Submit manuscript...
eISSN: 2641-936X

Electrical & Electronic Technology Open Access Journal

Research Article Volume 2 Issue 2

Modeling of a photovoltaic array in MATLAB simulink and maximum power point tracking using neural network

Jobeda J Khanam, Simon Y Foo

Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA

Correspondence: Simon Y Foo, Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA

Received: July 09, 2018 | Published: July 24, 2018

Citation: Khanam JJ, Simon YF. Modeling of a photovoltaic array in MATLAB simulink and maximum power point tracking using neural network. Electric Electron Tech Open Acc J. 20182(3):40-46. DOI: 10.15406/eetoaj.2018.02.00019

Download PDF

Abstract

In this paper, we present our work on Maximum Power Point Tracking (MPPT) using neural network. The MATLAB/Simulink is used to establish a model of photovoltaic array. The Simulink model is tested with different temperature and irradiation and resultant I-V and P-V characteristics proved the validation of Simulink model of PV array. We collected a set of data from the Simulink model of PV array after simulated under a range of irradiation and temperature. The data collected from the system is used to train the neural network. When we tested the neural network with different irradiance and temperature, we see that the neural network can accurately predict the maximum power point of a photovoltaic array. In this paper, the backpropagation training algorithm is used to train the neural network. Comparisons of MPPT with P & O algorithm and without MPPT tracker are also shown in this paper. It is demonstrated that the neural network based MPPT tracking require less time and provide more accurate results than the P&O algorithm based MPPT.

Abbreviations

MPPT, maximum power point tracking; MPP, maximum power point maximum; Pmax/Pmp, power voltage at maximum power point; NN, neural network; P&O, perturb and observe; Irr, irradiance; PV, photovoltaic.

Introduction

Maximum Power Point Tracking (MPPT) is very useful tool in PV application. Solar radiation and temperature are the main factor for which the electric power supplied by a photovoltaic system varies. The voltage at which PV module can produce maximum power is called ‘maximum power point’ (or peak power voltage).1–3 The main principle of MPPT is responsible for extracting the maximum possible power from the photovoltaic and feed it to the load via dc to dc converter which steps up/steps down the voltage to required magnitude. Various MPPT techniques have been used in past but Perturb & Observe (P&O) algorithm is most widely accepted.4–6 P&O algorithm has also been shown to provide wrong tracking with rapidly varying irradiance.7–10 In this paper we are implemented neural network based MPPT method. Artificial Neural Network (ANN) is an artificial network that can able to mimic the human biological neural networks behavior. ANN widely used in modeling complex relationships between inputs and outputs in nonlinear systems. ANN can also be defined as parallel distributed information processing structure. The ANN consists of inputs, and at least one hidden layer and one output layer. These layers have processing elements which are called neurons interconnected together. To calculate error contribution of each neuron after a batch of data processing a method called ‘back propagation’ is used. Back propagation is commonly used by the gradient descent optimization algorithm to adjust the weight of neurons by calculating the gradient of the loss function. This technique is also called back propagation error. This is because the error is calculated at the output and circulated back through the network layers.11

Mathematical solar array modeling

In this paper at first, we modelled a 60 WPV array. The basic building block of PV arrays is the solar cell, which is basically a p-n semiconductor junction, shown in Figure 1.12

Figure 1 Equivalent model for solar cell.12

The following equations define the model of a PV panel:

I pv = G   G r [ ( T c - T ref ) K i + I sc ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LeajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8hCaiaa=zhaaKqba+aabeaaa8qabeaajugibiaa=1dajuaGda WcaaGcpaqaaKqzGeWdbiaa=DeacaWFGcGaa8hOaaGcpaqaaKqzGeWd biaa=DeajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbmapeGaa8NCaa qcfa4daeqaaaWdbeqaaaaadaWadaGcpaqaaKqba+qadaqadaGcpaqa aKqzGeWdbiaa=rfal8aadaWgaaqaaKqzadWdbiaa=ngaaSWdaeqaaK qzGeWdbiaa=1cacaWFubWcpaWaaSbaaeaajugWa8qacaWFYbGaa8xz aiaa=zgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaa83saSWdam aaBaaabaqcLbmapeGaa8xAaaWcpaqabaqcLbsapeGaa83kaiaa=Lea juaGdaqhaaqaaSWdamaaBaaajuaGbaqcLbmapeGaa83Caiaa=ngaaK qba+aabeaaa8qabaaaaaGccaGLBbGaayzxaaaaaa@623F@ Eq:1

