Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 2 Issue 2

Developing mathematical model for calculating forces affecting to Ship motions

Do Thanh Sen,1 Tran Canh Vinh2

1Maritime Centres of Excellence (Simwave), Barendrecht, Netherlands
2Faculty of Navigation, Ho Chi Minh City University of Transport, Vietnam

Correspondence: Do Thanh Sen, Maritime Centres of Excellence (Simwave), Pesetastraat 7-9, 2991XT Barendrecht, Netherlands, Tel (+)31657766877

Received: December 26, 2017 | Published: April 4, 2018

Citation: Sen DT, Vinh TC. Developing mathematical model for calculating forces affecting to Ship motions. Fluid Mech Res Int. 2018;2(2):66-71. DOI: 10.15406/fmrij.2018.02.00022

Download PDF

Abstract

Mathematical model of ship motion is considered as an artificial brain deciding the capability of a bridge simulation system and ensuring the reality of ship maneuvering. Due to the huge development of shipbuilding industry ships have been being equipped with a variety of non-conventional propellers and rudders the existing mathematical models need to be improved accordingly. Moreover, training simulators nowadays require more external and environmental forces to be integrated into the system for more reality. This study aims to review previous studies on mathematical models of ship motions and proposes a development to the synthetic model of forces for systematically and simply simulating ship motion in six degrees of freedom in real-time mode.

Keywords: mathematical modeling, hydrodynamics forces, ship hydrodynamics, ship simulation

Introduction

The mathematical model of ship motions is considered as an artificial brain deciding the processing capability of a bridge simulation system and ensuring the reality of ship maneuvering. Due to the quick development of shipping industry, ships, nowadays, have been being equipped with advanced propellers such as nozzled, azipod, water jets, surface-piercing propellers, contra-rotating propellers, azimuth propellers, Voith–Schneider propellers etc. The variety in types and numbers of propellers and rudders fixed on the ship causing a challenge for calculating and computerizing all of the forces impacting to ship hulls on simulation systems.

By establishing a mathematical model based on Newton’s equation, hydrostatic, hydrodynamic, aerodynamic theories with empirical data the status equations of ship motions are set up. A simple mathematical model including one equation was introduced by NOMOTO K (1957). Davidson and Schiff (1946) described yawing and drifting in 2 DOF. Norrbin (1971), Inoue (1981), Ankudinov (1993) and other researchers developed in 3 DOF model including surging, swaying, yawing. Eda (1980), Hirano (1980) and Oltmann (1993) described 4 DOF model by adding rolling motion. By adding heaving and pitching motions Ankudinov (1983) and Hooft & Pieffers (1988) did establish 6DOF model.1,2 Thor I Fossen3 systemized 6 DOF model with status equations3 in which coefficients were described in the form of a matrix:

M v ˙ +C(ν)v+D(ν)v+g(η)=f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamytai qadAhagaGaaiabgUcaRiaadoeacaGGOaGaeqyVd4MaaiykaiaacAha cqGHRaWkcaGGebGaaiikaiabe27aUjaacMcacaGG2bGaey4kaSIaam 4zaiaacIcacqaH3oaAcaGGPaGaeyypa0JaaiOzaaaa@4AD9@   (1)
Ms[ u ˙ v ˙ w ˙ p ˙ q ˙ r ˙ ]+ C s (v)[ u v w p q r ]+ M A [ u ˙ v ˙ w ˙ p ˙ q ˙ r ˙ ]+ C A (V)[ u v w p q r ]+D[ u v w p q r ]+ D n (v)[ u v w p q r ]+g(η)[ X Y Z K M N ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWGZb aeaaaaaaaaa8qadaWadaWdaeaajugibuaabeqageaaaaGcbaGabmyD ayaacaaabaGabmODayaacaaabaGabm4DayaacaaabaGabmiCayaaca aabaGabmyCayaacaaabaGabmOCayaacaaaaaWdbiaawUfacaGLDbaa cqGHRaWkcaWGdbWaaSbaaSqaaiaadohaaeqaaOGaaiikaiaacAhaca GGPaWaamWaa8aabaqcLbsafaqabeGbbaaaaOqaaiaadwhaaeaacaWG 2baabaGaam4DaaqaaiaadchaaeaacaWGXbaabaGaamOCaaaaa8qaca GLBbGaayzxaaGaey4kaSIaamytamaaBaaaleaacaWGbbaabeaakmaa dmaapaqaaKqzGeqbaeqabyqaaaaakeaaceWG1bGbaiaaaeaaceWG2b GbaiaaaeaaceWG3bGbaiaaaeaaceWGWbGbaiaaaeaaceWGXbGbaiaa aeaaceWGYbGbaiaaaaaapeGaay5waiaaw2faaiabgUcaRiaadoeada WgaaWcbaGaamyqaaqabaGccaGGOaGaaiOvaiaacMcadaWadaWdaeaa jugibuaabeqageaaaaGcbaGaamyDaaqaaiaadAhaaeaacaWG3baaba GaamiCaaqaaiaadghaaeaacaWGYbaaaaWdbiaawUfacaGLDbaacqGH RaWkcaWGebWaamWaa8aabaqcLbsafaqabeGbbaaaaOqaaiaadwhaae aacaWG2baabaGaam4DaaqaaiaadchaaeaacaWGXbaabaGaamOCaaaa a8qacaGLBbGaayzxaaGaey4kaSIaamiramaaBaaaleaacaWGUbaabe aakiaacIcacaGG2bGaaiykamaadmaapaqaaKqzGeqbaeqabyqaaaaa keaacaWG1baabaGaamODaaqaaiaadEhaaeaacaWGWbaabaGaamyCaa qaaiaadkhaaaaapeGaay5waiaaw2faaiabgUcaRiaadEgacaGGOaGa eq4TdGMaaiykamaadmaapaqaaKqzGeqbaeqabyqaaaaakeaacaWGyb aabaGaamywaaqaaiaadQfaaeaacaWGlbaabaGaamytaaqaaiaad6ea aaaapeGaay5waiaaw2faaaaa@8C2F@ (2)

