Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 2

Waves, vortices and ligaments in fluid flows of different scales

Yuli D Chashechkin

A.Yu. Ishlinskiy Institute for Problems in Mechanics of the RAS, Russia

Correspondence: Yuli D Chashechkin, A.Yu. Ishlinskiy Institute for Problems in Mechanics of the RAS, Moscow, Russia

Received: February 24, 2018 | Published: March 21, 2018

Citation: Chashechkin YD. Waves, vortices and ligaments in fluid flows of different scales. Phys Astron Int J. 2018;2(2):105-108. DOI: 10.15406/paij.2018.02.00070

Download PDF

Abstract

An analysis of the complete solutions of the linearized system of fundamental equations for weakly dissipating media was performed by methods of singular perturbations. Regular functions of complete solutions describe waves of different types. Singularly perturbed solutions describe a wide class of ligaments–previously unknown high gradient components of flows supplementing well investigated propagating waves. All flow components that are internal waves, vortices and ligaments were observed in a stratified wake past a vertical plate. Ligaments are classified as linear precursors of shock waves.

As the system of fundamental equations is invariant with respect temporal and spatial scales the basic flows components that are waves, vortices and ligaments are universal and exist in the whole range of the fluid flows from microscopic to macroscopic length scales.

Keywords: set of fundamental equation, complete solutions, internal waves, vortices, ligaments, experiment

Introduction

Descartes1 in his remarkable treatise “Principia philosophiae" presented definition of the vortex as a flow in which a body rotating around the axis of the current is spinning simultaneously relative to its own axis, and added schematic drawing of space, containing bounded vortex cells with a pronounced internal linear structure.1 Subsequent careful astronomical observations of a "light echo" produced by exploding stars really confirmed the existence of a pronounced line structure in a pattern of matter in interstellar space and the remnants of blowing stars.2 Systematic observations have shown existence of a fine structure in fields of physical quantities in the ocean3 and in the atmosphere, where thin strip like elements bounded by a high gradient interfaces were recognized. They were continuously traced during long time, which was significantly larger than the characteristic dissipative and diffusion time scales.

Laboratory studies of stratified flows have shown that regular images of thick layers with internal filaments ("salt fingers") separated by high gradient interfaces are observed in patterns of smaller scales flows in particular in compact vortices, convective cells of double diffusive or multi‒component convection, in drying droplets of micro and nanoparticles suspensions.4 Regular lined structures were observed in fast small scale phenomena developing when a freely falling drop impacts on targeting fluid.5 That is, the structuring in spatial patterns in fields of matter is observed throughout the complete range of spatial scales accessible to experimental study. The length scales of structures are extending from astronomical units to micrometers, and time scales from millions of years to microseconds.

However, the universal mathematical model of such a universal and steadily observable property of natural flows has not been completed up to date. In this paper, the mathematical classification of the structural components of periodic flows, based on an analysis of the solutions of the fundamental system of equations with taking into account the compatibility condition is presented. Special attention is paid to the analysis of the approximation of a homogeneous fluid, which is traditionally used in describing fluid flows in natural and technical conditions. It should be noted that the class of periodical flows directly include the problems of a transient flow where the role of the period is given to time of fast flow evolution.

Classification of components for the general solution of the linearized system of fundamental equations

