Submit manuscript...
eISSN: 2577-8242

Fluid Mechanics Research International Journal

Mini Review Volume 1 Issue 1

Thermo physical chemical properties of fluids using the free NIST chemistry webbook database

Osama A Marzouk

College of Engineering, University of Buraimi, Oman

Correspondence: Osama A Marzouk, University of Buraimi, College of Engineering ,P.O. Box 890, P.C. 512, Al Buraimi, Sultanate of Oman

Received: May 20, 2017 | Published: August 28, 2017

Citation: Marzouk OA. Thermo physical chemical properties of fluids using the free NIST chemistry web book database. Fluid Mech Res Int . 2017;1(1):14-18. DOI: 10.15406/fmrij.2017.01.00003

Download PDF

Abstract

Many engineers, students, teachers, academicians, scientists, and researchers need to know intensive thermal, physical, and chemical properties of a fluid at a certain equilibrium state (as determined by temperature and pressure, for example). Such properties include the density, specific volume, viscosity, specific heat capacity, thermal conductivity, speed of sound, specific enthalpy, specific entropy, and surface tension. This article refers to a powerful database for such information, which is called NIST Chemistry WebBook. It is owned by the National Institute of Standards and Technology (NIST), which is an agency of the United States Department of Commerce. The database is available online free-of-charge and does not require registration for access. Its use is simple, and it offers the user multiple options for the unit to be used for each individual property. An application is presented where different properties (including the density, viscosities, specific heats, thermal conductivity, and speed of sound) for water at its liquid phase are presented at an absolute pressure of 1 bar over a temperature range from 1 °C to 99 °C. Comparisons with two sources support the correctness of the database.

Keywords: Fluids; Properties; Thermal; Physical; Chemical; Water

Abbreviations

IR: Infrared; UV: Ultraviolet (visible); IUPAC: International Union of Pure and Applied Chemistry; InChI: International Chemical Identifier; InChIKey: New Fixed-Length Code that Represents a InChI; CAS: Chemical Abstracts Service; NIST: National Institute of Standards and Technology; SRD: Standard Reference Data

Introduction

Fluids (gases and liquids) are encountered heavily in different specializations of engineering and science. Engineers and researchers may frequently need an easy access to a reliable and rich database of fluid properties at a wide range of conditions during their work. Example uses are the design or modification of plumbing systems, ventilation or air-conditioning systems, structures subject to wind loads, plasma flows, heat rejection methods, heat exchanges, and various chemical processes.

In teaching a course, the data in an appendix of a textbook might be sufficient to meet the need of the instructor and student. However, a much deeper and boarder database is needed to satisfy the scope of practical applications, especially with a multidisciplinary nature or a complex configuration. This work explores one such extensive database, showing how powerful it is. Being freely available online and well-documented increases its value. A specific example for using the database is provided for liquid-water at an ambient pressure. A limited validation is presented for that example as well.

Interested readers are encourages to explore the multitude of facets of the database, which go beyond traditional macroscopic properties, such as density, heat capacity, viscosity, thermal conductivity, specific enthalpy, phase-change temperatures, and enthalpy of combustion. The database provides the users molecular-level or atomic-level data, such as ionization energy, electron affinity, proton affinity, cluster ion binding energies, infrared (IR) spectra, ultraviolet (UV) and visible (Vis) spectrum, constants of diatomic molecules, and gas chromatography.

NIST Chemistry WebBook

The National Institute of Standards and Technology (NIST) developed a program called Standard Reference Data (SRD),1 which covers chemistry, engineering, fluids and condensed phases, material sciences, mathematics, computer sciences, and physics. One component of this program is called NIST Chemistry WebBook,2 which is a rich database that offers several thermo-physical-chemical properties of fluids and other species.

