (η) η 2 G m1n (η) η 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGsbWaa0baaSqaaiaad2gaaeaacaWGhbaaaOGaaGypamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam4ramaaBaaaleaaca WGTbGaeyOeI0IaaGymaaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiab gkGi2kabeE7aOnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIYa WaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacaWGTbGaeyOeI0Ia aGymaaqdcqGHris5aOWaaeWaaeaacaaIYaGaamOramaaBaaaleaaca WGUbaabeaakiaaiIcacqaH3oaAcaaIPaWaaSaaaeaacqGHciITcaWG hbWaaSbaaSqaaiaad2gacqGHsislcaaIXaGaeyOeI0IaamOBaaqaba GccaaIOaGaeq4TdGMaaGykaaqaaiabgkGi2kabeE7aObaacqGHsisl caaIYaWaaSaaaeaacqGHciITcaWGgbWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabeE7aOjaaiMcaaeaacqGHciITcqaH3oaAaaGaam4ramaa BaaaleaacaWGTbGaeyOeI0IaaGymaiabgkHiTiaad6gaaeqaaOGaaG ikaiabeE7aOjaaiMcaaiaawIcacaGLPaaaaeaacqGHRaWkcaWGmbWa aabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacaWGTbGaeyOeI0IaaG ymaaqdcqGHris5aOWaaeWaaeaadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGOmaaaakiaadAeadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeq 4TdGMaaGykaaqaaiabgkGi2kabeE7aOnaaCaaaleqabaGaaGOmaaaa aaGcdaWcaaqaaiabgkGi2kaadEeadaWgaaWcbaGaamyBaiabgkHiTi aaigdacqGHsislcaWGUbaabeaakiaaiIcacqaH3oaAcaaIPaaabaGa eyOaIyRaeq4TdGgaaiabgkHiTmaalaaabaGaeyOaIyRaamOramaaBa aaleaacaWGUbaabeaakiaaiIcacqaH3oaAcaaIPaaabaGaeyOaIyRa eq4TdGgaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam 4ramaaBaaaleaacaWGTbGaeyOeI0IaaGymaiabgkHiTiaad6gaaeqa aOGaaGikaiabeE7aOjaaiMcaaeaacqGHciITcqaH3oaAdaahaaWcbe qaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaaaa@B4AF@ (38)
R m θ = 2 θ m1 (η) η 2 +2Pr n=0 m1 F n (η) θ m1n (η) η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqhaa WcbaGaamyBaaqaaiabeI7aXbaakiaai2dadaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiabeI7aXnaaBaaaleaacaWGTbGaeyOeI0 IaaGymaaqabaGccaaIOaGaeq4TdGMaaGykaaqaaiabgkGi2kabeE7a OnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIYaGaamiuaiaadk hadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiaad2gacqGHsisl caaIXaaaniabggHiLdGccaWGgbWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiabeE7aOjaaiMcadaWcaaqaaiabgkGi2kabeI7aXnaaBaaaleaa caWGTbGaeyOeI0IaaGymaiabgkHiTiaad6gaaeqaaOGaaGikaiabeE 7aOjaaiMcaaeaacqGHciITcqaH3oaAaaaaaa@6691@                                   (39)
And,
χ m =( 1 m>1 0 m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaBa aaleaacaWGTbaabeaakiaai2dadaqabaqaauaabeqaciaaaeaacaaI XaaabaGaamyBaiaai6dacaaIXaaabaGaaGimaaqaaiaad2gacqGHKj YOcaaIWaaaaaGaay5Eaaaaaa@4260@                                                                            (40)
Finally, choosing the auxiliary functions as H ^ F = H ^ G = H ^ θ = e 2η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaacaWGgbaabeaakiaai2daceWGibGbaKaadaWgaaWcbaGa am4raaqabaGccaaI9aGabmisayaajaWaaSbaaSqaaiabeI7aXbqaba GccaaI9aGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiabeE7aObaa aaa@438D@ , these linear equations (33)-(36) were solved for F m (η), G m (η), θ m (η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyBaaqabaGccaaIOaGaeq4TdGMaaGykaiaaiYcacaWGhbWa aSbaaSqaaiaad2gaaeqaaOGaaGikaiabeE7aOjaaiMcacaaISaGaeq iUde3aaSbaaSqaaiaad2gaaeqaaOGaaGikaiabeE7aOjaaiMcaaaa@47AA@  and the results are analyzed graphically in section 5.