In the fluid mechanics, the main fluid parameters that are a density ρ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiabeg8aYXWaaeWaaOqaaKqzGeGaaCiEaiaa cYcacaaMe8UaamiDaaGccaGLOaGaayzkaaaaaa@45E7@ , characterizing its inertial and gravitational properties, other thermodynamic parameters–pressure P( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiaadcfammaabmaakeaajugibiaahIhacaGG SaGaaGjbVlaadshaaOGaayjkaiaawMcaaaaa@44FC@ ,temperature T( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiaadsfammaabmaakeaajugibiaahIhacaGG SaGaaGjbVlaadshaaOGaayjkaiaawMcaaaaa@4500@ , concentration of dissolved impurities or suspended particles S i ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiaadofammaaBaaajeaibaqcLbmacaWGPbaa jeaibeaammaabmaakeaajugibiaahIhacaGGSaGaaGjbVlaadshaaO GaayjkaiaawMcaaaaa@479C@ , momentum p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVC0dg9GqqrFipC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHWb aaaa@36F3@ or velocity v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVC0dg9GqqrFipC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWH2b aaaa@36F9@ , related by the relationship p=ρv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVC0dg9GqqrFipC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaqcLbsacaWHWb Gaeyypa0JaeqyWdiNaaCODaaaa@3AB8@ , and the energy, including mechanical and internal components, are functions of coordinates x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiaahIhaaaa@3EB9@ and time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaerbc92BR1wyUbYtSrgitrxESvgarmWu51MyVXga ruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlH8qkYxI8GqFD0x XdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9 q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaGacmaadaWaaeqaba abaeaafaaakeaajugibiaadshaaaa@3EB1@ . To simplify description of incompressible media the set of linearized fundamental governing equations is selected in the conventional form with temperature instead of energy6

ρ t +divρv=0 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHbpGCaOqaaKqz GeGaeyOaIyRaamiDaaaacqGHRaWkcaa5KbGaaqEAaiaaKBhacqaHbp GCcaWH2bGaeyypa0JaaGimaaaa@4B1F@     (1)

ρv t =P+ρνΔv+( ζ+ 1 3 ρν )divv+ρg MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHbpGCcaWH2baa keaajugibiabgkGi2kaadshaaaGaeyypa0JaeyOeI0Iaey4bIeTaam iuaiabgUcaRiabeg8aYjabe27aUjabfs5aejaahAhacqGHRaWkjuaG daqadaGcbaqcLbsacqaH2oGEcqGHRaWkjuaGdaWcbaWcbaqcLbsaca aIXaaaleaajugibiaaiodaaaGaeqyWdiNaeqyVd4gakiaawIcacaGL PaaajugibiabgEGirlGacsgacaGGPbGaaiODaiaahAhacqGHRaWkcq aHbpGCcaWHNbaaaa@644B@     (2)

ρT t = κ T ΔρT MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHbpGCcaWGubaa keaajugibiabgkGi2kaadshaaaGaeyypa0JaeqOUdSwcfa4aaSbaaK qaGeaajugWaiaadsfaaSqabaqcLbsacqqHuoarcqaHbpGCcaWGubaa aa@4CD3@      (3)

ρ S i t = κ S i Δρ S i MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcqaHbpGCcaWGtbqc fa4aaSbaaKqaGeaajugWaiaadMgaaSqabaaakeaajugibiabgkGi2k aadshaaaGaeyypa0JaeqOUdSwcfa4aaSbaaSqaaKqzadGaam4uaWWa aSbaaKGaGeaajugWaiaadMgaaKGaGeqaaaWcbeaajugibiabfs5aej abeg8aYjaadofammaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@54EE@   (4)

Where ν,ζ, κ T , κ S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaeqyVd4MaaiilaiaaysW7cqaH2oGEcaGGSaGaaGjbVlab eQ7aRLqbaoaaBaaajeaibaqcLbmacaWGubaaleqaaKqzGeGaaiilai aaysW7cqaH6oWAjuaGdaWgaaqcbasaaKqzadGaam4uaWWaaSbaaKGa GeaajugWaiaadMgaaKGaGeqaaaWcbeaaaaa@50B8@ are coefficients of first and second kinematic viscosities, temperature and salinity diffusivity.
The system (1–4) is analyzed taking into account the condition of compatibility, which defines its rank. The rank of the set (1–4) is tenth and complete solution contains ten independent functions.

Three dimensional periodic flows with a constant positive frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeM8a3baa@3CD1@ and a complex wave number k=( k x , k y , k z ) MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgacqGH9aqpjuaGdaqadaGcbaqcLbsacaWG RbaddaWgaaqcbasaaKqzadGaamiEaaqcbasabaqcLbsacaGGSaGaam 4AaWWaaSbaaKqaGeaajugWaiaadMhaaKqaGeqaaKqzGeGaaiilaiaa dUgammaaBaaajeaibaqcLbmacaWG6baajeaibeaaaOGaayjkaiaawM caaaaa@4D0C@ , k= k 1 +i k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgacqGH9aqpcaWHRbaddaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacqGHRaWkcaWGPbGaaC4AaWWaaSbaaK qaGeaajugWaiaaikdaaKqaGeqaaaaa@4619@  are considered, the imaginary part of which, characterizing the spatial attenuation of the wave fields coefficients, is supposed to be small.

