Submit manuscript...
eISSN: 2575-906X

Biodiversity International Journal

Research Article Volume 2 Issue 1

Comparison of sediment transport models on river Omi, South-Western Nigeria

Olaniyan OS, Adegbola AA

Department of Civil Engineering, Ladoke Akintola University of Technology, Nigeria

Correspondence: Olaniyan OS, Department of Civil Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria,

Received: October 22, 2017 | Published: January 25, 2018

Citation: Olaniyan OS, Adegbola AA. Comparison of sediment transport models on river Omi, South-Western Nigeria. Biodiversity Int J. 2018;2(1):45-51. DOI: 10.15406/bij.2018.02.00042

Download PDF

Abstract

Insufficient hydrological record on most Nigerian rivers has discouraged research on sediment transportation study. Hydrometric stations on some major rivers in Nigeria are not functional as expected. Simulation of flow and sediment transport in water bodies can only be achieved by using hydrological records of 15 years at minimum. Fifteen years hydrological records on River Ona were adopted on River Omi due to similar hydrological properties. Hydrological data were measured on the river at seven measuring stations from 2009 - 2015. Existing Sediment transport models were used to simulate total load and a model was also developed based on measured hydrological data. Ackers and White and Shen and Hung method predicted total sediment load of River Omi more than measured values. This may be due to the fact that the variables in the formulae were derived under different conditions from River Omi. Yang and Eugelund and Hansen prediction among the selected methods were relatively close to the measured values. The developed model from measured hydrological data on River Omi water simulate total suspended load than other methods with 70-85% accuracy.

Keywords: sediment transport models, river omi, hydrological record, hydrological, turbidity against gauge

Introduction

The processes of sediment transport, scour, and deposition in an alluvial channel are extremely complex. Theoretical developments of sediment transport functions for different flow and sediment conditions are based on assumptions of different degrees of complexity.1 Some of the simplified assumptions are based on idealized laboratory conditions that may not be true for the much more complicated natural river systems.2,3 Ahmed & Medhaat4 and Chang5 opined that sediment transport is an important part in the quantitave and qualitative management of river engineering. The rate of sediment transport in water bodies depends on availability of transport materials and transport capability of the water bodies. For a scientific approach to sedimentation, morphology and behaviour of the river must be understood. Morphology (of river) is a field of science which deals with the change of river plan form and cross sections due to sedimentation and erosion. In this field, dynamics of flow and sediment transport are the principal elements.6 The morphological studies, therefore, play an important role in planning, designing and maintaining river engineering structures. In recent years, there has been a growing awareness about the need for taking up morphological study of rivers in the country, especially with particular reference to their unique problems.7,8

Sediment transport is divided into different categories. The transport modes of particular relevance in morphological modelling are suspended load materials and the bed load. Wash load by definition does not interact with sediment on the river bed. Measurements of sediment transport rate at different locations are useful for calibration of the sediment transport model.9 Incidence of flooding has been on the increase in Ibadan, Oyo State Nigeria recently; and this exemplifies the problem operating in most urban centres in Nigeria. Problems associated with high runoff discharge have been a common occurrence in some parts of Nigeria like Ilorin, Ibadan, Lokoja, Delta, Benue and Bayelsa, to mention a few. This extreme hydro-climatic event exemplifies the problem currently operating not only in Nigeria but also in most developing countries of the world. The need for studies relating to river catchment analysis therefore becomes pertinent.10 Most rivers in South-Western Nigeria particularly River Omi, River Ogunpa and River Oba are not fully gauged, with the resultant evidence of little or no hydrological record. Hydrometric stations are not adequate and those that are monitored have interrupted hydrological records. Olaniyan9 described that there are three sediment transport modes. They are wash load, bed load and suspended load. Wash load are very fine particles which are transported by the water, but these particles do not exist on the bed. Therefore the knowledge of bed material composition does not permit any prediction of wash load transport.11 Yang & Simoes12 described bed load as part of the total load which has more or less continuous contact with the bed. Thus the bed load must be determined in relation to the effective shear stress which acts directly on the grain surface. Suspended load are part of the total load which is moving without continuous contact with the bed as the result of the agitation of the fluid turbulence.13 The basic idea of splitting the total sediment load into bed-load and suspended load is that, as described above, two different mechanisms are effective during the transport.9,14

Brief description of the study area

This research is designed for River Omi located within Iddo Local Government area of Ibadan. It lies between longitude 3°28'45"-4°10'14" East and Latitude 7°01'44"-7°45'28" North of the equator. The river is about 14.5 km with frequent flooding experience like August, 2011 flooding in Ibadan. The catchment area of the river is 123.53 km2. The river ranges from (0.50-2.00) m spot height and 19 km from the source to the study area.15 River Omi is an alluvial river with channels and floodplains that are self-formed in unconsolidated or weakly-consolidated sediments (Figure 1).

Figure 1 Hydrological Map of part of Ibadan showing Sampling Stations on River Omi.

Scope of research

This research work considered non-cohesive sediment and utilized effective mean diameter. Sixteen years (16years) river hydraulic data from River Ona were adopted on River Omi due to their similar hydrological characteristics. River Omi is a tributary of River Ona both located in Ibadan. Five (5) years of hydraulic data measured on River Omi from June 2010 were used for this study.

Methodology

Hydraulics and sediment transport data sets including discharge, bed load, suspended load and total load were collected from the measuring locations on the River omi from 2009 to 2014. Gauge and discharge records from 1970-1986 were plotted in Microsoft excel and mathematical equation between the two records was obtained. The equation was analysed using running method according to Subramanya.16 It was calibrated and validated using measured hydrological data from 2010-2013 and 2014, respectively. This was in agreement with approach by Subramanya16 and Adegbola & Olaniyan17 to deal with hydrological catchments with inadequate data. Flow meter (model 32986) was used to measure the velocity at each cross section. Flow depth was measured using surveying equipment; wetted area and perimeter were also determined.The measuring points on the river are shown in Table 1. Insufficient data is a pertinent problem for hydrologist most especially discharges. Wilson (1990) opined that it is possible to reproduce series of data exhibiting variation as the natural data. Synthetic data in this study were generated using Institute of Hydrology equation was used to predict discharge as shown in equation 1. In this study, the synthesis data was neither use for calibration or validation. The synthesis data only shows the rainfall intensity and catchment properties over the years.