Convergence of HAM

 To get a proper value of the convergence control parameter, constant MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiObaa@376F@ -curves of some special quantities, such as, F (0), G (0), θ (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeagaqbga qbaiaaiIcacaaIWaGaaGykaiaaiYcaceWGhbGbauaacaaIOaGaaGim aiaaiMcacaaISaGafqiUdeNbauaacaaIOaGaaGimaiaaiMcaaaa@418B@ are drawn and a value from the region that corresponds to the line segments nearly parallel to horizontal axis is chosen to ensure the convergence of the obtained solution series. A few such curves, for different combinations of flow parameters L,Pr,ω,s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaISa GaamiuaiaadkhacaaISaGaeqyYdCNaaGilaiaadohaaaa@3DCA@  are shown in Figure 2.

Figure 2 Constant MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeS4dHG gaaa@37FE@ -curves (A) ω=2,Pr=1,L=0,s=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyYdC NaaGypaiaaikdacaaISaGaamiuaiaadkhacaaI9aGaaGymaiaaiYca caWGmbGaaGypaiaaicdacaaISaGaam4Caiaai2dacaaIXaaaaa@4461@ . (B) ω=5,Pr=1,L=0,s=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaI1aGaaGilaiaadcfacaWGYbGaaGypaiaaigdacaaISaGaamit aiaai2dacaaIWaGaaGilaiaadohacaaI9aGaaGynaaaa@43D9@ . (C) ω=5,Pr=1,L=0.1,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaI1aGaaGilaiaadcfacaWGYbGaaGypaiaaigdacaaISaGaamit aiaai2dacaaIWaGaaGOlaiaaigdacaaISaGaam4Caiaai2dacaaIYa aaaa@4549@ . (D) ω=2,Pr=1,L=0.3,s=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadcfacaWGYbGaaGypaiaaigdacaaISaGaamit aiaai2dacaaIWaGaaGOlaiaaiodacaaISaGaam4Caiaai2dacaaIWa GaaGPaVlaaykW7caGGUaaaaa@490E@

We know that for the case when =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjaai2 dacqGHsislcaaIXaaaaa@39DE@  and the auxiliary function is chosen to be unity, the solutions obtained using HAM can be considered solutions of HPM. Note that, HPM cannot guarantee convergent solution series for any arbitrary combination of the flow parameters and this is clear from Figures 2(B) & (C) as =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjaai2 dacqGHsislcaaIXaaaaa@39DE@  does not fall inside the valid region of convergence. Moreover, it can be observed from Table 1 & Table 2 that HPM values of =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjaai2 dacqGHsislcaaIXaaaaa@39DE@  do not converge for the selected values of the relevant parameters. However, HAM provides one with great freedom to chose the auxiliary function and the presence of convergence control parameter in HAM enables one to obtain convergent solution series by controlling and adjusting the region of convergence whenever necessary. In view of the superiority of HAM over HPM, HAM is used to investigate this problem and the results obtained using 10 th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacaWG0bGaamiAaaaaaaa@39CE@ -order homotopy approximations are plotted for different combinations of the flow parameters.

 Order of approximation

 HAM results ( G =0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOnaaBa aaleaacaWGhbaabeaakiaai2dacqGHsislcaaIWaGaaGOlaiaaiAda aaa@3C57@ )

 HPM results

1

-5.86667                            

-24

2

-6.41532

258.667

4

-6.70878

222925

5

-6.74594

8.22644× 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaaGioaiaac6cacaaIYaGaaGOmaiaaiAdacaaI0aGaaGin aiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaI2aaaaaaa@40F4@

6

-6.76502

3.30731× 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaac6cacaaIZaGaaGimaiaaiEdacaaIZaGaaGymaiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaI4aaaaaaa@4000@

7

-6.77649

1.41742× 10 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaaGymaiaac6cacaaI0aGaaGymaiaaiEdacaaI0aGaaGOm aiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGimaaaaaa a@41A2@

8

-6.7836

6.39729× 10 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaac6cacaaIZaGaaGyoaiaaiEdacaaIYaGaaGyoaiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGymaaaaaaa@40C7@