The information in the database spans (as of July 29, 2017) the following categories:

  1. Thermophysical property data for 74 fluids
    1. Density
    2. Specific volume
    3. Heat capacity at constant pressure
    4. Heat capacity at constant volume
    5. Specific enthalpy
    6. Specific internal energy
    7. Specific entropy
    8. Dynamic viscosity
    9. Thermal conductivity
    10. Joule-Thomson coefficient
    11. Surface tension (saturation curve only)
    12. Speed of sound
  2. Thermochemical data for over 7,000 organic and small inorganic compounds
    1. Enthalpy of formation
    2. Enthalpy of combustion
    3. Heat capacity
    4. Entropy
    5. Phase transition enthalpies and temperatures
    6. Vapor pressure
  3. Reaction Thermochemistry data for over 8,000 reactions
    1. Enthalpy of reaction
    2. Free energy of reaction
  4. Ion Energetics data for over 16,000 compounds
    1. Ionization energy
    2. Appearance energy
    3. Electron affinity
    4. Proton affinity
    5. Gas basicity
    6. Cluster ion binding energies
  5. IR spectra for over 16,000 compounds
  6. UV/Vis spectrum
  7. Constants of diatomic molecules (spectroscopic data) for over 600 compounds
  8. Gas chromatography data for over 27,000 compounds.

The following fluids are among the ones in the NIST Chemistry WebBook database shown in Table 1:

1

Water

31

Decane

2

Nitrogen

32

Dodecane

3

Hydrogen

33

Helium

4

Parahydrogen

34

Neon

5

Deuterium

35

Argon

6

Oxygen

36

Krypton

7

Fluorine

37

Xenon

8

Carbon monoxide

38

Ammonia

9

Carbon dioxide

39

Nitrogen trifluoride

10

Dinitrogen monoxide

40

Trichlorofluoromethane (R11)

11

Deuterium oxide

41

Dichlorodifluoromethane (R12)

12

Methanol

42

Chlorotrifluoromethane (R13)

13

Methane

43

Tetrafluoromethane (R14)

14

Ethane

44

Dichlorofluoromethane (R21)

15

Ethene

45

Methane, chlorodifluoro- (R22)

16

Propane

46

Trifluoromethane (R23)

17

Propene

47

Methane, difluoro- (R32)

18

Propyne

48

Fluoromethane (R41)

19

Cyclopropane

49

1,1,2-Trichloro-1,2,2-trifluoroethane (R113)

20

Butane

50

1,2-Dichloro-1,1,2,2-tetrafluoroethane (R114)

21

Isobutane

51

Chloropentafluoroethane (R115)

22

Pentane

52

Hexafluoroethane (R116)

23

2-Methylbutane

53

Ethane, 2,2-dichloro-1,1,1-trifluoro- (R123)

24

2,2-Dimethylpropane

54

Ethane, 1-chloro-1,2,2,2-tetrafluoro- (R124)

25

Hexane

55

Ethane, pentafluoro- (R125)

26

2-Methylpentane

56

Ethane, 1,1,1,2-tetrafluoro- (R134a)

27

Cyclohexane

57

1,1-Dichloro-1-fluoroethane (R141b)

28

Heptane

58

1-Chloro-1,1-difluoroethane (R142b)

29

Octane

30

Nonane

Table 1 List of Fluids in NIST Chemistry WebBook database

For fluids, some temperature-dependent properties can be displayed in a tabular form or as an interactive graph (which can be saved as a PNG image file shown in Figure 1-4. The database provides proper references that support the data presented for each fluid.

Figure 1 A snapshot of the online database (NIST Chemistry WebBook) when selecting a species by its chemical formula.

Figure 2 A snapshot of the online database (NIST Chemistry WebBook) showing the search results for the chemical formula: H2O.

Figure 3 A snapshot of the online database (NIST Chemistry WebBook) after selecting water.

Figure 4 A snapshot of the online database (NIST Chemistry WebBook) when attempting to display the Fluid Properties of water.

One can specify the fluid (or the chemical species in general) by any of five methods as explained in Table 2, with the values of water being given as an example.