Q=0.00066Are a 0.92 SAA R 1.22 SOI L 2.0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGrbGaeyypa0JaaGimaiaac6cacaaIWaGaaGimaiaaicda caaI2aGaaGOnaiaadgeacaWGYbGaamyzaiaadggajuaGpaWaaWbaaS qabKqaGeaajugWa8qacaaIWaGaaiOlaiaaiMdacaaIYaaaaKqzGeGa am4uaiaadgeacaWGbbGaamOuaKqba+aadaahaaWcbeqcbasaaKqzad WdbiaaigdacaGGUaGaaGOmaiaaikdaaaqcLbsacaWGtbGaam4taiaa dMeacaWGmbqcfa4damaaCaaaleqajeaqbaqcLboapeGaaGOmaiaac6 cacaaIWaaaaaaa@5790@                   1

SOIL= 0.15 S 1 +0.30 S 2 +0.40 S 3 +0.45 S 4 +0.5 S 5 S 1 + S 2 + S 3 + S 4 + S 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGtbGaam4taiaadMeacaWGmbGaeyypa0tcfa4aaSaaaOWd aeaajugib8qacaaIWaGaaiOlaiaaigdacaaI1aGaae4uaSWdamaaBa aajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaa icdacaGGUaGaaG4maiaaicdacaqGtbWcpaWaaSbaaKqaGeaajugWa8 qacaaIYaaajeaipaqabaqcLbsapeGaey4kaSIaaGimaiaac6cacaaI 0aGaaGimaiaabofajuaGpaWaaSbaaKqaGeaajugWa8qacaaIZaaal8 aabeaajugib8qacqGHRaWkcaaIWaGaaiOlaiaaisdacaaI1aGaae4u aSWdamaaBaaajeaqbaqcLboapeGaaGinaaqcba0daeqaaKqzGeWdbi abgUcaRiaaicdacaGGUaGaaGynaiaabofajuaGpaWaaSbaaKqaafaa jug4a8qacaaI1aaal8aabeaaaOqaaKqzGeWdbiaabofal8aadaWgaa qcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcaqG tbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaWcpaqabaqcLbsape Gaey4kaSIaae4uaKqba+aadaWgaaqcbasaaKqzadWdbiaaiodaaSWd aeqaaKqzGeWdbiabgUcaRiaabofajuaGpaWaaSbaaKqaGeaajugWa8 qacaaI0aaal8aabeaajugib8qacqGHRaWkcaqGtbqcfa4damaaBaaa jeaibaqcLbmapeGaaGynaaWcpaqabaaaaaaa@7C02@                            2

Where:

S1-S5=Proportion of catchment covered by each soil class 1-5

S1=Soil class 1 with highest infiltration capacity

S5=Soil class 5 with highest infiltration capacity

SAAR=Average annual rainfall obtained by taken weight average over the catchment

Sampling Station

Longitude

Latitude

 

Upstream

(Z1)

7.425

3.795

(Z2)

7.425

3.780

(Z3)

7.425

3.770

(Z4)

7.425

3.786

 

Mid-stream

(Z5)

7.425

3.778

(Z6)

7.425

3.773

Down-stream

(Z7)

7.373

3.773

Table 1 Location of Sampling Stations on River Omi.

Total sediment load measurement

Suspended load was measured by using standard light weight hand held sediment sampler (US DH-48). Depth integrated sampler was used to collect water sample at 0.1, 0.5 and 1.0m depth from water surface. The sampling at each depth were done two times, analysed and averaged for Suspended Sediment Concentration (SSC) computation. Sediment sampling was taken twice in a week and this was increase during high during flood events when turbidity changes more quickly. A relationship between turbidity and suspended sediment concentration were established at each location by sampling a wide range of turbidities and sediment concentrations over a year. 50 ml of thoroughly mixed water samples from each station was filtered through 0.4µm, oven dried and weighed to determine the SSC using equation 3.13 Turbid meter (HI 93703) was used to measure turbidity of the water sample and a calibration curve was developed.

SSC= { ( weightofmembranefilter+dryresidue )weightofmembranefilter }( mg )×1000 VolumeofFilteredwater( mL ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqGtbGaae4uaiaaboeacqGH9aqpjuaGdaWcaaGcpaqaaKqb a+qadaGadaGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaabEhaca qGLbGaaeyAaiaabEgacaqGObGaaeiDaiaab+gacaqGMbGaaeyBaiaa bwgacaqGTbGaaeOyaiaabkhacaqGHbGaaeOBaiaabwgacaqGMbGaae yAaiaabYgacaqG0bGaaeyzaiaabkhacqGHRaWkcaqGKbGaaeOCaiaa bMhacaqGYbGaaeyzaiaabohacaqGPbGaaeizaiaabwhacaqGLbaaki aawIcacaGLPaaajugibiabgkHiTiaabEhacaqGLbGaaeyAaiaabEga caqGObGaaeiDaiaab+gacaqGMbGaaeyBaiaabwgacaqGTbGaaeOyai aabkhacaqGHbGaaeOBaiaabwgacaqGMbGaaeyAaiaabYgacaqG0bGa aeyzaiaabkhaaOGaay5Eaiaaw2haaKqbaoaabmaak8aabaqcLbsape GaaeyBaiaabEgaaOGaayjkaiaawMcaaKqzGeGaey41aqRaaGymaiaa icdacaaIWaGaaGimaaGcpaqaaKqzGeWdbiaabAfacaqGVbGaaeiBai aabwhacaqGTbGaaeyzaiaab+gacaqGMbGaaeOraiaabMgacaqGSbGa aeiDaiaabwgacaqGYbGaaeyzaiaabsgacaqG3bGaaeyyaiaabshaca qGLbGaaeOCaKqbaoaabmaak8aabaqcLbsapeGaaeyBaiaabYeaaOGa ayjkaiaawMcaaaaaaaa@9829@                3

SSC = mg/l/1000/1000 = tonne L-1

SSC = Suspended Sediment Concentration (mg/l)

Bed materials were collected using Van veen grab samplers at upstream, midstream and downstream. The scoop was used to take bed material samples at each gauging site by positioning it at an angle on the stream bed and the wire pulled in order to raise the shutter. The obtained samples from upstream, midstream and downstream were mixed together and part of the mixture was taken to the laboratory for particle size analysis as shown in Table 2.

Grain Size (mm)

Average Grain Size (mm)

Percentage Distribution

D>2.00

-

17.29

2.00>D>0.600

0.920

32.5

0.600>D>0.200

0.360

39.3

0.200>D

-

Table 2 Grain size distribution on River Omi Bed Materials.
D50=0.40mm, D65=0.90mm, D95=1.90mm

The unmeasured sediment loads discharged at the gauging sites on the river was estimated by using Colby approach as described by Otun & Adeogun.18 The bed load component of the unmeasured sediment is accounted for by analyzing the bed materials sampled at the gauging sites. Meyer-Peter and Müller’s 1948, Ackers and White’s 1973, Engelund and Hansen’s 1972 and Yang’s 1979 sand and 1984 gravel transport formulas were used in this study for computing sediment transportation.