9

-6.78844

3.01938× 10 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaaG4maiaac6cacaaIWaGaaGymaiaaiMdacaaIZaGaaGio aiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG4maaaaaa a@41AA@

10

-6.78849

1.4845× 10 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI0aGaaGioaiaaisdacaaI1aGaey41aqRaaGym aiaaicdadaahaaWcbeqaaiaaigdacaaI1aaaaaaa@4003@

Table 1 Comparison of HAM and HPM values of G (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaqbai aaiIcacaaIWaGaaGykaaaa@393D@ for ω=2,s=5,L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadohacaaI9aGaaGynaiaaiYcacaWGmbGaaGyp aiaaicdaaaa@3FD2@  and Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGYb GaaGypaiaaigdaaaa@3994@ with the following boundary conditions

 Order of approximation

 HAM results ( G =0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOnaaBa aaleaacaWGhbaabeaakiaai2dacqGHsislcaaIWaGaaGOlaiaaiwda aaa@3C56@ )

 HPM results

5

-12.0929

-786775

6

-12.0292

2.35077× 10 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiaac6cacaaIZaGaaGynaiaaicdacaaI3aGaaG4naiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaI3aaaaaaa@4006@

8

-12.0252

3.26597× 10 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaac6cacaaIYaGaaGOnaiaaiwdacaaI5aGaaG4naiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGimaaaaaaa@40C2@

9

-12.0703

1.41241× 10 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaaGymaiaac6cacaaI0aGaaGymaiaaikdacaaI0aGaaGym aiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGOmaaaaaa a@419E@

10

-12.1022

6.59287× 10 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaac6cacaaI1aGaaGyoaiaaikdacaaI4aGaaG4naiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG4maaaaaaa@40CA@

Table 2 Comparison of HAM and HPM values of G (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadEeagaqbai aaiIcacaaIWaGaaGykaaaa@393D@  for ω=5,s=2,L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaI1aGaaGilaiaadohacaaI9aGaaGOmaiaaiYcacaWGmbGaaGyp aiaaicdaaaa@3FD2@  and Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGYb GaaGypaiaaigdaaaa@3994@

Result and Discussion

This section presents the variation of velocity and temperature fields with stretching, rotation, and non-Newtonian parameter graphically, obtained using 10 th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacaWG0bGaamiAaaaaaaa@39CE@ -order homotopy approximations. To validate the results obtained using HAM, first the Newtonian case is considered. For this case, that is, when L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaaaa@3898@  variations of the flow fields with stretching parameter s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaaaa@373E@  are plotted in Figure 3 when ω=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaaaaa@3996@  and in Figure 4 when ω=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaI1aaaaa@3999@ , keeping the Prandtl number Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGYb GaaGypaiaaigdaaaa@3994@  fixed. The radial velocity F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAeagaqbaa aa@371D@ increases near the wall with increasing stretching whereas the axial ( F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadA eaaaa@37FE@ ) and azimuthal velocity ( G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeaaaa@3712@ ) decreases. The temperature distribution is also seen to decrease attaining its limiting value nearer to disk surface with increasing values of s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaaaa@373E@ . For higher rotation rate one can observe from Figure 4, that the radial velocity initially increases exceeding its asymptotic value for some small values of s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaaaa@373E@ , gradually decreasing for higher values of s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaaaa@373E@ . These observations are in agreement with those reported by Turkyilmazoglu.15 Moreover, a comparison of the values of shear stresses (radial and tangential) with those reported in15 (in his paper, in Tables 2−4 for M=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaaI9a GaaGimaaaa@3899@ ) shows a good agreement, see Figure 5(A) & Figure (B).

Figure 3 Variation of velocity and temperature profiles with stretching parameter s for L=0,ω=2,Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaiaaiYcacqaHjpWDcaaI9aGaaGOmaiaaiYcacaWGqbGaamOC aiaai2dacaaIXaaaaa@40A2@  (A) Radial. (B) Axial. (C) Azimuthal. (D) temperature.

Figure 4 Variation of velocity and temperature profiles with stretching parameter s for L=0,ω=2,Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaiaaiYcacqaHjpWDcaaI9aGaaGOmaiaaiYcacaWGqbGaamOC aiaai2dacaaIXaaaaa@40A2@ (A) Radial. (B) Axial. (C) Azimuthal. (D) Temperature.

