Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Editorial Volume 9 Issue 5

Comparing two quantities by using a ratio

Shimin Zheng,1 Michael Smith2

1Department of Biostatistics and Epidemiology, East Tennessee State University, USA
2Department of Health Services Management & Policy, East Tennessee State University, USA

Correspondence: Shimin Zheng, Department of Biostatistics and Epidemiology, East Tennessee State Uni-versity, Box 70259, Johnson City, TN 37614, USA

Received: October 26, 2020 | Published: October 31, 2020

Citation: Zheng S, Smith M. Comparing two quantities by using a ratio. Biom Biostat Int J. 2020;9(5):186-187. DOI: 10.15406/bbij.2020.09.00318

Download PDF

It is often useful to compare multiple subgroups to assess meaningful differences. The purpose of this editorial is to summarize a method for using a ratio to detect significant differences in associations across multiple population subgroups. In Statistics, two quantities can be compared by taking difference (for example, differences between two means: μ 1 μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBdaWgaa WcbaGaaGymaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaaGOmaaqa baaaaa@3DF5@ , or difference between two proportions: p 1 p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0IaamiCamaaBaaaleaacaaIYaaabeaa aaa@3C73@ ), or taking ratios (for example, ratios of two proportions: p 1 p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadc hadaWgaaWcbaGaaGymaaqabaaakeaacaWGWbWaaSbaaSqaaiaaikda aeqaaaaaaaa@3B96@ , also known as a relative risk: (RR)). Also, odds ratio (OR), incidence rate ratio (IR) or hazard ratio (HR) can be used to compare two groups, such as treatment vs control, or exposed vs unexposed. The standard error of the ratio should be computed if we conduct ratio analysis. For example, to compute the confidence interval for the estimated odds ratio we need to compute the standard error (SE) of log(OR):

σ ^ ( log( OR ) )= ( 1 n 11 + 1 n 12 + 1 n 21 + 1 n 22 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHdpWCgaqcam aabmaabaGaciiBaiaac+gacaGGNbWaaeWaaeaacaWGpbGaamOuaaGa ayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9maakaaabaWaaeWaae aadaWcaaqaaiaaigdaaeaacaWGUbWaaSbaaSqaaiaaigdacaaIXaaa beaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbWaaSbaaSqaai aaigdacaaIYaaabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWG UbWaaSbaaSqaaiaaikdacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaai aaigdaaeaacaWGUbWaaSbaaSqaaiaaikdacaaIYaaabeaaaaaakiaa wIcacaGLPaaaaSqabaGccaGGSaaaaa@54D9@

where nij are sometimes replaced by n ij + 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaadMgacaWGQbaabeaakiabgUcaRiaabccacaaIWaGaaiOlaiaa bwdaaaa@3E72@ , when some of the n ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@3ABF@ are zero. This result can be derived under the assumption of multinomial sampling by using the Delta Method. When RR is used to compare two quantities, the log transformation is conducted, that is log( π ^ 1|1 / π ^ 1|2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai4Bai aacEgadaqadaqaaiqbec8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGa aeymaaqabaGccaGGVaGafqiWdaNbaKaadaWgaaWcbaGaaeymaiaacY hacaqGYaaabeaaaOGaayjkaiaawMcaaaaa@45A6@ is often considered instead of ( π ^ 1|1 / π ^ 1|2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiqbec 8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGaaeymaaqabaGccaGGVaGa fqiWdaNbaKaadaWgaaWcbaGaaeymaiaacYhacaqGYaaabeaaaOGaay jkaiaawMcaaaaa@42D6@ , since the former has a sampling distribution which is closer to normal than that of the latter. The estimated asymptotic standard error (ASE) of log(RR):

