Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Research Article Volume 2 Issue 2

Mathematical aspect of the marangoni effect at the interface between two immiscible fluids

Reda Mekhlouf,1 Abdelkader Baggag2

1Faculty of science and engineering, Laval University, Canada
2Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar

Correspondence: Faculty of science and engineering, Laval University,1045 Avenue De La Médecine, Quebec City, Qc G1v 0a6 Quebec, Canada

Received: January 30, 2018 | Published: March 13, 2018

Citation: Mekhlouf R, Baggag A. Mathematical aspect of the Marangoni effect at the interface between two immiscible fluids. Fluid Mech Res Int. 2018;2(2):55-58. DOI: 10.15406/fmrij.2018.02.00020

Download PDF

Abstract

The Marangoni effect is a very important phenomenon happening at an interface between two immiscible fluids creating a source of convection. This effect is very important in two phase flow problems. Unfortunately, the Marangoni effect is neglected by many studies in two phase fluid flow and is still considered a challenging problem.

A mathematical model has been developed in this paper showing the Marangoni effect in the case of two immiscible fluids in Navier-Stokes equation. The mathematical translation of the convection term at the interface is developed in detail from the starting point of physical parameters using powerful mathematical tools.

Keywords: marangoni effect, two-phase flow, interface, navier-Stokes

Introduction

The Marangoni effect is happening at the interface between two immiscible fluids. In the absence of initial velocity, the movement of an interface is caused by a variation of interfacial tension; the displacement is the direction of positive superficial tension gradient.

The Marangoni effect is present in many domains in the instability problems in fluid mechanics,1 microstructure problems2 two phase flow problems,3 engineering flows in microfluidic devices4 and so many other domains. In the ink-jet problems,5−7 in 3D printing technology,8 these processes are complex because of physicochemical dynamics that arise from Marangoni effects, also in Surface patterning,9 interactions between suspended particles and a solid substrate.10

Mathematical model

To understand and to show the mathematical aspect of the Marangoni effect at an interface between two immiscible fluids, we are going to build the one fluid model11 of the Navier-Stokes equation for two viscous Newtonian immiscible fluids, with a variable surface tension coefficient.

Let’s consider a time dependent flow configuration of two incompressible viscous Newtonian fluids represented in Figure 1. The total domain contains two subspaces, Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCymaaWdaeqaaaaa@390E@ for the fluid 1 and Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3910@ for the fluid 2. The boundary of the fluid 1 is Ω 1 Γ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIylcceGae8xQdC1damaaBaaaleaapeGaaGymaaWdaeqaaOGa eyOkIGCcLbsapeGae83KdCKcpaWaaWbaaSqabeaapeGaey4kaScaaa aa@3F57@ and the boundary for the fluid 2 is Ω 2 Γ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIylcceGae8xQdC1damaaBaaaleaapeGaaGOmaaWdaeqaaOGa eyOkIGCcLbsapeGae83KdCKcpaWaaWbaaSqabeaapeGaey4kaScaaa aa@3F58@ . The total domain is the union of domains Ω= Ω 1 Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdCLaaCypaiab=L6ax9aadaWgaaWcbaWdbiaaigdaa8aa beaakiabgQIii=qacqWFPoWvpaWaaSbaaSqaa8qacaWHYaaapaqaba aaaa@3FB3@ , the intersection Ω 1 Ω 2 =ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCymaaWdaeqaaOGaeyykIC8d biab=L6ax9aadaWgaaWcbaWdbiaahkdaa8aabeaak8qacqGH9aqpcq aHvpGzaaa@404A@ and the union of all external boundaries is Ω=( Ω 1 / Γ + )( Ω 2 / Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeuyQdCLaeyypa0JaaiikaiabgkGi2kabfM6ax9aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacaGGVaGaeu4KdC0damaaCaaale qabaWdbiabgUcaRaaakiaacMcacqGHQicYcaGGOaGaeyOaIyRaeuyQ dC1damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaac+cacqqHtoWrpa WaaWbaaSqabeaapeGaeyOeI0caaOWdaiaacMcaaaa@4DB9@ .We assume that Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaGPaVlaahgdaa8aabeaaaaa@3A98@ and Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCOmaaWdaeqaaaaa@390E@ are connected but having this condition Ω 1 Ω 2 =ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIylcceGae8xQdC1damaaBaaaleaapeGaaCymaaWdaeqaaOGa eyykIC8dbiabgkGi2kab=L6ax9aadaWgaaWcbaWdbiaahkdaa8aabe aak8qacqGH9aqpcqaHvpGzaaa@4316@ .

Figure 1 Two fluids model configuration space.

The physical properties for each domain are:

ρ={ ρ 1           if x   Ω 1     ρ 2           if x   Ω 2     , μ={ μ 1           if  x  Ω 1     μ 2          if  x  Ω 2       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0Zaaiqaa8aabaqbaeqabiqaaaqaa8qacqaHbpGC paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaadMga caWGMbGaaiiOaiaadIhacaGGGcGaeyicI4SaaiiOaGGaaiab=L6ax9 aadaWgaaWcbaWdbiaaykW7caaIXaaapaqabaGcpeGaaiiOaiaaccka caGGGcaapaqaa8qacqaHbpGCpaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaadMgacaWGMbGaaiiOaiaadIhacaGGGcGaey icI4SaaiiOaiab=L6ax9aadaWgaaWcbaWdbiaaykW7caaIYaaapaqa baGcpeGaaiiOaiaacckacaGGGcaaaaGaay5EaaGaaiilaiaacckacq aH8oqBcqGH9aqpdaGabaWdaeaafaqabeGabaaabaWdbiabeY7aT9aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaamyAaiaa dAgacaGGGcGaaiiOaiaadIhacaGGGcGaeyicI4SaaiiOaiab=L6axj aaykW7paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiiOaiaaccka caGGGcaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaamyAaiaadAgacaGGGcGaaiiOaiaadIhacaGGGcGaey icI4SaaiiOaiab=L6axjaaykW7paWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaaiiOaiaacckacaGGGcaaaaGaay5EaaGaaiiOaaaa@B9F5@ (1)

We are going to express the fundamental principles of dynamics for each control volume of fluid Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCymaaWdaeqaaaaa@390D@ , Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCOmaaWdaeqaaaaa@390E@ and do a fusion between them through an interface Γ * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGabKqzGeaeaa aaaaaaa8qacqWFtoWrk8aadaahaaWcbeqaa8qacaWHQaaaaaaa@396C@ ;(Figure 2).

Figure 2 Fusion of two immiscible fluids through an interface.

