Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 1

Wormholes with quardratic equation of state

Farook Rahaman,1 Sumita Banerjeey,1 Safiqul Islam2

1Department of Mathematics, Jadavpur University, Kolkata, India
2Harish-Chandra Research Institute, Allahabad, India

Correspondence: Farook Rahaman, Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India, Tel 9831907279

Received: August 03, 2018 | Published: January 4, 2019

Citation: Rahaman F, Banerjeey S, Islam S. Wormholes with quardratic equation of state. Phys Astron Int J. 2019;3(1):14-17. DOI: 10.15406/paij.2019.03.00149

Download PDF

Abstract

In last few years, several cosmologists have been used different equation of states (EOS) (namely, Phantom energy, generalized Chaplygin gas, Vander Walls quintessence EOS etc) to explain the present accelerated expansion of the Universe. By using the same EOS, some theoretical physicists have been trying to construct traversable wormholes. Recent studies have proposed quardratic EOS to describe homogeneous and inhomogeneous cosmological models. In this, article we explore the possibility that the wormholes be supported by quardratic EOS. We have found a series solution of Einstein equations describing wormhole for a matter source that is characterized by quardratic EOS. Gravitational Lensing Wormhole Strong field limit.

Keywords: wormholes, chaplygin gas, quardratic EOS, Kalb-Ramond spacetime

Introduction

To describe the spacetime of any massive objects (i.e. whether astrophysical objects like stars, galaxies etc or hypothetical objects like black holes, wormholes etc), it requires an interpretation of the matter content of the object. As a conventional process one can use fluid (as matter source) to study cosmological as well as astrophysical phenomena. But for matter fluid further specification of an EOS is desired. Before the acceleration of the Universe was discovered, pupils usually considered linear EOS as p=mρ (with 0m1). But for the last few years theoretical physicists have used different EOS (particularly, Phantom energy, the generalized Chaplygin gas, Vander Walls quintessence EOS, etc) and elucidated the causes of the expansion of the Universe in an accelerated manner. Also, it has been shown that wormholes be supported by the fluid with these different equation of states.1 The homogeneous as well as inhomogeneous cosmological models of the universe have been suitably defined recently by Ananda et al.2, by a quadratic EOS. This quadratic EOS, p=p0+αρ+βρ2, where p0 , α and β are parameters, represents the Taylor series expansion of the barotropic EOS, p(ρ) and ρ being arbitrary. It is known that the mystery behind the expansion of the universe is dark energy or unified dark matter which can be defined by a quadratic EOS as demonstrated by Anandaet al.2

Self-sustained traversable wormhole is studied as a vacuum solution of gravitational theory3, with emphasis being given on the gravitational coupling and a possible effective gravity near the Planck scale. Modelling of wormholes within the perspective of alternative gravity theory,4 where an extra material term in the gravitational action is considered. Further taking into account the Starobinsky f(R) model, considering a static spherically symmetric geometry with matter contents as anisotropic, isotropic, and barotropic fluids,5 the wormhole solutions are constructed without exotic matter, in few regions of space-time. The authors thus obtain realistic and stable wormhole solutions with anisotropic matter in the modified theory of gravity. The possibility of the existence of wormhole geometries by taking a particular model of f(R,T)=R+αR2+λT,6 where it is shown that in the context of anisotropic fluid and gravity, wormhole models could exist without the requirements for exotic matter. Some models of static wormholes within the f(R,T) extended theory of gravity are constructed where the pressure components (radial and lateral) and different equations of state.7 Wormhole solutions in a non-minimal torsionmatter coupled gravity,8 where the transfer of energy and momentum occurs between matter and torsion scalar terms. Wormhole models in modified gravity have been further discussed from studies,9 which is consistent with stable stellar configurations, where the second-order derivative with respect to the Ricci scalar, R, remains positive and the solution satisfies the energy conditions. The M sharif et al.10 have considered chaplygin, linear and logarithmic gas models to study the exotic matter content at thin-shell and observed that the Hoffmann-Born-Infeld parameter along with the electric charge enhance the stability regions. The correction to the standard Newtons law in terms of a polarization energy density and in presence of a spherically symmetric wormhole has been examined.11 Here the authors have studied the Newtonian potential in two term, where the first term is found to be independent of the wormhole metric and corresponds to the standard law while the second term is dependent it. Nonexotic matter wormhole solutions have been obtained,12 where a gravity theory with linear and quadratic terms of the trace of the energy-momentum tensor in the gravitational action, is considered.

