Submit manuscript...
eISSN: 2641-936X

Electrical & Electronic Technology Open Access Journal

Research Article Volume 1 Issue 2

Modeling of waveguide modes by using dgtd method

Ishfaq Hussain, Qunsheng Cao, Asad Husnain Baqar, Yi Wang

Nanjing University of Aeronautics and Astronautics (NUAA), China

Correspondence: Qunsheng Cao, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 211106, China

Received: June 19, 2017 | Published: November 17, 2017

Citation: Hussain I, Li H, Cao Q, et al. Modeling of waveguide modes by using dgtd method. Electric Electron Tech Open Acc J. 2017;1(1):47-51. DOI: 10.15406/eetoaj.2017.01.00009

Download PDF

Abstract

This article provides insight into the modeling of waveguides using the discontinuous Galerkin time-domain (DGTD) method. The spatial domain decomposition in the DGTD method is controlled by changing the resolution of the finite elements (FEs) which in turn have effect on the stable time marching step. Different resolutions of FEs support different resonant modes. This paper investigates the effects of the resolution of FEs and the effect of Final Time on appearance of low and high–frequency resonant modes in the waveguides. The experimentation is performed by considering the both transverse magnetic (TM) and transverse electric (TE) polarizations. The unstructured triangular mesh type is considered for the analysis. Integration in the temporal domain is achieved by using five-stage 4th order low-storage Runge-Kutta (LSERK) method and the stability of the numerical method is ensured by stable time marching step which is calculated by using Courant-Friedrichs-Levy (CFL) condition. The operation is performed on WR90 waveguide and the analytical and numeric values for various resonant modes are compared to validate the study.

Keywords: DGTD, modeling of waveguide, CFL, effect of resolution of finite elements, effect of final time, resonant modes of waveguide, WR90 waveguide

Abbreviations

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional; DGTD, discontinuous galerkin time-domain; Fes, finite elements; TM, transverse magnetic; TE, transverse electric; ODE, ordinary differential equations; LSERK, low-storage explicit runge-kutta; CFL, courant-friedrichs-levy; TD, time-domain; PEC, perfect electric conductor; FFT, fast fourier transformation

Introduction

Waveguides have ability to handle very high power which makes them suitable for applications in RADAR and satellite communication. Unlike free space, rectangular waveguides support transverse magnetic (TM) and transverse electric (TE) modes – if air-filled or fully loaded with some dielectric material.1 While modeling waveguides by using numerical methods, certain factors like digitization of the computational domain, accuracy and execution time, need considerations. The variation of these parameters can lead to unwanted results and accurate modeling cannot be performed if the significance of these parameters being used in the numerical method remains unknown. The numerical methods have ability to deal with complex electromagnetic (EM) problems which cannot be molded using traditional analytical methods. These methods require due attention for their development otherwise the variation in parameters can generate unwanted results. Discontinuous Galerkin time-domain (DGTD) method is one of the recent methods in computational electromagnetic (CEM). It is being widely studied2–9 since its first appearance to solve the neutron transport equation using unstructured triangular mesh.10 The DGTD method is the combination of finite element method (FEM) and finite volume method (FVM)11,12 but offers better performance as compared to these two methods.13 Since the space discretization of the DGTD has effect on the bandwidth coverage,14,15 so it is vital to study the effect of resolution of the finite elements (FEs) on the appearance of the resonant modes of the waveguides. Also, the value of Final Time, the time required to terminate the simulation sequence, has its own significance regarding the resonant modes. To the knowledge of authors, these kinds of investigations have never been performed before and require due attention in order to properly model and analyze waveguides for their resonant frequencies. The organization of this article is as follows: Section ‎5 provides the formulation required for the study. It includes the formulation of the DGTD method for the both polarization i.e., TM and TE, upwind numerical fluxes are used to derive the expression, and truncation of the boundary by using perfect electric conductor (PEC) condition is provided. The formula for resonant mode calculation using exact method is also given. Section 6 provides the numerical analysis and discusses the effect of resolution of FEs and Final Time on the resonant modes, followed by comparison of the values of these modes by using the exact and the numerical methods. Finally, the conclusions are drawn in section ‎7.

Formulation

The DGTD Method Consider Maxwell’s equation in three-dimensions (3D), as given in Eq.(1):

ε Ε t ×Η=0,μ Η t +×Ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyTdu McdaWcaaqaaKqzGeGaeyOaIylcceGae8xLdueakeaajugibiabgkGi 2kaadshaaaGaeyOeI0Iaey4bIeTaey41aqRae83LdGKaeyypa0JaaG imaiaacYcacaaMe8UaaGjbVlabeY7aTPWaaSaaaeaajugibiabgkGi 2kab=D5aibGcbaqcLbsacqGHciITjugWaiaadshaaaqcLbsacqGHRa WkcqGHhis0cqGHxdaTcqWFvoqrcqGH9aqpcaaIWaaaaa@5B72@ (1)

where

  1. E=(Ex, Ey, Ez) and H=(Hx, Hy, Hz) are the electric and magnetic fields;
  2. respectively, ε is the permittivity and μ is the permeability.

To solve this numerically, the standard procedure is to treat space and time domain separately. In the standard DGTD method, space is discretized into K non overlapping finite elements (FEs). The local solutions are estimated for each element and the global solution is obtained by integrating all the local solutions. The communication between neighboring elements is ensured by using numerical fluxes. From the theory of Riemann solvers,16,17 the penalty terms inflowing into the normal n ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGab8NBayaajaaaaa@36F7@ are given below:

n ^ ( F E F E * )=[ n ^ ×E ( n ^ ×E) * ]= 1 2{ { Z } } n ^ ×[ Z + ( H H + )α n ^ ×( E E + ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaa=zealmaaBaaabaqcLbmacaWGfbaa leqaaKqzGeGaeyOeI0Iaa8NraOWaa0baaSqaaKqzadGaamyraaWcba qcLbsacaGGQaaaaiaacMcacqGH9aqpcaGGBbGab8NBayaajaGaey41 aqRaa8xraiabgkHiTiaacIcaceWFUbGbaKaacqGHxdaTcaWFfbGaai ykaOWaaWbaaSqabeaajugibiaacQcaaaGaaiyxaiabg2da9iabgkHi TOWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaOWaaiWaaeaada GadaqaaKqzGeGaamOwaaGccaGL7bGaayzFaaaacaGL7bGaayzFaaaa aKqzGeGab8NBayaajaGaey41aqRcdaWadaqaaKqzGeGaamOwaOWaaW baaSqabeaajugibiabgUcaRaaacaGGOaGaa8hsaOWaaWbaaSqabeaa jugibiabgkHiTaaacqGHsislcaWFibGcdaahaaWcbeqaaKqzGeGaey 4kaScaaiaacMcacqGHsislcqaHXoqyceWFUbGbaKaacqGHxdaTcaGG OaGaa8xraOWaaWbaaSqabeaajugibiabgkHiTaaacqGHsislcaWFfb GcdaahaaWcbeqaaKqzGeGaey4kaScaaiaacMcaaOGaay5waiaaw2fa aaaa@7943@ (2)