Figure 5 Variation of radial and tangential stresses with stretching for Newtonian case ( L=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaaaa@3898@ ), (A) Radial stress τ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGYbaabeaaaaa@392E@ . (B) Tangential stress τ θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacqaH4oqCaeqaaaaa@39ED@ .

Effect of stretching parameter on the non-Newtonian flow profiles are shown in Figure 6 & Figure 7. Axial istributions of flow fields are plotted for ω=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaaaaa@3996@  in Figure 6 and ω=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaI1aaaaa@3999@  in Figure 7, keeping L=0.1,Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaiaai6cacaaIXaGaaGilaiaadcfacaWGYbGaaGypaiaaigda aaa@3E0F@  fixed.

Figure 6 Variation of velocity and temperature profiles with stretching parameter s for L=0.1,ω=2,Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaiaai6cacaaIXaGaaGilaiabeM8a3jaai2dacaaIYaGaaGil aiaadcfacaWGYbGaaGypaiaaigdaaaa@4215@  (A) Radial. (B) Axial. (C) Azimuthal. (D) Temperature.

 It is clear from Figure 6(A) & Figure (B), Figures 7(A) & Figure (B), that for this case, behavior similar to the Newtonian case can be observed, as with increasing stretching (rotation), centrifugal force pushes the fluid particles in the radial direction which is balanced by particles which are drawn to the disk due to surface stretching in the negative axial direction. Also, disk’s angular velocity and temperature distributions decrease as stretching increases.

The case of stagnation point flow due to a stationary disk, that is, when the disk does not rotate and there is no radial stretching ( ω=0,s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIWaGaaGilaiaadohacaaI9aGaaGimaaaa@3CC3@ ), is presented in Figure 8. This case is analogous to the case of three dimensional axisymmetric stagnation flow over a flat plate. The Newtonian velocity and temperature fields displayed in Figure 8(A) and the effect of non-Newtonian parameter on the flow fields can be observed from Figures 8(B)−8(D). Since the disk is not rotating, the azimuthal component of velocity is zero for this case. The flow consists of an inward axial flow which upon striking the stationary disk is thrown radially outward inside the boundary layer and heat transfer is from the surface of the disk to the fluid, which decreases gradually from its starting value at the surface of the disk to its limiting value as it moves away from the disk. It can be seen that increasing L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ , increases the magnitude of radial velocity whereas the axial velocity decreases. In Figure 8(D) enlarged view of the temperature profiles are shown and it is clear that magnitude of temperature distributions decreases with increasing values of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ .

Figure 7 Variation of velocity and temperature profiles with stretching parameter s for L=0.1,ω=5,Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaaGimaiaai6cacaaIXaGaaGilaiabeM8a3jaai2dacaaI1aGaaGil aiaadcfacaWGYbGaaGypaiaaigdaaaa@4218@  (A) radial. (B) Axial. (C) Azimuthal. (D) Temperature.

Figure 8 The case of stagnation point flow due to a stationary disk ( s=0,ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohacaaI9a GaaGimaiaaiYcacqaHjpWDcaaI9aGaaGimaaaa@3CC3@ ) (A) Newtonian velocity and temperature fields. (B) Radial. (C) Axial. (D) Temperature.

In Figure 9, we have presented the case of stagnation point flow towards a radially stretching disk ( ω=0,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIWaGaaGilaiaadohacaaI9aGaaGOmaaaa@3CC5@ ). This scenario is similar to the axisymmetric stagnation flow towards a stretchable surface. Newtonian profiles are shown in Figure 9(A) and from Figures 9(B)−9(D) shows the effect of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@  on the velocity and temperature fields. Again, azimuthal velocity is zero due to no rotation of the disk and due to the presence of surface stretching, axial fluid impinging on disk’s surface is cast away radially near the surface of the disk. Analogous to the earlier observations, temperature θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37FC@  is maximum at the surface the disk and it deceases with η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@37F2@  attaining it’s limiting value at sufficiently large η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@37F2@ . Moreover, the increasing effect of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@  is to increase the value of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@37FC@  at all nonzero η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@37F2@ . The values of radial component of velocity are found to be increasing for increasing values of the non-Newtonian parameter L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@  and this decrease is balanced by an increase in the values of the axial component of velocity.