String theory defines gravity, as a truly higher dimensional interaction, which eventually assumes a 4D form at low enough energies. Brane-world models, inspired by string theory, pave the novel way to corrections in GR. In comparison, where the physical fields in our 4D Universe are restricted to the 3-brane, gravity can be expressed by the extra dimension. The gravity on the brane world scenario is best represented by the modified 4-dimensional Einstein’s equations which contain (i) Sμν and (ii) Eμν, representing a quadratic in terms of the stress energy tensor of matter restricted on the brane, and the trace less tensor of the 5D Weyl tensor, respectively. It is reasonable to neglect the contributions of 5D Weyl tensor in these equations. Even then the quadratic term of energy density appears in the 4-dimensional effective energy momentum tensor and plays a major role in defining the different characteristics of the models. Here lies the significance of choosing the quadratic form of the EOS. As defined earlier, this quadratic form of the EOS is rather the specific form of barotropic EOS, p(ρ) where ρ is arbitrary. There has been a hectic search by theoretical physicists for the matter source that is an intrinsic characteristic of the wormhole. Matter source plays a vital role for constructing wormholes, which is revealed in literature in the form of several manifesto by various authors.1322 Authors have nicely interpreted phantom energy to describe wormhole solutions.1322 Lobo16 has shown that Generalized Chaplygin gas may well support wormholes. Wormhole with Tachyonic field has been further studied by Das et al.23 Casimir field can be considered as an alternative for exotic matter source, as assumed by Mansouryar24 and Khabibullin A et al.25 Study of wormhole in presence of C-field has been extended by F Rahaman et al. that wormhole may exist in Kalb-Ramond spacetime is also an interesting study by F Rahaman et al.28 Hence we are motivated by the findings in the brane world models and try to explore the possibility that the quadratic EOS can really represent a wormhole. As a fruitful research, we find a series solution of Einstein field equations. This solution defines matter source represented by quadratic EOS and truly defines a wormhole. Hence we assume the following quadratic form of EOS2 in terms of the energy density as,

p=αρ+βρ2 (1)

where, α,β are parameters. At first we take these parameters as arbitrary, but restrictions on these parameters may be specified later.

Basic equations for constructing wormholes

We consider a static spherically symmetric metric in Schwarzschild co-ordinates (t,r,θ,ϕ) as

d s 2 = e 2f(r) d t 2 + 1 [1 b(r) r ] d r 2 + r 2 d Ω 2 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaam4Cam aaCaaaleqabaGaaGOmaaaakiaai2dacqGHsislcaWGLbWaaWbaaSqa beaacaaIYaGaamOzaiaaiIcacaWGYbGaaGykaaaakiaadsgacaWG0b WaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaabaGa ey4waSLaeyymaeJaeyOeI0YaaSaaaeaacaWGIbGaeyikaGIaamOCai abgMcaPaqaaiaadkhaaaGaeyyxa0faaiaadsgacaWGYbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamOCamaaCaaaleqabaGaaGOmaaaaki aadsgacqqHPoWvdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaISaaa aa@5962@  (2)

where f(r) and b(r) are known as redshift function and shape function respectively. The above metric in fact represents a Lorentzian wormhole which is defined by a manifold R 2 X S 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaWbaaS qabeaacaaIYaaaaOGaamiwaiaadofadaahaaWcbeqaaiaaikdaaaaa aa@3C1F@ . The range of the radial coordinate is considered from r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaSbaaS qaaiaaicdaaeqaaaaa@3994@  to infinity, where r= r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaGypai aadkhadaWgaaWcbaGaaGimaaqabaaaaa@3B52@  is the wormhole throat. Also the convenient ‘cutoff’ of the stress energy tensor is assumed at the junction radius ’a’.

Using the Einstein field equations Gμν=8πTμν , in orthonormal reference frame ( with c=G=1  ) , we obtain the following stress energy scenario,