n ^ ( F H F H * )=[ n ^ ×H ( n ^ ×H) * ]= 1 2{ { Y } } n ^ ×[ Y + ( E E + )+α n ^ ×( H H + ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaa=zeakmaaBaaabaqcLbmacaWGibaa keqaaKqzGeGaeyOeI0Iaa8NraSWaa0baaOqaaKqzadGaamisaaGcba qcLbmacaGGQaaaaiaacMcajugibiabg2da9iabgkHiTiaacUfaceWF UbGbaKaacqGHxdaTcaWFibGaeyOeI0Iaaiikaiqa=5gagaqcaiabgE na0kaa=HeacaGGPaGcdaahaaqabeaajugibiaacQcaaaGaaiyxaiab g2da9OWaaSaaaeaajugibiaaigdaaOqaaKqzGeGaaGOmaOWaaiWaae aadaGadaqaaKqzGeGaamywaaGccaGL7bGaayzFaaaacaGL7bGaayzF aaaaaKqzGeGab8NBayaajaGaey41aqRcdaWadaqaaKqzGeGaamywaO WaaWbaaeqabaqcLbsacqGHRaWkaaGaaiikaiaa=veakmaaCaaabeqa aKqzGeGaeyOeI0caaiabgkHiTiaa=veakmaaCaaabeqaaKqzGeGaey 4kaScaaiaacMcacqGHRaWkcqaHXoqyceWFUbGbaKaacqGHxdaTcaGG OaGaa8hsaOWaaWbaaeqabaqcLbsacqGHsislaaGaeyOeI0Iaa8hsaO WaaWbaaeqabaqcLbsacqGHRaWkaaGaaiykaaGccaGLBbGaayzxaaaa aa@7A2B@ (3)

where

  1. F E,H * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGaa8 NraOWaa0baaSqaaKqzadGaamyraKqzGeGaaiilaiaadIeaaSqaaKqz adGaaiOkaaaaaaa@3D4F@ is the numerical flux;
  2. The ‘+’ and ‘–’ signs in the superscript indicate the exterior and interior of an interface, respectively;
  3. The Z ± = μ ± / ε ± = ( Y ± ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbGcpaWaaWbaaSqabeaajugib8qacqGHXcqSaaGaeyyp a0JcdaGcaaWdaeaajugibiabeY7aTPWaaWbaaSqabeaajugib8qacq GHXcqSaaWdaiaac+cacqaH1oqzkmaaCaaaleqabaqcLbsapeGaeyyS aelaaaWcbeaajugibiabg2da9iaacIcacaWGzbGcpaWaaWbaaSqabe aajugib8qacqGHXcqSaaGaaiykaOWdamaaCaaaleqabaqcLbsapeGa eyOeI0IaaGymaaaaaaa@4EC8@ is the impedance;
  4. ‘α’ controls the dissipation (i.e., α = 1 and 0 are for classic upwind and non-dissipative central fluxes respectively).

The function {{∙}} corresponds to the average value at an interface due to exterior and interior values e.g., { { Z } }=( Z + + Z )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaWaai WaaeaajugibiaadQfaaOGaay5Eaiaaw2haaaGaay5Eaiaaw2haaKqz GeGaeyypa0JcdaqadaqaaKqzGeGaamOwaSWaaWbaaOqabeaajugWai aaykW7cqGHRaWkaaqcLbsacqGHRaWkcaWGAbWcdaahaaGcbeqaaKqz adGaaGPaVlabgkHiTaaaaOGaayjkaiaawMcaaKqzGeGaai4laiaaik daaaa@4C42@ . After some mathematical calculations and evaluating the vector identities, Eq. (2) and Eq. (3) generate the following numerical fluxes for the electric and magnetic fields, respectively:

n ^ (E E * )= 1 2{ { Z } } [ n ^ × Z + dH( n ^ dE )α n ^ +( α )dE ],dU= U U + ;forU=[E,H] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaacbmqcLb saceWFUbGbaKaacqGHflY1caGGOaGaa8xraiabgkHiTiaa=veakmaa CaaaleqabaqcLbsacaWFQaaaaiaacMcacqGH9aqpcqGHsislkmaala aabaqcLbsacaaIXaaakeaajugibiaaikdakmaacmaabaWaaiWaaeaa jugibiaadQfaaOGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaadaWada qaaKqzGeGab8NBayaajaGaey41aqRaamOwaOWaaWbaaSqabeaajugi biabgUcaRaaacaWGKbGaa8hsaiabgkHiTOWaaeWaaeaajugibiqa=5 gagaqcaiabgwSixlaadsgacaWFfbaakiaawIcacaGLPaaajugibiab eg7aHjqa=5gagaqcaGqaciaa+TcakmaabmaabaGaeqySdegacaGLOa GaayzkaaqcLbsacaWGKbGaa8xraaGccaGLBbGaayzxaaqcLbsacaGG SaGaeSynIeLaaGjbVlaadsgacaWFvbGaeyypa0Jaa8xvaOWaaWbaaS qabeaajugibiabgkHiTaaacqGHsislcaWFvbGcdaahaaWcbeqaaKqz GeGaey4kaScaaiaacUdacaaMe8UaamOzaiaad+gacaWGYbGaaGjbVl aa=vfacqGH9aqpcaGGBbGaa8xraiaacYcacaWFibGaaiyxaaGcbaaa aaa@7E19@ (4)

n ^ (H H * )= 1 2{ { Y } } [ n ^ × Y + dE+α( ( n ^ dH ) n ^ dH ) ],dU= U U + ;forU=[E,H] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaa=HeacqGHsislcaWFibGcdaahaaqa beaajugibiaa=PcaaaGaaiykaiabg2da9OWaaSaaaeaajugibiaaig daaOqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaamywaaGc caGL7bGaayzFaaaacaGL7bGaayzFaaaaamaadmaabaqcLbsaceWFUb GbaKaacqGHxdaTcaWGzbGcdaahaaqabeaajugibiabgUcaRaaacaWG KbGaa8xraiabgUcaRiabeg7aHPWaaeWaaeaadaqadaqaaKqzGeGab8 NBayaajaGaeyyXICTaamizaiaa=HeaaOGaayjkaiaawMcaaKqzGeGa b8NBayaajaGaeyOeI0Iaamizaiaa=HeaaOGaayjkaiaawMcaaaGaay 5waiaaw2faaKqzGeGaaiilaiaaywW7cqWI1isucaaMe8Uaamizaiaa =vfacqGH9aqpcaWFvbGcdaahaaqabeaajugibiabgkHiTaaacqGHsi slcaWFvbGcdaahaaqabeaajugibiabgUcaRaaacaGG7aGaaGjbVlaa dAgacaWGVbGaamOCaiaaysW7caWFvbGaeyypa0Jaai4waiaa=veaca GGSaGaa8hsaiaac2faaaa@7C78@ (5)

The above two equations are for 3D and very useful to obtain the numerical flux for any component along their respective axis.

