Submit manuscript...
eISSN: 2641-936X

Electrical & Electronic Technology Open Access Journal

Research Article Volume 2 Issue 1

Reduction of inter-symbol interference using artificial neural network system in multicarrier OFDM system

Jyoti Makka, Himanshu Monga, Silki Baghla

Department of Electronics and Communication Engineering, India

Correspondence: Himanshu Monga, Department of Electronics and Communication Engineering, JCDM College of Engineering, Sirsa, Haryana, India

Received: September 08, 2017 | Published: July 5, 2018

Citation: Makka J, Monga H, Baghla S. Reduction of inter-symbol interference using artificial neural network system in multicarrier OFDM system. Electric Electron Tech Open Acc J. 2018;2(3):94-97. DOI: 10.15406/eetoaj.2018.02.00016

Download PDF

Abstract

The work proposes Inter-Symbol Interference (ISI) reduction scheme, ISI being a major problem in Optical systems, which produces various type of non-linear distortions. So the implementation of OFDM system using Artificial Neural Network (ANN) scheme with M-QAM modulation technique is proposed and compared with the conventional OFDM system without using ANN. This proposed scheme is implementation of Back-propagation (BP) algorithm over AWGN channels to achieve an effective ISI reduction in orthogonal frequency division multiplexing (OFDM) systems. Simulation results prove that ANN equalizer can further reduce ISI effectively and provide acceptable BER and better MSE plot compared to conventional OFDM system.

Keywords: OFDM, artificial neural network, FFT, QAM, BER, ISI, MMSE

Introduction

OFDM facilitates the possible growth of wireless communication for high quality multimedia services, high speed internet access, as well as data, video and voice transmission at higher rates. This multi-carrier modulation technique is limited to 4G mobile communication; it will also be implemented in the 5G communication system.1 It also provides a possible solution to multipath frequency selective fading effect. However, the problem of ISI occurs due to causes of multipath propagation, dispersive, noisy and fading channels present in the original signal in OFDM system. If the ISI is not mitigated properly, then decision device may interpret the logic wrongly.2 In this paper, ANN is proposed and is implemented after decoder of an OFDM system and this approach minimizes the error. Further, this proposed technique is compared to conventional ISI reduction techniques. The paper constitutes: Section II, which deals with relevant literature; Section III proposed, OFDM system description; ISI system model; Section IV explains about proposed methodology; Section V gives simulation setup and results; Section VI highlights conclusions and future scopes and Section VII presents references.

Research work

In3 author illustrated the performance of OFDM system by the use of low symbol rate, long symbol duration of the modulation scheme as well as use of guard bands for the reduction of ISI. In4 author proposed V-BLAST, Decision feedback signal detection method of cancellation of ISI and cyclic reconstruction method for the ICI removal purpose. In6 author proposed zero insertion (ZI) which insert zeros and each OFDM frames contain the same length. It also compares different guard interval (cyclic prefix, zero padding and known symbol padding) insertion techniques and shows that the ZI approach reduces the transmission rate, distortion in the channel as well as a 20% data reduction in the redundant data as compared to CP. In7 proposed zero-forcing equalizer which used longer filter span to compensate for the multipath channel distortion. In8 highlighted CP and ZP effect on the BER and give better performance under Rayleigh fading channel as compared to AWGN. In9 presented a two-dimensional 9/12 modulation code to combat 2D ISI and achieve ~2Db gain as compared to without encoding modulation code. In10 proposed unique word (UW) sequence which improved bandwidth efficiency, 15% throughput, and spectral efficiency 17% as compared to CP but CP-OFDM give better BER than UW-OFDM system. In11 proposed two channel estimator in which MMSE estimator gives more complexity than the LS estimator but MMSE need low SNR and LS need high for better performance.

Basic OFDM system model

Any OFDM system consists of consider N subcarriers, suppose that the complex symbol x( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaaaa@3B71@ is the signal point from the modulation signal constellation, which is modulated on the nth subcarriers and the x( t )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=rhaaOGa ayjkaiaawMcaaKqzGeGaa8hOaiaa=bkaaaa@3E46@ is the transmitted signal which is defined in5 as follows:

x( t )= n=0 N1 X( n ) e ( j2 πf n t ) ,                          0tT,                        ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIhajuaGdaqadaGcpaqaaKqzGeWdbiaadshaaOGaayjk aiaawMcaaKqzGeGaeyypa0tcfa4aaybCaOqabSWdaeaajugWa8qaca WGUbGaeyypa0JaaGimaaWcpaqaaKqzadWdbiaad6eacqGHsislcaaI Xaaan8aabaqcLbsapeGaeyyeIuoaaiaadIfajuaGdaqadaGcpaqaaK qzGeWdbiaad6gaaOGaayjkaiaawMcaaKqzGeGaaeyzaKqba+aadaah aaWcbeqaa8qadaqadaWdaeaajugWa8qacaqGQbGaaGOmaiaabc8aca qGMbWcpaWaaSbaaWqaaKqzadWdbiaab6gaaWWdaeqaaKqzadWdbiaa bshaaSGaayjkaiaawMcaaaaajugibiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaicda cqGHKjYOcaWG0bGaeyizImQaamivaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckajuaGdaqadaGcpaqaaKqz GeWdbiaaigdaaOGaayjkaiaawMcaaaaa@9F67@

Where f n = f 0 + n T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=zgakmaaBaaaleaapaWaaSbaaWqaaKqzadWdbiaa =5gaaWWdaeqaaaWcpeqabaqcLbsacaWF9aGaa8NzaOWaaSbaaSqaa8 aadaWgaaadbaqcLbmapeGaa8hmaaadpaqabaaal8qabeaajugibiaa =TcajuaGdaWccaGcpaqaaKqzGeWdbiaa=5gaaOWdaeaajugib8qaca WFubaaaaaa@4444@ , T=N T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rfacaWF9aGaa8Ntaiaa=rfal8aadaWgaaqcfaya aSWaaSbaaKqbagaajugWa8qacaWFZbaajuaGpaqabaaabeaaaaa@3E37@ , is the interval of OFDM symbol, T s   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rfajuaGpaWaaSbaaeaalmaaBaaajuaGbaqcLbma peGaa83Caaqcfa4daeqaaaqabaqcLbsapeGaa8hOaaaa@3D8A@ Is the symbol data period. To synthesize the above OFDM signal in equation (1) use Inverse Fast Fourier transforms (IFFT) which samples the x( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaaaa@3B71@ signal with sample rate  T N . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaGcpaqaaGqaaKqzGeWdbiaa=bkacaWFubaak8aabaqc LbsapeGaa8NtaaaacaWFUaaaaa@3BA1@ After IFFT the original time domain symbolic signal x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8NBaaqcfa4daeqaaaWdbeqaaaaa@3BF9@ is given as below:

x( n )=IFFT{ X( K ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=LeacaWFgbGaa8Nraiaa=rfaju aGdaGadaGcpaqaaKqzGeWdbiaa=HfajuaGdaqadaGcpaqaaKqzGeWd biaa=TeaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@47DF@ x( n )=x( kT N )= n=0 N-1 X( K ) e j( 2πnk N ) ,       n=0, .,N-1     ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=HhajuaGdaqadaGcpaqaaKqba+ qadaWccaGcpaqaaKqzGeWdbiaa=TgacaWFubaak8aabaqcLbsapeGa a8NtaaaaaOGaayjkaiaawMcaaKqzGeGaa8xpaKqbaoaawahakeqal8 aabaqcLbmapeGaa8NBaiaa=1dacaWFWaaal8aabaqcLbmapeGaa8Nt aiaa=1cacaWFXaaan8aabaqcLbsapeGaeyyeIuoaaiaa=HfajuaGda qadaGcpaqaaKqzGeWdbiaa=TeaaOGaayjkaiaawMcaaKqzGeGaa8xz aOWaaWbaaSqabeaapaWaaWbaaWqabeaajugWa8qacaWFQbWcdaqada adpaqaaSWdbmaaliaam8aabaqcLbmapeGaa8Nmaiaa=b8acaWFUbGa a83AaaadpaqaaKqzadWdbiaa=5eaaaaamiaawIcacaGLPaaaaaaaaK qzGeGaa8hlaiaa=bkacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa =bkacaWFUbGaa8xpaiaa=bdacaWFSaGaa8hOaiaa=zcicaWFMaIaa8 Nlaiaa=XcacaWFobGaa8xlaiaa=fdacaWFGcGaa8hOaiaa=bkacaWF GcGaa8hOaKqbaoaabmaak8aabaqcLbsapeGaa8NmaaGccaGLOaGaay zkaaaaaa@7E12@