ρ(r)= b ' 8π r 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcaaIOa GaamOCaiaaiMcacaaI9aWaaSaaaeaacaWGIbWaaWbaaSqabeaacaWG NaaaaaGcbaGaaGioaiabec8aWjaadkhadaahaaWcbeqaaiaaikdaaa aaaOGaaGilaaaa@4393@       (3)

p(r)= 1 8π [ b r 3 +2 f ' r (1 b r )], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaGikai aadkhacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaiIdacqaHapaC aaGaaG4waiabgkHiTmaalaaabaGaamOyaaqaaiaadkhadaahaaWcbe qaaiaaiodaaaaaaOGaey4kaSIaaGOmamaalaaabaGaamOzamaaCaaa leqabaGaam4jaaaaaOqaaiaadkhaaaGaeyikaGIaaGymaiabgkHiTm aalaaabaGaamOyaaqaaiaadkhaaaGaeyykaKIaeyyxa0LaeyilaWca aa@4FBA@  (4)

p t (r)= 1 8π (1 b r )[ f '' ( b ' rb) 2r(rb) f ' + f ' 2 + f ' r ( b ' rb) 2 r 2 (rb) ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaSbaaS qaaiaadshaaeqaaOGaaGikaiaadkhacaaIPaGaaGypamaalaaabaGa aGymaaqaaiaaiIdacqaHapaCaaGaeyikaGIaeyymaeJaeyOeI0YaaS aaaeaacaWGIbaabaGaamOCaaaacaaIPaGaaG4waiaadAgadaahaaWc beqaaiaadEcacaWGNaaaaOGaeyOeI0YaaSaaaeaacaaIOaGaamOyam aaCaaaleqabaGaam4jaaaakiaadkhacqGHsislcaWGIbGaaGykaaqa aiaaikdacaWGYbGaaGikaiaadkhacqGHsislcaWGIbGaaGykaaaaca WGMbWaaWbaaSqabeaacaWGNaaaaOGaey4kaSIaamOzamaaCaaaleqa baGaam4jaaaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaaba GaamOzamaaCaaaleqabaGaam4jaaaaaOqaaiaadkhaaaGaeyOeI0Ya aSaaaeaacaaIOaGaamOyamaaCaaaleqabaGaam4jaaaakiaadkhacq GHsislcaWGIbGaaGykaaqaaiaaikdacaWGYbWaaWbaaSqabeaacaaI YaaaaOGaaGikaiaadkhacqGHsislcaWGIbGaaGykaaaacqGHDbqxcq GHSaalaaa@6EF8@  (5)

where p(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaGikai aadkhacaaIPaaaaa@3B08@  is the energy density, p(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaGikai aadkhacaaIPaaaaa@3B08@  is the radial pressure and p t (r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaSbaaS qaaiaadshaaeqaaOGaaGikaiaadkhacaaIPaaaaa@3C37@  is the transverse pressure.

Using the conservation of stress energy tensor T ;ν μν =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaa0baaS qaaiaaiUdacqaH9oGBaeaacqaH8oqBcqaH9oGBaaGccqGH9aqpcaaI Waaaaa@4072@ , one can obtain the following equation

p ' + f ' ρ+( f ' + 2 r )p 2 r p t =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbWaaWbaaS qabeaacaWGNaaaaOGaey4kaSIaamOzamaaCaaaleqabaGaam4jaaaa kiabeg8aYjabgUcaRiaaiIcacaWGMbWaaWbaaSqabeaacaWGNaaaaO Gaey4kaSYaaSaaaeaacaaIYaaabaGaamOCaaaacaaIPaGaamiCaiab gkHiTmaalaaabaGaaGOmaaqaaiaadkhaaaGaamiCamaaBaaaleaaca WG0baabeaakiabg2da9iaaicdacaaIUaaaaa@4CFA@  (6)

We take the quadratic EOS in the form

p= p t =αρ+ ε ρ 2 ρ c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaGypai aadchadaWgaaWcbaGaamiDaaqabaGccaaI9aGaeqySdeMaeqyWdiNa ey4kaSYaaSaaaeaacqaH1oqzcqaHbpGCdaahaaWcbeqaaiaaikdaaa aakeaacqaHbpGCdaWgaaWcbaGaam4yaaqabaaaaaaa@47DD@        (7)

The characteristic energy scale ρ c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCdaWgaa WcbaGaam4yaaqabaaaaa@3A8B@  of the quadratic term as well as ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzaaa@395E@  are determined by the parameter β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaaa@3958@ .

The usual perfect fluid follows a linear EOS (β=0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeqOSdi Maeyypa0JaaGimaiaacMcaaaa@3C71@  with α= dp dρ | ρ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycaaI9a WaaSaaaeaacaWGKbGaamiCaaqaaiaadsgacqaHbpGCaaGaeyiFaW3a aSbaaSqaaiabeg8aYjabg2da9iaaicdaaeqaaaaa@43E4@ . Hence α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaaa@3956@  represents the speed of sound of the fluid and as ρ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCcqGHsg IRcaaIWaaaaa@3C1E@ , α= c s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycaaI9a Gaam4yamaaBaaaleaacaWGZbaabeaaaaa@3C29@ . The ρ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCdaahaa Wcbeqaaiaaikdaaaaaaa@3A60@  term, i.e square of the energy density in the quadratic eqn.(7) is important and one may call the high energy regime (Figure 1).