Figure 9  The case of stagnation point flow towards a radially stretching disk ( ω=0,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIWaGaaGilaiaadohacaaI9aGaaGOmaaaa@3CC5@ ) (A) Newtonian velocity and temperature fields. (B) Radial. (C) Axial. (D) Temperature.

Next, the case of stagnation point flow towards a rotating disk without radial stretching ( ω=2,s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadohacaaI9aGaaGimaaaa@3CC5@ ) is presented in Figure 10. Centrifugal forces arising in the flow due to rotation, drives the fluid particles radially away from the disks surface which is compensated by an negative axial flow towards the disk (due to continuity). Angular velocity of the disk and temperature distributions are seen to be decreasing functions of η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@37F2@ . For this case, Newtonian flow profiles are displayed in Figure 10(A) and the effect of non-Newtonian parameter on the flow fields are displayed in Figures 10(B)−(E). With increasing values of the non-Newtonian parameter L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@  the radial and azimuthal velocities are decreasing whereas the axial velocity and temperature distribution are increasing with increasing L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ , at all η0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgc Mi5kaaicdaaaa@3A73@ .

Figure 10 The case of stagnation point flow over a rotating disk ( ω=2,s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadohacaaI9aGaaGimaaaa@3CC5@ ) (A) Newtonian velocity and temperature fields. (B) Radial. (C) Axial. (D) Azimuthal. (E) Temperature.

When the disk rotates as well as stretches radially ( ω=2,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadohacaaI9aGaaGOmaaaa@3CC7@ ), for increasing values of the non-Newtonian parameter L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ , radial and azimuthal components of velocity decreases while axial velocity increases, as can be observed from Figure 11(A)−(C). The temperature distribution is seen to increase and it takes larger distance from the disk to approach its asymptotic value, with increasing values of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ .

Figure 11 Variation of velocity and temperature profiles with the non-Newtonian parameter L for ω=2,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIYaGaaGilaiaadohacaaI9aGaaGOmaaaa@3CC7@  (A) Radial. (B) Axial. (C) Azimuthal. (D) Temperature.

Figure 12(A) & (B), present the effect of the non-Newtonian parameter on radial and tangential stress. Effect of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@  on Nusselt number is plotted in Figure 12(C). When the disk is neither rotating nor stretching ( ω=s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaWGZbGaaGypaiaaicdaaaa@3B53@ ), radial stress and Nusselt number is found to be increasing for increasing values of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ . When ω=0,s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaaIWaGaaGilaiaadohacaaI9aGaaGOmaaaa@3CC5@ , radial stress is increasing but Nusselt number is decreasing with L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ . For the case, when the disk is rotating without any surface stretching ( ω=s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaWGZbGaaGypaiaaicdaaaa@3B53@ ), both the stresses and Nusselt number are decreasing function of L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@3717@ . And when the disk rotates as well as stretches ( ω=s=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaWGZbGaaGypaiaaikdaaaa@3B55@ ), the effect of increasing the non-Newtonian parameter is to decrease the radial stress and Nusselt number but to increase the tangential stress.

Figure 12 Variation of radial stress, tangential stress and Nusselt number with the non-Newtonian parameter L for different ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@3813@  and s when Pr=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGYb GaaGypaiaaigdaaaa@3994@  (A) Radial stress. (B) Tangential stress. (C) Nusslet number.

Conclusion

In this article, the stagnation point flow of a non-Newtonian Reiner-Rivlin fluid due to a radially stretching, rotating disk is investigated and the effect of different flow parameters such as stretching, rotation, non-Newtonian parameter on the flow fields are discussed in detail using an effective analytical method called Homotopy Analysis Method. The results are verified for the case of Newtonian fluid with the available literature and excellent agreements have been observed. In addition, a comparison of HAM results with those obtained using HPM validates the efficiency of HAM over HPM. Both radial and tangential stresses are found to be decreasing functions of the stretching parameter. Radial stress is seen to decrease from positive values to negative ones whereas the tangential stress starts from a negative value and becomes more and more negative with increasing values of stretching parameter. Moreover, it can be concluded that the present successful implementation of HAM to solve the system of nonlinear equations governing the problem under consideration yet again verifies the effectiveness of the method and thus can be applied to study many other problems of scientific and engineering interest.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest in publishing the article.