Where N is the FFT length and x( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaaaa@3B6C@ Is the baseband data sequence. To reduce, the ISI5 inserted cyclic prefix which extends the duration of symbols and is given as:

x t ( n )={ x( N+n ), n=- N g , N g +1,..,-1 x( n ), n= 0,1,2,N-1                                  ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGpaWaaSbaaSqaaKqba+qadaWgaaqaaKqz adGaa8hDaaqcfayabaaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8 qacaWFUbaakiaawIcacaGLPaaajugibiaa=1dajuaGdaGabaGcpaqa aKqzGeqbaeqabiqaaaGcbaqcLbsapeGaa8hEaKqbaoaabmaak8aaba qcLbsapeGaa8Ntaiaa=TcacaWFUbaakiaawIcacaGLPaaajugibiaa =XcacaWFGcGaa8NBaiaa=1dacaWFTaGaa8NtaSWaaSbaaKqbagaal8 aadaWgaaqcfayaaKqzadWdbiaa=DgaaKqba+aabeaaa8qabeaajugi biaa=XcacaWFobqcfa4aaSbaaeaapaWaaSbaaeaajugWa8qacaWFNb aajuaGpaqabaaapeqabaqcLbsacaWFRaGaa8xmaiaa=XcacaWFMaIa a8Nlaiaa=5cacaWFSaGaa8xlaiaa=fdaaOWdaeaajugib8qacaWF4b qcfa4aaeWaaOWdaeaajugib8qacaWFUbaakiaawIcacaGLPaaajugi biaa=XcacaWFGcGaa8NBaiaa=1dacaWFGcGaa8hmaiaa=XcacaWFXa Gaa8hlaiaa=jdacaWFSaGaa8NjGiaa=zcicaWFMaIaa8NjGiaa=zci caWFMaIaa8Ntaiaa=1cacaWFXaaaaaGccaGL7baajugibiaa=bkaca WFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bkakiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcWaae Waa8aabaWdbiaaiodaaiaawIcacaGLPaaaaaa@9EF9@

Then fading channel with white Gaussian noise transmitted x t ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8hDaaqcfa4daeqaaaWdbeqaamaabmaak8aabaqcLbsapeGaa8 NBaaGccaGLOaGaayzkaaaaaa@3F3B@ Signal and calculated the received signal y t ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=LhajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8hDaaqcfa4daeqaaaWdbeqaamaabmaak8aabaqcLbsapeGaa8 NBaaGccaGLOaGaayzkaaaaaa@3F3C@ in the form below:

Where, h( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=HgajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaaaa@3B61@ is the response of impulse for selective fading channel and w( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=DhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaaaa@3B6E@ is the AWGN. After that signal y( n )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LhajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaKqzGeGaa8hOaaaa@3D20@ will be transmitted without using CP is given as:

Y( K )=FFT{ y( n ) }    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMfajuaGdaqadaGcpaqaaGqaaKqzGeWdbiaa=TeaaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=zeacaWFgbGaa8hvaKqbaoaacm aak8aabaqcLbsapeGaa8xEaKqbaoaabmaak8aabaqcLbsapeGaa8NB aaGccaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiiOaiaacckacaGGGc aaaa@4A86@ Y( K )= 1 N K=0 N-1 Y( n ) e ( -j 2πnl N ) ,     n=0,N-1                ( 5 )     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LfajuaGdaqadaGcpaqaaKqzGeWdbiaa=TeaaOGa ayjkaiaawMcaaKqzGeGaa8xpaKqbaoaalaaak8aabaqcLbsapeGaa8 xmaaGcpaqaaKqzGeWdbiaa=5eaaaqcfa4aaybCaOqabSWdaeaajugW a8qacaWFlbGaa8xpaiaa=bdaaSWdaeaajugWa8qacaWFobGaa8xlai aa=fdaa0Wdaeaajugib8qacqGHris5aaGaa8xwaKqbaoaabmaak8aa baqcLbsapeGaa8NBaaGccaGLOaGaayzkaaqcLbsacaWFLbWcdaahaa qabeaapaWaaWbaaWqabeaal8qadaqadaadpaqaaKqzadWdbiaa=1ca caWFQbWcdaWcaaadpaqaaKqzadWdbiaa=jdacaWFapGaa8NBaiaa=X gaaWWdaeaajugWa8qacaWFobaaaaadcaGLOaGaayzkaaaaaaaajugi biaa=XcacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=5gacaWF9a Gaa8hmaiaa=XcacaWFMaIaa8NjGiaa=zcicaWFobGaa8xlaiaa=fda caWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOai aa=bkacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bkacaWFGcqc fa4aaeWaaOWdaeaajugib8qacaWF1aaakiaawIcacaGLPaaajugibi aa=bkacaWFGcGaa8hOaiaa=bkaaaa@865C@

Inter-symbol interference (ISI)

In band limited region, when the number of pulses is transmitted in succession then these pulses will interfere with each other and hence receiver will not be interpret the transmitted logic. So the BER in the receiver will increase. We can visualize inter-symbol interference (ISI) effect in (Figure 1).