σ ^ log( π ^ 1|1 / π ^ 1|2 )= [ ( 1 π ^ 1|1 ) π ^ 1|1 n 1+ + ( 1 π ^ 1|2 ) π ^ 1|2 n 2+ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHdpWCgaqcai GacYgacaGGVbGaai4zamaabmaabaGafqiWdaNbaKaadaWgaaWcbaGa aeymaiaacYhacaqGXaaabeaakiaac+cacuaHapaCgaqcamaaBaaale aacaqGXaGaaiiFaiaabkdaaeqaaaGccaGLOaGaayzkaaGaeyypa0Za aOaaaeaadaWadaqaamaalaaabaWaaeWaaeaacaaIXaGaeyOeI0Iafq iWdaNbaKaadaWgaaWcbaGaaeymaiaacYhacaqGXaaabeaaaOGaayjk aiaawMcaaaqaaiqbec8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGaae ymaaqabaGccaWGUbWaaSbaaSqaaiaaigdacqGHRaWkaeqaaaaakiab gUcaRmaalaaabaWaaeWaaeaacaaIXaGaeyOeI0IafqiWdaNbaKaada WgaaWcbaGaaeymaiaacYhacaqGYaaabeaaaOGaayjkaiaawMcaaaqa aiqbec8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGaaeOmaaqabaGcca WGUbWaaSbaaSqaaiaaikdacqGHRaWkaeqaaaaaaOGaay5waiaaw2fa aaWcbeaaaaa@692B@

This result can be derived under the assumption of independent binomial sampling using the Delta Method, where π ^ 1|1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHapaCgaqcam aaBaaaleaacaqGXaGaaiiFaiaabgdaaeqaaaaa@3C24@ and π ^ 1|2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHapaCgaqcam aaBaaaleaacaqGXaGaaiiFaiaabkdaaeqaaaaa@3C25@ are sample proportions based on independent binomial samples with success probabilities π 1|1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaeymaiaacYhacaqGXaaabeaaaaa@3C14@ and π 1|2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaeymaiaacYhacaqGYaaabeaaaaa@3C15@ , respectively. The confidence interval (CI) of log(RR) (Wald CI for log ( π 1|1 / π 1|2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiabec 8aWnaaBaaaleaacaqGXaGaaiiFaiaabgdaaeqaaOGaai4laiabec8a WnaaBaaaleaacaqGXaGaaiiFaiaabkdaaeqaaaGccaGLOaGaayzkaa aaaa@42B6@ ) can be calculated as follows:

log( π ^ 1|1 / π ^ 1|2 )± z α/ 2 ( σ ^ ( log( π ^ 1|1 / π ^ 1|2 ) ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGSbGaai4Bai aacEgadaqadaqaaiqbec8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGa aeymaaqabaGccaGGVaGafqiWdaNbaKaadaWgaaWcbaGaaeymaiaacY hacaqGYaaabeaaaOGaayjkaiaawMcaaiabgglaXkaadQhadaWgaaWc baGaeqySdeMaai4laaqabaGcdaWgaaWcbaGaaeOmaaqabaGcdaqada qaaiqbeo8aZzaajaWaaeWaaeaacaqGSbGaae4BaiaabEgadaqadaqa aiqbec8aWzaajaWaaSbaaSqaaiaabgdacaGG8bGaaeymaaqabaGcca GGVaGafqiWdaNbaKaadaWgaaWcbaGaaeymaiaacYhacaqGYaaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaac6 caaaa@5F7B@

The CI tends to be slightly conservative (i.e., the actual coverage probability tends to be higher than the nominal level). Exponentiating the endpoints provides a CI for ( π 1|1 / π 1|2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaaiabec 8aWnaaBaaaleaacaqGXaGaaiiFaiaabgdaaeqaaOGaai4laiabec8a WnaaBaaaleaacaqGXaGaaiiFaiaabkdaaeqaaaGccaGLOaGaayzkaa aaaa@42B6@ .

Now we discuss applying Delta Method to estimate the SE of a trans-formed parameter. The delta method, in its essence, expands a function of a random variable about its mean. Usually with a one-step Taylor approximation, and then takes the variance. For example, if we want to approximate the variance of G(X) where X is a random variable with mean μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBaaa@3979@ and function G is differentiable, we can try

G( X ) G( µ ) + ( X  µ ) G ( µ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaeWaae aacaWGybaacaGLOaGaayzkaaGaeyisISRaaeiiaiaadEeadaqadaqa aiaadwlaaiaawIcacaGLPaaacaqGGaGaey4kaSIaaeiiamaabmaaba GaamiwaiaabccacqGHsislcaqGGaGaamyTaaGaayjkaiaawMcaaiaa dEeadaahaaWcbeqaaiabgkdiIcaakmaabmaabaGaamyTaaGaayjkai aawMcaaiaacYcaaaa@4EC9@

Var( G( X ) ) G ( µ )Var( X ) [ G ( µ ) ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwbGaamyyai aadkhadaqadaqaaiaabEeadaqadaqaaiaabIfaaiaawIcacaGLPaaa aiaawIcacaGLPaaacqGHijYUcaqGhbWaaWbaaSqabeaacqGHYaIOaa GcdaqadaqaaiaadwlaaiaawIcacaGLPaaacaWGwbGaamyyaiaadkha daqadaqaaiaabIfaaiaawIcacaGLPaaadaWadaqaaiaabEeadaahaa WcbeqaaiabgkdiIcaakmaabmaabaGaamyTaaGaayjkaiaawMcaaaGa ay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaac6caaaa@5439@

This idea can easily be expanded to vector-valued functions of random vectors.