Specification Method of a Fluid

Example for Water

Name

Water

Chemical formula

H2O

IUPAC3  identifier string InChI4

1S/H2O/h1H2

IUPAC identifier string InChIKey5

XLYOFNOQVPJJNP-UHFFFAOYSA-N

CAS6  registry number

7732-18-5

Table 2 The five methods to specify a fluid in NIST Chemistry WebBook

Some Water Properties

We consider here liquid-water as an example fluid and present the variation of four thermophysical properties that are commonly used in some engineering disciplines with temperature at a constant pressure of 1 bar (105 Pa), which is approximately equal to one standard atmosphere (101,325 Pa). The temperature range is from 1 °C to 99 °C. The properties are:

  1. Density (in kg/m3)
  2. Dynamic/Absolute viscosity (in centipoises, cP)
  3. Specific heat at constant pressure (in J/g.°C)
  4. Thermal conductivity (in W/m.°C)
  5. Specific volume (in cm3/g)
  6. Kinematic viscosity (in centistokes, cSt)
  7. Specific heat at constant volume (in J/g.°C)
  8. Speed of sound (in m/s)

The following formulas provide conversions factors from other units used for the above properties to the ones used here:7-9

lb m in 3 =2.768× 10 4 kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabYgacaqGIbqcfa4damaaBaaa jeaibaqcLbmapeGaamyBaaWcpaqabaaakeaajugib8qacaqGPbGaae OBaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaKqzGeGa eyypa0JaaGOmaiaac6cacaaI3aGaaGOnaiaaiIdacqGHxdaTcaaIXa GaaGimaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaisdaaaqcfa4a aSaaaOWdaeaajugib8qacaqGRbGaae4zaaGcpaqaaKqzGeWdbiaab2 gajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIZaaaaaaaaaa@556F@                                    (1)

lb m ft 3 =16.02 kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabYgacaqGIbqcfa4damaaBaaa jeaibaqcLbmapeGaamyBaaWcpaqabaaakeaajugib8qacaqGMbGaae iDaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaKqzGeGa eyypa0JaaGymaiaaiAdacaGGUaGaaGimaiaaikdajuaGdaWcaaGcpa qaaKqzGeWdbiaabUgacaqGNbaak8aabaqcLbsapeGaaeyBaKqba+aa daahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaaaa@4EE8@                                    (2)

slug ft 3 =515.4 kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabohacaqGSbGaaeyDaiaabEga aOWdaeaajugib8qacaqGMbGaaeiDaKqba+aadaahaaWcbeqcbasaaK qzadWdbiaaiodaaaaaaKqzGeGaeyypa0JaaGynaiaaigdacaaI1aGa aiOlaiaaisdajuaGdaWcaaGcpaqaaKqzGeWdbiaabUgacaqGNbaak8 aabaqcLbsapeGaaeyBaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa iodaaaaaaaaa@4DBE@                                    (3)

g cm 3 = 10 3 kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabEgaaOWdaeaajugib8qacaqG JbGaaeyBaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaK qzGeGaeyypa0JaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugW a8qacaaIZaaaaKqbaoaalaaak8aabaqcLbsapeGaae4AaiaabEgaaO Wdaeaajugib8qacaqGTbqcfa4damaaCaaaleqajeaibaqcLbmapeGa aG4maaaaaaaaaa@4B92@                                    (4)

m 3 kg = 10 3 cm 3 g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaab2gajuaGpaWaaWbaaSqabKqa GeaajugWa8qacaaIZaaaaaGcpaqaaKqzGeWdbiaabUgacaqGNbaaai abg2da9iaaigdacaaIWaqcfa4damaaCaaaleqajeaibaqcLbmapeGa aG4maaaajuaGdaWcaaGcpaqaaKqzGeWdbiaabogacaqGTbqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaG4maaaaaOWdaeaajugib8qacaqG Nbaaaaaa@4B03@                                    (5)

f t 3 l b m =0.0624 kg m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOzaiaadshajuaGdaahaaWcbeqcbasaaKqzadGaaG4m aaaaaOqaaKqzGeGaamiBaiaadkgajuaGdaWgaaqcbasaaKqzadGaam yBaaWcbeaaaaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI2aGa aGOmaiaaisdajuaGdaWcaaGcbaqcLbsacaWGRbGaam4zaaGcbaqcLb sacaWGTbqcfa4aaWbaaSqabKqaGeaajugWaiaaiodaaaaaaaaa@4EB9@                                    (6)