The equations of system (1–4), in which the small coefficients stand for terms with the highest derivatives with respect to spatial variables, belong to the class of singularly perturbed equations. To obtain complete solutions of such equations, it is necessary to use both converse and reverse expansions in the small parameter of the form

k= k 0 +ε k 1 + ε 2 k 2 +... MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgacqGH9aqpcaWGRbaddaWgaaqcbasaaKqz adGaaGimaaqcbasabaqcLbsacqGHRaWkcqaH1oqzcaaMc8Uaam4AaK qbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaeqyT dugddaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaMc8Uaam4AaW WaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaey4kaSIaaGPa Vlaac6cacaGGUaGaaiOlaaaa@5893@         (5)

k z = ε γ ( k 0 +ε k 1 + ε 2 k 2 +... ),γ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgammaaBaaajeaibaqcLbmacaWG6baajeai beaajugibiabg2da9iabew7aLXWaaWbaaKqaGeqabaqcLbmacqGHsi slcqaHZoWzaaqcLbsacaaMc8Ecfa4aaeWaaOqaaKqzGeGaam4AaKqb aoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaey4kaSIaeqyTdu MaaGPaVlaadUgammaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabgUcaRiabew7aLXWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaaGPaVlaadUgammaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabgUcaRiaaykW7caGGUaGaaiOlaiaac6caaOGaayjkaiaawMcaaK qzGeGaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaeq4SdCMa eyOpa4JaaGimaaaa@72C4@                (6)

The value of the coefficient γ MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeo7aNbaa@3CAB@ is determined by substituting (5),(6) into the system of equations under consideration from the precedence condition of the resulting principal term of the expansion. When studying small periodic motions with a real frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeM8a3baa@3CD0@ and a complex wave vector k MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgaaaa@3BF7@ , all the variables are chosen in the form

v= v 0 τ(r,t) MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahAhacqGH9aqpcaWH2baddaWgaaqcbasaaKqz adGaaGimaaqcbasabaqcLbsacaaMc8UaeqiXdqNaaiikaiaadkhaca GGSaGaaGPaVlaadshacaGGPaaaaa@49D3@ , p ¯ = p 0 τ(r,t) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiqadchagaqeaiabg2da9iaadchammaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiaaykW7cqaHepaDcaGGOaGaam OCaiaacYcacaaMc8UaamiDaiaacMcaaaa@49D8@ , ρ ¯ = ρ 0 τ(r,t) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiqbeg8aYzaaraGaeyypa0JaeqyWdihddaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacqaHepaDcaGGOaGaamOCai aacYcacaaMc8UaamiDaiaacMcaaaa@49E3@ , τ(r,t)=exp( i(krωt) ) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabes8a0jaacIcacaWGYbGaaiilaiaaykW7caWG 0bGaaiykaiabg2da9iGacwgacaGG4bGaaiiCaKqbaoaabmaakeaaju gibiaadMgacaGGOaGaaC4AaiaahkhacqGHsislcqaHjpWDcaaMc8Ua amiDaiaacMcaaOGaayjkaiaawMcaaaaa@525C@             (7)

The solution of the system (1–4) for waves propagating in an unbounded medium is searched in the form of expansions in plane waves