Let n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOBayaalaaaaa@376B@ be the normal vector in each point of the external boundary in each domain Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCymaaWdaeqaaaaa@390E@ and Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae8xQdC1damaaBaaaleaapeGaaCOmaaWdaeqaaaaa@390F@ . n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaam OBamaaBaaaleaacaaIXaaabeaaaOGaay51Gaaaaa@39DE@ the outside normal vector to each point of the interface Γ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae83KdC0damaaCaaaleqabaWdbiabgUcaRaaaaaa@3900@ and n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaam OBamaaBaaaleaacaaIYaaabeaaaOGaay51Gaaaaa@39DF@ the outside normal vector to each point of the interface Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae83KdC0damaaCaaaleqabaWdbiabgkHiTaaaaaa@390B@ .

We distinguish two types of forces: Volumetric forces acting on the bulk of each fluid and surface forces acting on the boundary and the interface of separation between fluids.

For the fluid 1, we have:

Forces= D Dt Ω 1 ( ρ U )dΩ= Ω 1 F dΩ+ Ω 1 / Γ + σ ¯ ¯ . n  dΓ+ Γ + σ ¯ ¯ . n 1  dΓ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaeyyeIuoaaOGaamOraiaad+ga caWGYbGaam4yaiaadwgacaWGZbGaeyypa0ZaaSaaa8aabaWdbiaads eaa8aabaWdbiaadseacaWG0baaamaawahabeqcfaYdaeaaiiaacWaG aYdaW9=FPoWvjuaGdGaGaYdaW9=gaaqcfasaiaiG8aaC=lacacipaa 3=igdaaeqcacipaa3=aaWcbaaaneaapeGaey4kIipaaOWaaeWaa8aa baWdbiabeg8aYjqadwfapaGbaSaaa8qacaGLOaGaayzkaaGaamizai ab=L6axjabg2da9maawahabeqcfaYdaeaacWaGacday9=FPoWvjuaG dGaGacday9=gaaqcfasaiaiGWaaw=lacacimaG1=igdaaeqcacimaG 1=aaWcbaaaneaapeGaey4kIipaaOGabmOra8aagaWca8qacaWGKbGa e8xQdCLaey4kaSYaaybCaeqajuaipaqaaiadaciHaqZ=gkGi2kadac iHaqZ==L6axLqbaoacaciHaqZ=BaaajuaibGaGasia08VaiaiGecan =JymaaqajaiGecan=dGaiaiGecan=l4laiadaciHaqZ==n5ahLqbao acaciHaqZ=CaaajuaibKaGasia08FaiaiGecan=ladaciHaqZ==Tca RaaaaSqaaaqdbaWdbiabgUIiYdaakmaaneaabaGaeq4Wdmhaaiaac6 caceWGUbWdayaalaWdbiaacckacaWGKbGae83KdCKaey4kaSYaaybC aeqajuaGpaqaaKqzadWdbiacaciEaG1=bo5al8aadGaGaIhay9phaa qcfayajaiG4baw=hacaciEaG1=jugWa8qacWaGaIhay9VHRaWkaaaa l8aabaaaneaapeGaey4kIipaaOWaa0qaaeaacqaHdpWCaaGaaiOla8 aadaWhcaqaa8qacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGc caGLxdcapeGaaiiOaiaadsgacqWFtoWrcaqGGcaaaa@CB75@ (2a)

For the fluid 2:

Forces= D Dt Ω 2 ( ρ U )dΩ= Ω 2 F dΩ+ Ω 2 / Γ + σ ¯ ¯ . n  dΓ+ Γ + σ ¯ ¯ . n 2  dΓ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaeyyeIuoaaOGaamOraiaad+ga caWGYbGaam4yaiaadwgacaWGZbGaeyypa0ZaaSaaa8aabaWdbiaads eaa8aabaWdbiaadseacaWG0baaamaawahabeqcKvaq==aabaaccaqc LbmacWaVG8xQdC1cdGaVGSbaaKqbGeac8cscLbmacGaVGGOmaaqcfa sajWliaaWcbaaaneaapeGaey4kIipaaOWaaeWaa8aabaWdbiabeg8a YjqadwfapaGbaSaaa8qacaGLOaGaayzkaaGaamizaiab=L6axjabg2 da9maawahabeqcfaYdaeaajugWaiadyYYFPoWvlmacyYYgaaqcfaya iGjljugWaiacyYcIYaaajuaGbKaMSaaaleaaa0qaa8qacqGHRiI8aa GcceWGgbWdayaalaWdbiaadsgacqWFPoWvcqGHRaWkdaGfWbqabKqb G8aabaGamaiGecaC=BOaIyBcLbmacWaGasiaW9=FPoWvlmacaciHaa 3=BaaajuaGbGaGasiaW9FcLbmacGaGasiaW9pIYaaajuaGbKaGasia W9paliacaciHaa3=c+cacWaGasiaW9=FtoWrdGaGasiaW9phaaadbK aGasiaW9FcfayaiaiGecaC=ladaciHaa3=gUcaRaaaaSqaaaqdbaWd biabgUIiYdaakmaaneaabaGaeq4Wdmhaaiaac6caceWGUbWdayaala WdbiaacckacaWGKbGae83KdCKaey4kaSYaaybCaeqajuaGpaqaaKqz adWdbiacaciEaG1=bo5al8aadGaGaIhay9phaaqcfayajaiG4baw=h acaciEaG1=jugWa8qacWaGaIhay9VHRaWkaaaal8aabaaaneaapeGa ey4kIipaaOWaa0qaaeaacqaHdpWCaaGaaiOla8aadaWhcaqaa8qaca WGUbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGccaGLxdcapeGaaiiO aiaadsgacqWFtoWrcaqGGcaaaa@C577@ (2b)

The addition of (2a)+ (2b)gives:

D Dt Ω ( ρ U )dΩ= Ω F dΩ+ Ω σ ¯ ¯ . n dΓ+ Γ + σ ¯ ¯ . n 1 dΓ+ Γ + σ ¯ ¯ . n 2 dΓ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadseaa8aabaWdbiaadseacaWG0baaamaawaha beWcpaqaaGGaa8qacqWFPoWva8aabaaaneaapeGaey4kIipaaOWaae Waa8aabaWdbiabeg8aYjqadwfapaGbaSaaa8qacaGLOaGaayzkaaGa amizaiab=L6axjabg2da9maawahabeWcpaqaa8qacqWFPoWva8aaba aaneaapeGaey4kIipaaOGabmOra8aagaWca8qacaWGKbGae8xQdCLa ey4kaSYaaybCaeqal8aabaWdbiabgkGi2kab=L6axbWdaeaaa0qaa8 qacqGHRiI8aaGcdaqdbaqaaiabeo8aZbaacaGGUaGabmOBa8aagaWc a8qacaWGKbGae83KdCKaey4kaSYaaybCaeqajuaipaqaa8qacWaGac gam9=FtoWrjuaGdGaGacgam9phaaqcfasajaiGGbat=hacaciyaW0= cWaGacgam9VHRaWkaaaal8aabaaaneaapeGaey4kIipaaOWaa0qaae aacqaHdpWCaaGaaiOla8aadaWhcaqaa8qacaWGUbWdamaaBaaaleaa peGaaGymaaWdaeqaaaGccaGLxdcapeGaamizaiab=n5ahjabgUcaRm aawahabeqcfaYdaeaapeGamaiGGbat==3KdCucfa4aiaiGGbat=Zba aKqbGeqcaciyaW0=bGaGacgam9VamaiGGbat=B4kaScaaaWcpaqaaa qdbaWdbiabgUIiYdaakmaaneaabaGaeq4Wdmhaaiaac6capaWaa8Ha aeaapeGaamOBa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOGaay51Ga WdbiaadsgacqWFtoWraaa@9404@ (2c)

With Ω=Ω 1 Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8xQdCLaeyypa0Jae8xQdCLaaGPaV=aadaWgaaWcbaWdbiaa igdaa8aabeaakiabgQIii=qacqWFPoWvpaWaaSbaaSqaa8qacaaMc8 UaaGOmaaWdaeqaaaaa@4309@ and Ω=(Ω 1 / Γ + )( Ω 2 / Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIylccaGae8xQdCLaeyypa0JaaiikaiabgkGi2kab=L6axjaa ykW7paWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai4laiab=n5ah9 aadaahaaWcbeqaa8qacqGHRaWkaaGccaGGPaGaeyOkIG8aaeWaa8aa baWdbiabgkGi2kab=L6axjaaykW7paWaaSbaaSqaa8qacaaIYaaapa qabaGcpeGaai4laiab=n5ah9aadaahaaWcbeqaa8qacqGHsislaaaa kiaawIcacaGLPaaaaaa@50FB@

At the interface we have:

Lim Γ + Γ * ( Γ + σ ¯ ¯ . n 1 dΓ )= Γ * ( σ 1 ¯ ¯ ). n dΓ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaCbeaeaacaWGmbGaamyAaiaad2gaaSqaaGGaaiab=n5ahnaaCaaa meqajuaGbaqcLbmacqGHRaWkaaWccqGHsgIRcqWFtoWrdaahaaadbe qcfayaaKqzadGaaiOkaaaaaSqabaGccaaMc8+aaeWaaeaadaGfWbqa bKqbG8aabaGamaiGibaw==3KdCucfa4aiaiGibaw=ZbaaKqbGeqcac isaG1=bGaGaIeay9VamaiGibaw==3kaScaaaWcbaaaneaapeGaey4k IipaaOWaa0qaaeaacqaHdpWCaaGaaiOla8aadaWhcaqaa8qacaWGUb WdamaaBaaaleaapeGaaGymaaWdaeqaaaGccaGLxdcapeGaamizaiab =n5ahbGaayjkaiaawMcaaiaaykW7cqGH9aqpdaGfWbqabKqbG8aaba GamaiGGbaw==3KdCucfa4aiaiGGbaw=ZbaaKqbGeqcaciyaG1=bGaG acgay9VaiaiGGbaw=lOkaaaaaSqaaaqdbaWdbiabgUIiYdaakmaane aabaGaaiikaiabeo8aZnaaBaaajeaibaqcLbmacaaIXaaaleqaaaaa kiaacMcacaGGUaGabmOBa8aagaWca8qacaWGKbGae83KdCeaaa@822A@ (3a)

Lim Γ + Γ * ( Γ + σ ¯ ¯ . n 2 dΓ )= Γ* ( σ 2 ¯ ¯ ). n dΓ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaCbeaeaacaWGmbGaamyAaiaad2gaaSqaaGGaaiab=n5ahnaaCaaa meqajuaGbaqcLbmacqGHRaWkaaWccqGHsgIRcqWFtoWrdaahaaadbe qcfayaaKqzadGaaiOkaaaaaSqabaGccaaMc8+aaeWaaeaadaGfWbqa bKqbG8aabaGamaiGubah==3KdCucfa4aiaiGubah=ZbaaKqbGeqcac ivaWX=bGaGasfaC8VamaiGubah=B4kaScaaaWcbaaaneaapeGaey4k IipaaOWaa0qaaeaacqaHdpWCaaGaaiOla8aadaWhcaqaa8qacaWGUb WdamaaBaaaleaapeGaaGOmaaWdaeqaaaGccaGLxdcapeGaamizaiab =n5ahbGaayjkaiaawMcaaiaaykW7cqGH9aqpdaGfWbqabKqbG8aaba GamaiGubaC==3KdCKaiaiGubaC=lOkaaWcbaaaneaapeGaey4kIipa aOWaa0qaaeaacaGGOaGaeq4Wdm3aaSbaaKqaGeaajugWaiaaikdaaS qabaaaaOGaaiykaiaac6caceWGUbWdayaalaWdbiaadsgacqWFtoWr aaa@7840@ (3c)

With n 1 = n 2 = n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaaeaa aaaaaaa8qacaWGUbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGccaGL xdcapeGaeyypa0JaeyOeI0YdamaaFiaabaWdbiaad6gapaWaaSbaaS qaa8qacaaIYaaapaqabaaakiaawEnia8qacqGH9aqpceWGUbWdayaa laaaaa@423F@

Finally, we obtain

D Dt Ω ( ρ U )dΩ= Ω F dΩ+ Ω σ ¯ ¯ . n dΓ Γ* ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dΓ    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadseaa8aabaWdbiaadseacaWG0baaamaawaha beWcpaqaaGGaa8qacqWFPoWva8aabaaaneaapeGaey4kIipaaOWaae Waa8aabaWdbiabeg8aYjqadwfapaGbaSaaa8qacaGLOaGaayzkaaGa amizaiab=L6axjabg2da9maawahabeWcpaqaa8qacqWFPoWva8aaba aaneaapeGaey4kIipaaOGabmOra8aagaWca8qacaWGKbGae8xQdCLa ey4kaSYaaybCaeqal8aabaWdbiabgkGi2kab=L6axbWdaeaaa0qaa8 qacqGHRiI8aaGcdaqdbaqaaiabeo8aZbaacaGGUaGabmOBa8aagaWc a8qacaWGKbGae83KdCKaeyOeI0YaaybCaeqal8aabaGamWlu=n5ahj ac8cLGQaaabaaaneaapeGaey4kIipaaOWaaeWaa8aabaWdbmaaneaa baGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsi sldaqdbaqaaiabeo8aZbaapaWaaSbaaSqaa8qacaaIYaaapaqabaaa k8qacaGLOaGaayzkaaGaaiOlaiqad6gapaGbaSaapeGaamizaiab=n 5ahjaacckacaGGGcGaaiiOaaaa@718B@ (4)