1) TMz case in 2D: Maxwell’s equations given in Eq. (1) takes the following form:

μ H x t = E z y , μ H y t = E z x , ε E z t = H y x H x y . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiVd0 2aaSaaaeaajugibiabgkGi2kaadIeakmaaCaaaleqabaqcLbmacaWG 4baaaaGcbaqcLbsacqGHciITjugWaiaadshaaaqcLbsacqGH9aqpcq GHsislkmaalaaabaqcLbsacqGHciITcaWGfbWcdaahaaGcbeqaaKqz adGaamOEaaaaaOqaaKqzGeGaeyOaIyBcLbmacaWG5baaaOGaaiilaa qaaiabeY7aTnaalaaabaqcLbsacqGHciITcaWGibGcdaahaaWcbeqa aKqzadGaamyEaaaaaOqaaKqzGeGaeyOaIyBcLbmacaWG0baaaKqzGe Gaeyypa0JcdaWcaaqaaKqzGeGaeyOaIyRaamyraSWaaWbaaOqabeaa jugWaiaadQhaaaaakeaajugibiabgkGi2MqzadGaamiEaaaajugibi aacYcaaOqaaiabew7aLnaalaaabaqcLbsacqGHciITcaWGfbGcdaah aaWcbeqaaKqzadGaamOEaaaaaOqaaKqzGeGaeyOaIyBcLbmacaWG0b aaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaeyOaIyRaamisaOWaaWba aSqabKqaGfaajugWaiaadMhaaaaakeaajugibiabgkGi2MqzadGaam iEaaaajugibiabgkHiTOWaaSaaaeaajugibiabgkGi2kaadIealmaa CaaabeqaaKqzadGaamiEaaaaaOqaaKqzGeGaeyOaIyBcLbmacaWG5b aaaKqzGeGaaiOlaaaaaa@8761@ (6)

In 2D, nx and ny exist while nz = 0 and for the TMz mode we have only Hx, Hy and Ez components. The numerical fluxes for each component are obtained by using Eq. (4) and Eq. (5)and are given as follows:

n ^ ( H x H x * )= 1 2{ { Y } } [ n y Y + d E z +α( ndotdH. n x d H x ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadIeakmaaBaaaleaaieGajugWaiaa +HhaaSqabaqcLbsacqGHsislcaWGibWcdaqhaaqaaKqzadGaamiEaa WcbaqcLbmacaGGQaaaaKqzGeGaaiykaiabg2da9OWaaSaaaeaajugi biaaigdaaOqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaam ywaaGccaGL7bGaayzFaaaacaGL7bGaayzFaaaaamaadmaabaqcLbsa caWGUbWcdaWgaaqaaKqzadGaamyEaaWcbeaajugibiaadMfakmaaCa aaleqabaqcLbsacqGHRaWkaaGaamizaiaadwealmaaBaaabaqcLbma caWG6baaleqaaKqzGeGaey4kaSIaeqySdeMcdaqadaqaaKqzGeGaam OBaiaadsgacaWGVbGaamiDaiaadsgacaWGibGaaiOlaiaad6gakmaa BaaaleaajugWaiaadIhaaSqabaqcLbsacqGHsislcaWGKbGaamisaS WaaSbaaeaajugWaiaadIhaaSqabaaakiaawIcacaGLPaaaaiaawUfa caGLDbaajugibiaacYcaaaa@71A2@ (7)

n ^ ( H y H y * )= 1 2{ { Y } } [ n x Y + d E z +α( ndotdH. n y d H y ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadIeakmaaBaaabaacbiqcLbmacaGF 5baaleqaaKqzGeGaeyOeI0IaamisaSWaa0baaeaajugWaiaadMhaaS qaaKqzadGaaiOkaaaajugibiaacMcacqGH9aqpkmaalaaabaqcLbsa caaIXaaakeaajugibiaaikdakmaacmaabaWaaiWaaeaajugibiaadM faaOGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaadaWadaqaaKqzGeGa eyOeI0IaamOBaSWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacaWGzb WcdaahaaqabeaajugWaiabgUcaRaaajugibiaadsgacaWGfbGcdaWg aaWcbaqcLbmacaWG6baaleqaaKqzGeGaey4kaSIaeqySdeMcdaqada qaaKqzGeGaamOBaiaadsgacaWGVbGaamiDaiaadsgacaWGibGaaiOl aiaad6gakmaaBaaaleaajugWaiaadMhaaSqabaqcLbsacqGHsislca WGKbGaamisaOWaaSbaaSqaaKqzadGaamyEaaWcbeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faaKqzGeGaaiilaaaa@73BF@ (8)

n ^ ( E z E z * )= 1 2{ { Z } } [ n y Z + d H x n x Z + d H y αd E z ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadwealmaaBaaakeaaieGajugWaiaa +PhaaOqabaqcLbmacqGHsisljugibiaadwealmaaDaaabaqcLbmaca WG6baaleaajugWaiaacQcaaaGaaiykaKqzGeGaeyypa0JcdaWcaaqa aKqzGeGaaGymaaGcbaqcLbsacaaIYaGcdaGadaqaamaacmaabaqcLb sacaWGAbaakiaawUhacaGL9baaaiaawUhacaGL9baaaaWaamWaaeaa jugibiaad6galmaaBaaakeaajugWaiaadMhaaOqabaqcLbsacaWGAb GcdaahaaWcbeqaaKqzadGaey4kaScaaKqzGeGaamizaiaadIealmaa BaaabaqcLbmacaWG4baaleqaaKqzGeGaeyOeI0IaamOBaSWaaSbaaO qaaKqzadGaamiEaaGcbeaajugibiaadQfakmaaCaaaleqabaqcLbma cqGHRaWkaaqcLbsacaWGKbGaamisaOWaaSbaaSqaaKqzadGaamyEaa WcbeaajugibiabgkHiTiabeg7aHjaadsgacaWGfbGcdaWgaaWcbaqc LbmacaWG6baaleqaaaGccaGLBbGaayzxaaqcLbsacaGGUaaaaa@7430@ (9)

where

ndotdH=[ n x d H x + n y d H y ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacaWGKb Gaam4BaiaadshacaWGKbGaamisaiabg2da9maadmaabaGaamOBamaa BaaaleaacaWG4baabeaakiaadsgacaWGibWaaSbaaSqaaiaadIhaae qaaOGaey4kaSIaamOBamaaBaaaleaacaWG5baabeaakiaadsgacaWG ibWaaSbaaSqaaiaadMhaaeqaaaGccaGLBbGaayzxaaaaaa@4944@ is the dot product between dH and n ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadiqa=5gaga qcaaaa@36D6@ .

is the dot product between dHOnce numerical fluxes are derived, the standard DGTD semidiscrete formulation as discussed in 18 is given as:

d H h x dt = 1 μ ( D y E h z + ( JM ) 1 D k ( n ^ y Y + [ E h z ]+α( n ^ x H h [ H h x ] ) 2{ { Y } } ) l(r)dr ), d H h y dt = 1 μ ( D x E h z + ( JM ) 1 D k ( n ^ x Y + [ E h z ]+α( n ^ x H h [ H h x ] ) 2{ { Y } } ) l(r)dr ), d E h z dt = 1 ε ( D x H h y D y H h x + ( JM ) 1 D k ( n ^ y Z + [ H h x ] n ^ x Z + [ H h y ]α[ E h z ] 2{ { Z } } ) l(r)dr ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aajugibiaadsgacaWGibGcdaqhaaWcbaqcLbsacaWGObaaleaajugi biaadIhaaaaakeaajugibiaadsgacaWG0baaaiabg2da9OWaaSaaae aajugibiaaigdaaOqaaiabeY7aTbaadaqadaqaaKqzGeGaeyOeI0Ia amiraOWaaSbaaSqaaKqzGeGaamyEaaWcbeaajugibiaadwealmaaDa aabaqcLbmacaWGObaaleaajugWaiaadQhaaaqcLbsacqGHRaWkkmaa bmaabaqcLbsacaWGkbGaamytaaGccaGLOaGaayzkaaWaaWbaaSqabe aajugWaiabgkHiTiaaigdaaaGcdaWdrbqaamaabmaabaWaaSaaaeaa jugibiqad6gagaqcaSWaaSbaaeaajugWaiaadMhaaSqabaqcLbsaca WGzbGcdaahaaWcbeqaaKqzGeGaey4kaScaaOWaamWaaeaajugibiaa dweakmaaDaaaleaajugWaiaadIgaaSqaaKqzadGaamOEaaaaaOGaay 5waiaaw2faaKqzGeGaey4kaSIaeqySdeMcdaqadaqaaKqzGeGabmOB ayaajaGcdaWgaaWcbaqcLbmacaWG4baaleqaaOWaaGWaaeaajugibi aadIeakmaaBaaaleaajugWaiaadIgaaSqabaaakiaawQbmcaGLBada jugibiabgkHiTOWaamWaaeaajugibiaadIeakmaaDaaaleaajugWai aadIgaaSqaaKqzadGaamiEaaaaaOGaay5waiaaw2faaaGaayjkaiaa wMcaaaqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaamywaa GccaGL7bGaayzFaaaacaGL7bGaayzFaaaaaaGaayjkaiaawMcaaaWc baqcLbsacqGHciITcaWGebGcdaahaaadbeqaaKqzGeGaam4AaaaaaS qabKqzGeGaey4kIipacaaMe8UaamiBaiaacIcacaWGYbGaaiykaiaa ysW7caWGKbGaamOCaaGccaGLOaGaayzkaaqcLbsacaGGSaaakeaada WcaaqaaKqzGeGaamizaiaadIeakmaaDaaaleaajugWaiaadIgaaSqa aKqzadGaamyEaaaaaOqaaKqzGeGaamizaiaadshaaaGaeyypa0Jcda WcaaqaaKqzGeGaaGymaaGcbaGaeqiVd0gaamaabmaabaqcLbsacaWG ebGcdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaamyraSWaa0baae aajugWaiaadIgaaSqaaKqzadGaamOEaaaajugibiabgUcaROWaaeWa aeaajugibiaadQeacaWGnbaakiaawIcacaGLPaaalmaaCaaabeqaaK qzadGaeyOeI0IaaGymaaaakmaapefabaWaaeWaaeaadaWcaaqaaKqz GeGaeyOeI0IabmOBayaajaWcdaWgaaGcbaqcLbmacaWG4baakeqaaK qzGeGaamywaOWaaWbaaSqabeaajugibiabgUcaRaaakmaadmaabaqc LbsacaWGfbWcdaqhaaqaaKqzadGaamiAaaWcbaqcLbmacaWG6baaaa GccaGLBbGaayzxaaqcLbsacqGHRaWkcqaHXoqykmaabmaabaqcLbsa ceWGUbGbaKaakmaaBaaaleaajugibiaadIhaaSqabaGcdaacdaqaaK qzGeGaamisaOWaaSbaaSqaaKqzGeGaamiAaaWcbeaaaOGaayPgWiaa wUbmaKqzGeGaeyOeI0IcdaWadaqaaKqzGeGaamisaOWaa0baaSqaaK qzGeGaamiAaaWcbaqcLbsacaWG4baaaaGccaGLBbGaayzxaaaacaGL OaGaayzkaaaabaqcLbsacaaIYaGcdaGadaqaamaacmaabaqcLbsaca WGzbaakiaawUhacaGL9baaaiaawUhacaGL9baaaaaacaGLOaGaayzk aaaaleaajugibiabgkGi2kaadseakmaaCaaameqakeaajugWaiaadU gaaaaaleqajugibiabgUIiYdGaaGjbVlaadYgacaGGOaGaamOCaiaa cMcacaaMe8UaamizaiaadkhaaOGaayjkaiaawMcaaKqzGeGaaiilaa GcbaWaaSaaaeaajugibiaadsgacaWGfbGcdaqhaaWcbaqcLbsacaWG ObaakeaajugWaiaadQhaaaaakeaajugibiaadsgacaWG0baaaiabg2 da9OWaaSaaaeaajugibiaaigdaaOqaaiabew7aLbaadaqadaqaaKqz GeGaamiraSWaaSbaaOqaaKqzadGaamiEaaGcbeaajugibiaadIealm aaDaaabaqcLbmacaWGObaaleaajugWaiaadMhaaaqcLbsacqGHsisl caWGebGcdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaamisaSWaa0 baaeaajugWaiaadIgaaSqaaKqzadGaamiEaaaajugibiabgUcaROWa aeWaaeaajugibiaadQeacaWGnbaakiaawIcacaGLPaaadaahaaWcbe qaaKqzadGaeyOeI0IaaGymaaaakmaapefabaWaaeWaaeaadaWcaaqa aKqzGeGabmOBayaajaWcdaWgaaqaaKqzadGaamyEaaWcbeaajugibi aadQfakmaaCaaaleqabaqcLbsacqGHRaWkaaGcdaWadaqaaKqzGeGa amisaSWaa0baaeaajugWaiaadIgaaSqaaKqzadGaamiEaaaaaOGaay 5waiaaw2faaKqzGeGaeyOeI0IabmOBayaajaGcdaWgaaWcbaqcLbma caWG4baaleqaaKqzGeGaamOwaOWaaWbaaSqabeaajugibiabgUcaRa aakmaadmaabaqcLbsacaWGibWcdaqhaaqaaKqzadGaamiAaaWcbaqc LbmacaWG5baaaaGccaGLBbGaayzxaaqcLbsacqGHsislcqaHXoqykm aadmaabaqcLbsacaWGfbWcdaqhaaqaaKqzadGaamiAaaWcbaqcLbma caWG6baaaaGccaGLBbGaayzxaaaabaqcLbsacaaIYaGcdaGadaqaam aacmaabaqcLbsacaWGAbaakiaawUhacaGL9baaaiaawUhacaGL9baa aaaacaGLOaGaayzkaaaaleaajugibiabgkGi2kaadseakmaaCaaame qabaqcLbmacaWGRbaaaaWcbeqcLbsacqGHRiI8aiaaysW7caWGSbGa aiikaiaadkhacaGGPaGaaGjbVlaadsgacaWGYbaakiaawIcacaGLPa aajugibiaac6caaaaa@6529@ (10)

where the subscript

  1. h indicates to the approximate solution;
  2. l(r) is two-dimensional Lagrange polynomialL
  3. D, J and M are differential, Mass, and Jacobian matrices, respectively.

The details on these parameters can be found in.18 The functions shown in the brackets MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaimaabaGaey yXICnacaGLAaJaay5gWaaaaa@39E9@ , [ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaGaey yXICnacaGLBbGaayzxaaaaaa@3A07@ and { { } } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaWaai WaaeaacqGHflY1aiaawUhacaGL9baaaiaawUhacaGL9baaaaa@3C77@ are characterized for any parameter q as follows:

[ q ]= q q + ,q= n ^ ·q,{ { q } }=( q + q + )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqcLb sacaWGXbaakiaawUfacaGLDbaajugibiabg2da9iaadghalmaaCaaa beqaaKqzadGaeyOeI0caaKqzGeGaeyOeI0IaamyCaSWaaWbaaeqaba qcLbmacqGHRaWkaaqcLbsacaGGSaGaaGjbVlaaysW7kmaaimaabaqc LbsacaWGXbaakiaawQbmcaGLBadajugibiabg2da9iqad6gagaqcai aaysW7cqWIpM+zcaaMe8UaamyCaiaaysW7caGGSaGaaGjbVRWaaiWa aeaadaGadaqaaKqzGeGaamyCaaGccaGL7bGaayzFaaaacaGL7bGaay zFaaqcLbsacqGH9aqpcaGGOaGaamyCaSWaaWbaaeqabaqcLbmacqGH sislaaqcLbsacqGHRaWkjugWaiaadghalmaaCaaabeqaaKqzadGaey 4kaScaaKqzGeGaaiykaiaac+cacaaIYaaaaa@6B6D@

2) TEz case in 2D: The set of Maxwell’s equation, numerical fluxes of individual component and their corresponding semidiscrete DGTD formulation for the TEz mode are summarized in Eq. (11) to Eq. (15).