Where M is generalized mass matrix of the ship and added mass, CS(v), CA(V) are Coriolis and centripetal matrixes of the ship and added mass due to motion or rotation about the initial frame, D,D(v) and Dn(v) are damping matrixes; υ= [ u,  v,  w,  p,  q,  r ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyXdiabg2da9maadmaapaqaa8qacaqG1bGaaiilaiaabckacaqG GcGaaeODaiaacYcacaqGGcGaaeiOaiaabEhacaGGSaGaaeiOaiaabc kacaqGWbGaaiilaiaabckacaqGGcGaaeyCaiaacYcacaqGGcGaaeiO aiaabkhaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaaeivaaaaaa a@5081@  is velocity matrix, x= [ u ˙ , v ˙ , w ˙ , p ˙ , q ˙ , r ˙ ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaGGBbGabiyDayaacaGaaiilaiqacAhagaGaaiaacYcaceGG3bGb aiaacaGGSaGabiiCayaacaGaaiilaiqacghagaGaaiaacYcaceGGYb GbaiaacaGGDbWaaWbaaSqabeaacaWGubaaaaaa@4482@  is acceleration matrix. g (η) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4zaiaabckacaqGOaGaae4TdiaabMcaaaa@3B08@  is generalized gravitational/buoyancy forces and moments. f=[X,Y,Z,K,M,N]T is matrix of external forces and moments effecting to the ship (Table 1).

DOF

Description

Velocities

Forces

1

surge - motion in x direction

u

X

2

sway - motion in y direction

v

Y

3

heave - motion in z direction

w

Z

4

roll – rotation about x axis

p

K

5

pitch - rotation about y axis

q

M

6

yaw - rotation about z axis

r

N

Table 1 Parameters defined in the body-fixed reference frame

The principal for calculating of added mass is based on work of Ursell4 and Frank5 for an arbitrary symmetric cross section. Then Keil6 introduced a method for any arbitrary water depth based on a variation of the method of Ursell4 with Lewis conformal mapping. Frank5 described the pulsating source method for deep water.

Nils Salvesen et al.7 introduced new method to predict heave, pitch, sway, roll and yaw motions as well as wave-induced vertical and horizontal shear forces, bending moments, and torsional moments for a ship advancing at a constant speed with arbitrary heading in regular waves.

For calculating damping coefficients a simple set of equations is presented by Society of Naval Architects and Marine Engineers (SNAME) in 3 DOFs including surge, sway and yaw.8 Fedyaevsky et al.9 introduced equations to calculate cross-flow Drag in sway and yaw. Nils Salvesen et al.7 suggested a method to calculate damping components in “Ship Motions and Sealoads”.

Recent studies on the calculation of ship resistance have tended to improve the accuracy of previous methods or apply computational fluid dynamics (CFD).

K Zelazny10 introduced a method to improve the accuracy of ship resistance at preliminary stages of design. Mucha et al.11 had a validation study on numerical prediction of resistance in shallow water based on the solution of the Reynolds-averaged Navier-Stokes (RANS) equations, a Rankine Panel method and a method based on slender-body. The application of CFD can be typically referred to the study of Yasser M Ahmed et al.12 For roll damping coefficients, it can be referred to study of Frederick Jaouen et al.13 and the calculation of Yang Bo et al.14 by using numerical simulation based on CFD. Burak Yildiz et al.15 introduced a URANS prediction of roll damping due to the effects of viscosity based on CFD while Min Gu et al.16 presented a roll damping calculation based on numerical simulation on the RANS model in calm water. In 2017, D Sathyaseelan et al.17 introduced an efficient Legendre wavelet spectral method (LWSM) to ship roll motion model for investigating the nonlinear damping coefficients.

The forces f=[X,Y,Z,K,M,N]T includes ship propulsion forces and external forces caused by environmental effects such as current, wind, wave, squat, bank effect, ship interaction, anchor, mooring line, towing, grounding, collision. The calculations of these forces were solved and published separately by various researches.