Engelund and hansen's approach: Engelund and Hansen (1972) used Bagnold's stream power concept and the similarity principle to obtain a sediment transport function as shown:9

f i ϕ=0.1 θ (5/2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGMbqcfa4damaaCaaaleqajeaibaqcLbmapeGaamyAaaaa jugib8aacqaHvpGzpeGaeyypa0JaaGimaiaac6cacaaIXaGaeqiUde 3cpaWaaWbaaKqaGeqabaqcLbmapeGaaiikaiaaiwdacaGGVaGaaGOm aiaacMcaaaaaaa@4729@       4

Where:

f i =2gSD/ V 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGMbWcpaWaaWbaaKqaGeqabaqcLbmapeGaamyAaaaajugi biabg2da9iaaikdacaWGNbGaam4uaiaadseacaGGVaGaamOvaSWdam aaCaaajeaibeqaaKqzadWdbiaaikdaaaaaaa@42E3@     4(a)

= q t γ [ γ s γ γ g d 3 ] 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqGHfiIXcqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaadgha l8aadaWgaaqcbasaaKqzadWdbiaadshaaKqaG8aabeaaaOqaaKqzGe Wdbiabeo7aNbaajuaGdaWadaGcpaqaaKqba+qadaWcaaGcpaqaaKqz GeWdbiabeo7aNLqba+aadaWgaaqcbasaaKqzadWdbiaadohaaSWdae qaaKqzGeWdbiabgkHiTiabeo7aNbGcpaqaaKqzGeWdbiabeo7aNbaa caWGNbGaamizaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaa aakiaawUfacaGLDbaajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGH sislcaaIWaGaaiOlaiaaiwdaaaaaaa@5913@      4(b)

θ= τ ( γ s γ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaH4oqCcqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabes8a 0bGcpaqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabeo7aNLqba+aada WgaaqcbasaaKqzadWdbiaadohaaSWdaeqaaKqzGeWdbiabgkHiTiab eo7aNbGccaGLOaGaayzkaaqcLbsacaWGKbaaaaaa@48FE@      4(c)

Where:

g=Gravitational acceleration (m/s),

S=Energy slope,

V=Average flow velocity (m/s),

q=Total sediment discharge by weight per unit width,

and =Specific weights of sediment and water, respectively,

d=Median particle diameter, and

τ=Shear stress along the bed

Ackers and white's approach: This approach applied dimensional analysis to express mobility and sediment transport rate in terms of some dimensionless parameters 19 The mobility number for sediment transport is given as:

F gr = U 0 n [ gd( γ s γ 1 ) ] 1/2 [ V 32 loglog( αD d ) ] 1n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbqcfa4damaaBaaajeaibaqcLbmapeGaam4zaiaadkha aSWdaeqaaKqzGeWdbiabg2da9iaadwfajuaGpaWaa0baaKqaGeaaju gWa8qacaaIWaaajeaipaqaaKqzadWdbiaad6gaaaqcfa4aamWaaOWd aeaajugib8qacaWGNbGaamizaKqbaoaabmaak8aabaqcfa4dbmaala aak8aabaqcLbsapeGaeq4SdCwcfa4damaaBaaajeaibaqcLbmapeGa am4CaaWcpaqabaaakeaajugib8qacqaHZoWzaaGaeyOeI0IaaGymaa GccaGLOaGaayzkaaaacaGLBbGaayzxaaqcfa4damaaCaaaleqajeai baqcLbmapeGaeyOeI0IaaGymaiaac+cacaaIYaaaaKqbaoaadmaak8 aabaqcfa4dbmaalaaak8aabaqcLbsapeGaamOvaaGcpaqaaKqba+qa daGcaaGcpaqaaKqzGeWdbiaaiodacaaIYaaaleqaaKqzGeGaciiBai aac+gacaGGNbGaciiBaiaac+gacaGGNbqcfa4aaeWaaOWdaeaajuaG peWaaSGaaOWdaeaajugib8qacqaHXoqycaWGebaak8aabaqcLbsape GaamizaaaaaOGaayjkaiaawMcaaaaaaiaawUfacaGLDbaajuaGpaWa aWbaaSqabKqaGeaajugWa8qacaaIXaGaeyOeI0IaamOBaaaaaaa@74A4@                     5

Where:

U0=Shear velocity

n=Transition exponent, depending on sediment size

a=Coefficient in rough turbulent equation (= l0),

d=Sediment particle size, and

D=Water depth

The dimensionless grain diameter which expresses grain size is given as:

d gr =d [ g( γ s γ 1 ) v 2 ] 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGKbqcfa4damaaBaaajeaibaqcLbmapeGaam4zaiaadkha aSWdaeqaaKqzGeWdbiabg2da9iaadsgajuaGdaWadaGcpaqaaKqba+ qadaWcaaGcpaqaaKqzGeWdbiaadEgajuaGdaqadaGcpaqaaKqba+qa daWccaGcpaqaaKqzGeWdbiabeo7aNLqba+aadaWgaaqcbasaaKqzad WdbiaadohaaSWdaeqaaaGcbaqcLbsapeGaeq4SdCgaaiabgkHiTiaa igdaaOGaayjkaiaawMcaaaWdaeaajugib8qacaWG2bqcfa4damaaCa aaleqajeaibaqcLbmapeGaaGOmaaaaaaaakiaawUfacaGLDbaajuaG paWaaWbaaSqabKazba2=baqcLbmapeGaaGymaiaac+cacaaIZaaaaa aa@5A3A@                    6

Where

 v=Kinematic viscosity

The generalized dimensionless sediment transport function can be simply expressed as:

G gr =C ( F gr A 1 ) m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGhbqcfa4damaaBaaajeaibaqcLbmapeGaam4zaiaadkha aSWdaeqaaKqzGeWdbiabg2da9iaadoeajuaGdaqadaGcpaqaaKqba+ qadaWcaaGcpaqaaKqzGeWdbiaadAeajuaGpaWaaSbaaKqaGeaajugW a8qacaWGNbGaamOCaaWcpaqabaaakeaajugib8qacaWGbbaaaiabgk HiTiaaigdaaOGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaad2gaaaaaaa@4CC0@                              7

Ackers and White (1973) used laboratory data to determine the values of A, C, m, and n with sediment size greater than 0.04 mm and Froude number less than 0.8. For the transition zone with 1< dgr≤ 60,

n=l .00 - 0.56 log dgr            8

A=0.23 d g r (1/2) +0.143 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGbbGaeyypa0JaaGimaiaac6cacaaIYaGaaG4maiaadsga juaGpaWaaSbaaKqaGeaajugWa8qacaWGNbaal8aabeaajugib8qaca WGYbqcfa4damaaCaaaleqajeaibaqcLbmapeGaaiikaiabgkHiTiaa igdacaGGVaGaaGOmaiaacMcaaaqcLbsacqGHRaWkcaaIWaGaaiOlai aaigdacaaI0aGaaG4maaaa@4CAC@      9