 

Applying the divergence theorem to the integral of the external surface Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGHciITiiaacqWFPoWvaaa@39ED@ , we have

Ω σ ¯ ¯ . n dΓ= Ω . σ ¯ ¯  dΩ      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiabgkGi2IGaaiab=L6axbWdaeaaa0qaa8qa cqGHRiI8aaGcdaqdbaqaaiabeo8aZbaacaGGUaGabmOBa8aagaWca8 qacaWGKbGae83KdCKaeyypa0ZaaybCaeqal8aabaWdbiab=L6axbWd aeaaa0qaa8qacqGHRiI8aaGccqGHhis0caGGUaWaa0qaaeaacqaHdp WCaaGaaiiOaiaadsgacqWFPoWvcaGGGcGaaiiOaiaacckacaGGGcGa aiiOaaaa@54AA@ (5)

The last term of the equation (4) represent a difference between the stress tensors from each fluid, it’s a two-dimensional force. We introduce the Dirac function to express it in three dimensions. It represents the surface tension force between two fluids localized at the interface f s ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaBaaaleaapeGaam4CaaWdaeqaaOWdbmaabmaa paqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3D1D@ .

Finally, we have the one fluid model of the Navier-Stokes equation:

  t ( ρ U )+.( ρ U ) F . σ ¯ ¯ + f s ( x,t )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaacckaa8aabaWdbiabgkGi2kaadsha aaWaaeWaa8aabaWdbiabeg8aYjqadwfapaGbaSaaa8qacaGLOaGaay zkaaGaey4kaSIaey4bIeTaaiOlamaabmaapaqaa8qacqaHbpGCceWG vbWdayaalaaapeGaayjkaiaawMcaaiabgkHiTiqadAeapaGbaSaape GaeyOeI0Iaey4bIeTaaiOlamaaneaabaGaeq4WdmhaaiabgUcaRiqa dAgapaGbaSaadaWgaaWcbaWdbiaadohaa8aabeaak8qadaqadaWdae aapeGaamiEaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGim aaaa@57D9@ (6)

With f s ( x,t )=( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaBaaaleaapeGaam4CaaWdaeqaaOWdbmaabmaa paqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpda qadaWdaeaapeWaa0qaaeaacqaHdpWCaaWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabgkHiTmaaneaabaGaeq4Wdmhaa8aadaWgaaWcba Wdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGUaGabmOBa8aa gaWca8qacqaH0oazdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaa aa@4CE1@ is the surface tension force at the interface of separation and  is the Dirac function12 which is equal to the unity at the interface and equal to zero in the rest of the space (Bulk of fluid). The difference between values of stress tensors σ ¯ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0qaaeaacqaHdpWCaaaaaa@383B@ on both sides of the interface in the expression term of f s ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOza8aagaWcamaaBaaaleaapeGaam4CaaWdaeqaaOWdbmaabmaa paqaa8qacaWG4bGaaiilaiaadshaaiaawIcacaGLPaaaaaa@3D1D@ can be expressed with a jump operator . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaGWaaeaacaGGUaaacaGLAaJaay5gWaaaaa@38EC@ :

( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n = σ ¯ ¯ . n 2    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaaneaabaGaeq4Wdmhaa8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHsisldaqdbaqaaiabeo8aZbaapaWaaSbaaS qaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiOlaiqad6ga paGbaSaapeGaeyypa0ZaaGWaaeaadaqdbaqaaiabeo8aZbaapaWaa8 HaaeaapeGaaiOlaiaad6gapaWaaSbaaSqaa8qacaaIYaaapaqabaaa kiaawEniaaWdbiaawQbmcaGLBadacaGGGcGaaiiOaaaa@4C79@ (7)

Equation (7) represent the jump condition over the interface of separation and it represent the surface tension force if we multiply it with the Dirac function to have a three dimensional force.

Let’s express the jump condition (equation 7) with physical and mathematical parameters. Let’s take an interface between two immiscible fluids Ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8xQdCLaaGPaVpaaBaaaleaacaqGXaaabeaaaaa@3A63@ and Ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8xQdCLaaGPaVpaaBaaaleaacaqGYaaabeaaaaa@3A64@ , S be a portion of this interface and C the closed contours of this portion. n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOBa8aagaWca8qacaaMc8UaaGPaVdaa@3AA0@ , the normal vector to the interface and t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiDayaalaaaaa@3771@ the tangential from Figure 3.

Figure 3 Forces acting on a surface of discontinuity

Forces acting at the interface between two immiscible fluids are composed from the force acting on the surface S and the force acting on the closed contour C of this surface. The mathematical translation of this physical phenomenon is:

F = A ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dA+ Γ γ t × n  dΓ       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWca8qacqGH9aqpdaGfWbqabSWdaeaapeGaamyqaaWd aeaaa0qaa8qacqGHRiI8aaGcdaqadaWdaeaapeWaa0qaaeaacqaHdp WCaaWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTmaaneaa baGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawI cacaGLPaaacaGGUaGabmOBa8aagaWca8qacaWGKbGaamyqaiabgUca RmaawahabeWcpaqaaGGaa8qacqWFtoWra8aabaaaneaatCvAUfeBSn 0BKvguHDwzZbqegiuy0fMBNbacfaWdbiaa+5IiaaqcLbsacqWFZoWz kiqadshapaGbaSaapeGaey41aqRabmOBa8aagaWca8qacaGGGcGaam izaiab=n5ahjaabckacaqGGcGaaeiOaiaabckacaqGGcGaaeiOaaaa @6523@ (8)

With σ ¯ ¯ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0qaaeaacqaHdpWCaaWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa @3950@ and σ ¯ ¯ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa0qaaeaacqaHdpWCaaWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa @3951@ the stress tensors on each fluid, γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzGeaeaa aaaaaaa8qacqWFZoWzaaa@38A1@ the superficial tension coefficient at the interface. Note that the volumetric forces are equal to zero at the interface because the volume of an interface is equal to zero. Even in absence of equilibrium the summation of all forces is equal to zero due to the fact that the interface doesn’t have a mass.