The propulsion forces are created by the ship’s propellers and rudders. Since there is a wide range of various types of propellers and rudders, the methods to calculate forces are diversified and have been solved by separate studies which can be referred to as Habil Nikolai Kornev,18 John P. Breslin et al.,19 Øyvind Notland Smogeli,20 Tran Cong Nghi,21 Edward M Lewandowski.8

The environmental forces caused by the current, wind, wave can be estimated by referring to Thor Fossen,3 Journée and Adegeest,22 Edward M Lewandowski8 and other various researches.

The ship to ship interaction can be based on the paper of Wang S23and Cummins WE.24 The estimation of squat can be referred to the formula suggested by Gourlay et al.25 based on slender-body theory while the bank effect can be determined by application of the description of Evert Lataire et al.26

The external forces caused by the anchor, mooring line, towing, grounding, collision can be described in the same approach. Each certain force can be considered as single component affecting the ship as a force vector at given position. Therefore, these forces can be described according to the principle of basic physics.

As the above mentioned, the methods to calculate every single force components are available in previous studies. However, number and properties of these forces vary continuously during the real-time ship motion. The problem, therefore, is how to develop an equation to describe all unlimited force components that have not been posted in previous researches yet.

This paper is aimed to focus on the systematization of all force components and suggest a total force model i=1 n f i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaabMgacqGH9aqpcaaIXaaapaqaa8qacaqG Ubaan8aabaWdbiabggHiLdaakiaabAgapaWaaSbaaSqaa8qacaqGPb aapaqabaaaaa@3EE5@  for the purpose of ship simulation in real-time motion in 6 DOFs.

Establishing total force model

Basically, forces effecting on the ship hull consist of:

  1. Hydrodynamic forces: include Coriolis forces and damping forces. These forces are considered calculated in the hydrodynamic coefficients C(v), D(v).
  2. Hydrostatic forces: include buoyancy forces and restoring moments.
  3. Propulsion forces: are created by propellers and rudders.
  4. External forces: consist of forces caused by current, wind, wave, squat, bank suction, interaction of ships, mooring line, towing, tug support, anchor, collision, and grounding (Figure 1).

Figure 1 Describing force components effecting on ship’s hull.