For coarse sediment, dgr>60

n=0, A=0.17, m =1.5 and C=0.025

For the transition zone:

m= 9.66 d gr +1.34 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGTbGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaI5aGa aiOlaiaaiAdacaaI2aaak8aabaqcLbsapeGaamizaKqba+aadaWgaa qcbasaaKqzadWdbiaadEgacaWGYbaal8aabeaaaaqcLbsapeGaey4k aSIaaGymaiaac6cacaaIZaGaaGinaaaa@470B@      10

loglogC=2.86loglog d gr ( loglog d gr ) 2 3.53 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgacaWGdbGa eyypa0JaaGOmaiaac6cacaaI4aGaaGOnaiGacYgacaGGVbGaai4zai GacYgacaGGVbGaai4zaiaadsgajuaGpaWaaSbaaKqaGeaajugWa8qa caWGNbGaamOCaaWcpaqabaqcLbsapeGaeyOeI0scfa4aaeWaaOWdae aajugib8qaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgacaWG Kbqcfa4damaaBaaajeaibaqcLbmapeGaam4zaiaadkhaaSWdaeqaaa GcpeGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa ikdaaaqcLbsacqGHsislcaaIZaGaaiOlaiaaiwdacaaIZaaaaa@621B@             11 

Yang approach: Yang20,21 extended his dimensionless unit stream power equation for sand transport to gravel transport. The gravel and sand equations thus obtained is:

loglog C tg =6.6810.633loglog ωd v 4.816loglog U * ω +( 2.7840.305loglog ωd v 0.282loglog U * ω )loglog( VS ω V cr S ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgacaWGdbqc fa4damaaBaaaleaajugib8qacaWG0bGaam4zaaWcpaqabaqcLbsape Gaeyypa0JaaGOnaiaac6cacaaI2aGaaGioaiaaigdacqGHsislcaaI WaGaaiOlaiaaiAdacaaIZaGaaG4maiGacYgacaGGVbGaai4zaiGacY gacaGGVbGaai4zaKqbaoaalaaak8aabaqcLbsapeGaeqyYdCNaamiz aaGcpaqaaKqzGeWdbiaadAhaaaGaeyOeI0IaaGinaiaac6cacaaI4a GaaGymaiaaiAdaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEga juaGdaWcaaGcpaqaaKqzGeWdbiaadwfajuaGpaWaaSbaaKqaGeaaju gWa8qacaGGQaaal8aabeaaaOqaaKqzGeWdbiabeM8a3baacqGHRaWk juaGdaqadaGcpaqaaKqzGeWdbiaaikdacaGGUaGaaG4naiaaiIdaca aI0aGaeyOeI0IaaGimaiaac6cacaaIZaGaaGimaiaaiwdaciGGSbGa ai4BaiaacEgaciGGSbGaai4BaiaacEgajuaGdaWcaaGcpaqaaKqzGe WdbiabeM8a3jaadsgaaOWdaeaajugib8qacaWG2baaaiabgkHiTiaa icdacaGGUaGaaGOmaiaaiIdacaaIYaGaciiBaiaac+gacaGGNbGaci iBaiaac+gacaGGNbqcfa4aaSaaaOWdaeaajugib8qacaWGvbqcfa4d amaaBaaajeaibaqcLbmapeGaaiOkaaWcpaqabaaakeaajugib8qacq aHjpWDaaaakiaawIcacaGLPaaajugibiGacYgacaGGVbGaai4zaiGa cYgacaGGVbGaai4zaKqbaoaabmaak8aabaqcfa4dbmaalaaak8aaba qcLbsapeGaamOvaiaadofaaOWdaeaajugib8qacqaHjpWDaaGaeyOe I0scfa4aaSaaaOWdaeaajugib8qacaWGwbqcfa4damaaBaaajeaiba qcLbmapeGaam4yaiaadkhaaSWdaeqaaKqzGeWdbiaadofaaOWdaeaa jugib8qacqaHjpWDaaaakiaawIcacaGLPaaaaaa@A9DD@              12(a)

loglog C ts =5.4350.286loglog ωd v 0.457loglog U * ω +( 1.7990.409loglog ωd v 0.314loglog U * ω )loglog( VS ω V cr S ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgacaWGdbqc fa4damaaBaaajeaibaqcLbmapeGaamiDaiaadohaaSWdaeqaaKqzGe Wdbiabg2da9iaaiwdacaGGUaGaaGinaiaaiodacaaI1aGaeyOeI0Ia aGimaiaac6cacaaIYaGaaGioaiaaiAdaciGGSbGaai4BaiaacEgaci GGSbGaai4BaiaacEgajuaGdaWcaaGcpaqaaKqzGeWdbiabeM8a3jaa dsgaaOWdaeaajugib8qacaWG2baaaiabgkHiTiaaicdacaGGUaGaaG inaiaaiwdacaaI3aGaciiBaiaac+gacaGGNbGaciiBaiaac+gacaGG Nbqcfa4aaSaaaOWdaeaajugib8qacaWGvbqcfa4damaaBaaajeaqba qcLboapeGaaiOkaaWcpaqabaaakeaajugib8qacqaHjpWDaaGaey4k aSscfa4aaeWaaOWdaeaajugib8qacaaIXaGaaiOlaiaaiEdacaaI5a GaaGyoaiabgkHiTiaaicdacaGGUaGaaGinaiaaicdacaaI5aGaciiB aiaac+gacaGGNbGaciiBaiaac+gacaGGNbqcfa4aaSaaaOWdaeaaju gib8qacqaHjpWDcaWGKbaak8aabaqcLbsapeGaamODaaaacqGHsisl caaIWaGaaiOlaiaaiodacaaIXaGaaGinaiGacYgacaGGVbGaai4zai GacYgacaGGVbGaai4zaKqbaoaalaaak8aabaqcLbsapeGaamyvaKqb a+aadaWgaaWcbaqcLbsapeGaaiOkaaWcpaqabaaakeaajugib8qacq aHjpWDaaaakiaawIcacaGLPaaajugibiGacYgacaGGVbGaai4zaiGa cYgacaGGVbGaai4zaKqbaoaabmaak8aabaqcfa4dbmaalaaak8aaba qcLbsapeGaamOvaiaadofaaOWdaeaajugib8qacqaHjpWDaaGaeyOe I0scfa4aaSaaaOWdaeaajugib8qacaWGwbqcfa4damaaBaaajeaiba qcLbmapeGaam4yaiaadkhaaSWdaeqaaKqzGeWdbiaadofaaOWdaeaa jugib8qacqaHjpWDaaaakiaawIcacaGLPaaaaaa@AA2C@               12 (b)