Figure 1 Inter-Symbol Interference (ISI) effect.

When τ 1 - τ 0 >T,    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=r8al8aadaWgaaqcfayaaSWaaSbaaKqbagaajugW a8qacaWFXaaajuaGpaqabaaabeaajugib8qacaWFTaGaa8hXdKqba+ aadaWgaaqaaSWaaSbaaKqbagaajugWa8qacaWFWaaajuaGpaqabaaa beaajugib8qacaWF+aGaa8hvaiaa=XcacaWFGcGaa8hOaiaa=bkaaa a@48E2@ then different symbol creates interference with each other as shown in above figure where T is the symbol time,  Is the transmitted signal delay and τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=r8ajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8xmaaqcfa4daeqaaaWdbeqaaaaa@3C0B@ Is the received signal delay. τ - 1 τ 0 = σ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=r8al8aadaWgbaqcfayaaSWaaSbaaKqbagaajugW a8qacaWFXaaajuaGpaqabaaabeaajugib8qacaWFTaGaa8hXdSWdam aaBaaajuaGbaWcdaWgaaqcfayaaKqzadWdbiaa=bdaaKqba+aabeaa aeqaaKqzGeWdbiaa=1dacaWFdpqcfa4damaaBaaaleaajugib8qaca WFepaal8aabeaaaaa@4819@ . If σ τ >T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=n8al8aadaWgaaqaaKqzadWdbiaa=r8aaSWdaeqa aKqzGeWdbiaa=5dacaWFubaaaa@3D04@ then this lead to inter-symbol interference (ISI) where σ τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=n8ajuaGpaWaaSbaaeaalmaaBaaajuaGbaqcLbma peGaa8hXdaqcfa4daeqaaaqabaaaaa@3C92@ is the delay spread. ISI is undesirable since it leads to distortion of the original transmitted signal but if we can make T> σ τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rfacaWF+aGaa83WdSWdamaaBaaabaqcLbmapeGa a8hXdaWcpaqabaaaaa@3C65@ this implies no ISI.

The ISI channel has been described as:

y( k )=h( 0 )x( k )+h( 1 )x( k-1 )+v( k )                     ( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=HgajuaGdaqadaGcpaqaaKqzGe Wdbiaa=bdaaOGaayjkaiaawMcaaKqzGeGaa8hEaKqbaoaabmaak8aa baqcLbsapeGaa83AaaGccaGLOaGaayzkaaqcLbsacaWFRaGaa8hAaK qbaoaabmaak8aabaqcLbsapeGaa8xmaaGccaGLOaGaayzkaaqcLbsa caWF4bqcfa4aaeWaaOWdaeaajugib8qacaWFRbGaa8xlaiaa=fdaaO GaayjkaiaawMcaaKqzGeGaa83kaiaa=zhajuaGdaqadaGcpaqaaKqz GeWdbiaa=TgaaOGaayjkaiaawMcaaKqzGeGaa8hOaiaa=bkacaWFGc Gaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bka caWFGcGaa8hOaiaa=bkacaWFGcGaa8hOaiaa=bkacaWFGcGaa8hOai aa=bkacaWFGcqcfa4aaeWaaOWdaeaajugib8qacaWF2aaakiaawIca caGLPaaaaaa@74A2@

Where y( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaaaa@3B6D@ received symbol at time k, x( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaaaa@3B6C@ transmitted symbol at time k, x( k-1 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgacaWF TaGaa8xmaaGccaGLOaGaayzkaaqcLbsacaWFGcaaaa@3E7C@ is the previous transmitted symbol at k-1, v( k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=zhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaaaa@3B6D@ is the noise signal. The past symbol Interference with the present symbol x( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaa=TgaaOGa ayjkaiaawMcaaaaa@3B6C@ and introduce ISI.

Proposed methodology

In this work, we have proposed an artificial neural network combined technique, which provides ISI reduction in OFDM systems.