In practice, the force components are very complex depending strictly on the ship propulsion system and loading condition and environmental condition. They change time to time at every real-time condition. The total forces can be described:
f= f η + f r + f p + f cu + f wi + f wa + f sq + f bk + f ir + f ml + f ar + f pl + f ph + f gr + f cl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzaiabg2da9iaabAgapaWaaSbaaSqaa8qacaqG3oaapaqabaGc peGaey4kaSIaaeOza8aadaWgaaWcbaWdbiaabkhaa8aabeaak8qacq GHRaWkcaqGMbWdamaaBaaaleaapeGaaeiCaaWdaeqaaOWdbiabgUca RiaabAgapaWaaSbaaSqaa8qacaqGJbGaaeyDaaWdaeqaaOWdbiabgU caRiaabAgapaWaaSbaaSqaa8qacaqG3bGaaeyAaaWdaeqaaOWdbiab gUcaRiaabAgapaWaaSbaaSqaa8qacaqG3bGaaeyyaaWdaeqaaOWdbi abgUcaRiaabAgapaWaaSbaaSqaa8qacaqGZbGaaeyCaaWdaeqaaOWd biabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGIbGaae4AaaWdaeqaaO WdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGPbGaaeOCaaWdaeqa aOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGTbGaaeiBaaWdae qaaOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGHbGaaeOCaaWd aeqaaOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGWbGaaeiBaa WdaeqaaOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGWbGaaeiA aaWdaeqaaOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGNbGaae OCaaWdaeqaaOWdbiabgUcaRiaabAgapaWaaSbaaSqaa8qacaqGJbGa aeiBaaWdaeqaaaaa@729C@                       (3)
Where:
f η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaabE7aa8aabeaaaaa@38E7@ : matrix of restoring forces and moments
Propulsion force group:
fr : matrix of forces and moments caused by rudder system
fp: matrix of forces and moments caused by propeller system
External force group:
fcu : matrix of forces and moments created by current
fwi : matrix of forces and moments created by wind
fwa : matrix of forces and moments created by wave
fsq : matrix of forces and moments created by squat
fbk : matrix of forces and moments created by bank effect
fir : matrix of forces and moments created by ship to ship interaction
far : matrix of forces and moments created by ship anchors
fml : matrix of forces and moments created mooring lines
fpl : matrix of forces and moments created by towing lines
fph : matrix of forces and moments created by tug pushing
fgr: matrix of forces and moments created by grounding
fcl: matrix of forces and moments created by collision
For simpler expression, the external forces can be grouped as the force matrix f e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@3896@ :
f e =  f cu + f wi + f wa + f sq + f bk + f ir + f ml + f ar + f pl + f ph + f gr + f cl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaqG GcGaamOza8aadaWgaaWcbaWdbiaadogacaWG1baapaqabaGcpeGaey 4kaSIaamOza8aadaWgaaWcbaWdbiaadEhacaWGPbaapaqabaGcpeGa ey4kaSIaamOza8aadaWgaaWcbaWdbiaadEhacaWGHbaapaqabaGcpe Gaey4kaSIaamOza8aadaWgaaWcbaWdbiaadohacaWGXbaapaqabaGc peGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadkgacaWGRbaapaqaba GcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadMgacaWGYbaapaqa baGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaad2gacaWGSbaapa qabaGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadggacaWGYbaa paqabaGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadchacaWGSb aapaqabaGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadchacaWG ObaapaqabaGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadEgaca WGYbaapaqabaGcpeGaey4kaSIaamOza8aadaWgaaWcbaWdbiaadoga caWGSbaapaqabaaaaa@6B85@  (4)
Hereafter, Fi is defined as the ith force (Figure 2), σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaaWdaeqaaaaa@3971@ as azimuth angle and γ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaiab=n7aNn aaBaaaleaacaWGPbaabeaaaaa@390C@ as declination angle of the forces vector in oyz frame at a position Oi:
f i = [ X i Y i Z i K i M i N i ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaWa daWdaeaafaqabeqacaaabaqbaeqabeGaaaqaauaabeqabiaaaeaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacaWGzbWd amaaBaaaleaapeGaamyAaaWdaeqaaaaaaOqaauaabeqabiaaaeaape GaamOwa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaauaabeqabiaa aeaapeGaam4sa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qaca WGnbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaaaaaaaaGcbaWdbiaa d6eapaWaaSbaaSqaa8qacaWGPbaapaqabaaaaaGcpeGaay5waiaaw2 faa8aadaahaaWcbeqaa8qacaWGubaaaaaa@4A8C@                                                         (5)
F i = X i 2 + Y i 2 +  Z i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaGc aaWdaeaapeGaamiwa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaaik daaaGccqGHRaWkcaWGzbWdamaaDaaaleaapeGaamyAaaWdaeaapeGa aGOmaaaakiabgUcaRiaabckacaWGAbWdamaaDaaaleaapeGaamyAaa WdaeaapeGaaGOmaaaaaeqaaaaa@459D@   (6)
Based on basic physics and mathematics, the mathematical model of total forces and moments of surfing, swaying and heaving motions are expressed:
X i = F i cos( σ i )sin( γ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG gbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiGacogacaGGVbGaai 4Camaabmaapaqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaWGPbaapaqa baaak8qacaGLOaGaayzkaaGaci4CaiaacMgacaGGUbWaaeWaa8aaba Wdbiabeo7aN9aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIca caGLPaaaaaa@4B02@                                                                           (7)