Yang (1996) extended his dimensionless unit stream power equation for sand transport to gravel transport. The gravel equation thus obtained is:

loglog C t =5.1650.153loglog ωd v 0.297loglog U * ω +( 1.7800.36loglog ωd v 0.48loglog U * ω )loglog( VS ω γ γ s γ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgacaWGdbqc fa4damaaBaaajeaibaqcLbmapeGaamiDaaWcpaqabaqcLbsapeGaey ypa0JaaGynaiaac6cacaaIXaGaaGOnaiaaiwdacqGHsislcaaIWaGa aiOlaiaaigdacaaI1aGaaG4maiGacYgacaGGVbGaai4zaiGacYgaca GGVbGaai4zaKqbaoaalaaak8aabaqcLbsapeGaeqyYdCNaamizaaGc paqaaKqzGeWdbiaadAhaaaGaeyOeI0IaaGimaiaac6cacaaIYaGaaG yoaiaaiEdaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEgajuaG daWcaaGcpaqaaKqzGeWdbiaadwfajuaGpaWaaSbaaKqaGeaajugWa8 qacaGGQaaal8aabeaaaOqaaKqzGeWdbiabeM8a3baacqGHRaWkjuaG daqadaGcpaqaaKqzGeWdbiaaigdacaGGUaGaaG4naiaaiIdacaaIWa GaeyOeI0IaaGimaiaac6cacaaIZaGaaGOnaiGacYgacaGGVbGaai4z aiGacYgacaGGVbGaai4zaKqbaoaalaaak8aabaqcLbsapeGaeqyYdC NaamizaaGcpaqaaKqzGeWdbiaadAhaaaGaeyOeI0IaaGimaiaac6ca caaI0aGaaGioaiGacYgacaGGVbGaai4zaiGacYgacaGGVbGaai4zaK qbaoaalaaak8aabaqcLbsapeGaamyvaKqba+aadaWgaaqcbasaaKqz adWdbiaacQcaaSWdaeqaaaGcbaqcLbsapeGaeqyYdChaaaGccaGLOa GaayzkaaqcLbsaciGGSbGaai4BaiaacEgaciGGSbGaai4BaiaacEga juaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadAfaca WGtbaak8aabaqcLbsapeGaeqyYdChaaiabgkHiTKqbaoaalaaak8aa baqcLbsapeGaeq4SdCgak8aabaqcLbsapeGaeq4SdCwcfa4damaaBa aaleaajugib8qacaWGZbaal8aabeaajugib8qacqGHsislcqaHZoWz aaaakiaawIcacaGLPaaaaaa@A8EC@                 12 (c)

Where:

Ct=Total sediment concentration, with wash load excluded (in ppm by weight)

VS=Unit stream power,

U*=Shear velocity,

v=Kinematic viscosity,

ω=Fall velocity of sediment, and

d=Median particle diameter (m).

Meyer-peter and miiller formula: Meyer-Peter and Miiller (1948) formulated an empirical formula for the bed load discharge in natural streams.9 Their formula for a rectangular channel is given as:

γ Q s Q ( K s K r ) 3/2 dS=0.047 γ s i D m +0.25 ( γ g ) 1/3 g s 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHZoWzjuaGdaWcaaGcpaqaaKqzGeWdbiaadgfajuaGpaWa aSbaaKqaGeaajugWa8qacaWGZbaal8aabeaaaOqaaKqzGeWdbiaadg faaaqcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWG lbqcfa4damaaBaaajeaibaqcLbmapeGaam4CaaWcpaqabaaakeaaju gib8qacaWGlbqcfa4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqa baaaaaGcpeGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzad WdbiaaiodacaGGVaGaaGOmaaaajugibiaadsgacaWGtbGaeyypa0Ja aGimaiaac6cacaaIWaGaaGinaiaaiEdacqaHZoWzjuaGpaWaa0baaK qaGeaajugWa8qacaWGZbaajeaipaqaaKqzadWdbiaadMgaaaqcLbsa caWGebqcfa4damaaBaaajeaibaqcLbmapeGaamyBaaWcpaqabaqcLb sapeGaey4kaSIaaGimaiaac6cacaaIYaGaaGynaKqbaoaabmaak8aa baqcfa4dbmaalaaak8aabaqcLbsapeGaeq4SdCgak8aabaqcLbsape Gaam4zaaaaaOGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaigdacaGGVaGaaG4maaaajugibiaadEgajuaGpaWaa0baaK qaGeaajugWa8qacaWGZbaajeaipaqaaKqzadWdbiaaikdacaGGVaGa aG4maaaaaaa@7A88@            13

But D m = i=1 n D si i b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGebqcfa4damaaBaaajeaibaqcLbmapeGaamyBaaWcpaqa baqcLbsapeGaeyypa0JaeyyeIuEcfa4aa0baaKqaGeaajugWaiaadM gacqGH9aqpcaaIXaaajeaibaqcLbmacaWGUbaaaKqzGeGaamiraKqb a+aadaWgaaqcbasaaKqzadWdbiaadohacaWGPbaal8aabeaajugib8 qacaWGPbqcfa4damaaBaaajeaibaqcLbmapeGaamOyaaWcpaqabaaa aa@4F12@              13a

Where

 =The specific weight of water (t/m3)

 Qs=That part of the water discharge apportioned to the bed (l/s),

 Q=The total water discharge (l/s),

 Ks=Strickler’s coefficient of bed roughness, equal to 1 divided by Manning's roughness coefficient n,

 Kr=The coefficient of particle roughness, equal to (26 /D90)1/6,

 D90=Particle size, in m, for which 90% of the bed mixture is finer,

 d=The mean depth (m)

 S=Energy gradient in m per m

g s = [ 0.368 Q s Q ( D 90 1/6 n s ) 3/2 dS0.0698 D m ] 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGNbqcfa4damaaBaaajeaibaqcLbmapeGaam4CaaWcpaqa baqcLbsapeGaeyypa0tcfa4aamWaaOWdaeaajugib8qacaaIWaGaai OlaiaaiodacaaI2aGaaGioaKqbaoaalaaak8aabaqcLbsapeGaamyu aKqba+aadaWgaaqcbasaaKqzadWdbiaadohaaSWdaeqaaaGcbaqcLb sapeGaamyuaaaajuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqz GeWdbiaadseajuaGpaWaa0baaKqaGeaajugWa8qacaaI5aGaaGimaa qcbaYdaeaajugWa8qacaaIXaGaai4laiaaiAdaaaaak8aabaqcLbsa peGaamOBaKqba+aadaWgaaqcbasaaKqzadWdbiaadohaaSWdaeqaaa aaaOWdbiaawIcacaGLPaaajuaGpaWaaWbaaSqabKqaGeaajugWa8qa caaIZaGaai4laiaaikdaaaqcLbsacaWGKbGaam4uaiabgkHiTiaaic dacaGGUaGaaGimaiaaiAdacaaI5aGaaGioaiaadseajuaGpaWaaSba aKqaGeaajugWa8qacaWGTbaal8aabeaaaOWdbiaawUfacaGLDbaaju aGpaWaaWbaaSqabKqaGeaajugWa8qacaaIZaGaai4laiaaikdaaaaa aa@6F48@   14