Figure 1 The variation of redshift function with respect to ρ (B) The shape function of the wormhole ( retaining a few terms )for α=0.1,b0=6.5,b1=0.6 (C) Energy density with respect to radial coordinate ’r’ ( retaining a few terms) for α=0.1,b0=6.5,b1=0.6 .

Solutions

From (6) by using (7), one can obtain

e 2f = e 2 ρ 0 ( ρ ρ c ) ( 2α 1+α ) ερ ρ c +1+α 2(2+α) 1+α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaWbaaS qabeaacaaIYaGaamOzaaaakiaai2dacaWGLbWaaWbaaSqabeaacaaI YaGaeqyWdi3aaSbaaeaacaaIWaaabeaaaaGccaaIOaWaaSaaaeaacq aHbpGCaeaacqaHbpGCdaWgaaWcbaGaam4yaaqabaaaaOGaaGykamaa CaaaleqabaGaeyOeI0IaaGikamaalaaabaGaaGOmaiabeg7aHbqaai aaigdacqGHRaWkcqaHXoqyaaGaaGykaaaakmaadmaabaWaaSaaaeaa cqaH1oqzcqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaam4yaaqabaaaaO Gaey4kaSIaaGymaiabgUcaRiabeg7aHbGaay5waiaaw2faamaaCaaa leqabaWaaSaaaeaacqGHsislcqGHYaGmcqGHOaakcqGHYaGmcqGHRa WkcqaHXoqycqGHPaqkaeaacqGHXaqmcqGHRaWkcqaHXoqyaaaaaOGa eyilaWcaaa@6608@  (8)

where ρ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCdaWgaa WcbaGaaGimaaqabaaaaa@3A5D@  is an integration constant.

Taking into account equations (3)-(8), we have the following equation containing ’b’ as

α(1+α)b'28πr4+ε(1+2α)b'364ρcπ2r6+ε2b'4512ρc2π3r8=αbb''4πr4αb''4πr3+αb'2πr4

[α2π+(1+α)8π]bb'r5εb'b''16ρcπ2r5+εbb'b''16ρcπ2r6+εb'28ρcπ2r6

εbb'2r7(164π2ρc+18π2ρc).

Now to investigate whether there exists physically meaningful solutions consistent with the boundary requirements , we take a general functional form of b(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaaaaa@3AFA@ . We can generally express it in the form

b(r)= Σ n=1 a n r n + Σ m=0 b m r m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGypaiabfo6atnaaDaaaleaacaWGUbGaaGypaiaa igdaaeaacqGHEisPaaGccaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaam OCamaaCaaaleqabaGaamOBaaaakiabgUcaRiabfo6atnaaDaaaleaa caWGTbGaaGypaiaaicdaaeaacqGHEisPaaGccaWGIbWaaSbaaSqaai aad2gaaeqaaOGaamOCamaaCaaaleqabaGaeyOeI0IaamyBaaaaaaa@5125@       (9)

since b(r) r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaadk gacaaIOaGaamOCaiaaiMcaaeaacaWGYbaaaiabgkziUkaaicdaaaa@3EA8@  as r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaeyOKH4 QaeyOhIukaaa@3C0C@ , equation (10) is consistent only when all the a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaad6gaaeqaaaaa@39BC@ ’s in b(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaaaaa@3AFA@  vanish i.e.

b(r)= Σ m=0 b m r m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGypaiabfo6atnaaDaaaleaacaWGTbGaaGypaiaa icdaaeaacqGHEisPaaGcdaWcaaqaaiaadkgadaWgaaWcbaGaamyBaa qabaaakeaacaWGYbWaaWbaaSqabeaacaWGTbaaaaaaaaa@4595@     (10)

Plugging this in equation (9) and matching the coefficients of equal powers of r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbaaaa@38AE@  from both sides, we get ,

brb0+b1r+1r2(1+9α)b0b120α

+1r3(1+9α)(1+11α)b02b1360α2+......, (11)

with b 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaicdaaeqaaaaa@3984@  and b 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaigdaaeqaaaaa@3985@  is arbitrary constant.

Now expression for ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3977@ can be obtained from (3) as

ρ18πb1r4(1+9α)b0b110αr5

18πr6(1+9α)(1+11α)b02b1120α2(α28α1)b1212α......,

Here ρ>0  implies b1  should be negative.