F =m a   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavacabeWcbe qaaiaaygW7a0qaaabaaaaaaaaapeGaeyyeIuoaaOGabmOra8aagaWc a8qacqGH9aqpcaWGTbGabmyya8aagaWca8qacaGGGcaaaa@3F23@ , with m=0.

Equation (8) will be:

A ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dA+ Γ γ t × n  dΓ=0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWa aeWaa8aabaWdbmaaneaabaGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGHsisldaqdbaqaaiabeo8aZbaapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiOlaiqad6gapa GbaSaapeGaamizaiaadgeacqGHRaWkdaGfWbqabSWdaeaapeGaae4K daWdaeaaa0qaamXvP5wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaape Gaa8NlIaaaiiaajugibiab+n7aNPGabmiDa8aagaWca8qacqGHxdaT ceWGUbWdayaalaWdbiaacckacaWGKbGae43KdCKaeyypa0JaaGimai aabckaaaa@5EE8@ (9a)

A ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dA= Γ γ n × t  dΓ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWa aeWaa8aabaWdbmaaneaabaGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGHsisldaqdbaqaaiabeo8aZbaapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiOlaiqad6gapa GbaSaapeGaamizaiaadgeacqGH9aqpdaGfWbqabSWdaeaaiiaapeGa e83KdCeapaqaaaqdbaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaG qba8qacaGFUicaaKqzGeGae83SdCMcceWGUbWdayaalaWdbiabgEna 0kqadshapaGbaSaapeGaaiiOaiaadsgacqWFtoWraaa@5C73@ (9b)

C F . t dS= A ( × F ). n dA   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGcceWGgbWdayaalaWdbi aac6caceWG0bWdayaalaWdbiaadsgacaWGtbGaeyypa0ZaaybCaeqa l8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWaaeWaa8aaba WdbiqbgEGir=aagaWca8qacqGHxdaTceWGgbWdayaalaaapeGaayjk aiaawMcaaiaac6caceWGUbWdayaalaWdbiaadsgacaWGbbGaaiiOai aacckaaaa@5680@

Applying the Stokes theorem to the right-hand side of the equation (9b):

C F . t dS= A ( × F ). n dA   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGcceWGgbWdayaalaWdbi aac6caceWG0bWdayaalaWdbiaadsgacaWGtbGaeyypa0ZaaybCaeqa l8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWaaeWaa8aaba WdbiqbgEGir=aagaWca8qacqGHxdaTceWGgbWdayaalaaapeGaayjk aiaawMcaaiaac6caceWGUbWdayaalaWdbiaadsgacaWGbbGaaiiOai aacckaaaa@5680@

Considering F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWcaaaa@3752@ being the product of two vectors F = g × b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOra8aagaWca8qacqGH9aqpceWGNbWdayaalaWdbiabgEna0kqa dkgapaGbaSaaaaa@3CA4@ with b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOya8aagaWcaaaa@376E@ a constant vector, we obtain:

C ( g × b ). t dS= A ( ×( g × b ) ). n dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGcdaqadaWdaeaapeGabm 4za8aagaWca8qacqGHxdaTceWGIbWdayaalaaapeGaayjkaiaawMca aiaac6caceWG0bWdayaalaWdbiaadsgacaWGtbGaeyypa0ZaaybCae qal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWaaeWaa8aa baWdbiqbgEGir=aagaWca8qacqGHxdaTdaqadaWdaeaapeGabm4za8 aagaWca8qacqGHxdaTceWGIbWdayaalaaapeGaayjkaiaawMcaaaGa ayjkaiaawMcaaiaac6caceWGUbWdayaalaWdbiaadsgacaWGbbaaaa@5E28@

We have ×( g × b )=( . b ) g ( . g ) b + b .(   g ) g .(   b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafy4bIe9dayaalaWdbiabgEna0oaabmaapaqaa8qaceWGNbWdayaa laWdbiabgEna0kqadkgapaGbaSaaa8qacaGLOaGaayzkaaGaeyypa0 ZaaeWaa8aabaWdbiqbgEGir=aagaWca8qacaGGUaGabmOya8aagaWc aaWdbiaawIcacaGLPaaaceWGNbWdayaalaWdbiabgkHiTmaabmaapa qaa8qacuGHhis0paGbaSaapeGaaiOlaiqadEgapaGbaSaaa8qacaGL OaGaayzkaaGabmOya8aagaWca8qacqGHRaWkceWGIbWdayaalaWdbi aac6cadaqadaWdaeaapeGafy4bIe9dayaalaWdbiaacckaceWGNbWd ayaalaaapeGaayjkaiaawMcaaiabgkHiTiqadEgapaGbaSaapeGaai Olamaabmaapaqaa8qacuGHhis0paGbaSaapeGaaiiOaiqadkgapaGb aSaaa8qacaGLOaGaayzkaaaaaa@5F4A@

But ( . b )=(   b )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiqbgEGir=aagaWca8qacaGGUaGabmOya8aagaWc aaWdbiaawIcacaGLPaaacqGH9aqpdaqadaWdaeaapeGafy4bIe9day aalaWdbiaacckaceWGIbWdayaalaaapeGaayjkaiaawMcaaiabg2da 9iaaicdaaaa@43F0@

So, the last expression become ×( g × b )=( . g ) b + b .(   g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafy4bIe9dayaalaWdbiabgEna0oaabmaapaqaa8qaceWGNbWdayaa laWdbiabgEna0kqadkgapaGbaSaaa8qacaGLOaGaayzkaaGaeyypa0 JaeyOeI0YaaeWaa8aabaWdbiqbgEGir=aagaWca8qacaGGUaGabm4z a8aagaWcaaWdbiaawIcacaGLPaaaceWGIbWdayaalaWdbiabgUcaRi qadkgapaGbaSaapeGaaiOlamaabmaapaqaa8qacuGHhis0paGbaSaa peGaaiiOaiqadEgapaGbaSaaa8qacaGLOaGaayzkaaaaaa@50AD@

We obtain C ( g × b ). t dS= A ( ( . g ) b + b .(   g ) ). n  dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGcdaqadaWdaeaapeGabm 4za8aagaWca8qacqGHxdaTceWGIbWdayaalaaapeGaayjkaiaawMca aiaac6caceWG0bWdayaalaWdbiaadsgacaWGtbGaeyypa0ZaaybCae qal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWaaeWaa8aa baWdbiabgkHiTmaabmaapaqaa8qacuGHhis0paGbaSaapeGaaiOlai qadEgapaGbaSaaa8qacaGLOaGaayzkaaGabmOya8aagaWca8qacqGH RaWkceWGIbWdayaalaWdbiaac6cadaqadaWdaeaapeGafy4bIe9day aalaWdbiaacckaceWGNbWdayaalaaapeGaayjkaiaawMcaaaGaayjk aiaawMcaaiaac6caceWGUbWdayaalaWdbiaacckacaWGKbGaamyqaa aa@6509@