 Where:

 gs=The bed load discharge for dry weight, in m/s per m of width,

 Q, Qs=Sediment and water discharges, respectively, in l/s,

 D90, Dm=Sediment particle diameter at which 90% of the material, by weight, is finer and

 mean particle diameter, respectively,

 d=Water depth and

 ns=Manning's roughness value for the bed of the stream

C s = 8La g ( ρ s ρ ) ρ ( ρJR0.047 D 50 ( ρ S ρ ) ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGdbqcfa4damaaBaaajeaibaqcLbmapeGaam4CaaWcpaqa baqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaI4aGaam itaiaadggajuaGdaGcaaGcpaqaaKqzGeWdbiaadEgaaSqabaaak8aa baqcfa4dbmaabmaak8aabaqcLbsapeGaeqyWdixcfa4damaaBaaaje aibaqcLbmapeGaam4CaaWcpaqabaqcLbsapeGaeyOeI0IaeqyWdiha kiaawIcacaGLPaaajuaGdaGcaaGcpaqaaKqzGeWdbiabeg8aYbWcbe aaaaqcfa4aaeWaaOWdaeaajugib8qacqaHbpGCcaWGkbGaamOuaiab gkHiTiaaicdacaGGUaGaaGimaiaaisdacaaI3aGaamiraKqba+aada WgaaqcbasaaKqzadWdbiaaiwdacaaIWaaal8aabeaajuaGpeWaaeWa aOWdaeaajugib8qacqaHbpGCjuaGpaWaaSbaaKqaGeaajugWa8qaca WGtbaal8aabeaajugib8qacqGHsislcqaHbpGCaOGaayjkaiaawMca aaGaayjkaiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaio dacaGGVaGaaGOmaaaaaaa@6F77@              14(a)

Where:

 Cs=Sediment transport capacity (m3/s)

 D50=Median diameter of sediment (m)

 J=Friction slope

 La=Active width (m)

 ρs=Density of sediment (kg/m3)

 ρ=Density of water (kg/m3)

This equation is better simplified as:

C s =[ ( s1 ) g d 3 ]8 ( τ * τ critical * ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGdbqcfa4damaaBaaajeaibaqcLbmapeGaam4CaaWcpaqa baqcLbsapeGaeyypa0tcfa4aamWaaOWdaeaajuaGpeWaaOaaaOWdae aajuaGpeWaaeWaaOWdaeaajugib8qacaWGZbGaeyOeI0IaaGymaaGc caGLOaGaayzkaaaaleqaaKqzGeGaam4zaiaadsgajuaGpaWaaWbaaS qabKqaGeaajugWa8qacaaIZaaaaaGccaGLBbGaayzxaaqcLbsacaaI 4aqcfa4aaeWaaOWdaeaajugib8qacqaHepaDjuaGpaWaaWbaaSqabK qaGeaajugWa8qacaGGQaaaaKqzGeGaeyOeI0IaeqiXdqxcfa4damaa DaaajeaibaqcLbmapeGaam4yaiaadkhacaWGPbGaamiDaiaadMgaca WGJbGaamyyaiaadYgaaKqaG8aabaqcLbmapeGaaiOkaaaaaOGaayjk aiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaiodacaGGVa GaaGOmaaaaaaa@66BE@                 14(b)

Where

τ * = R h S ( s1 )d ,   τ critical * =0.047 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacqaHepaDjuaGpaWaaWbaaSqabKqaGeaajugWa8qacaGGQaaa aKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWGsbqcfa4dam aaBaaajeaibaqcLbmapeGaamiAaaWcpaqabaqcLbsapeGaam4uaaGc paqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadohacqGHsislcaaIXa aakiaawIcacaGLPaaajugibiaadsgaaaGaaiilaOGaaiiOaiaaccka jugibiabes8a0Lqba+aadaqhaaqcbasaaKqzadWdbiaadogacaWGYb GaamyAaiaadshacaWGPbGaam4yaiaadggacaWGSbaajeaipaqaaKqz adWdbiaacQcaaaqcLbsacqGH9aqpcaaIWaGaaiOlaiaaicdacaaI0a GaaG4naaaa@610E@             14(c)

qb=Bed flux (volume rate of transport per unit length of surface)

d=Particle diameter (m)

ρs=Sediment density kg/m3

s=(ρs/ρ) = relative density

S=Channel slope

The total carrying capacity or sediment concentration for a particular river section, Ct, is computed by using the formula:

C t = i=1 N P i C i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWG0baal8aabeaa jugib8qacqGH9aqpcqGHris5juaGdaqhaaqcbasaaKqzadGaamyAai abg2da9iaaigdaaKqaGeaajugWaiaad6eaaaqcLbsacaWGqbqcfa4d amaaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaqcLbsapeGaam4qaK qba+aadaWgaaqcbasaaKqzadWdbiaadMgaaSWdaeqaaaaa@4D30@                                          15

Where:

 pi=Percentage of material of size fraction I available in the bed;

Ci=Sediment concentration or carrying capacity for each size fraction; and

 N=Number of size fractions

Shen and hung equation: Shen and Hung regression analysis developed the empirical equation 16 to compute the total sediment load as shown in equation 16 (Olaniyan, 2014):

log Ct = -107,404.45938164 + 324,214.74734085Y -326,309.58908739Y2 + 109,503.87232539Y3                               16

 Where :

 Y=(VS0.570.32)0.00750189

 Ct=Total sediment concentration in ppm by weight, and

 ω=Average fall velocity of sediment particle

Regression analysis: Sediment transport function developed from regression analysis on River Omi based on measured hydrological data from 2009 - 2014 was also used in the model. The equation was developed using regression analysis. Turbidity records were plotted against velocity and gauging depth respectively as shown in Figure 2. Equations 17(a) and b were obtained from regression analysis of measured hydrological data as shown in Figure 2.

y1 = 8.386 ln x1 + 29.84                         17 (a)

y2 =14.57 ln x2 +62.23                           17(b)

Where:

 y1 and y2 = turbidity (FTU)

 x1=gauge depth (m), x2= velocity (m/s)

Figure 2 Turbidity against Gauge and Velocity.