A= j + + a j ( k x , k y )exp( i( k zj ( k x , k y )z+ k x x+ k y yωt ) ) d k x d k y MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadgeacqGH9aqpjuaGdaaeqbGcbaqcfa4aa8qC aOqaaKqbaoaapehakeaajugibiaadggammaaBaaajeaibaqcLbmaca WGQbaajeaibeaajuaGdaqadaGcbaqcLbsacaWGRbaddaWgaaqcbasa aKqzadGaamiEaaqcbasabaqcLbsacaGGSaGaam4AaKqbaoaaBaaaje aibaqcLbmacaWG5baaleqaaaGccaGLOaGaayzkaaqcLbsacaaMc8Ua ciyzaiaacIhacaGGWbqcfa4aaeWaaOqaaKqzGeGaamyAaiaaykW7ju aGdaqadaGcbaqcLbsacaWGRbaddaWgaaqcbasaaKqzadGaamOEaiaa dQgaaKqaGeqaaKqbaoaabmaakeaajugibiaadUgammaaBaaajeaiba qcLbmacaWG4baajeaibeaajugibiaacYcacaWGRbaddaWgaaqcbasa aKqzadGaamyEaaqcbasabaaakiaawIcacaGLPaaajugibiaadQhacq GHRaWkcaWGRbaddaWgaaqcbasaaKqzadGaamiEaaqcbasabaqcLbsa caWG4bGaey4kaSIaam4AaKqbaoaaBaaajeaibaqcLbmacaWG5baale qaaKqzGeGaamyEaiabgkHiTiabeM8a3jaadshaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaqcbasaaKqzadGaeyOeI0IaeyOhIukajeaiba qcLbmacqGHRaWkcqGHEisPaKqzGeGaey4kIipacaaMc8UaaGPaVlaa dsgacaWGRbaddaWgaaqcbasaaKqzadGaamiEaaqcbasabaqcLbsaca WGKbGaam4AaWWaaSbaaKqaGeaajugWaiaadMhaaKqaGeqaaaqaaKqz adGaeyOeI0IaeyOhIukajeaibaqcLbmacqGHRaWkcqGHEisPaKqzGe Gaey4kIipaaKqaGeaajugWaiaadQgaaSqabKqzGeGaeyyeIuoaaaa@A284@           (8)

Where A MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadgeaaaa@3BCA@  are components of velocity, density, pressure, salinity or temperature.

The summation in the expansion (8) is carried out over all the roots of the dispersion equation expressing the condition for the solvability of the linearized system (1–4), which satisfy the boundary conditions of the problem or the radiation condition in an infinite distance from the source (or attenuation of all perturbations at infinity).

Substituting expansions of functions for all physical variables into the system (1–4) and taking into account the compatibility condition for equations, one can find the dispersion relation, which, taking into account the action of all the dissipative factors, has the form

D ν (k,ω)F(k,ω)=0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadseajuaGdaWgaaqcbasaaKqzadGaeqyVd4ga leqaaKqzGeGaaiikaiaadUgacaGGSaGaeqyYdCNaaiykaiabgwSixl aadAeacaGGOaGaam4AaiaacYcacqaHjpWDcaGGPaGaeyypa0JaaGim aaaa@4E87@           (9)