ε E x t = H z y , ε E y t = H z x , μ H z t = E x y E y x . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsacq aH1oqzkmaalaaabaqcLbsacqGHciITcaWGfbGcdaahaaWcbeqaaKqz adGaamiEaaaaaOqaaKqzGeGaeyOaIyBcLbmacaWG0baaaKqzGeGaey ypa0JcdaWcaaqaaKqzGeGaeyOaIyRaamisaOWaaWbaaSqabeaajugW aiaadQhaaaaakeaajugibiabgkGi2MqzadGaamyEaaaajugibiaacY caaOqaaKqzGeGaeqyTduMcdaWcaaqaaKqzGeGaeyOaIyRaamyraOWa aWbaaSqabeaajugWaiaadMhaaaaakeaajugibiabgkGi2MqzadGaam iDaaaajugibiabg2da9iabgkHiTOWaaSaaaeaajugibiabgkGi2kaa dIealmaaCaaabeqaaKqzadGaamOEaaaaaOqaaKqzGeGaeyOaIyBcLb macaWG4baaaKqzGeGaaiilaaGcbaqcLbsacqaH8oqBkmaalaaabaqc LbsacqGHciITcaWGibGcdaahaaWcbeqaaKqzadGaamOEaaaaaOqaaK qzGeGaeyOaIyBcLbmacaWG0baaaKqzGeGaeyypa0JcdaWcaaqaaKqz GeGaeyOaIyRaamyraOWaaWbaaSqabeaajugWaiaadIhaaaaakeaaju gibiabgkGi2MqzadGaamyEaaaajugibiabgkHiTOWaaSaaaeaajugi biabgkGi2kaadweakmaaCaaaleqameaajugWaiaadMhaaaaakeaaju gibiabgkGi2MqzadGaamiEaaaajugibiaac6caaaaa@894B@ (11)

n ^ ( E x E x * )= 1 2{ { Z } } [ n y Z + d H z +α( ndotdE. n x d E x ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadweakmaaBaaaleaaieGajugibiaa +HhaaSqabaqcLbsacqGHsislcaWGfbWcdaqhaaqaaKqzadGaamiEaa WcbaqcLbmacaGGQaaaaKqzGeGaaiykaiabg2da9OWaaSaaaeaajugi biaaigdaaOqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaam OwaaGccaGL7bGaayzFaaaacaGL7bGaayzFaaaaamaadmaabaqcLbsa cqGHsislcaWGUbWcdaWgaaqaaKqzadGaamyEaaWcbeaajugibiaadQ falmaaCaaabeqaaKqzadGaey4kaScaaKqzGeGaamizaiaadIealmaa BaaabaqcLbmacaWG6baaleqaaKqzGeGaey4kaSIaeqySdeMcdaqada qaaKqzGeGaamOBaiaadsgacaWGVbGaamiDaiaadsgacaWGfbGaaiOl aiaad6gakmaaBaaaleaajugWaiaadIhaaSqabaqcLbsacqGHsislca WGKbGaamyraSWaaSbaaeaajugWaiaadIhaaSqabaaakiaawIcacaGL PaaaaiaawUfacaGLDbaajugibiaacYcaaaa@730D@ (12)

n ^ ( E y E y * )= 1 2{ { Z } } [ n x Z + d H z +α( ndotdE. n y d E y ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadwealmaaBaaabaacbiqcLbmacaGF 5baaleqaaKqzGeGaeyOeI0IaamyraSWaa0baaeaajugWaiaadMhaaS qaaKqzadGaaiOkaaaajugibiaacMcacqGH9aqpkmaalaaabaqcLbsa caaIXaaakeaajugibiaaikdakmaacmaabaWaaiWaaeaajugibiaadQ faaOGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaadaWadaqaaKqzGeGa amOBaSWaaSbaaeaajugWaiaadIhaaSqabaqcLbsacaWGAbGcdaahaa WcbeqaaKqzadGaey4kaScaaKqzGeGaamizaiaadIeakmaaBaaaleaa jugWaiaadQhaaSqabaqcLbsacqGHRaWkcqaHXoqykmaabmaabaqcLb sacaWGUbGaamizaiaad+gacaWG0bGaamizaiaadweacaGGUaGaamOB aOWaaSbaaSqaaKqzadGaamyEaaWcbeaajugibiabgkHiTiaadsgaca WGfbWcdaWgaaqaaKqzadGaamyEaaWcbeaaaOGaayjkaiaawMcaaaGa ay5waiaaw2faaKqzGeGaaiilaaaa@72CC@ (13)

n ^ ( H z H z * )= 1 2{ { Y } } [ n x Y + d E y n y Y + d E x αd H z ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadKqzGeGab8 NBayaajaGaeyyXICTaaiikaiaadIealmaaBaaakeaaieGajugWaiaa +PhaaOqabaqcLbsacqGHsislcaWGibWcdaqhaaqaaKqzadGaamOEaa WcbaqcLbmacaGGQaaaaiaacMcajugibiabg2da9OWaaSaaaeaajugi biaaigdaaOqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaam ywaaGccaGL7bGaayzFaaaacaGL7bGaayzFaaaaamaadmaabaqcLbsa caWGUbGcdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaamywaSWaaW baaeqabaqcLbmacqGHRaWkaaqcLbsacaWGKbGaamyraOWaaSbaaSqa aKqzadGaamyEaaWcbeaajugibiabgkHiTiaad6gakmaaBaaaleaaju gWaiaadMhaaSqabaqcLbsacaWGzbGcdaahaaWcbeqaaKqzadGaey4k aScaaKqzGeGaamizaiaadweakmaaBaaabaqcLbmacaWG4baaleqaaK qzGeGaeyOeI0IaeqySdeMaamizaiaadIeakmaaBaaaleaajugWaiaa dQhaaSqabaaakiaawUfacaGLDbaajugibiaac6caaaa@72F9@ (14)