I d =( e q( V+I R s ) K T c * N s A -1 )× I s × N p      MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LeajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa8hzaaqcfa4daeqaaaWdbeqaaKqzGeGaa8xpaKqbaoaabmaak8 aabaqcLbsapeGaa8xzaOWaaWbaaSqabeaapaWaaWbaaWqabeaal8qa daWcaaadpaqaaKqzadWdbiaa=fhalmaabmaam8aabaqcLbmapeGaa8 Nvaiaa=TcacaWFjbGaey4fIOIaa8NuaSWdamaaBaaameaajugWa8qa caWFZbaam8aabeaaa8qacaGLOaGaayzkaaaapaqaaKqzadWdbiaa=T eacqGHxiIkcaWFubWcdaWgaaadbaWcpaWaaSbaaWqaaKqzadWdbiaa =ngaaWWdaeqaaaWdbeqaaKqzadGaa8Nkaiaa=5ealmaaBaaameaal8 aadaWgaaadbaqcLbmapeGaa83CaaadpaqabaaapeqabaWccqGHxiIk jugWaiaa=feaaaaaaaaajugibiaa=1cacaWFXaaakiaawIcacaGLPa aajugibiaa=DnacaWFjbWcpaWaaSbaaeaajugWa8qacaWFZbaal8aa beaajugib8qacaWFxdGaa8NtaSWdamaaBaaabaqcLbmapeGaa8hCaa WcpaqabaqcLbsapeGaa8hOaiaa=bkacaWFGcGccaGGGcaaaa@6E0F@ Eq:2

I r s = I s c /( e (( q V o c) / ( N s KA T c )) -1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LealmaaBaaabaWdamaaBaaameaajugWa8qacaWF Ybaam8aabeaal8qadaWgaaadbaqcLbmacaWFZbaameqaaaWcbeaaju gibiaa=1dacaWFjbGcdaWgaaWcbaWdamaaBaaameaajugWa8qacaWF Zbaam8aabeaal8qadaWgaaadbaqcLbmacaWFJbaameqaaaWcbeaaju gibiaa=9cacaWFOaGaa8xzaSWdamaaCaaabeqaaKqzadWdbiaa=Hca caWFOaaaaSWaaWbaaeqabaqcLbmacaWFXbGaey4fIOIaa8NvaSWdam aaBaaameaajugWa8qacaWFVbaam8aabeaajugWa8qacaWFJbGaa8xk aaaajugibiaa=9calmaaCaaabeqaaKqzadGaa8hkaiaa=5eal8aada WgaaadbaqcLbmapeGaa83CaaadpaqabaqcLbmapeGaey4fIOIaa83s aiabgEHiQiaa=feacqGHxiIkcaWFubWcpaWaaSbaaWqaaKqzadWdbi aa=ngaaWWdaeqaaKqzadWdbiaa=LcacaWFPaaaaKqzGeGaa8xlaiaa =fdacaWFPaaaaa@67C0@ Eq:3

I s = I rs ( T c T ref ) 3 × e q E g AK  ( 1 T c  -   1 T ref ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LeajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa83Caaqcfa4daeqaaaWdbeqaaKqzGeGaa8xpaiaa=LeajuaGda WgaaqaaSWdamaaBaaajuaGbaqcLbmapeGaa8NCaiaa=nhaaKqba+aa beaaa8qabeaajugibiaa=HcajuaGdaWcaaGcpaqaaKqzGeWdbiaa=r fajuaGpaWaaSbaaSqaaKqba+qadaWgaaqaaKqzadGaa83yaaqcfaya baaal8aabeaaaOqaaKqzGeWdbiaa=rfajuaGpaWaaSbaaOqaa8qada ahaaWcbeqaa8aadaWgaaadbaWdbiaa=jhacaWFLbGaa8NzaaWdaeqa aaaaaKqbagqaaaaajugib8qacaWFPaqcfa4damaaCaaaleqabaqcfa 4dbmaaCaaabeqaaKqzadGaa83maaaaaaqcLbsacaWFxdGaa8xzaOWa aWbaaSqabeaapaWaaWbaaWqabeaal8qadaWcaaadpaqaaKqzadWdbi aa=fhacqGHxiIkcaWFfbWcpaWaaSbaaWqaaSWdbmaaBaaameaajugW aiaa=DgaaWqabaaapaqabaaabaqcLbmapeGaa8xqaiabgEHiQiaa=T eaaaGaa8hOaSWaaeWaaWWdaeaal8qadaWcaaadpaqaaKqzadWdbiaa =fdaaWWdaeaajugWa8qacaWFubaddaWgaaqaaSWdamaaBaaameaaju gWa8qacaWFJbaam8aabeaaa8qabeaaaaqcLbmacaWFGcGaa8xlaiaa =bkammaaBaaabaWcdaWcaaadpaqaaKqzadWdbiaa=fdaaWWdaeaaju gWa8qacaWFubWcpaWaaSbaaWqaaKqzadWdbiaa=jhacaWFLbGaa8Nz aaadpaqabaaaaaWdbeqaaaGaayjkaiaawMcaaaaaaaaaaa@7AA1@ Eq:4