f t 3 slug =1.940× 10 3 m 3 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOzaiaadshajuaGdaahaaWcbeqcKfaG=haajugWaiaa iodaaaaakeaajugibiaadohacaWGSbGaamyDaiaadEgaaaGaeyypa0 JaaGymaiaac6cacaaI5aGaaGinaiaaicdacqGHxdaTcaaIXaGaaGim aKqbaoaaCaaabeqcfauaaKqzGdGaeyOeI0IaaG4maaaajuaGdaWcaa GcbaqcLbsacaWGTbqcfa4aaWbaaSqabKazba4=baqcLbmacaaIZaaa aaGcbaqcLbsacaWGRbGaam4zaaaaaaa@576D@                                    (7)

Pa.s= 10 3 cP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabcfacaqGHbGaaeOlaiaabohacqGH9aqpcaaIXaGaaGim aKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaqcLbsacaqGJb Gaaeiuaaaa@41B6@                                    (8)

poise( dyn.s cm 2 )=100cP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabchacaqGVbGaaeyAaiaabohacaqGLbqcfa4aaeWaaOWd aeaajuaGpeWaaSaaaOWdaeaajugib8qacaqGKbGaaeyEaiaab6gaca qGUaGaae4CaaGcpaqaaKqzGeWdbiaabogacaqGTbqcfa4damaaCaaa leqajeaibaqcLbmapeGaaGOmaaaaaaaakiaawIcacaGLPaaajugibi abg2da9iaaigdacaaIWaGaaGimaiaabogacaqGqbaaaa@4E69@                                    (9)

reyns( lb f .s in 2 )=6.895cP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabkhacaqGLbGaaeyEaiaab6gacaqGZbqcfa4aaeWaaOWd aeaajuaGpeWaaSaaaOWdaeaajugib8qacaqGSbGaaeOyaKqba+aada WgaaqcbasaaKqzadWdbiaadAgaaSWdaeqaaKqzGeWdbiaab6cacaqG Zbaak8aabaqcLbsapeGaaeyAaiaab6gajuaGpaWaaWbaaSqabKqaGe aajugWa8qacaaIYaaaaaaaaOGaayjkaiaawMcaaKqzGeGaeyypa0Ja aGOnaiaac6cacaaI4aGaaGyoaiaaiwdacaqGJbGaaeiuaaaa@52D2@                                    (10)

mm 2 s =cSt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaab2gacaqGTbqcfa4damaaCaaa leqajeaibaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaqGZbaaai abg2da9iaabogacaqGtbGaaeiDaaaa@41A2@                                    (11)

stokes( cm 2 s )=100cSt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabohacaqG0bGaae4BaiaabUgacaqGLbGaae4CaKqbaoaa bmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaae4yaiaab2gaju aGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWd biaabohaaaaakiaawIcacaGLPaaajugibiabg2da9iaaigdacaaIWa GaaGimaiaabogacaqGtbGaaeiDaaaa@4CDA@                                    (12)

m 2 s = 10 6 cSt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaab2gajuaGpaWaaWbaaSqabKqa GeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaabohaaaGaeyypa0 JaaGymaiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI2aaa aKqzGeGaae4yaiaabofacaqG0baaaa@45A8@                                    (13)

in 2 s =645.2cSt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabMgacaqGUbqcfa4damaaCaaa leqajeaibaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaqGZbaaai abg2da9iaaiAdacaaI0aGaaGynaiaac6cacaaIYaGaae4yaiaabofa caqG0baaaa@454A@                                    (14)

ft 2 s =9.290× 10 4 cSt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabAgacaqG0bqcfa4damaaCaaa leqajeaibaqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaqGZbaaai abg2da9iaaiMdacaGGUaGaaGOmaiaaiMdacaaIWaGaey41aqRaaGym aiaaicdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaI0aaaaKqzGe Gaae4yaiaabofacaqG0baaaa@4C5B@                                    (15)