With taking g =γ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4za8aagaWca8qacqGH9aqpcqaHZoWzceWGUbWdayaalaaaaa@3B44@ :

C ( γ n × b ). t dS= A ( ( .( γ n ) ) b + b .(  ( γ n ) ) ). n dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGcdaqadaWdaeaapeGaeq 4SdCMabmOBa8aagaWca8qacqGHxdaTceWGIbWdayaalaaapeGaayjk aiaawMcaaiaac6caceWG0bWdayaalaWdbiaadsgacaWGtbGaeyypa0 ZaaybCaeqal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWa aeWaa8aabaWdbmaabmaapaqaa8qacqGHsislcuGHhis0paGbaSaape GaaiOlamaabmaapaqaa8qacqaHZoWzceWGUbWdayaalaaapeGaayjk aiaawMcaaaGaayjkaiaawMcaaiqadkgapaGbaSaapeGaey4kaSIabm Oya8aagaWca8qacaGGUaWaaeWaa8aabaWdbiqbgEGir=aagaWca8qa caGGGcWaaeWaa8aabaWdbiabeo7aNjqad6gapaGbaSaaa8qacaGLOa GaayzkaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaiqad6ga paGbaSaapeGaamizaiaadgeaaaa@6C3F@ C γ( t × n )dS= A ( .( γ n ) n +(  ( γ n ) ). n )dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGccqaHZoWzdaqadaWdae aapeGabmiDa8aagaWca8qacqGHxdaTceWGUbWdayaalaaapeGaayjk aiaawMcaaiaadsgacaWGtbGaeyypa0ZaaybCaeqal8aabaWdbiaadg eaa8aabaaaneaapeGaey4kIipaaOWaaeWaa8aabaWdbiabgkHiTiqb gEGir=aagaWca8qacaGGUaWaaeWaa8aabaWdbiabeo7aNjqad6gapa GbaSaaa8qacaGLOaGaayzkaaGabmOBa8aagaWca8qacqGHRaWkdaqa daWdaeaapeGafy4bIe9dayaalaWdbiaacckadaqadaWdaeaapeGaeq 4SdCMabmOBa8aagaWcaaWdbiaawIcacaGLPaaaaiaawIcacaGLPaaa caGGUaGabmOBa8aagaWcaaWdbiaawIcacaGLPaaacaWGKbGaamyqaa aa@670F@ .( γ n )= γ. n +γ . n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafy4bIe9dayaalaWdbiaac6cadaqadaWdaeaapeGaeq4SdCMabmOB a8aagaWcaaWdbiaawIcacaGLPaaacqGH9aqpcuGHhis0paGbaSaape Gaeq4SdCMaaiOlaiqad6gapaGbaSaapeGaey4kaSIaeq4SdCMafy4b Ie9dayaalaWdbiaac6caceWGUbWdayaalaaaaa@4982@ C γ( t × n )dS= A [( γ. n ) n γ( . n   ) n +( γ n ). n ]dA  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGccqaHZoWzdaqadaWdae aapeGabmiDa8aagaWca8qacqGHxdaTceWGUbWdayaalaaapeGaayjk aiaawMcaaiaadsgacaWGtbGaeyypa0ZaaybCaeqal8aabaWdbiaadg eaa8aabaaaneaapeGaey4kIipaaOGaai4waiabgkHiTmaabmaapaqa a8qacuGHhis0paGbaSaapeGaeq4SdCMaaiOlaiqad6gapaGbaSaaa8 qacaGLOaGaayzkaaGabmOBa8aagaWca8qacqGHsislcqaHZoWzdaqa daWdaeaapeGafy4bIe9dayaalaWdbiaac6caceWGUbWdayaalaWdbi aacckaaiaawIcacaGLPaaaceWGUbWdayaalaWdbiabgUcaRmaabmaa paqaa8qacuGHhis0paGbaSaapeGaeq4SdCMaey4LIqSabmOBa8aaga WcaaWdbiaawIcacaGLPaaacaGGUaGabmOBa8aagaWca8qacaGGDbGa amizaiaadgeacaGGGcaaaa@7199@ (10)

By definition Mansour et al.13: . n =κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0Iafy4bIe9dayaalaWdbiaac6caceWGUbWdayaalaWdbiab g2da9GGaaiab=P7aRbaa@3D9D@

κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8NUdSgaaa@381D@ represent the curvature of the interface

( γ n ). n = γ( n  . n )= γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiqbgEGir=aagaWca8qacqaHZoWzcqGHxkcXceWG UbWdayaalaaapeGaayjkaiaawMcaaiaac6caceWGUbWdayaalaWdbi abg2da9iqbgEGir=aagaWca8qacqaHZoWzdaqadaWdaeaapeGabmOB a8aagaWca8qacaGGGcGaaiOlaiqad6gapaGbaSaaa8qacaGLOaGaay zkaaGaeyypa0Jafy4bIe9dayaalaWdbiabeo7aNbaa@4EFD@

Considering the divergence operator been the summation of the normal component and the tangential one, we have:

γ= N γ+ Γ γ Γ γ= γ n n ( γ ) Γ γ=( n n )( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacuGHhis0paGbaSaapeGaeq4SdCMaeyypa0ZdamaaFiaabaWd biabgEGir=aadaWgaaWcbaWdbiaad6eaa8aabeaaaOGaay51GaWdbi abeo7aNjabgUcaR8aadaWhcaqaa8qacqGHhis0paWaaSbaaSqaaGGa a8qacqWFtoWra8aabeaaaOGaay51GaWdbiabeo7aNbqaa8aadaWhca qaa8qacqGHhis0paWaaSbaaSqaa8qacqWFtoWra8aabeaaaOGaay51 GaWdbiabeo7aNjabg2da9iqbgEGir=aagaWca8qacqaHZoWzcqGHsi slceWGUbWdayaalaWdbiabgEPielqad6gapaGbaSaapeWaaeWaa8aa baWdbiqbgEGir=aagaWca8qacqaHZoWzaiaawIcacaGLPaaaaeaapa Waa8HaaeaapeGaey4bIe9damaaBaaaleaapeGae83KdCeapaqabaaa kiaawEnia8qacqaHZoWzcqGH9aqpdaqadaWdaeaapeGaeSyjIaLaey OeI0IabmOBa8aagaWca8qacqGHxkcXceWGUbWdayaalaaapeGaayjk aiaawMcaamaabmaapaqaa8qacuGHhis0paGbaSaapeGaeq4SdCgaca GLOaGaayzkaaaaaaa@7349@

With ( n n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiablwIiqjabgkHiTiqad6gapaGbaSaapeGaey4L IqSabmOBa8aagaWcaaWdbiaawIcacaGLPaaaaaa@3E74@ represent the projector of the delta operator at the interface.