Where
F(k,ω)= D ν (k,ω) D κ T (k,ω) D κ S (k,ω)( k 2 +i k z ( Λ T + Λ S ) Λ T Λ S )+ + D κ T (k,ω)( ω k z Λ S D ν (k,ω) N S 2 k 2 )+ D κ S (k,ω)( ω k z Λ T D ν (k,ω) N T 2 k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakqaabeqaaKqzGeGaamOraiaacIcacaWGRbGaaiilaiabeM8a 3jaacMcacqGH9aqpcqGHsislcaWGebqcfa4aaSbaaKqaGeaajugWai abe27aUbWcbeaajugibiaacIcacaWGRbGaaiilaiabeM8a3jaacMca caWGebaddaWgaaqcbasaaKqzadGaeqOUdSgddaWgaaqccasaaKqzad GaamivaaqccasabaaajeaibeaajugibiaacIcacaWGRbGaaiilaiab eM8a3jaacMcacaWGebaddaWgaaqcbasaaKqzadGaeqOUdSgddaWgaa qccasaaKqzadGaam4uaaqccasabaaajeaibeaajugibiaacIcacaWG RbGaaiilaiabeM8a3jaacMcajuaGdaqadaGcbaqcLbsacaWGRbadda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGPbqcfa4a aSaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaWG6baale qaaKqzGeGaaiikaiabfU5amXWaaSbaaKqaGeaajugWaiaadsfaaKqa GeqaaKqzGeGaey4kaSIaeu4MdWucfa4aaSbaaKqaGeaajugWaiaado faaSqabaqcLbsacaGGPaaakeaajugibiabfU5amXWaaSbaaKqaGeaa jugWaiaadsfaaKqaGeqaaKqzGeGaeu4MdWeddaWgaaqcbasaaKqzad Gaam4uaaqcbasabaaaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkaOqa aKqzGeGaey4kaSIaamiraKqbaoaaBaaajeaibaqcLbmacqaH6oWAmm aaBaaajiaibaqcLbmacaWGubaajiaibeaaaSqabaqcLbsacaGGOaGa am4AaiaacYcacqaHjpWDcaGGPaqcfa4aaeWaaOqaaKqbaoaalaaake aajugibiabeM8a3jaaykW7caWGRbaddaWgaaqcbasaaKqzadGaamOE aaqcbasabaaakeaajugibiabfU5amXWaaSbaaKqaGeaajugWaiaado faaKqaGeqaaaaajugibiaadseammaaBaaajeaibaqcLbmacqaH9oGB aKqaGeqaaKqzGeGaaiikaiaadUgacaGGSaGaeqyYdCNaaiykaiabgk HiTiaad6eammaaDaaajeaibaqcLbmacaWGtbaajeaibaqcLbmacaaI YaaaaKqzGeGaam4AaWWaa0baaKqaGeaajugWaiabgwQiEbqcbasaaK qzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamiraKqb aoaaBaaajeaibaqcLbmacqaH6oWAmmaaBaaajiaibaqcLbmacaWGtb aajiaibeaaaSqabaqcLbsacaGGOaGaam4AaiaacYcacqaHjpWDcaGG Paqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabeM8a3jaaykW7ca WGRbaddaWgaaqcbasaaKqzadGaamOEaaqcbasabaaakeaajugibiab fU5amLqbaoaaBaaajeaibaqcLbmacaWGubaaleqaaaaajugibiaads eammaaBaaajeaibaqcLbmacqaH9oGBaKqaGeqaaKqzGeGaaiikaiaa dUgacaGGSaGaeqyYdCNaaiykaiabgkHiTiaad6eammaaDaaajeaiba qcLbmacaWGubaajeaibaqcLbmacaaIYaaaaKqzGeGaam4AaWWaa0ba aKqaGeaajugWaiabgwQiEbqcbasaaKqzadGaaGOmaaaaaOGaayjkai aawMcaaaaaaa@F102@   (10)

D ν (k,ω)=iω+ν k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadseammaaBaaajeaibaqcLbmacqaH9oGBaKqa GeqaaKqzGeGaaiikaiaadUgacaGGSaGaeqyYdCNaaiykaiabg2da9i abgkHiTiaadMgacqaHjpWDcqGHRaWkcqaH9oGBcaaMc8Uaam4AaWWa aWbaaKqaGeqabaqcLbmacaaIYaaaaaaa@508E@ , D κ T (k,ω)=iω+ κ T k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadseammaaBaaajeaibaqcLbmacqaH6oWAmmaa BaaajiaibaqcLbmacaWGubaajiaibeaaaKqaGeqaaKqzGeGaaiikai aadUgacaGGSaGaeqyYdCNaaiykaiabg2da9iabgkHiTiaadMgacqaH jpWDcqGHRaWkcqaH6oWAmmaaBaaajeaibaqcLbmacaWGubaajeaibe aajugibiaaykW7caWGRbaddaahaaqcbasabeaajugWaiaaikdaaaaa aa@5622@ , D κ S (k,ω)=iω+ κ S k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadseajuaGdaWgaaqcbasaaKqzadGaeqOUdSgd daWgaaqccasaaKqzadGaam4uaaqccasabaaaleqaaKqzGeGaaiikai aadUgacaGGSaGaeqyYdCNaaiykaiabg2da9iabgkHiTiaadMgacqaH jpWDcqGHRaWkcqaH6oWAmmaaBaaajeaibaqcLbmacaWGtbaajeaibe aajugibiaaykW7caWGRbaddaahaaqcbasabeaajugWaiaaikdaaaaa aa@5683@ , k 2 = k x 2 + k y 2 + k z 2 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaajugibiabg2da9iaadUgammaaDaaajeaibaqcLbmacaWG4baaje aibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaam4AaWWaa0baaKqaGeaa jugWaiaadMhaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGRb addaqhaaqcbasaaKqzadGaamOEaaqcbasaaKqzadGaaGOmaaaaaaa@53D2@ , k 2 = k x 2 + k y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgammaaDaaajeaibaaddaahaaqccasabeaa jugWaiabgwQiEbaaaKqaGeaajugWaiaaikdaaaqcLbsacqGH9aqpca WGRbaddaqhaaqcKfaq=haajugWaiaadIhaaKazba0=baqcLbmacaaI YaaaaKqzGeGaey4kaSIaam4AaWWaa0baaKazba0=baqcLbmacaWG5b aajqwaa9FaaKqzadGaaGOmaaaaaaa@55B9@ .