J kg.K 10 3 J g. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabQeaaOWdaeaajugib8qacaqG RbGaae4zaiaab6cacaqGlbaaaiaaigdacaaIWaqcfa4damaaCaaale qajeaibaqcLbmapeGaaG4maaaajuaGdaWcaaGcpaqaaKqzGeWdbiaa bQeaaOWdaeaajugib8qacaqGNbGaaeOlamXvP5wqSX2qVrwzqf2zLn haryGqHrxyUDgaiuaacaWFdecaaaaa@4DFE@                                    (16)

Btu lb m . =4.187 J g. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabkeacaqG0bGaaeyDaaGcpaqa aKqzGeWdbiaabYgacaqGIbqcfa4damaaBaaajeaibaqcLbmapeGaam yBaaWcpaqabaqcLbsapeGaaeOlamXvP5wqSX2qVrwzqf2zLnharyGq HrxyUDgaiuaacaWFjecaaiabg2da9iaaisdacaGGUaGaaGymaiaaiI dacaaI3aqcfa4aaSaaaOWdaeaajugib8qacaqGkbaak8aabaqcLbsa peGaae4zaiaab6cacaWFdecaaaaa@53DF@                                    (17)

Btu hr.ft. =1.731 W . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabkeacaqG0bGaaeyDaaGcpaqa aKqzGeWdbiaabIgacaqGYbGaaeOlaiaabAgacaqG0bGaaeOlamXvP5 wqSX2qVrwzqf2zLnharyGqHrxyUDgaiuaacaWFjecaaiabg2da9iaa igdacaGGUaGaaG4naiaaiodacaaIXaqcfa4aaSaaaOWdaeaajugib8 qacaqGxbaak8aabaqcLbsapeGaaeyBaiaabccacaqGUaGaa83aHaaa aaa@5359@                                    (18)

km h = 1 3.6 m s =0.2778 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabUgacaqGTbaak8aabaqcLbsa peGaaeiAaaaacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaO Wdaeaajugib8qacaaIZaGaaiOlaiaaiAdaaaqcfa4aaSaaaOWdaeaa jugib8qacaqGTbaak8aabaqcLbsapeGaae4CaaaacqGH9aqpcaaIWa GaaiOlaiaaikdacaaI3aGaaG4naiaaiIdajuaGdaWcaaGcpaqaaKqz GeWdbiaab2gaaOWdaeaajugib8qacaqGZbaaaaaa@4E46@                                    (19)

ft s =0.3048 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaabAgacaqG0baak8aabaqcLbsa peGaae4CaaaacqGH9aqpcaaIWaGaaiOlaiaaiodacaaIWaGaaGinai aaiIdajuaGdaWcaaGcpaqaaKqzGeWdbiaab2gaaOWdaeaajugib8qa caqGZbaaaaaa@4458@                                    (20)

mi h =0.44704 m s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaKqzGeWdbiaab2gacaqGPbaak8aabaqcLbsa peGaaeiAaaaacqGH9aqpcaaIWaGaaiOlaiaaisdacaaI0aGaaG4nai aaicdacaaI0aqcfa4aaSaaaOWdaeaajugib8qacaqGTbaak8aabaqc LbsapeGaae4Caaaaaaa@4507@                                    (21)

Two of the above eight properties (i.e., the specific volume and the kinematic viscosity) are not independent. Rather, they can be derived from other variables. Depending on the application and context, one may need the value of the derived property rather than the base one or vice versa. For example, the kinematic viscosity is commonly used with lubrication oils, whereas the dynamic viscosity (also called absolute viscosity) is common when casting the momentum-transfer equations for gases. The relation between the specific volume to the density, and between the kinematic viscosity to the dynamic viscosity are given in the two following formulas:

specific volume =  1 density MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabohacaqGWbGaaeyzaiaabogacaqGPbGaaeOzaiaabMga caqGJbGaaeiiaiaabAhacaqGVbGaaeiBaiaabwhacaqGTbGaaeyzai aabccacaqG9aGaaeiOaKqbaoaalaaakeaajugibiaabgdaaOqaaKqz GeGaaeizaiaabwgacaqGUbGaae4CaiaabMgacaqG0bGaaeyEaaaaaa a@4FEF@                                    (22)