Equation (10) becomes:

C γ( t × n )dS= A [γκ n ( γ  )+( γ n ). n ]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGccqaHZoWzdaqadaWdae aapeGabmiDa8aagaWca8qacqGHxdaTceWGUbWdayaalaaapeGaayjk aiaawMcaaiaadsgacaWGtbGaeyypa0ZaaybCaeqal8aabaWdbiaadg eaa8aabaaaneaapeGaey4kIipaaOGaai4waiabeo7aNjaabQ7aceWG UbWdayaalaWdbiabgkHiTmaabmaapaqaa8qacuGHhis0paGbaSaape Gaeq4SdCMaaiiOaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qa cuGHhis0paGbaSaapeGaeq4SdCMaey4LIqSabmOBa8aagaWcaaWdbi aawIcacaGLPaaacaGGUaGabmOBa8aagaWca8qacaGGDbGaamizaiaa dgeaaaa@6899@ C γ( t × n )dS= A [γκ n ( Γ γ  )]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadoeaa8aabaaaneaatCvAUfeBSn0BKvgu HDwzZbqegiuy0fMBNbacfaWdbiaa=5IiaaGccqaHZoWzdaqadaWdae aapeGabmiDa8aagaWca8qacqGHxdaTceWGUbWdayaalaaapeGaayjk aiaawMcaaiaadsgacaWGtbGaeyypa0ZaaybCaeqal8aabaWdbiaadg eaa8aabaaaneaapeGaey4kIipaaOGaai4waiabeo7aNHGaaiab+P7a Rjqad6gapaGbaSaapeGaeyOeI0YaaeWaa8aabaWaa8HaaeaapeGaey 4bIe9damaaBaaaleaapeGae43KdCeapaqabaaakiaawEnia8qacqaH ZoWzcaGGGcaacaGLOaGaayzkaaGaaiyxaiaadsgacaWGbbaaaa@617C@ A ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dA= A [γκ n ( Γ γ  )]dA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWa aeWaa8aabaWdbmaaneaabaGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGHsisldaqdbaqaaiabeo8aZbaapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiOlaiqad6gapa GbaSaapeGaamizaiaadgeacqGH9aqpcqGHsisldaGfWbqabSWdaeaa peGaamyqaaWdaeaaa0qaa8qacqGHRiI8aaGccaGGBbGaeq4SdCgcca Gae8NUdSMabmOBa8aagaWca8qacqGHsisldaqadaWdaeaadaWhcaqa a8qacqGHhis0paWaaSbaaSqaa8qacqWFtoWra8aabeaaaOGaay51Ga Wdbiabeo7aNjaacckaaiaawIcacaGLPaaacaGGDbGaamizaiaadgea aaa@5DDB@ A ( σ ¯ ¯ 1 σ ¯ ¯ 2 ). n dA+ A [γκ n ( Γ γ  )]dA=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadgeaa8aabaaaneaapeGaey4kIipaaOWa aeWaa8aabaWdbmaaneaabaGaeq4Wdmhaa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqGHsisldaqdbaqaaiabeo8aZbaapaWaaSbaaSqa a8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiOlaiqad6gapa GbaSaapeGaamizaiaadgeacqGHRaWkdaGfWbqabSWdaeaapeGaamyq aaWdaeaaa0qaa8qacqGHRiI8aaGccaGGBbGaeq4SdCgccaGae8NUdS MabmOBa8aagaWca8qacqGHsisldaqadaWdaeaadaWhcaqaa8qacqGH his0paWaaSbaaSqaa8qacqWFtoWra8aabeaaaOGaay51GaWdbiabeo 7aNjaacckaaiaawIcacaGLPaaacaGGDbGaamizaiaadgeacqGH9aqp caaIWaaaaa@5E8A@ σ ¯ ¯ .n  =[ γκ n +( Γ γ  ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaGWaaeaadaqdbaqaaiabeo8aZbaapaWaa8HaaeaapeGaaiOlaiaa d6gaa8aacaGLxdcaa8qacaGLAaJaay5gWaGaaiiOaiabg2da9maadm aapaqaa8qacqGHsislcqaHZoWziiaacqWF6oWAceWGUbWdayaalaWd biabgUcaRmaabmaapaqaamaaFiaabaWdbiabgEGir=aadaWgaaWcba Wdbiab=n5ahbWdaeqaaaGccaGLxdcapeGaeq4SdCMaaiiOaaGaayjk aiaawMcaaaGaay5waiaaw2faaaaa@51B5@ (11)

Equation (11) represents the jump condition at an interface between two immiscible fluids with a variable surface tension coefficient.

The jump condition have a dimension of a force, it seems that the deformation of the interface is a consequence of balance forces acting on fluids or an energy balance during the evolution .The second term of this condition correspond to a surface gradient of the surface tension coefficient γ, Γ =( 1 n n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaaiilaiaaykW7caaMc8+damaaFiaabaWdbiabgEGir=aa daWgaaWcbaaccaWdbiab=n5ahbWdaeqaaaGccaGLxdcapeGaeyypa0 ZaaeWaa8aabaWdbiaaigdacqGHsislceWGUbWdayaalaWdbiabgEPi elqad6gapaGbaSaaa8qacaGLOaGaayzkaaGafy4bIe9dayaalaaaaa@4B5A@ is a projection of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gafy4bIe9dayaalaaaaa@380D@ on the oriented surface .This term translate the Marangoni effect.

In the case of stratified flow κ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8NUdSMaaeypaiaabcdaaaa@3990@ , the fluid can’t be static until Γ γ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaaeaa aaaaaaa8qacqGHhis0paWaaSbaaSqaaGGaa8qacqWFtoWra8aabeaa aOGaay51GaWdbiabeo7aNjabg2da9iaaicdaaaa@3EE7@ .In other case the flow is going to be driven by the surface gradient which represent the Marangoni effect.

The Marangoni effect is only possible if the superficial tension between two points of the interface is different. It suggest the fact that in absence of initial velocity for a fluid, his motion can be driven by the Marangoni effect, in this case the flow direction will be from the point where the surface tension coefficient is low to the point of high surface tension coefficient Γ γ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaaeaa aaaaaaa8qacqGHhis0paWaaSbaaSqaa8qacaWHtoaapaqabaaakiaa wEniaGGab8qacqWFZoWzcaWH9aGaaCimaaaa@3E5F@ .