Var( G( X ) ) G ( µ )Var( X ) [ G ( µ ) ] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwbGaamyyai aadkhadaqadaqaaiaabEeadaqadaqaaiaabIfaaiaawIcacaGLPaaa aiaawIcacaGLPaaacqGHijYUcaqGhbWaaWbaaSqabeaacqGHYaIOaa GcdaqadaqaaiaadwlaaiaawIcacaGLPaaacaWGwbGaamyyaiaadkha daqadaqaaiaabIfaaiaawIcacaGLPaaadaWadaqaaiaabEeadaahaa WcbeqaaiabgkdiIcaakmaabmaabaGaamyTaaGaayjkaiaawMcaaaGa ay5waiaaw2faamaaCaaaleqabaGaamivaaaakiaac6caaaa@5439@

The Delta Method can be applied to Random effects meta-regression analysis, which can be used to investigate factors associated with the magnitude of the ratio of RR (or OR IR HR) (RRR). The triple R method can easily be extended to the quadruple R, the magnitude of the ratio of the ratio of RR (or OR IR HR), or RRRR.

To compare subgroups within selected studies, the natural logarithm transformation of the ratio of RR (or OR IR HR) values (RRR; or analogous estimates of association) for the two compared subgroups should be used. Since the logarithm of RRR has a sampling distribution which is closer to normal than RRR. To find the estimate of the RRR and its CI, the SE of RRR can be derived using the Delta Method. On the other hand, for meta-analysis fixed-model, we assume that there is no heterogeneity between the studies. The model assumes that within-study variances may differ, but that there is homogeneity of effect size across all studies. Often the homogeneity assumption is unlikely and variation in the true effect across studies is to be expected. Therefore, caution is required when using this model.1,2

For meta-analysis random-effects model (the most commonly used), we assume that models heterogeneity between the studies, or we assume that the true effect can be different for each study. For example, the effect estimates of urban and rural subpopulation was evaluated. First, the log transformation was conducted: the natural logarithm of the ratio of RR values (RRR; or analogous estimates of association) for the two subgroups, i.e., RR(rural)/RR(urban), a method given by Benmarhnia et al.3 The formula used to calculate the standard errors of the ratios is as follows (adopted from Benmarhnia et al.3):

SD( ratio )=ratio× ( SD R R rural 2 R R rural )+( SD R R urban 2 R R urban ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbGaamiram aabmaabaGaamOCaiaadggacaWG0bGaamyAaiaad+gaaiaawIcacaGL PaaacqGH9aqpcaWGYbGaamyyaiaadshacaWGPbGaam4BaiabgEna0o aakaaabaWaaeWaaeaadaWcaaqaaiaadofacaWGebGaaiiOaiaadkfa caWGsbWaaSbaaSqaaiaadkhacaWG1bGaamOCaiaadggacaWGSbaabe aakmaaCaaaleqabaGaaGOmaaaaaOqaaiaadkfacaWGsbWaaSbaaSqa aiaadkhacaWG1bGaamOCaiaadggacaWGSbaabeaaaaaakiaawIcaca GLPaaacqGHRaWkdaqadaqaamaalaaabaGaam4uaiaadseacaGGGcGa amOuaiaadkfadaWgaaWcbaGaamyDaiaadkhacaWGIbGaamyyaiaad6 gaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOuaiaadkfadaWg aaWcbaGaamyDaiaadkhacaWGIbGaamyyaiaad6gaaeqaaaaaaOGaay jkaiaawMcaaaWcbeaaaaa@6D89@

Based on the formula above, Li et al.4 compared the heat-related mortality between rural and urban populations using the RRR method and found that there was no statistically significant difference between the two subgroups.

Acknowledgments

None.

Conflicts of interest

None.

References

Creative Commons Attribution License

©2020 Zheng, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.