I sh = V+I R s R p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LeajuaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbma peGaa83Caiaa=HgaaKqba+aabeaaa8qabeaajugibiaa=1dajuaGda WcaaGcpaqaaKqzGeWdbiaa=zfacaWFRaGaa8xsaiabgEHiQiaa=jfa juaGdaWgaaqaaSWdamaaBaaajuaGbaqcLbmapeGaa83Caaqcfa4dae qaaaWdbeqaaaGcpaqaaKqzGeWdbiaa=jfalmaaBaaajuaGbaWcpaWa aSbaaKqbagaajugWa8qacaWFWbaajuaGpaqabaaapeqabaaaaaaa@4DAB@ Eq:5

I= I pv - I d - I sh    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=LeacaWF9aGaa8xsaSWaaSbaaWqaa8aadaWgaaqa a8qacaWFWbGaa8NDaaWdaeqaaaWdbeqaaKqzGeGaa8xlaiaa=Leaju aGdaWgaaqaaSWdamaaBaaajuaGbaqcLbmapeGaa8hzaaqcfa4daeqa aaWdbeqaaKqzGeGaa8xlaiaa=LeajuaGdaWgaaqaaSWdamaaBaaaju aGbaqcLbmapeGaa83Caiaa=HgaaKqba+aabeaaa8qabeaakiaaccka caGGGcaaaa@4B67@ Eq:6

Where, ‘Ipv’ is the light generated current (it is directly proportional to the solar irradiation), ‘Is’ is the saturation or leakage current of the diode. The reverse saturation current of a cell is ‘Irs’, ‘I’ is output current from the PV panel. ‘Id’ is diode current or dark current. ‘A’ is the ideality constant of a silicon diode. ‘Tc’ and ‘Tref’ are the working temperature of cell and reference temperature, respectively in °K. ‘Ns’ is number of cells in series for a PV module. Np is number of parallel module. Eg is the band gap energy of semiconductor. Voc is the open circuit voltage and Isc the short circuit current. Rs and Rsh are series and parallel resistances of solar cell, respectively.13 The typical PV characteristics of a solar cell shown in Figure 2.14 In the figure we can observe that at voltage ‘Vm’ the power is at the maximum. This is the maximum power point of PV characteristics that we need to track using MPPT algorithm.

Figure 2 Typical I-V and PV characteristics of a PV module.14

Modeling and simulation of 60W PV array

The solarex MSX60 PV array is chosen for our modeling and simulation. The typical electrical characteristics of MSX60 modules, each consisting of 36 polycrystalline silicon solar cells, is given in Table 1. P-V characteristics curves obtained from the simulation for MSX 60 modules at Tc=25°C (298°K) and Gr=1000W/m2, A=1.3, Ns=36, Np=1; Tref=298°K(25°C); Eg=1.12eV; Rsh=1000Ω; Rs=0.1Ω.15 For the modeling of PV array, we used MATLAB Simulink. The simulation model in Figures 3˗7 are based on equations 1 to 6. Simulink model of an MSX 60 PV array subsystem is shown in Figure 8. P-V characteristics of the PV array with variation of irradiance and temperature shown in Figure 9 & Figure 10.