d E h x dt = 1 ε ( D y H h z + ( JM ) 1 D k ( n ^ y Z + [ H h z ]+α( n ^ x E h [ E h x ] ) 2{ { Z } } ) l(r)dr ), d E h y dt = 1 ε ( D x H h z + ( JM ) 1 D k ( n ^ x Z + [ H h z ]+α( n ^ y E h [ E h y ] ) 2{ { Z } } ) l(r)dr ), d H h z dt = 1 μ ( D y E h x D x E h y + ( JM ) 1 D k ( n ^ x Y + [ E h y ] n ^ y Y + [ E h x ]α[ H h z ] 2{ { Y } } ) l(r)dr ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aajugibiaadsgacaWGfbWcdaqhaaqaaKqzadGaamiAaaWcbaqcLbma caWG4baaaaGcbaqcLbsacaWGKbqcLbmacaWG0baaaKqzGeGaeyypa0 JcdaWcaaqaaKqzGeGaaGymaaGcbaGaeqyTdugaamaabmaabaqcLbsa caWGebGcdaWgaaqaaKqzadGaamyEaaWcbeaajugibiaadIeakmaaDa aaleaajugibiaadIgaaSqaaKqzGeGaamOEaaaacqGHRaWkkmaabmaa baqcLbsacaWGkbGaamytaaGccaGLOaGaayzkaaWaaWbaaSqabeaaju gibiabgkHiTiaaigdaaaGcdaWdrbqaamaabmaabaWaaSaaaeaajugi biabgkHiTiqad6gagaqcaOWaaSbaaSqaaKqzGeGaamyEaaWcbeaaju gibiaadQfalmaaCaaabeqaaKqzadGaey4kaScaaOWaamWaaeaajugi biaadIealmaaDaaabaqcLbmacaWGObaaleaajugWaiaadQhaaaaaki aawUfacaGLDbaajugibiabgUcaRiabeg7aHPWaaeWaaeaajugibiqa d6gagaqcaSWaaSbaaeaajugWaiaadIhaaSqabaGcdaacdaqaaKqzGe GaamyraOWaaSbaaSqaaKqzGeGaamiAaaWcbeaaaOGaayPgWiaawUbm aKqzGeGaeyOeI0IcdaWadaqaaKqzGeGaamyraSWaa0baaeaajugWai aadIgaaSqaaKqzadGaamiEaaaaaOGaay5waiaaw2faaaGaayjkaiaa wMcaaaqaaKqzGeGaaGOmaOWaaiWaaeaadaGadaqaaKqzGeGaamOwaa GccaGL7bGaayzFaaaacaGL7bGaayzFaaaaaaGaayjkaiaawMcaaaWc baqcLbsacqGHciITcaWGebWcdaahaaadbeqaaKqzadGaam4AaaaaaS qabKqzGeGaey4kIipacaaMe8UaamiBaiaacIcacaWGYbGaaiykaiaa ysW7caWGKbGaamOCaaGccaGLOaGaayzkaaqcLbsacaGGSaaakeaada WcaaqaaKqzGeGaamizaiaadwealmaaDaaabaqcLbmacaWGObaaleaa jugWaiaadMhaaaaakeaajugibiaadsgajugWaiaadshaaaqcLbsacq GH9aqpkmaalaaabaqcLbsacaaIXaaakeaacqaH1oqzaaWaaeWaaeaa jugibiabgkHiTiaadsealmaaBaaabaqcLbmacaWG4baaleqaaKqzGe GaamisaSWaa0baaeaajugWaiaadIgaaSqaaKqzadGaamOEaaaajugi biabgUcaROWaaeWaaeaajugibiaadQeacaWGnbaakiaawIcacaGLPa aalmaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaakmaapefabaWaaeWa aeaadaWcaaqaaKqzGeGabmOBayaajaGcdaWgaaWcbaqcLbmacaWG4b aaleqaaKqzGeGaamOwaOWaaWbaaSqabeaajugWaiabgUcaRaaakmaa dmaabaqcLbsacaWGibWcdaqhaaqaaKqzadGaamiAaaWcbaqcLbmaca WG6baaaaGccaGLBbGaayzxaaqcLbsacqGHRaWkcqaHXoqykmaabmaa baqcLbsaceWGUbGbaKaalmaaBaaakeaajugWaiaadMhaaOqabaWaaG WaaeaajugibiaadweakmaaBaaaleaajugWaiaadIgaaSqabaaakiaa wQbmcaGLBadajugibiabgkHiTOWaamWaaeaajugibiaadwealmaaDa aabaqcLbmacaWGObaaleaajugWaiaadMhaaaaakiaawUfacaGLDbaa aiaawIcacaGLPaaaaeaajugibiaaikdakmaacmaabaWaaiWaaeaaju gibiaadQfaaOGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaaaiaawIca caGLPaaaaSqaaKqzGeGaeyOaIyRaamiraOWaaWbaaWqabeaajugWai aadUgaaaaaleqajugibiabgUIiYdGaaGjbVlaadYgacaGGOaGaamOC aiaacMcacaaMe8UaamizaiaadkhaaOGaayjkaiaawMcaaKqzGeGaai ilaaGcbaWaaSaaaeaajugibiaadsgacaWGibWcdaqhaaqaaKqzadGa amiAaaWcbaqcLbmacaWG6baaaaGcbaqcLbsacaWGKbqcLbmacaWG0b aaaKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaaGymaaGcbaGaeqiVd0ga amaabmaabaqcLbsacaWGebGcdaWgaaWcbaqcLbmacaWG5baaleqaaK qzGeGaamyraSWaa0baaeaajugWaiaadIgaaSqaaKqzadGaamiEaaaa jugibiabgkHiTiaadsealmaaBaaabaqcLbmacaWG4baaleqaaKqzGe GaamyraSWaa0baaeaajugWaiaadIgaaSqaaKqzadGaamyEaaaajugi biabgUcaROWaaeWaaeaajugibiaadQeacaWGnbaakiaawIcacaGLPa aalmaaCaaabeqaaKqzadGaeyOeI0IaaGymaaaakmaapefabaWaaeWa aeaadaWcaaqaaKqzGeGabmOBayaajaWcdaWgaaqaaKqzadGaamiEaa WcbeaajugibiaadMfakmaaCaaaleqabaqcLbmacqGHRaWkaaGcdaWa daqaaKqzGeGaamyraSWaa0baaeaajugWaiaadIgaaSqaaKqzadGaam yEaaaaaOGaay5waiaaw2faaKqzGeGaeyOeI0IabmOBayaajaWcdaWg aaqaaKqzadGaamyEaaWcbeaajugibiaadMfakmaaCaaaleqabaqcLb macqGHRaWkaaGcdaWadaqaaKqzGeGaamyraOWaa0baaSqaaKqzadGa amiAaaWcbaqcLbmacaWG4baaaaGccaGLBbGaayzxaaqcLbsacqGHsi slcqaHXoqykmaadmaabaqcLbsacaWGibWcdaqhaaqaaKqzadGaamiA aaWcbaqcLbmacaWG6baaaaGccaGLBbGaayzxaaaabaqcLbsacaaIYa GcdaGadaqaamaacmaabaqcLbsacaWGzbaakiaawUhacaGL9baaaiaa wUhacaGL9baaaaaacaGLOaGaayzkaaaaleaajugibiabgkGi2kaads ealmaaCaaakeqabaqcLbmacaWGRbaaaaWcbeqcLbsacqGHRiI8aiaa ysW7caWGSbGaaiikaiaadkhacaGGPaGaaGjbVlaadsgacaWGYbaaki aawIcacaGLPaaajugibiaac6caaaaa@6E44@ (15)

The semidiscrete expression are ordinary differential equations (ODE) in the time-domain (TD) which can be solved by using five-stage 4th order low-storage explicit Runge-Kutta (LSERK) method, given in.19 To ensure the stable time steps while integrating the solution in TD, Courant-Friedrichs-Levy (CFL) given in20 is used. This study uses unstructured triangular mesh elements. The marching step (Δt) as per CFL condition for this type of mesh is given in Eq. (16):

ΔtCFL( 2 3 minΔ r i ) min Ω ( r D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyiLdq ucLbmacaWG0bqcLbsacqGHKjYOcaWGdbGaamOraiaadYeacaGGOaGc daWcaaqaaKqzGeGaaGOmaaGcbaqcLbsacaaIZaaaaiGac2gacaGGPb GaaiOBaiabgs5aejaadkhalmaaBaaakeaajugWaiaadMgaaOqabaqc LbsacaGGPaGaciyBaiaacMgacaGGUbGcdaWgaaWcbaqcLbmacqqHPo WvaSqabaqcLbsacaGGOaGaamOCaOWaaSbaaSqaaKqzadGaamiraaWc beaajugibiaacMcaaaa@5634@ (16)