The throat of the wormhole occurs at r= r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaGypai aadkhadaWgaaWcbaGaaGimaaqabaaaaa@3B52@  where r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbWaaSbaaS qaaiaaicdaaeqaaaaa@3994@  is the solution of the equation b(r)=r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGypaiaadkhaaaa@3CB8@ . Suppose 1 r =y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaig daaeaacaWGYbaaaiaai2dacaWG5baaaa@3B3E@ , then b(r)=r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGypaiaadkhaaaa@3CB8@  implies

g(y)=b0y+b1y2+b2y3+............1=0. (12)

This is an algebraic equation with negative last term. Then this equation must have at least one positive root, say, y= 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGypam aalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa @3C24@ . Since 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaig daaeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@3A5F@  is a root of equation (14), then by standard theorem of algebra, either g(y)>0  for y> 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGOpam aalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa @3C25@  and g(y)<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaeyikaG IaamyEaiabgMcaPiabgYda8iaaicdaaaa@3D19@  for y< 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGipam aalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa @3C23@  or g(y)<0 for y> 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGOpam aalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa @3C25@ and g(y)>0  for y< 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGipam aalaaabaGaaGymaaqaaiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa @3C23@ . Let us take the first possibility and one can note that for y= 1 r < 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGypam aalaaabaGaaGymaaqaaiaadkhaaaGaaGipamaalaaabaGaaGymaaqa aiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa@3EAC@  i.e. r> r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaGOpai aadkhadaWgaaWcbaGaaGimaaqabaaaaa@3B53@ , g(y)<0 , in other words, b(r)<r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGipaiaadkhaaaa@3CB7@ . But when y= 1 r > 1 r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaGypam aalaaabaGaaGymaaqaaiaadkhaaaGaaGOpamaalaaabaGaaGymaaqa aiaadkhadaWgaaWcbaGaaGimaaqabaaaaaaa@3EAE@  i.e. r< r 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGYbGaaGipai aadkhadaWgaaWcbaGaaGimaaqabaaaaa@3B51@ , b(r)>r , this means, b(r)>r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbGaaGikai aadkhacaaIPaGaaGOpaiaadkhaaaa@3CB9@ , which violates the wormhole structure given in equation(2).

According to Morris et al.29 the ’r’ co-ordinate is ill-behaved near the throat, but proper radial distance

l(r)=±r0+rdr1b(r)r     (13)

must be well behaved everywhere i.e. we must require that l(r) is finite throughout the space-time.

For our Model,

l(r)=±r0+rdr11rb0+b1r+b2r2+.     (14)

Though we cannot find the explicit form of the integral but one can see that the above integral is a convergent integral i.e. proper length should be finite.

The axially symmetric embedded surface z=z(r) shaping the Wormhole’s spatial geometry is a solution of

dzdr=±1rbr1      (15)

One can note from the definition of Wormhole that at r=r0 (the wormhole throat) Eq.(14) is divergent i.e. embedded surface is vertical there.

The embedded surface (solution of eq.(14) ) in this case

z=±b0rb02+b1r12(7b02+2b0b1+3b12+4b212)r32

(12b0b2+7b0b1+3b12+8b340)r52.....]

One can see that embedding diagram of this wormhole (retaining a few terms) in Figure 2. The surface of revolution of the curve about the vertical z axis makes the diagram complete (Figure 2).

Figure 2 (A) The embedding diagram of the wormhole for α=0.1,b0=6.5,b1=0.6 (B) The full visualization of the surface generated by the rotation of the embedded curve (retaining a few terms) about the vertical z axis.

Final remarks

The major thrust in this article is to explore the matter ingredients characterized by quadratic EOS that produces wormhole akin spacetime. We are indeed triumphant in our work to exhibit that wormhole can be supported by quadratic EOS. It is easy to verify that the shape function of the wormhole satisfies all the desired conditions to represent a wormhole. The resulting line element represents an one parameter (b1) family of geometries which contains wormholes. If b1=0, then ρ=p=0. And one obtains the standard Schwarzschild solution, viz., e2f(r)=[1b(r)r]=1rsr, provided b0=rs=2M ( the Schwarzschild radius). The asymptotical wormhole mass reads M=limr12b(r)=b02. Also as the parameter b0>0, the asymptotic mass ‘M’ of the wormhole is positive, hence a distant observer could not distinguish between the gravitational nature of the wormhole and a compact mass ‘M’.