References

  1. Karl Hiemenz. Die grenzschicht an einem in den gleichformigen flussigkeitsstrom eingetauchten geraden kreiszlynder. Dingler Polytechnisches Journal. 2011;326:321–324.
  2. Fritz Homann. Der einfluss grosser zähigkeit bei der strömung um den zylinder und um die kugel. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1936;16(3):153–164.
  3. L Howarth. CxlIV. The boundary layer in three dimensional flow–part II. The flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1951;42(335):1433–1440.
  4. Th V Kármán. Über laminare und turbulente reibung. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1921;1(4):233–252.
  5. JT Stuart. On the effects of uniform suction on the steady flow due to a rotating disk. The Quarterly Journal of Mechanics and Applied Mathematics. 1954;7(4):446–457.
  6. M Miklacic, CY Wang. The flow due to a rough rotating disk. Zeitschrift für angewandte Mathematik und Physik ZAMP. 2004;55(2):235–246.
  7. Tiegang Fang, Ji Zhang. Flow between two stretchable disks-an exact solution of the navier-stokes equations. International Communications in Heat and Mass Transfer. 2008;35(8):892–895.
  8. MS Alam, SM Chapal Hossain, MM Rahman. Transient thermophoretic particle deposition on forced convective heat and mass transfer flow due to a rotating disk. Ain Shams Engineering Journal. 2016;7(1):441–452.
  9. DM Hannah. Forced flow against a rotating disc. UK: HM Stationery Office, National government publication; 1952. p. 17.
  10. H Schlichting, E Truckenbrodt. Die strömung an einer angeblasenen rotierenden scheibe. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1952;32(4-5):97–111.
  11. CL Tien, J Tsuji. Heat transfer by laminar forced flow against a non-isothermal rotating disk. International Journal of Heat and Mass Transfer. 1964;7(2):247–252.
  12. Min-Hsiun Lee, DR Jeng, KJ De Witt. Laminar boundary layer transfer over rotating bodies in forced flow. J Heat Transfer. 1978;100(3):496–502.
  13. IV Shevchuk, N Saniei, XT Yan. Impingement heat transfer over a rotating disk: integral method. Journal of thermophysics and heat transfer. 2003;17(2):291–292.
  14. Igor V Shevchuk. Convective heat and mass transfer in rotating disk systems. Volume 45, Germany: Springer Science & Business Media: 2009. p. 236.
  15. Mustafa Turkyilmazoglu. Three dimensional MHD stagnation flow due to a stretchable rotating disk. International Journal of Heat and Mass Transfer. 2012;55(23-24):6959–6965.
  16. S Shateyi, OD Makinde. Hydromagnetic stagnation-point flow towards a radially stretching convectively heated disk. Mathematical Problems in Engineering. 2013. p. 8.
  17. Markus Reiner. A mathematical theory of dilatancy. American Journal of Mathematics. 1945;67(3):350–362.
  18. AJM Spencer. Some results in the theory of non-newtonian transversely isotropic fluids. Journal of non-newtonian fluid mechanics. 2004;119(1):83–90.
  19. Bruce Caswell. Non-newtonian flow at lowest order, the role of the reiner–rivlin stress. Journal of non-newtonian fluid mechanics. 2006;133(1):1–13.
  20. Sh J Liao. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, China; Shanghai Jiao Tong University: 1992.
  21. Shijun Liao. Beyond perturbation: Introduction to the homotopy analysis method. USA: CRC press; 2003. p. 336.
  22. Cheng Yang, Shijun Liao. On the explicit, purely analytic solution of von kármán swirling viscous flow. Communications in Nonlinear Science and Numerical Simulation. 2006;11(1):83–93.
  23. MM Rashidi, S Bagheri, E Momoniat, et al. Entropy analysis of convective mhd flow of third grade non-newtonian fluid over a stretching sheet. Ain Shams Engineering Journal. 2017;8(1):77–85.
  24. Abhijit Das. Analytical solution to the flow between two coaxial rotating disks using ham. Procedia Engineering. 2015;127:377–382.
Creative Commons Attribution License

©2018 Das, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.