Disregarding all the dissipative effects, the dispersion equation of the tenth degree (9) goes into a quadratic equation describing the internal waves in an ideal fluid (and all other types of waves are inertial, surface gravitational, acoustic and hybrid in general case taking into account rotation and compressibility effects). The spectral components, in which | k 1 |>>| k 2 | MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaabdaGcbaqcLbsacaWHRbaddaWgaaqcbasaaKqz adGaaGymaaqcbasabaaakiaawEa7caGLiWoajugibiabg6da+iabg6 da+KqbaoaaemaakeaajugibiaahUgammaaBaaajeaibaqcLbmacaaI YaaajeaibeaaaOGaay5bSlaawIa7aaaa@4C77@ (7), the damping factor is proportional to the kinetic coefficients (here γ=i( ν+ κ T + κ S ) k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeo7aNjabg2da9iaadMgajuaGdaqadaGcbaqc LbsacqaH9oGBcqGHRaWkcqaH6oWAmmaaBaaajeaibaqcLbmacaWGub aajeaibeaajugibiabgUcaRiabeQ7aRXWaaSbaaKqaGeaajugWaiaa dofaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacaWGRbaddaahaaqcba sabeaajugWaiaaikdaaaaaaa@5198@ ), are regular perturbed components of flow and describe the large scale wave components of periodic flows. Regularly perturbed solutions of the algebraic equation (9) and the system of differential equations (1–4) correspond to it, satisfying to the boundary conditions, respectively, determine the conical beams of periodic internal waves.7

The remaining eight roots of equation (9), the imaginary part of which is not small ( | k 1 |~| k 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaabdaGcbaqcLbsacaWHRbaddaWgaaqcbasaaKqz adGaaGymaaqcbasabaaakiaawEa7caGLiWoajugibiaac6hajuaGda abdaGcbaqcLbsacaWHRbqcfa4aaSbaaKqaGeaajugWaiaaikdaaSqa baaakiaawEa7caGLiWoaaaa@4BCB@ ) and inversely proportional to the kinetic coefficients, define ligament–singular perturbed solutions, characterizing the fine structure of flows. In the case of an infinite medium, four of them, which do not satisfy the damping boundary condition at infinity, were discarded. The remaining solutions for ligaments form two distinct groups. From the form of equation (9), in which the multiplier D ν (k,ω)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadseajuaGdaWgaaqcbasaaKqzadGaeqyVd4ga leqaaKqzGeGaaiikaiaadUgacaGGSaGaeqyYdCNaaiykaiabg2da9i aaicdaaaa@46AB@  is present, it follows that all fluid flows are structured and the waves always coexist with fine singularly perturbed solutions (such as the periodic Stokes boundary layer on an oscillating surface in a viscous liquid). However, these fine flow components are located not only at the boundaries, but also inside the fluid volume involved in the studied motion where they form family of ligaments. The transverse length scale (thickness) of ligaments are determined by the kinematic viscosity and frequency of the wave δ ω ν = ν/ω MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabes7aKXWaa0baaKqaGeaajugWaiabeM8a3bqc basaaKqzadGaeqyVd4gaaKqzGeGaeyypa0tcfa4aaOaaaOqaaKqbao aalyaakeaajugibiabe27aUbGcbaqcLbsacqaHjpWDaaaaleqaaaaa @4AAF@  (or buoyancy frequency δ N ν = ν/N MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabes7aKXWaa0baaKqaGeaajugWaiaad6eaaKqa GeaajugWaiabe27aUbaajugibiabg2da9KqbaoaakaaakeaajuaGda WcgaGcbaqcLbsacqaH9oGBaOqaaKqzGeGaamOtaaaaaSqabaaaaa@48BB@ ).