Acknowledgments

FR is thankful to DST-SERB, Government of India for providing research support.

Conflict of interest

Authors declare there is no conflicts of interest.

References

  1. F Lobo. Traversable wormholes supported by cosmic accelerated expanding equations of state. 2006.
  2. K Ananda, M Bruni. Cosmological dynamics and dark energy with a quadratic equation of state: Anisotropic models, large-scale perturbations, and cosmological singularities. Phys Rev D. 2006;74:023524.
  3. E Contreras, Pedro Bargueo. A self-sustained traversable scale-dependent wormhole. Int J Mod Phys D. 2018;27(9):1850101.
  4. PK Sahoo, PHRS Moraes, P Sahoo et al. Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms. Int J Mod Phys D. 2018;28:1950004.
  5. M Zubair, S Waheed, Y Ahmad. Static spherically symmetric wormholes in f(R, T) gravity. Eur Phys J C. 2016;76:444.
  6. Z Yousaf, M Ilyas, M Zaeem-ul-Haq Bhatti. Static spherical wormhole models in f(R,T) gravity. Eur Phys J Plus. 2017;132: 268.
  7. PHRS. Moraes, PK. SahooModeling wormholes in f(R,T) gravity. Phy Rev D. 2017;96:044038.
  8. A Jawad, S Rani. Non-minimal coupling of torsion–matter satisfying null energy condition for wormhole solutions. Eur Phys J C. 2016;76:704.
  9. PK Sahoo, PHRS Moraes, Parbati Sahoo. Wormholes inR2 -gravity within the f(R,T) formalism. Eur Phys J C. 2018;78:46.
  10. M Sharif, S Mumtaz. Dynamics of thin-shell wormholes with different cosmological models. Int J Mod Phys D. 2017;26(5):1741007.
  11. AA Kirillov, EP Savelova. Modification of gravity by a spherically symmetric wormhole. Int J Mod Phys D. 2017;26:1750145.
  12. PHRS Moraes, PK Sahoo. Nonexotic matter wormholes in a trace of the energy-momentum tensor squared gravity. Phys Rev D. 2018;97:024007.
  13. S Sushkov. Wormholes supported by a phantom energy. Phys Rev D. 2005;71:043520.
  14. Francisco SN Lobo. Phantom energy traversable wormholes. Phys Rev D. 2005;71:084011.
  15. Francisco SN Lobo. Stability of phantom wormholes. Phys Rev D. 2005;71:124022.
  16. Francisco SN Lobo. Chaplygin traversable wormholes. Phys Rev D. 2005;73:064028.
  17. P Kuhfittig. A wormhole with a special shape function. Am J Phys. 1999;67:125.
  18. O Zaslavskii.Exactly solvable model of wormhole supported by phantom energy. Phys Rev D. 2005;72:061303.
  19. F Rahaman, M Kalam, M Sarker, et al. A theoretical construction of wormhole supported by Phantom Energy. Physics Letters B. 2006;633(2-3):161−163.
  20. F Rahaman, M Kalam, S Chakraborty. Wormholes with varying equation of state parameter. arXiv:gr-qc/0701032.
  21. F Rahaman, M Kalam, M Sarker, et al. Wormhole with varying cosmological constant. Gen Rel Grav. 2007;39:145−151.
  22. F Rahaman, M Kalam, BC Bhui, et al. Construction of a 3D wormhole supported by phantom energy. Phys Scr. 2007;76(1):56.
  23. A Das, S Ka. The Ellis wormhole with `tachyon matter'. Class Quant Grav. 2005;22(14):3045.
  24. M Mansouryar. On a macroscopic traversable spacewarp in practice. arXiv:gr-qc/0511086.
  25. Artem R Khabibullin, Nail R Khusnutdinov, Sergey V Sushkov. Casimir effect in a wormhole spacetime. Class Quant Grav. 2006;23(3):627−634.
  26. F Rahaman, BC Bhui, P Ghosh. Wormhole and C-field. Nuovo Cim B. 2004;119:1115−1119.
  27. F Rahaman, M Kalam, S Chakraborty. Gravitational lensing by stable C-field wormhole. arXiv:0705.0740 [gr-qc].
  28. F Rahaman, M Kalam, A Ghosh. Existence of Wormholes in Einstein-Kalb-Ramond space time. Nuovo Cim B. 2006;121:303−307.
  29. M Morris, K Thorne, Kip S Thorne. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American J Phys. 1988;56:39.
Creative Commons Attribution License

©2019 Rahaman, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.