Proposed OFDM with ANN

The proposed OFDM with ANN scheme is given in below (Figure 1). Where 9600 information bits are randomly generated by using 96 bits single frame size and 100 total number of frames. Again convolution channel coder encodes the information bit by using the input\output size of the encoder, constraint length and specified poly2trellis (171,133] matrix and provide 1×192 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=fdacaWFxdGaa8xmaiaa=LdacaWFYaaaaa@3AD8@ coded data. Matrix interleaving, block is employed to further restrict the burst error developed during transmission. The output of the interleave is 4×48 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=rdacaWFxdGaa8hnaiaa=Hdaaaa@3A2A@ coded output data is obtained. Further a data converter is available which convert the binary interleaving coded data into decimal format.

After that, M-QAM modulation scheme, the symbol values are generated. The proposed method provides better BER performance by (16, 64, and 256) QAM modulation schemes. This modulation value determines the number of bits (4, 6, and 8) per sub-carriers. Further, the pilot insertion concept introduced which adds data subcarrier values, 4 pilot symbols, and one DC subcarrier. Again, we take 64 points IFFT lengths which is equal to a number of carriers. The IFFT length, data subcarriers, pilot value and DC subcarrier also determine the guard band values. The 16 cyclic prefix lengths are inserted before the AWNG channel. CP means prefixing of symbols from the last part to front part. Here, the AWGN channel transmits original information data from transmitter to receiver. It adds some noise which destroy the signal. This can only be rectified by the use of ANN technique at the receiver side as shown in (Figure 2).

Figure 2 Block diagram of proposed (OFDM-ANN) technique.

 

Proposed Artificial Neural Network (ANN) Algorithm

The artificial neural network is implemented after Viterbi decoder block of an OFDM system that means it takes input from an OFDM system and output set as a target value. ANN is an artificial intelligence method used to enhance the capacity of computer by sending human like intelligence. This proposed work basically depends on back-propagation (BP) algorithm which sends signals in forward direction and propagate error in backward direction. The multilayer BP network is shown in (Figure 3). And the Log-Sigmoid function in12 is given as below:

Figure 3 Multilayer back-propagation network.

f( x )= 1 1+ e -x      MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=zgajuaGdaqadaGcpaqaaKqzGeWdbiaa=HhaaOGa ayjkaiaawMcaaKqzGeGaa8xpaKqbaoaalaaak8aabaqcLbsapeGaa8 xmaaGcpaqaaKqzGeWdbiaa=fdacaWFRaGaa8xzaSWaaWbaaKqbagqa baWcpaWaaWbaaKqbagqabaqcLbmapeGaa8xlaiaa=Hhaaaaaaaaaju gibiaa=bkacaWFGcGaa8hOaOGaaiiOaaaa@4B43@ (7)

(Figure 4) shows, the flow chart of ANN which give Error, e( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbsaqa aaaaaaaaWdbiaa=vgajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaaaa@3B5F@ as the difference between the target (actual) value and expected value in9,13 as below:

Figure 4 Flow chart of ANN algorithm.

e( n )=d( n )-y( n )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=vgajuaGdaqadaGcpaqaaKqzGeWdbiaa=5gaaOGa ayjkaiaawMcaaKqzGeGaa8xpaiaa=rgajuaGdaqadaGcpaqaaKqzGe Wdbiaa=5gaaOGaayjkaiaawMcaaKqzGeGaa8xlaiaa=LhajuaGdaqa daGcpaqaaKqzGeWdbiaa=5gaaOGaayjkaiaawMcaaKqzGeGaa8hOaa aa@4906@ (8)

Simulation setup and results

Simulation Setup

In this section, the simulation setup of an OFDM system is shown in (Table 1) & (Table 2) shows the simulation setup of an ANN which evaluates the BER, MSE performances of an OFDM system.

Parameter

Value

FFT size

64

Number of carriers

64

Single frame size

96bits

Total number of frames

100

Cyclic-prefix

16

Modulation

16,64,256QAM

Table 1 Parameters of OFDM system

Parameter

Value

Number of inputs

2

Number of hidden layers

1

Number of neurons

90,1

Iteration

1000

Goal error

1.00E-06

Training function

Back-Propagation

Transfer function

Log- Sigmoid

Table 2 Parameters of artificial neural networks

Simulation results

  1. BER performances of OFDM systems with varying QAM Modulation schemes:

In (Figure 5), show the BER of conventional OFDM which gives better BER reduction performance for 16QAM modulation compared to 64 and 256 QAM modulation schemes.

Figure 5 BER vs. SNR Graph without ANN.