where rD is the normalized radius of the inscribed circle in a given triangular element and Δri is the grid spacing for one-dimensional (1D) standard interval of.11 For 4th order LSERK method, choose CFL=1. Applying PEC boundary: In the DGTD method, the perfect electric conductor (PEC) boundary is very easy to implement. The tangential components are set to zero i.e., n ^ ×E=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadiqa=5gaga qcaiabgEna0kaa=veaieGacaGF9aGaa4hmaaaa@3B2B@ only by changing the values at the boundary interfaces. The values of all nodes appearing at the boundary are changed by using mirror principle given in,18 i.e., ( E z ) * = ( E z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeGaa8 hkaGqaciaa+vealmaaCaaabeqaaKqzadGaa4NEaaaajugibiaa=Lca lmaaCaaabeqaaKqzadGaa4Nkaaaajugibiaa+1dacaGFGaGaeyOeI0 Iaa8hkaiaa+vealmaaCaaabeqaaKqzadGaa4NEaaaajugibiaa=Lca lmaaCaaabeqaaKqzadGaeyOeI0caaaaa@478C@ such that ( E z ) + ( E z ) * =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGeGaa8 hkaGqaciaa+veakmaaCaaaleqabaqcLbsacaGF6baaaiaa=Lcalmaa CaaabeqaaKqzadGaeyOeI0caaKqzGeGaa43kaiaa=HcacaGFfbGcda ahaaWcbeqaaKqzGeGaa4NEaaaacaWFPaWcdaahaaqabeaajugWaiaa cQcaaaqcLbsacqGH9aqpcaaIWaGaaiOlaaaa@46AA@

This is implemented as given in Eq. (17).

[ E z ]= n ^ E z =2 ( E z ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaacbi qcLbsacaWFfbWcdaahaaqabeaajugWaiaa=PhaaaaakiaawUfacaGL Dbaajugibiabg2da9Gqadiqa+5gagaqcaiabgwSixRWaaGWaaeaaju gibiaa=vealmaaCaaabeqaaKqzadGaa8NEaaaaaOGaayPgWiaawUbm aKqzGeGaeyypa0JaaGOmaiaaysW7ieaacaqFOaGaa8xraOWaaWbaaS qabeaajugWaiaa=PhaaaqcLbsacaqFPaGcdaahaaWcbeqaaKqzadGa eyOeI0caaKqzGeGaaiilaaaa@5275@ (17)

Exact method

The cutoff frequency fc of any waveguide having dimensions a × b is given in Eq. (18). The permittivity ε and permeability μ are the material parameters used for filling the waveguide either be air or vacuum. This expression holds true for either TMz or TEz mode.21

( f c ) mn = 1 2π με ( mπ a ) 2 + ( nπ b ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaaiikai aadAgakmaaBaaaleaajugibiaadogaaSqabaqcLbsacaGGPaGcdaWg aaqaaKqzadGaamyBaiaad6gaaSqabaqcLbsacqGH9aqpkmaalaaaba qcLbsacaaIXaaakeaajugibiaaikdacqaHapaCkmaakaaabaqcLbsa cqaH8oqBcqaH1oqzaSqabaaaaOWaaOaaaeaadaqadaqaamaalaaaba qcLbsacaWGTbGaeqiWdahakeaajugibiaadggaaaaakiaawIcacaGL PaaadaahaaWcbeqaaKqzadGaaGOmaaaajugibiabgUcaROWaaeWaae aadaWcaaqaaKqzGeGaamOBaiabec8aWbGcbaqcLbsacaWGIbaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaajugibiaaikdaaaaaleqaaaaa@5A3B@ (18)

Numerical analysis and discussion

Simulation setup

The waveguide WR90 having dimensions a=0.9 in. (2.286 cm), b=0.4 in. (1.016 cm) is selected for the analysis of modes in the numerical method. The coarse triangular mesh is obtained from commercial mesh-generating software. The initial conditions used for TMz case are given in Eq. (19). For the TEz mode, the conditions are similar. So we do not repeat them.

E z =sin(mπfx).sin(nπfy); Hx=0;Hy=0; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaca WGfbWcdaWgaaqaaKqzadGaamOEaaWcbeaajugibiabg2da9iGacoha caGGPbGaaiOBaiaacIcacaWGTbGaeqiWdaNaamOzaKqzadGaamiEaK qzGeGaaiykaiaac6caciGGZbGaaiyAaiaac6gacaGGOaGaamOBaiab ec8aWjaadAgajugWaiaadMhajugibiaacMcacaGG7aaakeaajugibi aadIeajugWaiaadIhajugibiabg2da9iaaicdacaGG7aGaamisaKqz adGaamyEaKqzGeGaeyypa0JaaGimaiaacUdaaaaa@5E47@ (19)

where

  1. m and n are modal values;
  2. f is frequency;

The x and y are N×K matrices of the nodes along x- and y-axis, respectively, in 2D.

Here, N is the order of polynomial interpolation used in each Kth element. All the units are made non dimensional by using set of expressions given in Eq. (20).

x L x ^ , y L y ^ , ct L t ^ , Z 0 H H ^ ,E E ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb sacaWG4baakeaajugibiaadYeaaaGaeyOKH4QabmiEayaajaGaaiil aiaaywW7kmaalaaabaqcLbsacaWG5baakeaajugibiaadYeaaaGaey OKH4QabmyEayaajaGaaiilaiaaywW7kmaalaaabaqcLbsacaWGJbGa aGPaVlaadshaaOqaaKqzGeGaamitaaaacqGHsgIRceWG0bGbaKaaca GGSaGaaGzbVlaadQfakmaaBaaabaqcLbmacaaIWaaaleqaaGqadKqz GeGaa8hsaiabgkziUkqa=HeagaqcaiaacYcacaaMf8Uaa8xraiabgk ziUkqa=veagaqcaaaa@5DF4@ (20)

where

  1. c is speed of light, t is time;
  2. Z 0 = μ 0 / ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGAbWcdaWgaaGcbaqcLbmacaaIWaaakeqaaKqzadGaeyyp a0JcdaGcaaWdaeaajugWa8qacqaH8oqBlmaaBaaabaqcLbmacaaIWa aaleqaaKqzGeWdaiaac+cacqaH1oqzk8qadaWgaaqaaKqzadGaaGim aaGcbeaaaeqaaaaa@4616@ is the free-space impedance;
  3. L is reference length for a given problem.

In this study, we choose L=1.0160 cm which is the smallest dimension of the waveguide. Hence, all the parameters with hat (^) are non dimensional. The time-domain data for electric field is recorded at some test points in the given computational domain i.e., [–1.1430 1.1430]×[–0.5080 0.5080] and their frequency response is obtained by employing fast Fourier transformation (FFT) on the recorded data. Since the unstructured triangular mesh suffers from accurate positioning of the test point in the Cartesian coordinate system, this issue is resolved by using adaptive mesh method of node displacement mentioned in.15

Effect of resolution of finite elements

This section discusses the effect of resolution of number of non overlapping elements (K) used to discretize the computational domain. The simulation is performed and data is recorded at test point located at (x0, y0)=(0, 0). The effect of different modes appearing with respect to K is summarized in (Figure 1).

Figure 1 Effect of K on resonating modes with N=4: (a) K=30, (b) K=68, (c) K=134, and (d) K=546.

Figure 1 shows that as the resolution of the FEs used to discretized computational domain is increased from K=30 to K=546, the resonant modes are shifted from lower frequency modes to higher frequency modes. The reason is: as the resolution increases, the time step required for stable marching also decreases. The decreased value of Δt supported higher frequency components when FFT is used. So, if we are interested in lower frequency modes of a waveguide structure, we must use lower resolution of FEs in the computational domain. In the next section, we discuss the effect of Final Time on these models.