Description

MSX 60

Maximum power

60W

Voltage at Pmax (Vmax)

17.1 V

Current at Pmax (Im)

3.5A

Guaranteed minimum Pm

58 W

Short Circuit current (Isc)

3.8A

Open circuit voltage (Voc)

21.1 V

Temperature coefficient Ki

  (0.065±0.15)A/   C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbsaqa aaaaaaaaWdbiaa=HcacaWFWaGaa8Nlaiaa=bdacaWF2aGaa8xnaiaa =flacaWFWaGaa8Nlaiaa=fdacaWF1aGaa8xkaiaa=feacaWFVaGaa8 hOaKqbaoaaCaaabeqaaKqzadGaeSigI8gaaKqzGeGaam4qaaaa@467B@

Table 1 Electrical Characteristics of MSX 60 PV module

Figure 3 Simulation model for calculation of Ipv.
Figure 4 Simulation model for calculation of Irs.
Figure 5 Simulation model for calculation of Is.
Figure 6 Simulation model for calculation of Id.
Figure 7 Simulation model for calculation of I.
Figure 8 Simulink model of MSX 60 PV array subsystem without load.
Figure 9 P-V characteristics of 60 W PV array with variation of irradiance.
Figure 10 P-V characteristics of 60 W PV array with variation of temperature.

The effect of series and shunt resistance on I-V characteristics is shown in Figure 11 & Figure 12 respectively. The output obtained from the model exactly matches with the data provided by the P-V characteristics of MSX 60. In Figure 9 we observed with irradiance increased, power increased. In Figure 10 we observed with temperature increased, power decreased. From Figure 11 & Figure 12 with series resistance increased, current decreased, whereas if shunt resistance increases, current increases. Hence our Simulink model is exactly able to determine the characteristics of PV array. Hence the Simulink model is accurate.

Figure 11 I-V graph for effect of variation of series resistance in 60 W modules.
Figure 12 I-V graph for effect of variation of shunt resistance in 60 W module.

Classical P&O algorithm

Here the P & O algorithm MPPT technique is used in 60 W modelled PV array to find maximum power point. The block diagram of general MPPT Photo Voltaic system is shown in the following Figure 13.16 To track the MPP of PV module, P&O MPPT algorithms have been used. The P&O algorithm shown in Figure 14.17 The P&O starts working at first, by perturbing (increasing and decreasing) the PV array terminal voltage or current at regular interval and then P&O compare the output power of PV array P(K) with that at the previous perturbation P(K-1). In reference voltage perturbation, the PV array output voltage reference is used as the control parameter in conjunction with a controller (PI/ PID controller) to adjust the duty ratio of the MPPT converter. From Figure 1518 we can see that if the power is increase after the perturbation in terminal voltage (dP/dV >0), the perturbation should be kept in the same direction otherwise the perturbation is moved to the opposite direction. The perturbation cycle is repeated until the maximum power is reached at the dP/dV=0.19–22 The perturbation size is kept very small intentionally. It helps to keep the power variation small. PV array with P & O algorithm based MPPT tracking is shown in Figure 16. The comparison between with and without MPP tracking is shown in Figure 17, where we can see that, without MPPT tracker the maximum power point is 37.31W. While, when we used P&O based MPPT tracking the maximum power point become 53.94W. The simulation results of the solar PV with MPPT P&O algorithm is shown in Figure 18, From Figure 18 we can see that at 14.33V we are getting maximum power 53.94W. We also have observed that it takes only 0.07213 minutes to track the maximum power point.

Figure 13 Block diagram of MPPT Photo Voltaic system.16
Figure 14 P&O MPPT algorithm.17
Figure 15 P and O based MPPT technique.18
Figure 16 PV array with P&O algorithm based MPPT tracking.
Figure 17 With MPPT & without MPPT Pmax and Vmax of PV array.
Figure 18 With P & O MPPT Pmax and Vmax of PV array.

Neural network based MPPT technique

Here neural network is used to track MPP of our implemented 60W PV array. In our work, the Levenberg-Marquardt algorithm is implemented using MATLAB to train the neural network. The Levenberg-Marquardt method is a very fast and accurate technique for solving nonlinear least squares problems. Since the variations of temperature and irradiance effect are highly nonlinear in producing the output power and voltage, we decided to use the Levenberg-Marquardt algorithm to train the neural network. The following steps describe how we implement the neural network based MPPT for a PV array.

  1. Selecting network structure
  2. The input information is connected to the hidden layers through weighted interconnections where the output data is calculated. The number of hidden layers and the number of neurons in each layer controls the performance of the network. Neural network is a trial and error design method. The ANN developed in this paper with two inputs solar irradiance and temperature, one output layer consists of two neurons (Vmax, Pmax) and one hidden layer, shown in Figure 19. As the problem is not linearly separable hence it will require a hidden layer with neurons with “tan sigmoid” activation function. Sigmoid function is used because it is differentiable. The one output layer has two neurons with “purelinear” activation function which is linear transfer function.