Y i =sin( σ i )sin( γ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpciGG ZbGaaiyAaiaac6gadaqadaWdaeaapeGaeq4Wdm3damaaBaaaleaape GaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiGacohacaGGPbGaaiOB amaabmaapaqaa8qacqaHZoWzpaWaaSbaaSqaa8qacaWGPbaapaqaba aak8qacaGLOaGaayzkaaaaaa@48DB@                                                                                 (8)
Z i =cos( γ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpciGG JbGaai4BaiaacohadaqadaWdaeaapeGaeq4SdC2damaaBaaaleaape GaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4132@                                                                                            (9)
Thus, the moment in rolling, pitching and yawing rotations are obtained:
K i = F i . z i .(sin( σ i )sin( γ i  )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG gbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaac6cacaWG6bWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbiaac6cacaGGOaGaci4Caiaa cMgacaGGUbWaaeWaa8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadM gaa8aabeaaaOWdbiaawIcacaGLPaaacaWGZbGaamyAaiaad6gadaqa daWdaeaapeGaeq4SdC2damaaBaaaleaapeGaamyAaiaabckaa8aabe aaaOWdbiaawIcacaGLPaaacaGGPaaaaa@513C@                                                                    (10)
M i = F i . x i cos( γ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG gbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaac6cacaWG4bWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbiGacogacaGGVbGaai4Camaa bmaapaqaa8qacqaHZoWzpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8 qacaGLOaGaayzkaaaaaa@4663@                                                                                   (11)
N i = F i . y i [ cos( σ i )sin( γ i )+ x i .sin( σ i )sin( γ i ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpcaWG gbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaac6cacaWG5bWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbmaadmaapaqaa8qaciGGJbGa ai4BaiaacohadaqadaWdaeaapeGaeq4Wdm3damaaBaaaleaapeGaam yAaaWdaeqaaaGcpeGaayjkaiaawMcaaiGacohacaGGPbGaaiOBamaa bmaapaqaa8qacqaHZoWzpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8 qacaGLOaGaayzkaaGaey4kaSIaamiEa8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacaGGUaGaci4CaiaacMgacaGGUbWaaeWaa8aabaWdbi abeo8aZ9aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGL PaaaciGGZbGaaiyAaiaac6gadaqadaWdaeaapeGaeq4SdC2damaaBa aaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5waiaa w2faaaaa@633C@                                    (12)
Where xi, yi, zi are lever arm of the force Fi over axis OX, OY, OZ: xi = OXi ; yi = OYi ; zi = OZi.
Thus, the matrix of total forces and moments:
f= i=1 n | X i Y i Z i K i M i N i | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9maawahabeWcpaqaaGqad8qacaWFPbGaeyypa0Ja aGymaaWdaeaapeGaa8NBaaqdpaqaa8qacqGHris5aaGcdaabdaWdae aafaqabeGabaaabaqbaeqabiqaaaqaauaabeqaceaaaeaafaqabeWa baaabaWdbiaadIfapaWaaSbaaSqaa8qacaWGPbaapaqabaaakeaape Gaamywa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOqaa8qacaWGAbWd amaaBaaaleaapeGaamyAaaWdaeqaaaaaaOqaa8qacaWGlbWdamaaBa aaleaapeGaamyAaaWdaeqaaaaaaOqaa8qacaWGnbWdamaaBaaaleaa peGaamyAaaWdaeqaaaaaaOqaa8qacaWGobWdamaaBaaaleaapeGaam yAaaWdaeqaaaaaaOWdbiaawEa7caGLiWoaaaa@4F81@                                                                                             (13)
f= i=1 n F i [ cos( σ i )sin( γ i ) sin( σ i )sin( γ i ) cos( γ i ) z i .(sin( σ i )sin( γ i )) z i cos( γ i ) y i .cos( σ i )sin( γ i )+ x i .sin( σ i )sin( γ i ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGym aaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGccaWGgbWdamaaBa aaleaapeGaamyAaaWdaeqaaOWdbmaadmaapaqaauaabeqaceaaaeaa faqabeGabaaabaqbaeqabiqaaaqaauaabeqadeaaaeaapeGaci4yai aac+gacaGGZbWaaeWaa8aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaa dMgaa8aabeaaaOWdbiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gada qadaWdaeaapeGaeq4SdC2damaaBaaaleaapeGaamyAaaWdaeqaaaGc peGaayjkaiaawMcaaaWdaeaapeGaci4CaiaacMgacaGGUbWaaeWaa8 aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaa wIcacaGLPaaaciGGZbGaaiyAaiaac6gadaqadaWdaeaapeGaeq4SdC 2damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaWd aeaapeGaci4yaiaac+gacaGGZbWaaeWaa8aabaWdbiabeo7aN9aada WgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaaaaaapaqa a8qacaWG6bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaac6caca GGOaGaci4CaiaacMgacaGGUbWaaeWaa8aabaWdbiabeo8aZ9aadaWg aaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaacaWGZbGaam yAaiaad6gadaqadaWdaeaapeGaeq4SdC2damaaBaaaleaapeGaamyA aaWdaeqaaaGcpeGaayjkaiaawMcaaiaacMcaaaaapaqaa8qacaWG6b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiGacogacaGGVbGaai4C amaabmaapaqaa8qacqaHZoWzpaWaaSbaaSqaa8qacaWGPbaapaqaba aak8qacaGLOaGaayzkaaaaaaWdaeaapeGaamyEa8aadaWgaaWcbaWd biaadMgaa8aabeaak8qacaGGUaGaci4yaiaac+gacaGGZbWaaeWaa8 aabaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaa wIcacaGLPaaaciGGZbGaaiyAaiaac6gadaqadaWdaeaapeGaeq4SdC 2damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaiab gUcaRiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiOlai GacohacaGGPbGaaiOBamaabmaapaqaa8qacqaHdpWCpaWaaSbaaSqa a8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaGaci4CaiaacMgaca GGUbWaaeWaa8aabaWdbiabeo7aN9aadaWgaaWcbaWdbiaadMgaa8aa beaaaOWdbiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaaa@AC71@          (14)