It was equally realized from literature the velocity-depth ratio affects sediment transport in a river. This ratio was considered in the development of the model. A strong relationship exists between turbidity and velocity with a 71% coefficient of regression. The model was calibrated by minimizing the residual between the measured and simulated values. The equation developed from measured stage, discharge and suspended sediment concentration after calibration was:

y( mg l )= 0.8659lnln( h )+2.866 ( v h ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWG5bqcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugi b8qacaWGTbGaam4zaaGcpaqaaKqzGeWdbiaadYgaaaaakiaawIcaca GLPaaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGimaiaa c6cacaaI4aGaaGOnaiaaiwdacaaI5aGaciiBaiaac6gaciGGSbGaai OBaKqbaoaabmaak8aabaqcLbsapeGaamiAaaGccaGLOaGaayzkaaqc LbsacqGHRaWkcaaIYaGaaiOlaiaaiIdacaaI2aGaaGOnaaGcpaqaaK qba+qadaqadaGcpaqaaKqba+qadaWccaGcpaqaaKqzGeWdbiaadAha aOWdaeaajugib8qacaWGObaaaaGccaGLOaGaayzkaaqcfa4damaaCa aaleqajeaibaqcLbmapeGaamOBaaaaaaaaaa@5C5A@    18

Where:

 h=Depth of water (m)

 v= Average velocity (m/s)

 n= Exponent

n=0.5,if v h 0.4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbGaeyypa0JaaGimaiaac6cacaaI1aGaaiilaiaadMga caWGMbqcfa4aaSGaaOWdaeaajugib8qacaWG2baak8aabaqcLbsape GaamiAaaaacqGHKjYOcaaIWaGaaiOlaiaaisdaaaa@451F@

n=3.375,if0.4< v h 1.9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbGaeyypa0JaeyOeI0IaaG4maiaac6cacaaIZaGaaG4n aiaaiwdacaGGSaGaamyAaiaadAgacaaIWaGaaiOlaiaaisdacqGH8a apjuaGdaWccaGcpaqaaKqzGeWdbiaadAhaaOWdaeaajugib8qacaWG ObaaaiabgwMiZkaaigdacaGGUaGaaGyoaaaa@4AD1@

n=0.9,if v h >1.9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGUbGaeyypa0JaeyOeI0IaaGimaiaac6cacaaI5aGaaiil aiaadMgacaWGMbqcfa4aaSGaaOWdaeaajugib8qacaWG2baak8aaba qcLbsapeGaamiAaaaacqGH+aGpcaaIXaGaaiOlaiaaiMdaaaa@4568@

The statistical package employed in this study to analyse results obtained from sediment transport function is t-test and Analysis of Variance (ANOVA). The alpha value (α) used for the analysis for each sediment functions was 0.05.

Results and discussion

The Total Sediment Load comprises of suspended load and bed load. The average monthly suspended sediment concentration across the river is shown in Figure 3. The upstream suspended sediment value ranges from (1.1-8.1)mg/l. The SSC value at the midstream is the lowest across the river section with the value ranges from (0.3- 3.5)mg/l. At the downstream, the suspended sediment concentration varies from (0.3-6.1)mg/l. The spatial variation of suspended sediment concentration across River Omi can be explained by the Land Use map of the catchment areas shown in Figure 4. The midstream and downstream of River Omi were dominated by vegetal cover which is a potential source of wash load.

Figure 3 Monthly Suspended Sediment Load across River Omi.

Figure 4 Land-Use Map of River Omi Catchment Area.

The calibration curve was obtained by plotting series of Suspended Sediment Concentration (SSC) against Turbidity over a period of time. The measured turbidity and Suspended Sediment Concentration (SSC) during flooding are outliers and are not considered in the generation of calibration curve. This curve was used to convert Turbidity (NTU) to Suspended Sediment Concentration (SSC) mg/l when the hand held US DH- 48 sediment sampler is not available. Turbidity measured on River Omi ranges from (0.2 - 94) NTU and the Suspended Sediment Concentration (SSC) varies from (0.05-8.2)mg/l.

The Suspended Sediment Concentration (SSC) at the upstream is higher than the midstream and downstream. The upstream suspended sediment value ranges from (1.1-8.1)mg/l. The SSC value at the midstream is the lowest across the river section with the value ranges from (0.3-3.5)mg/l. At the downstream, the suspended sediment concentration varies from (0.3-6.1)mg/l. The spatial variation of suspended sediment concentration across River Omi can be explained by the Land Use map of the catchment area (Figure 4). The sampling points are located within built up and vegetal area. The midstream and downstream are located within vegetal area and were affected by wash load due to soil erosion. The upstream sampling points are located within built up environment and are affected by anthropogenic activities such as improper waste disposal which block their channel.

Comparison of sediment transport function

The bed load coefficient of River Omi watershed was estimated from Meyer peters and Millers equation. The estimated bed flux on River Omi was 9% of the total load. Similar study by Otun & Adeogun18 on Kubani River estimated the bed load flux as 7% of the total load. The total sediment concentration in this study was calculated by the selected formulas (Engelund and Hassen, Ackers and White, Yang, Shen-Hung equation and Regression analysis). The estimated total load by these four methods along was compared with measured values on field. However, Ackers and White and Shen and Hung method predicted total sediment load of River Omi more than measured values. This may be due to the fact that the variables in the formulae were derived under different conditions from River Omi. The prediction process of sediment load by Ackers and White is unclear and imprecise. Acker and White formula was determined under a laboratory condition. The coefficient in the formula is not applicable in River Omi with open channel flow. Shen and Hung equation over predicted the total sediment load which confirms that it was developed under different site condition compare to River Omi. Yang and Eugelund and Hansen prediction among the selected methods were relatively close to the measured values (Figure 3). Yang equation on the other hand gave erroneous result at lower velocity when the ratio

VS ω <2.05S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjVeeu0dXdPqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSGaa8aabaqcLbsapeGaamOvaiaadofaaOWdaeaajugib8qacqaH jpWDaaGaeyipaWJaaGOmaiaac6cacaaIWaGaaGynaiaadofaaaa@4022@ .

Where:

V = Velocity (m/s), S = slope, and ω = settling velocity

Yang equation of 1973 is characterized with incipient motion criteria and is more accurate when the sediment concentration is less than 100ppm.The dimensionally non homogeneous parameters used and the lack of ability to reflect the effect of depth change limit the application of Shen and Hung equation to laboratory flumes and small rivers with particles in the sand size range. The developed regression analysis from measured stage-discharge values (equation 18) on River Omi water shed gave closest value to the measured total suspended load. The regression equation considered velocity-gauge ratio to simulate suspended sediment transport.

Sediment discharge in natural river is hinged on gradation and shape factor of sediment, percentage of bed surface covered by coarse materials, existence of wash load, availability of bed materials, temperature, and hydrologic cycle. There is much uncertainty to estimation of sediment discharge at different flow, hydrological and climatic constraint. Figure 5 shows comparisons of sediment transport functions used in this study. The obtained value from Shen and Hung are too large as compared to others, which explain the reason for semi-logarithmic plot of Figure 5. Acker and White together with Eugelund and Hansen formula under estimate the total suspended load across River Omi. The best result was obtained from the developed regression analysis on the measured parameters on River Omi. Yang and Eugelund and Hansen formula over estimate at lower Suspended Sediment Concentration.