    Figure 19 For MPPT proposed ANN structure.
  3. Collecting data
  4. The Simulink model of PV array is simulated for a range of solar irradiances and temperatures to find corresponding Pmax and Vmax shown in Figure 20. A set of 104 Pmax and Vmax data points are derived from the Simulink simulation.

    Figure 20 Simulink model of PV array with resistive load (Battery resistance) for actual Pmax and Vmax data collection.
  5. Training the network
  6. From the set of 104 data points, 94 data points are used as training data. The training points are passed into the designed network to teach it how to perform when different points than the training points are inserted to it.

  7. Testing the network
  8. After training of the neural network is completed, then 10 of the collected data points are used as test points. The function of test points is to evaluate the performance of the designed ANN after its training is finished. The error is then feedback to the neural network for further training. The network is trained using the MATLAB NNET tool box shown in Figure 21.

Figure 21 ANN training with MATLAB NNET toolbox.

Results and discussion for neural network MPPT

The network which was fully trained with the lowest error is capable to be used in the testing process. Performance of ANN to minimize the RMS error is shown in the training performance curve of Figure 22. Network was trained until it achieved a very small MSE typically 0.67707e-5 which reached after 1000 epochs. From the regression plot in Figure 23, we can observe that the outputs from the neural model closely match the target values. For 10 new testing input irradiance and temperature data points the neural network has been tested. These data point are [Irr (W/m2), T(°K)]=[800,291], [1000,300], [500,300], [240,310], [600,293], [400,302], [700,312], [500,313], [125,299] and [440,296] shown in Table 2. In shown in Figure 24 & Figure 25 we can see that, at each time, the neural network provided Pmax and Vmax data points clearly matched with measured data points from the actual Simulink model (Figure 20).

Test point

Irradiance W/m2

Temperature in°K

Vmp actual

Vmp NN

Pmp actual

Pmp NN

1

[800,291]

291

17.724

17.8007

41.0356

41.0449

2

[1000,300]

300

16.88

16.8174

51.1766

51.1813

2

[500,300]

300

15.614

15.6228

20.405

20.4183

4

[240,310]

310

11.816

11.8301

5.9104

5.9089

5

[600,293]

293

16.88

16.8582

27.52

27.3494

6

[400,302]

302

14.77

14.7676

14.4407

14.4022

7

[700,312]

312

14.77

14.6336

29.7503

29.7581

8

[500,313]

313

13.926

13.8895

18.7714

18.8061

9

[125,299]

299

6.752

6.9196

1.6425

1.5521

10

[440,296]

296

16.036

15.8739

17.2106

17.2097

Table 2 For 10 irradiance and temperature data input, the actual and neural network output data Pmp and Vmp

Figure 22 Training performance curve.
Figure 23 Regression plot.
Figure 24 Pmp from neural network and actual Simulink model with different testing point.
Figure 25 Vmp from neural network and actual Simulink model with different testing point.

Conclusion

Extracting the maximum power out of the PV array is a critical step in harvesting renewable energy. The goal of the MPPT technique is to extract the maximum power available in the PV array. 60WPV array is developed by using MATLAB/Simulink. The irradiance and temperature are two factors for which the PV array output power varies. The comparison between without MPPT and with MPPT (using P&O algorithm technique) is shown by using the actual Simulink model of 60 WPV array. The Simulink model of MPPT using P&O algorithm is simulated for a constant irradiation of 1000 W/m2 and temperature of 27°C (300°K) for which we get 53.94W across the load at 14.33V. It has been shown that simulations of solar PV array without MPPT provided 37.31W of power. This shows that the use of MPPT in PV arrays have improved the efficiency of solar PV system and maximized the output power. The comparison between P&O algorithm for MPPT and neural network technique for MPP tracking also observed in this paper. The neural network is trained by using Irr and T(°K) input data and Pmp and Vmp output data. From the regression plot, we observed that the tested data exactly matched with target values, hence training of neural network has been proved accurate. We tested the neural network for 10 new input data (Irr, T (°K)), we observed from the graph that the output (Pmp, Vmp) of neural network exactly matched with actual 60 W PV array output. By using the neural network at an irradiance of 1000 W/m2 and temperature of 27°C (300°K), we were able to obtain the output power of 51.1813W at 16.8174V. The actual 60 W Simulink model of PV array shows the maximum power of 51.1766W at 16.8800V. Hence the neural network algorithm can predict more accurate results than the classic P&O algorithm based MPPT method. We have observed that it takes only 0.07213 minutes to track the maximum power point by using P&O algorithm, whereas the neural network techniques take only a few seconds. In P&O based MPPT, we developed MATLAB code for P&O algorithm and DC-DC buck boost converter Simulink model for changing the PV’s terminal voltage to track the maximum power. We observed that the neural network is quite simple to develop. For different temperature and irradiance, the neural network provides more accurate and faster results than P&O based MPPT. The future work can be, the implementation of a neural network MPPT technique for a real PV panel.