kinematic viscosity =  ( dynamic viscosity ) density MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaabUgacaqGPbGaaeOBaiaabwgacaqGTbGaaeyyaiaabsha caqGPbGaae4yaiaabccacaqG2bGaaeyAaiaabohacaqGJbGaae4Bai aabohacaqGPbGaaeiDaiaabMhacaqGGaGaaeypaKqbaoaalaaakeaa jugibiaabckajuaGpaWaaeWaaOqaaKqzGeWdbiaabsgacaqG5bGaae OBaiaabggacaqGTbGaaeyAaiaabogacaqGGaGaaeODaiaabMgacaqG ZbGaae4yaiaab+gacaqGZbGaaeyAaiaabshacaqG5baak8aacaGLOa GaayzkaaaapeqaaKqzGeGaaeizaiaabwgacaqGUbGaae4CaiaabMga caqG0bGaaeyEaaaaaaa@659E@                                    (23)

The variations are presented graphically in Figures 5-12.

Figure 5 Variation of the density with temperature for liquid water at 1 bar based on the data obtained from NIST Chemistry WebBook.

Figure 6 Variation of the dynamic viscosity with temperature for liquid water at 1 bar based on the data obtained from NIST Chemistry WebBook.

Figure 7 Variation of the specific heat capacity at constant pressure with temperature for liquid water at 1 bar based on the data obtained from NIST Chemistry WebBook.

Figure 8 Variation of the thermal conductivity with temperature for liquid water at 1 bar based on the data obtained from NIST Chemistry WebBook.

Figure 9 Variation of the specific volume with temperature for liquid water at one bar based on the data obtained from NIST Chemistry WebBook.

Figure 10 Variation of the kinematic viscosity with temperature for liquid water at one bar based on the data obtained from NIST Chemistry WebBook.

Figure 11 Variation of the specific heat capacity at constant pressure with temperature for liquid water at one bar based on the data obtained from NIST Chemistry WebBook.

Figure 12 Variation of the speed of sound with temperature for liquid water at one bar based on the data obtained from NIST Chemistry WebBook.

Validation

To judge the accuracy of the values in the NIST Chemistry WebBook, we compare selected values taken for the properties of water as taken from that database with those available in two other sources. The first source is appendix C in a classic reference in the area of water treatment.10 The second source is a software package.11 The comparisons are made at one standard atmospheric pressure (101,325 Pa) for the isobaric (constant-pressure) water data of density in Table 3 and for dynamic viscosity in Table 4. The fluid is water in both tables.

Temperature (°C)

NIST

Reference10

Reference11

10

999.7

999.7

999.8

20

998.2

998.2

998.3

30

995.6

995.7

995.7

40

992.2

992.2

992.3

50

988

988

988

60

983.2

983.2

983.1

70

977.8

977.8

977.6

80

971.8

971.8

971.6

90

965.3

965.3

965.1

Table 3 Comparing some values of the density (in kg/m3) at 101,325 Pa from the NIST Chemistry WebBook and two other sources

Temperature (°C)

NIST

Reference10

Reference 11

10

1.306

1.307

1.306

20

1.002

1.002

1.002

30

0.797

0.798

0.797

40

0.653

0.653

0.653

50

0.547

0.547

0.547

60

0.466

0.466

0.466

70

0.404

0.404

0.404

80

0.354

0.354

0.354

90

0.314

0.315

0.314

Table 4 Comparing some values of the dynamic viscosity (in cP) at 101,325 Pa from the NIST Chemistry WebBook and two other sources

The values taken from the NIST Chemistry WebBook database agree well (and sometimes are identical to) those taken from the other sources. This agreement suggests that the database was prepared carefully and can be used reliably.

Conclusion

This article gave a brief overview of the NIST Chemistry WebBook database, which can be very useful when studying, performing engineering design dealing with, or conducting research on fluids as well as other chemical species. An example was given where the constant-pressure variations of four properties were obtained using that database. A comparison between the values in this online database and other two sources for some properties of water at some conditions showed good agreement. Interested readers are encouraged to explore the capabilities of this free and user-friendly online database.

Acknowledgments

None.

Conflicts of interest

The author declares that there is no conflict of interest.

References

Creative Commons Attribution License

©2017 Marzouk. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.