f=| X η Y η Z η K η M η N η |+ i=1 m | X ri Y ri Z ri K ri M ri N ri |+ j=1 n | X pj Y pj Z pi K pj M pi N pj |+ k=1 l | X ek Y ek Z ek K ek M ek N ek | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8Nzaiabg2da9maaemaapaqaauaabeqaceaaaeaafaqabeGa baaabaqbaeqabiqaaaqaauaabeqadeaaaeaapeGaamiwa8aadaWgaa WcbaWdbiabeE7aObWdaeqaaaGcbaWdbiaadMfapaWaaSbaaSqaa8qa cqaH3oaAa8aabeaaaOqaa8qacaWGAbWdamaaBaaaleaapeGaeq4TdG gapaqabaaaaaGcbaWdbiaadUeapaWaaSbaaSqaa8qacqaH3oaAa8aa beaaaaaakeaapeGaamyta8aadaWgaaWcbaWdbiabeE7aObWdaeqaaa aaaOqaa8qacaWGobWdamaaBaaaleaapeGaeq4TdGgapaqabaaaaaGc peGaay5bSlaawIa7aiabgUcaRmaawahabeWcpaqaa8qacaWGPbGaey ypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGcdaab daWdaeaafaqabeGabaaabaqbaeqabiqaaaqaauaabeqaceaaaeaafa qabeWabaaabaWdbiaadIfapaWaaSbaaSqaa8qacaWGYbGaamyAaaWd aeqaaaGcbaWdbiaadMfapaWaaSbaaSqaa8qacaWGYbGaamyAaaWdae qaaaGcbaWdbiaadQfapaWaaSbaaSqaa8qacaWGYbGaamyAaaWdaeqa aaaaaOqaa8qacaWGlbWdamaaBaaaleaapeGaamOCaiaadMgaa8aabe aaaaaakeaapeGaamyta8aadaWgaaWcbaWdbiaadkhacaWGPbaapaqa baaaaaGcbaWdbiaad6eapaWaaSbaaSqaa8qacaWGYbGaamyAaaWdae qaaaaaaOWdbiaawEa7caGLiWoacqGHRaWkdaGfWbqabSWdaeaapeGa amOAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIu oaaOWaaqWaa8aabaqbaeqabiqaaaqaauaabeqaceaaaeaafaqabeGa baaabaqbaeqabmqaaaqaa8qacaWGybWdamaaBaaaleaapeGaamiCai aadQgaa8aabeaaaOqaa8qacaWGzbWdamaaBaaaleaapeGaamiCaiaa dQgaa8aabeaaaOqaa8qacaWGAbWdamaaBaaaleaapeGaamiCaiaadM gaa8aabeaaaaaakeaapeGaam4sa8aadaWgaaWcbaWdbiaadchacaWG QbaapaqabaaaaaGcbaWdbiaad2eapaWaaSbaaSqaa8qacaWGWbGaam yAaaWdaeqaaaaaaOqaa8qacaWGobWdamaaBaaaleaapeGaamiCaiaa dQgaa8aabeaaaaaak8qacaGLhWUaayjcSdGaey4kaSYaaybCaeqal8 aabaWdbiaadUgacqGH9aqpcaaIXaaapaqaa8qacaWGSbaan8aabaWd biabggHiLdaakmaaemaapaqaauaabeqaceaaaeaafaqabeGabaaaba qbaeqabiqaaaqaauaabeqadeaaaeaapeGaamiwa8aadaWgaaWcbaWd biaadwgacaWGRbaapaqabaaakeaapeGaamywa8aadaWgaaWcbaWdbi aadwgacaWGRbaapaqabaaakeaapeGaamOwa8aadaWgaaWcbaWdbiaa dwgacaWGRbaapaqabaaaaaGcbaWdbiaadUeapaWaaSbaaSqaa8qaca WGLbGaam4AaaWdaeqaaaaaaOqaa8qacaWGnbWdamaaBaaaleaapeGa amyzaiaadUgaa8aabeaaaaaakeaapeGaamOta8aadaWgaaWcbaWdbi aadwgacaWGRbaapaqabaaaaaGcpeGaay5bSlaawIa7aaaa@A6CF@ (15)
Where,
f η = [ X η Y η Z η K η M η N η ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiabeE7aObWdaeqaaOWdbiabg2da9maa dmaapaqaauaabeqabiaaaeaafaqabeqacaaabaqbaeqabeGaaaqaa8 qacaWGybWdamaaBaaaleaapeGaeq4TdGgapaqabaaakeaapeGaamyw a8aadaWgaaWcbaWdbiabeE7aObWdaeqaaaaaaOqaauaabeqabiaaae aapeGaamOwa8aadaWgaaWcbaWdbiabeE7aObWdaeqaaaGcbaqbaeqa beGaaaqaa8qacaWGlbWdamaaBaaaleaapeGaeq4TdGgapaqabaaake aapeGaamyta8aadaWgaaWcbaWdbiabeE7aObWdaeqaaaaaaaaaaaGc baWdbiaad6eapaWaaSbaaSqaa8qacqaH3oaAa8aabeaaaaaak8qaca GLBbGaayzxaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@4FBE@  is restoring force matrix;
f ri = [ X ri Y ri Z ri K ri M ri N ri ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadkhacaWGPbaapaqabaGcpeGaeyyp a0ZaamWaa8aabaqbaeqabeGaaaqaauaabeqabiaaaeaafaqabeqaca aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGYbGaamyAaaWdaeqaaaGc baWdbiaadMfapaWaaSbaaSqaa8qacaWGYbGaamyAaaWdaeqaaaaaaO qaauaabeqabiaaaeaapeGaamOwa8aadaWgaaWcbaWdbiaadkhacaWG PbaapaqabaaakeaafaqabeqacaaabaWdbiaadUeapaWaaSbaaSqaa8 qacaWGYbGaamyAaaWdaeqaaaGcbaWdbiaad2eapaWaaSbaaSqaa8qa caWGYbGaamyAaaWdaeqaaaaaaaaaaaGcbaWdbiaad6eapaWaaSbaaS qaa8qacaWGYbGaamyAaaWdaeqaaaaaaOWdbiaawUfacaGLDbaapaWa aWbaaSqabeaapeGaamivaaaaaaa@514D@  is force matrix of the ith rudder;
f pj = [ X pj Y pj Z pj K pj M pj N pj ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadchacaWGQbaapaqabaGcpeGaeyyp a0ZaamWaa8aabaqbaeqabeGaaaqaauaabeqabiaaaeaafaqabeqaca aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGWbGaamOAaaWdaeqaaaGc baWdbiaadMfapaWaaSbaaSqaa8qacaWGWbGaamOAaaWdaeqaaaaaaO qaauaabeqabiaaaeaapeGaamOwa8aadaWgaaWcbaWdbiaadchacaWG QbaapaqabaaakeaafaqabeqacaaabaWdbiaadUeapaWaaSbaaSqaa8 qacaWGWbGaamOAaaWdaeqaaaGcbaWdbiaad2eapaWaaSbaaSqaa8qa caWGWbGaamOAaaWdaeqaaaaaaaaaaaGcbaWdbiaad6eapaWaaSbaaS qaa8qacaWGWbGaamOAaaWdaeqaaaaaaOWdbiaawUfacaGLDbaapaWa aWbaaSqabeaapeGaamivaaaaaaa@5146@  is force matrix of the jth propeller.
f ek = [ X ek Y ek Z ek K ek M ek N ek ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadwgacaWGRbaapaqabaGcpeGaeyyp a0ZaamWaa8aabaqbaeqabeGaaaqaauaabeqabiaaaeaafaqabeqaca aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGLbGaam4AaaWdaeqaaaGc baWdbiaadMfapaWaaSbaaSqaa8qacaWGLbGaam4AaaWdaeqaaaaaaO qaauaabeqabiaaaeaapeGaamOwa8aadaWgaaWcbaWdbiaadwgacaWG RbaapaqabaaakeaafaqabeqacaaabaWdbiaadUeapaWaaSbaaSqaa8 qacaWGLbGaam4AaaWdaeqaaaGcbaWdbiaad2eapaWaaSbaaSqaa8qa caWGLbGaam4AaaWdaeqaaaaaaaaaaaGcbaWdbiaad6eapaWaaSbaaS qaa8qacaWGLbGaam4AaaWdaeqaaaaaaOWdbiaawUfacaGLDbaapaWa aWbaaSqabeaapeGaamivaaaaaaa@5100@  is force matrix of the kth external forces.