Effect of final time

This section explains the significance of using different final time for estimating the resonant frequency of the waveguide. The findings are shown in (Figure 2) where data for two values of Final Time=[200,500] is recorded. (Figure 2(a-b)) shows the time-domain data of electric field recorded at test point (x0, y0)=(0, 0) for the two final times and (Figure 2(c-d)) presents the spectrum of the recorded data which is obtained by taking FFT of the time-domain data. From (Figure 2), it is obvious that we need enough time to obtain different resonant modes. But, the longer time only captures more energy at the already existing modes, as can be seen from the variation in the peaks of normalized amplitudes in (Figure 2(c-d)). By increasing the Final Time we cannot obtain more modes. The appearance of the modes depended on the resolution of FEs used, as has been discussed in the previous section.

Figure 2 Effect of final time on resonating modes for K=68, N=4 and Δt=0.01427: (a) K=30, (b) K=68, N=4, (c) Spectrum View at normalized Final Time=200, and (d) Spectrum View at normalized Final Time=500. (Dimensional Final Time=Final Time×L×Δt /c).

Comparison of analytical and numerical results This section summarizes the results of both TMz mode and TEz mode. The exact results are calculated by using the analytical formulation and the numerical results are obtained by using the DGTD method with appropriate settings K. The modes calculated by using TM polarization are presented in (Table 1). The effect of variation with K is also given. Similarly, the values obtained by using TE polarization are given in (Table 2). The lower frequency modes in the TE polarization are obtained by using K=30.

Mode

Exact

K=546

K=134

K=68

(m, n)

(GHz)

DGTD (GHz)

Difference (%)

DGTD (GHz)

Difference(%)

DGTD (GHz)

Difference (%)

2, 1

19.7442

19.753

0.044

19.7556

0.057

19.7526

0.042

3, 1

24.595

24.6045

0.038

24.6096

0.058

24.6026

0.03

4, 1

30.1003

30.1107

0.034

30.1151

0.048

30.114

0.045

5, 1

35.9608

35.9841

0.064

35.9795

0.051

35.9781

0.048

6, 1

42.0281

42.0459

0.042

42.0421

0.033

7, 1

48.2242

48.2466

0.046

48.2465

0.046

48.2941

0.144

8, 1

54.5052

54.5267

0.039

54.5358

0.056

9, 1

60.8449

60.8763

0.051

60.8912

0.076

10, 1

67.2265

67.2556

0.043

67.2561

0.043

11, 1

73.6393

73.6746

0.047

12, 1

80.0758

80.1134

0.047

13, 1

86.5306

86.5721

0.048

14, 1

92.9999

93.0507

0.054

15, 1

99.4809

99.5292

0.048

Table 1 Comparison of exact and numerical values cutoff frequencies for different modes (TMz polarization)

Mode (m,n)

Exact (GHz)

DGTD (GHz)

Difference (%)

1, 0

6.5586

6.5593

0.01

2, 0

13.117

13.1252

0.059

0, 1

14.757

14.7683

0.076

1, 1

16.1489

16.1496

0.004

3, 1

24.595

24.588

0.028

4, 0

26.2347

26.2504

0.059

Table 2 Comparison of exact and numerical values cutoff frequencies for different modes (TEz polarization)

Conclusion

In this paper, modeling of waveguide is performed by using the DGTD method in 2D by incorporating the both TM and TE polarization. The space discretization of the computational domain by changing resolution of finite elements (FEs) i.e., K has effect on stable time marching step (Δt). This resulted in the finding that higher the value of K, hence leading to smaller time step, supports higher frequency modes. In order to obtain the lower frequency modes of waveguides, we need to reduce the resolution of FEs. Secondly, increasing the Final Time too much does not provide all the frequency modes rather energy in the existing modes keeps increasing. In order to get all the low- and high-frequency modes, we needed to perform multiple simulations with different low- and high-resolution of the FEs in the computational domain.

Acknowledgements

This work has been partially funded by Postgraduate Technology Innovation Project of Jiangsu Province (No: KYLX15_0286), Natural Science foundation of Jiangsu Province (No: BK20140810), and Natural Science Foundation of China (No: 61401199).

Conflict of interest

The author declares no conflict of interest.

References

  1. Collin RE. Field Theory of Guided Waves. Electromagn Waves. 2nd ed. USA: Wiley Press; 1990. p. 1–864.
  2. Yan S, Greenwood AD, Jin JM. Modeling of Plasma Formation During High–Power Microwave Breakdown in Air Using the Discontinuous Galerkin Time–Domain Method. IEEE J Multiscale Multiphysics Comput Tech. 2016;1:2–13.
  3. Li P, Jiang LJ, Shi Y, et al. A discontinuous galerkin time domain–boundary integral method for analyzing transient electromagnetic scattering. IEEE Antennas Propag Soc Int Symp. 2014:1893–1894.
  4. Gedney SD, Roden JA, Crawford RD, et al. A discontinuous galerkin finite element time domain method with PML. IEEE Antennas Propag Soc Int Symp. 2008:1–4.
  5. Fahs H. High–order discontinuous Galerkin method for time–domain electromagnetics on non–conforming hybrid meshes. Math Comput Simul. 2015;107:134–156.
  6. Gao S, Cao Q. Discontinuous Galerkin time domain method for SOI thin–ridge waveguide problem. Trans Nanjing Univ Aeronaut Astronaut. 2013;30:162–168.
  7. Li P, Shi Y, Jiang LJ, et al. DGTD analysis of electromagnetic scattering from penetrable conductive objects with IBC. IEEE Trans Antennas Propag. 2015;63:5686–5697.
  8. Cfdrc VK. A Discontinuous Galerkin Time–Domain Method with Dynamically Adaptive Cartesian Meshes for Computational Electromagnetics. IEEE Trans Antennas Propag. 2016;65(6):1–18.
  9. Chen J, Liu QH. Discontinuous Galerkin Time–Domain Methods for Multiscale Electromagnetic Simulations: A Review. Proc IEEE. 2013;101:242–254.
  10. Reed WH, Hill TR. Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Sci Lab. 1973;LA–UR–73–4:1–23.
  11. Cockburn B, Shu C–W. Runge–Kutta Discontinuous Galerkin Methods for Convection–Dominated Problems. J Sci Comput. 2001;16(3):173–261.
  12. LeVeque RJ. Finite volume methods for hyperbolic problems. India: Cambridge University Press; 2002.
  13. Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods, Algorithms, Analysis and Applications, Springer, UK; 2008.
  14. Hussain I, Li H, Wang Y, et al. Modeling of excitation source for time–domain EM solvers. In: Prog Electromagn Res Symp St Petersburg, Russia; 2017.
  15. Hussain I, Li H, Cao Q. Multiscale Structure Simulation Using Adaptive Mesh using DGTD Method. IEEE J Multiscale Multiphysics Comput Tech. 2017;2:115–123.
  16. Le Veque RJ. Finite Volume Methods for Hyperbolic Problems. India: Cambridge Univ Press; 2002. 54:258.
  17. Toro EF. Riemann solvers and numerical methods for fluid dynamics, Springer, UK; 2009.
  18. Hesthaven JS, Tim Warburton, Warburton T. Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications. Editors. Springer, New York; 2008.
  19. Niegemann J, Busch K, Singh MR, et al. Time–Stepping and Convergence Characteristics of the Discontinuous Galerkin Time–Domain Approach for the Maxwell Equations. AIP Conf Proc AIP. 2009;1147(1):22–29.
  20. Toulorge T, Desmet W. CFL Conditions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J Comput Phys. 2011;230(12):4657–4678.
  21. Balanis CA. Advanced Engineering Electromagnetics. 2nd ed. USA: John Wiley & Sons; 2012.
Creative Commons Attribution License

©2017 Hussain, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.