Figure 5 Comparison of Results from Used Model.

Table 3 shows the statistical analysis of result from different sediment transport function used. The P value of the sediment function developed from regression analysis was greater than α value. This implies that the sediment function developed from regression analysis gave a closer result as compared to the measured value. Yang approaches together with Eugelund and Hansen prediction were relatively closer to the measured value in that order. Other sediment transport function as Shen and Hung approach and Acker and White approach prediction are far from the reality on River Omi watershed. The obtained P value was very low for Acker and White, Shen and Hung, Eugelund and Hansen formula. This is because Acker and White method was developed based on laboratory experiment which is different from the field situation on River Omi. The Shen and Hung regression analysis equation was developed on a small river which has a different hydrological condition from the present study.

A and W

S and H

E and H

Yang

Regrs. Analysis

Pooled Var.

381.70

559.43

438.70

437.60

88.31

t-stat

4.201

0.506

3.310

3.097

-0.254

P T<=t)

0.0003

0.0006

0.0029

0.0049

0.801

t (crit.)

2.063

2.063

20.63

2.063

2.063

Table 3 Statistical Analysis of Sediment Transport Function.
Note: A and W: Acker and White; S and H: Shen and Hung; E and H: Eugelund and Hansen; Regrs. Analysis: Regression Analysis

Conclusion and recommendations

Shen and Hung and Ackers and White sediment transport functions overestimated the total sediment load while Eugelund and Hassen and Yang approach underestimated the total sediment load. Shen and Hung regression analysis equation could not predict the total sediment load on River Omi because it was developed under different site condition. The developed regression analysis equation gave a good agreement between measured and simulated values with (3-11)% variation. Development of sediment regression model using stage-discharge records of a river yielded accurate result.22−25

Acknowledgements

The authors acknowledge our project students and technical staff from Civil Engineering Department of LAUTECH for field study operations.

Conflict of interest

This research work didn't have conflict of interest of any form.

References

  1. Darus A. Conservation and Restoration of Urban Rivers: Case Study of Raia River and Pari River. Universiti Sains Malaysia, Penang, Malaysia; 2002.
  2. Van Rijn LC. Principles of Sediment and Erosion. Engineering in Rivers, Estuaries, Seas and Ocean. Aqua Publications, Loose leaf Edition, Netherland; 2005.
  3. Yazdandoost F. Numerical Simulation of Sediment Transport in Dynamic Flow Conditions. International Journal of Sediment Research. 2005;20(4):358−365.
  4. Ahmed-Mustapha AM, Medhat SA. Nile River Sediment Transport Simulation (Case Study of Damietta Branch). Eleven International water Technology Conference. IWTC 2007 Sham El-Sheikh, Egypt; 2007.
  5. Chang HH. Case study of Fluvial Modeling of River Responses to Dam Removal. Journal of Hydraulic Engineering. 2008;134(3):295−302.
  6. Bahadori F, Ardeshir A, Taheshmasi A. Prediction of Alluvial River Bed variation by SDAR Model. Journal of Hydraulics Research. 2006;44(5):614−623.
  7. Adegbola AA, Olaniyan OS. Temporal Variation of Sediment Transport in River Omi, South-Western Nigeria. International Journal of Applied Engineering Research. 2012;7(4):421−431.
  8. Van Rijn LC. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, Netherlands; 1993.
  9. Olaniyan OS. Hydrological Analysis of Sediment Transport in a Turbulent Flow. Master’s thesis, Vrije Universiteit Brussels, Belgium; 2009. p. 97.
  10. Adeodokun OA, Olanike KA, Adeleye EA, et al. Seasonal Limnological Variation and Nutrient Load on the River System in Ibadan, Metropolis Nigeria. European Journal of Scientific Research. 2008;4(3):98−108.
  11. Yang CT, Simoes FJM. Simulation and prediction of river morphologic changes using GSTARS 2.0. In: Proceedings third international conference on hydro-science and engineering, Cottbus/Berlin, Germany; 1998. p. 1−8.
  12. Yang CT, Simoes FJM. Wash Load and Bed-Material Load Transport in the Yellow River. Journal of Hydraulic Engineering. 1998;131(5):413−418.
  13. Rahaman Zullyadini A, Ismail Wan Ruslan. Variation of suspended sediment Transport in the Timah Tasoh Reservoir catchment, Perlis, Malaysia: Human impacts and the role of tropical storms. Proceedings of the International Association of Hydrological Sciences. 2006;371−379.
  14. Olaniyan OS, Adegbola AA. River Geometry Computation on River Omi South-Western Nigeria. LAP Publisher, Germany; 2012.
  15. Kumolu O. Simulation of Flow on River Omi. Bachelor of Technology Thesis, Department of Civil Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; 2008.
  16. Subramanya K. Engineering Hydrology. 2nd Ed. Tata McGraw-Hill Publishing Company Limited, New Delhi, India; 2007.
  17. Adegbola AA, Olaniyan OS. Computation of River Discharge from Formulated Rating Equation in Hydrological Catchments with Inadequate Data: River Omi, South Western Nigeria, as Case Study. Civil and Environmental Research. 2013;3(7):58−63.
  18. Otun JA, Adeogun BK. Analysis of Fluvial Sediment Discharge into Kubani Reservoir. Nigeria Journal of Technology. 2010;29(2):64−75.
  19. Yang CT. Sediment Transport and Stream Power. International Journal of Sediment Research. 2002;17:31−38.
  20. Yang CT. Incipient Motion and Sediment Transport. Journal of the Hydraulic Division. 1973;10(99):1679−1704.
  21. Yang CT. Unit Stream Power Equation for Gravel. Journal of Hydraulic Engineering. 1984;1(10):1783−1797.
  22. Dong YH, Lu JY, Fan BL, et al. Research on Variations of Typical Lower Jingjang River Reach after Three Gorges Project Operation. Journal of Yangtze River Scientific Research Institute. 2005;22 (2):9−12.
  23. Yang CT. Potential Energy and River Morphology. Water Resources Research. 1971;7(2):311−322.
  24. Yang CT. The Movement of Sediment in Rivers. Geophysical Survey. 1979;3(1):39−68.
  25. Yang CT. Mechanics of Suspended Sediment Transport. In: Bechteler W, editor. Proceedings of Eurom.ech 192: Transport of Suspended Solids in Open Channels. Munich/Nuremberg, Germany; 1985. p. 87−91.
Creative Commons Attribution License

©2018 Olaniyan, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.