Figure 2 Describing components of the ith force.

With such the calculation, all the forces can be considered as separate components ith, jth, kth. This enables to calculate and add single force into the general equations (2) in real-time simulation.

Algorithm and simulation

The computerizing algorithm (Figure 3) for simulating ship motions is set up based on the general equation (2). General diagram for calculating all forces are described:

For this study, the ship model Container 18000 TEU triple E and Genting Dream are used (Table 2).

Figure 3 Diagram of total forces affecting to ship motions.

Ship Model

Triple E

Genting Dream

Type

Container

Cruise

L (m)

399

335.3

B (m)

59

39.7

T (m)

16

8.3

Displ. (MT)

257,343

70,330

Propulsion

2 conventional rudders/propellers 2 bow thrusters

2 azipod propellers/3 bow thrusters

Table 2 Particulars of sample models

For assessing the propriety of the established formula, the algorithm is transferred into Matlab in the full equation (2). The hydrodynamics coefficients C(v), D(v) are referred to previous studies.27,28 For simplifying the assessment, it is assumed that the ship is moving in calm water without external forces. In this case, the propulsion forces, hydrodynamic forces, and hydrostatic forces are applied. The other external forces can be added separately without influencing to final results of the method Figures 5−8.

The plotting curves in MATLAB of the sample models show that the forces and moments caused by the propulsion system are reasonably and logically.

Figure 4 Control units are made in Matlab for different types of propellers/rudders.
The above results are extracted from the Genting Dream model:

Figure 5 Genting Dream model.

Figure 6 Wet area of the model created by Matlab.

Figure 7 Turning circle of the model when applying rudder turning 15 degrees on portside.

Figure 8 Turning circle of the model when applying rudder turning 20 degrees on starboardside.

Figure 9 Turning parameters of the model when applying rudder turning 20 degree on starboardside.

Due to the limitation of time and work for studying, only propulsion forces in combination with hydrodynamic forces and hydrostatic forces are simulated and tested. However, the other external forces can be added into the equation (2) separately in other steps.

Conclusion

The suggested mathematical model of total forces affecting ship motions can be used for calculating and computerizing forces effecting to ship’s hull to simulate ship motions in 6DOF in real-time mode.

The details of each propulsion forces and external forces can be referred to available studies.

Acknowledgements

This study was facilitated by The Maritime Centres of Excellence (Simwave), The Netherlands. Simwave did provide necessary facilities and supports for this research. We would like to express our sincere thanks to all the Board of Directors of Simwave as well as the research navigation and engineering groups who did support the study.

Conflict of interest

Authors declare there is no conflict of interest in publishing the article.