Numerical results

We implement the following numerical example of Navier-Stokes two phase flow problem. We used the XFEM14 for the discretization of velocity and pressure. The program was implemented in the computational FEniCS platform.15

In this example we are going to consider two immiscible fluids (air/ water) with an interface of separation where the superficial tension γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae83SdCgaaa@3813@ is not constant. The two immiscible fluids are without initial velocity for both. It means that the both phases are statics at t=0s.

For the half of the configuration γ 1 = 70.10 3 N. m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae83SdC2damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da 9iaaiEdacaaIWaGaaiOlaiaaigdacaaIWaWdamaaCaaaleqabaWdbi abgkHiTiaaiodaaaacbmGccaGFobGaaiOlaiaa+1gapaWaaWbaaSqa beaapeGaeyOeI0IaaGymaaaaaaa@4457@ and for the other half γ 2 = 72.10 3 N. m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGababaaaaaaa aapeGae83SdC2damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9iaaiEdacaaIYaGaaiOlaiaaigdacaaIWaWdamaaCaaaleqabaWdbi abgkHiTiaaiodaaaacbmGccaGFobGaaiOlaiaa+1gapaWaaWbaaSqa beaapeGaeyOeI0IaaGymaaaaaaa@445A@

As we can see Figure 4, there is a displacement of the fluid from a side to another because of the difference between the coefficients of superficial tension.

Figure 4 Displacement effects of fluids due to the Marangoni effect at the interface.

As we saw it in the equation (11) the jump at the interface is:

σ ¯ ¯ .n  =[ γκ n +( Γ γ  ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaGWaaeaadaqdbaqaaiabeo8aZbaapaWaa8HaaeaapeGaaiOlaiaa d6gaa8aacaGLxdcaa8qacaGLAaJaay5gWaGaaiiOaiabg2da9maadm aapaqaa8qacqGHsislcaWHZoaccaGae8NUdSMabmOBa8aagaWca8qa cqGHRaWkdaqadaWdaeaadaWhcaqaa8qacqGHhis0paWaaSbaaSqaa8 qacqWFtoWra8aabeaaaOGaay51GaacceWdbiab+n7aNjaacckaaiaa wIcacaGLPaaaaiaawUfacaGLDbaaaaa@5152@

In our example we have a stratified flow, the interface is straight, so the curvature is equal to zero κ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaabaaaaaaa aapeGae8NUdSMaaeypaiaabcdaaaa@3990@ .The only term stays is the interfacial gradient of the coefficient of superficial tension

σ ¯ ¯ .n  =( Γ γ  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaGWaaeaadaqdbaqaaiabeo8aZbaapaWaa8HaaeaapeGaaiOlaiaa d6gaa8aacaGLxdcaa8qacaGLAaJaay5gWaGaaiiOaiabg2da9iaayk W7caaMc8+aaeWaa8aabaWaa8HaaeaapeGaey4bIe9damaaBaaaleaa iiaapeGae83KdCeapaqabaaakiaawEnia8qacqaHZoWzcaGGGcaaca GLOaGaayzkaaaaaa@4C73@

We can clearly see from this result that the movement of the interface is a result of non-zero gradient of the superficial tension, it’s the Marangoni effect.

The movement of the interface is in the positive gradient direction, it’s from the smaller coefficient of superficial tension to the bigger one.

Conclusion

This study gives an analytical detailed description of the Marangoni phenomenon with mathematical and physical parameters responsible for this .With this work we have the confirmation that the Marangoni effect is very important when we study two phase flow problems. The impact of this phenomenon is so important that it could be a reason for the displacement of fluids in the absence of initial velocity. In the case where we have a dynamic system, it’s a big factor to create instabilities and interfacial turbulence.

Acknowledgements

None.

Conflict of interest

Authors declare there is no conflict of interest in publishing the article.

References

  1. Ding Zijing, Rong Liu, Teck Neng Wong, et al. Absolute instability induced by Marangoni effect in thin liquid film flows on vertical cylindrical surfaces. Chemical Engineering Science. 2018;177:261−269.
  2. Pariona Moises Meza, André Felipe Taques, Luciano Allan Woiciechowski. The Marangoni effect on microstructure properties and morphology of laser-treated Al-Fe alloy with single track by FEM: Varying the laser beam velocity. International Journal of Heat and Mass Transfer. 2018;119:10−19.
  3. Pawar Y, Stebe KJ. Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Physics of Fluids. 1996;8(7):1738−1751.
  4. Stone HA, Stroock AD, Ajdari A. Engineering flows in small devices: microfluidics toward a lab−on−a−chip. Annu. Rev Fluid Mech. 2004;36:381−411.
  5. Park J, Moon J. Control of colloidal particle deposit patterns within Pico liter droplets ejected by ink-jet printing. Langmuir. 2006;22(8):3506−3513.
  6. Mishra S, Barton KL, Alleyne AG, et al. High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. Journal of Micromechanics and Microengineering. 2010;20(9):095026.
  7. Talbot EL, Yow HN, Yang L, et al. Printing small dots from large drops. ACS Appl Mater Interfaces. 2015;7(6), 3782−3790.
  8. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot light-emitting diodes. Nano letters. 2014;14(2):7017−7023.
  9. Kuang M, Wang L, Song Y. Controllable printing droplets for high‐resolution patterns. Advanced materials. 2014;26(40): 6950−6958.
  10. Shmuylovich L, Shen AQ, Stone HA. Surface morphology of drying latex films: multiple ring formation. Langmuir, 2002;18(9):3441−3445.
  11. Brackbill JU, Douglas B Kothe, Charles Zemach. A continuum method for modeling surface tension. Journal of computational physics. 1992;100(2):335−354.
  12. Spiegel MR. The Dirac Delta‐Function and the Summation of Fourier series. Journal of Applied Physics. 1952;23(8):906−909.
  13. Mansour Nagi N, Thomas S Lundgren. Satellite formation in capillary jet breakup. Physics of Fluids A: Fluid Dynamics. 1990;2(7):1141−1144.
  14. Sauerland H, Fries TP. The stable XFEM for two-phase flows. Computers & Fluids. 2013;87:41−49.
  15. Logg A, Mardal KA, Wells G. Automated solution of differential equations by the finite element method: The FEniCS book. Vol. 84, Springer-Verlag Berlin Heidelberg, Germany; 2012, p.731.
Creative Commons Attribution License

©2018 Mekhlouf, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.