 

  1. BER performances of Proposed OFDM Systems with varying M-QAM Modulation schemes:

In (Figure 6), show the BER of proposed OFDM, which give better BER reduction performance for 256QAM as compare to 16, 64 QAM modulation schemes.

Figure 6 BER vs. SNR Graph with ANN.

Figure 7 MSE vs. No. of iterations Graph with ANN.

 

(Table 3) shows the BER performance by varying signal to noise ratio. It shows that the OFDM-with-ANN provide BER approximate 10^=-9 and conventional OFDM require BER 10^-4.

Variation in  M-QAM modulation

BER for conventional OFDM

BER for proposed OFDM

16QAM

0.0002

1.00E-09

64QAM

0.25

1.00E-09

256QAM

0.25

1.00E-09

Table 3 BER for Conventional and Proposed OFDM systems

 

  1. MSE performances of the Proposed OFDM Systems with varying QAM Modulation schemes

(Table 4) shows, MSE performance by varying the number of iterations. It shows that the Proposed OFDM by using M-QAM modulation require minimum MSE as compare to conventional OFDM without ANN.

MSE for M-QAM modulation

Conventional OFDM

Proposed OFDM

16QAM

0.05067

0.00000354

64QAM

0.00301

0.00000412

256QAM

0.49765

0.000004

Table 4 MSE for Conventional and Proposed OFDM systems

Conclusion

This paper proposed, Back-propagation (BP) based ANN channel estimator which is further combined with OFDM system. This proposed combined technique provides better ISI reduction performance than an OFDM system without adding ANN. In this work, ISI is directly proportional to BER and inversely proportional to SNR. The future scope of this paper is to apply ANN with MIMO-OFDM system or use of other modulation technique.

Acknowledgements

None.

Conflict of interest

None.

References

  1. Van Nee R, Prasad R. OFDM for Wireless Multimedia Communications. USA: Artech House Publishers; 2000.
  2. Wang Z, Giannakis GB. Wireless multicarrier communications. IEEE Signal Processing Mag. 2000;17(3):29–48.
  3. Bappy DM, Ajoy Kumar Dey, Susmita Saha. OFDM System Analysis for reduction of Inter symbol Interference Using the AWGN Channel Platform. IJACS. 2010;1(5):123–125.
  4. Yang Yang Chen, Zi Wei Zheng. Research on the Inter Symbol Interference Mitigation for the MIMO-OFDM Systems. IEEE. 2011.
  5. Aida zaier, Ridha bouallègue. A full performance analysis of channel estimation methods for time varying ofdm systems. IJMNCT. 2011;1(2):1–20.
  6. Usama S, Mohammed, Ahmed Tohamy. A Low Complexity OFDM System with Minimum Inter-symbol Interference. 5th Joint IFIP Wireless and Mobile Networking Conference;2012 Sep 19-21; Slovakia, Europe:IEEE; 2013.
  7. Pragya Sharma. Performance Analysis of Zero-Forcing Equalizer for ISI Reduction in Wireless Channels. International Journal of Engineering Research & Technology. 2012;1(8):1–7.
  8.  Prafulla D, Gawande, Sirddharth A, et al. BER Performance of OFDM system with cyclic prefix & zero padding. International Journal of Advances in Engineering & Technology. 2013;2(3):1–8.
  9. Nirmalkumar S Reshamwala, Pooja S Suratia, Satish K Shah. Artificial Neural Network trained by Genetic Algorithm for Smart MIMO Channel Estimation for Downlink LTE-Advance System. IJ Computer Network and Information Security. 2014;3:10–19.
  10. Chi Dinh Nguyen, Jaejin Lee. Elimination of two-dimensional inter-symbol interference through the use of a 9/12 two-dimensional modulation code. IET Communication. 2016;10(14):1730–1735.
  11. Amevi Acakpovi, Abdul Shakud Iddrisu, Nana Yaw Asabere, et al. Performance Comparison of Cyclic Prefix OFDM and Unique Word OFDM in the LTE Downlink. International Journal of Computer Science and Telecommunications. 2016;7(2)9–14:
  12. Amit goyal, gurleen kaur walia, simranjeet kaur. Implementation of back propagation algorithm using MATLAB. International Journal of Information Technology and Knowledge Management. 2012;5(2):429–431.
  13. Srinivasa R Aditya Varma, Marthy Siva Sai Krishna. Estimation of channel in an OFDM wireless channel using LS and MMSE techniques. IJECET. 2016;7(3):68–74.
Creative Commons Attribution License

©2018 Makka, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.