References

  1. Hooft JP. The Prediction of the Ship’s Maneuverability in the Design Stage. SNAME Annual Meeting. 1994;1−24.
  2. Leeuwen GV, Journée JMJ. Prediction of Ship Maneuverability, Making Use of Model Tests. Delft University of Technology, Netherlands; 1970.
  3. Fossen TI. Handbook of Marine Craft Hydrodynamics and Motion Control. Norway: Norwegian University of Science and Technology Trondheim, New Jersey, USA: John Wiley & Sons; 2011: 596.
  4. Ursel F. On the Heaving Motion of a Circular Cylinder on the Surface of Fluid. Quarterly Journal of Mechanics and Applied Mathematics. 1949;2(2):218−231.
  5. Frank W. Oscillation of Cylinders in or below the Free Surface of Deep Fluids. Technical Report 2375. Naval Ship Research and Development Centre: Washington DC, USA; 1967: 49.
  6. Keil, H. Die hydrodynamischen Kräfte bei der periodischen Bewegung zweidimensionaler Körper an der Oberfläche flacher Gewässer. Institut für Schiffbau. Univiversity of Hamburg, Germany; 1974.
  7. Nils Salvesen, Tuck EO, O Faltisen. Ship Motions and Sealoads. The Society of Naval Architects and Marine Engineers. Norway; 1971. p. 30.
  8. Lewandowski Edward M. The Dynamics of Marine Craft, Maneuvering and Seakeeping. Advanced Series on Ocean Engineering. 2004;22:444.
  9. Sobolev GV, Fedyayevsky KK. Control and Stability in Ship Design. State Union Shipbuilding Industry Publishing House; USSR; 1964: 375.
  10. Zelazny K. A Method of Calculation of Ship Resistance on Calm Water Useful at Preliminary Stages of Ship Design. Scientific Publisher of the Maritime University of Szczecin. 2014;38(110):125−130.
  11. Mucha P, Deng G, Gourlay T, et al. Validation Studies on Numerical Prediction of Ship Squat and Resistance in Shallow Water. 4th International Conference on Ship Manoeuvring in Shallow and Confined Water (MASHCON). Hamberg Germany; 2016. p. 1−16.
  12. M Ahmed Y, Omar Yaakob, Rashid MFA, et al. Determining Ship Resistance Using Computational Fluid Dynamics (CFD). Journal of Transport System Engineering. 2016;2(1):20−25.
  13. Jaouen FAP, Koop AH, Vaz GB. Predicting Roll Added Mass and Damping of a Ship Hull Section Using CFD. ASME 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, Netherlands; 2011:105−115.
  14. Yang B, Wang Z, Wu M. Numerical Simulation of Naval Ship's Roll Damping Based on CFD. Procedia Engineering. 2012;37:14−18.
  15. Yildiz B, Ferdi Çakıcı, Toru Katayama, et al. URANS Prediction of Roll Damping for a Ship Hull Section at Shallow Draft. Journal of Marine Science and Technology. 2016;21(1):48−56.
  16. Min Gu, Jiang Lu, Shuxia Bu, et al. Numerical Simulation if the Ship Roll Damping, Proceedings of the 12th International Conference on the Stability of Ships and Ocean Vehicles; 2015 June 14−19; Glasgow, UK. 2015:341−348.
  17. Sathyaseelan D, G Hariharan, G Kannan. Parameter Identification for Nonlinear Damping Coefficient from Lasrge-smplitude Ship Roll Motion Using Wavelets. Beni-Suef University Journal of Basic and Applied Sciences. 2017;6(2):138−144.
  18. Habil Nikolai Kornev. Lectures on ship maneuverability. Rostock University: Germany; 2013. p. 177.
  19. John P Breslin, Poul Andersen. Hydrodynamics of Ship propellers. New York: Cambridge University Press; 1994. p. 584.
  20. Øyvind Notland Smogeli. Control of Marine Propellers. Norway: Norwegian University of Science and Technology; 2006:1−322.
  21. Tran Cong Nghi, Ship theory-Hull resistance and Thrusters (Volume II), Ho Chi Minh city University of Transport, vietnam; 2009:208−222.
  22. Journée MJ, Adegeest JMJ. Theoretical Manual of Strip Theory Program: SEAWAY for Windows”. Netherlands: Delft University of Technology. 2003.
  23. Wang S. Dynamic Effects of Ship Passage on Moored Vessels. Journal of Waterways, Harbors and Coastal Engineering Division. 1975;101(3):247−258.
  24. Cummins William. Hydrodynamic Forces and Moments Acting on A slender Body of Revolution Moving Under a Regular Train of Waves. David Taylor Model Basin Reports. Navy Department, USA; 1954:1−52.
  25. Gourlay TP, Tuck EO. The maximum sinkage of a ship. Journal of Ship Research. 2001;45(1):50−58.
  26. Lataire E, Vantorre M. Ship Bank Interaction Induced by Irregular Bank Geometries. Symposium on Naval Hydrodynamics, 27th, Proceedings. Seoul, Korea; 2008:511−524.
  27. Sen DT, TC Vinh. Determination of Added Mass and Inertia Moment of Marine Ships Moving in 6 Degrees of Freedom. International Journal of Transportation Engineering and Technology. 2016;2(1):8−14.
  28. Sen DT, TC Vinh. Establishing Mathematical Model to Predict Ship Resistance Forces. Fluid Mechanics. 2017;3(5):44−53.
Creative Commons Attribution License

©2018 Sen, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.