Data availability

The research article data used to support the findings of this study are included within the article.

Acknowledgements

This work is funded in part by Florida A&M University and Florida State University.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. Kaundinya DP, Balachandra P, Ravindranath NH. Grid-connected versus standalone energy systems for decentralized power—a review of literature. Renewable Sustainable Energy Rev. 2009;13(8):2041–2050.
  2. Parida B, Iniyanb S, Goicc R. A review of solar photovoltaic technologies. Renewable Sustainable Energy Rev. 2011;15(3):1625–1636.
  3. Himri Y, Malik AS, Stambouli AB, et al. Review and use of the Algerian renewable energy for sustainable development. Renewable Sustainable Energy Rev. 2009;13(6–7):1584–1591.
  4. Mellit A, Kalogirou SA, Hontoria L, et al. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renewable Sustainable Energy Rev. 2009;13(2):406–419.
  5. Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms. Prog Photovoltaics Res Appl. 2003;11:47–62.
  6. Salas V, Olias E, Barrado A, et al. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol Energy Mater Sol Cells. 2006;90(11):1555–1578.
  7. Esram T, Chapman PL. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Converse. 2007;22(2):439–449.
  8. Jain S, Agarwal V. Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electr Power Appl. 2007;1(5):753–762.
  9. Femia N, Granozio D, Petrone G, et al. Predictive & adaptive mppt perturb and observe method. IEEE Trans Aerosp Electron Syst. 2007;43(3):934–950.
  10. Yu T, Lin Y. A Study on Maximum Power Point Tracking Algorithms for Photovoltaic Systems. Applied Power Electronics Colloquium. 2010;1–10.
  11. Karabacak K, Cetin N. Artificial neural networks for controlling wind-PV power systems: A review. Renew Sustain Energy Rev. 2014;29:804–827.
  12. Kamath HR, Aithal RS, Kumar PKSA, et al. Modeling of Photovoltaic Array and Maximum Power Point Tracker Using ANN. 2012;1–13.
  13. Pukhrem S. A Photovoltaic Panel Model in Matlab/Simulink. MathWorks. 2013;20–23.
  14. Ibrahim H, Anani N. Variations of PV module parameters with irradiance and temperature. Energy Procedia. 2017;134:276–285.
  15. King DL. Photovoltaic Module and Array Performance Characterization Methods for All System Operating Conditions. AIP Conf. 1997;301(1):347–368.
  16. Malek H, Dadras S, Chen Y, et al. Maximum Power Point Tracking Techniques for Efficient Photovoltaic Microsatellite Power Supply System.. AIAA/USU Conf Small Satell. 2012;1–14.
  17. Bharti RN, Kumar R, Professor M. Modeling and Simulation of Maximum Power Point Tracking for Solar PV System using Perturb and Observe Algorithm. Int J Eng Res Technol. 2014;3(7):675–681.
  18. Mohammad N, Quamruzzaman M, Rubaiyat M, et al. Parasitic Effects on the Performance of DC DC SEPIC in Photovoltaic Maximum Power Point Tracking Applications. Smart Grid Renew. Energy. 2013;4:113–121.
  19. Babu BC, Cermak T, Gurjar S, et al. Analysis of mathematical modeling of PV module with MPPT algorithm. 2015 IEEE 15th International Conference Environment and Electrical Engineering; 2015 June 10-13; Rome, Italy. IEEE; 2015.
  20. Sreekumar AV, Rajendran A. Performance enhancement of PV arrays under partial shading conditions using SEPIC converter.. ICCPEIC. 2014;218–223.
  21. Jayalakshmi NS, Gaonkar DN. Maximum Power Point Tracking for Grid Integrated Variable Speed Wind based Distributed Generation System with Dynamic Load. 2014;4(2):1–7.
  22. Ramani SU, Kumar S, Ieee K, et al. Conductance method for PV System. 2017.
Creative Commons Attribution License

©2018 Khanam, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.