Simultaneously, the dissipative effects determine the existence of other flow components whose properties are described by the second and third terms in (10). Their transverse sizes depend on the frequencies or and the values of all the kinetic coefficients (kinematic viscosity, thermal and components diffusivities), as well as on the direction of wave propagation (in case of internal waves by the slope of the group velocity vector to the horizon or to the radiating surface (here by the ratio k z /k MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgammaaBaaajeaibaqcLbmacaWG6baajeai beaamiaac+cajugibiaadUgaaaa@40E0@ ). Ligaments that are singularly perturbed components of complete solutions are linear precursors of vortices, vortex systems and shock waves in fluid flows.

All solutions of the set (1–4), which are regularly and singularly perturbed, form a common family described by functions of one form (4.8), which differ in the magnitude of the ratios of the real and imaginary parts. All of them are formed, transferred and disappear simultaneously, despite the differences in characteristic length scales. Each of components of the flows causes the transport of energy, matter and vorticity.

The dispersion relation that fixes an experimentally verifiable functional relationship between the parameters of the instantaneous spatial structure of the medium (length scale or wave numbers) and a local time characteristic (the period of variations) determines the concepts of definition for both waves and ligaments structurally large and fine components of flows. Properties of waves are characterized by regular solutions of the fundamental set. Ligaments are singular solutions describing elongated and thin 2D (surface) and 1D (linear) flow components. In linear models, ligaments and waves are described by independent functions. In weakly nonlinear all of them interact with each other8 and produce nonlinear waves and shock waves. Really observed surface and line fine flow components are product of non‒linear interactions of all ligaments described by the family of singular perturbed solutions. In this sense, the ligaments can be treated as linear precursors of shock waves.

Periodic flows in the classical system of Navier-Stokes equations for homogeneous incompressible fluid

To reduced system of equations for periodic motions (1–4) of an incompressible homogeneous fluid in the phase space ( ω,k ) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaqadaGcbaqcLbsacqaHjpWDcaGGSaGaaGjbVlaa hUgaaOGaayjkaiaawMcaaaaa@422D@

( ω+iν ) v i0 + k i P 0 =0, k x v x 0 + k y v y 0 + k z v z 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaqadaGcbaqcLbsacqaHjpWDcqGHRaWkcaWGPbGa aGPaVlabe27aUjaaykW7aOGaayjkaiaawMcaaKqzGeGaaGPaVlaayk W7caWG2baddaWgaaqcbasaaKqzadGaamyAaiaaicdaaKqaGeqaaKqz GeGaey4kaSIaam4AaWWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaK qzGeGaamiuaWWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGa eyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8Uaam4AaW WaaSbaaKqaGeaajugWaiaadIhaaKqaGeqaaKqzGeGaamODaWWaaSba aKqaGeaajugWaiaadIhaaKqaGeqaaWWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaey4kaSIaam4AaKqbaoaaBaaajeaibaqcLbma caWG5baaleqaaKqzGeGaaqUDaWWaaSbaaKqaGeaajugWaiaadMhaaK qaGeqaaWWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaey4k aSIaam4AaWWaaSbaaKqaGeaajugWaiaadQhaaKqaGeqaaKqzGeGaam ODaWWaaSbaaKqaGeaajugWaiaadQhaaKqaGeqaaWWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaeyypa0JaaGimaaaa@8433@           (11)

Corresponds the dispersion equation

k 2 ( ω+iν k 2 ) 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgammaaCaaajeaibeqaaKqzadGaaGOmaaaa juaGdaqadaGcbaqcLbsacqaHjpWDcqGHRaWkcaWGPbGaeqyVd4MaaC 4AaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGccaGLOaGaayzk aaaddaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGH9aqpcaaIWa aaaa@4E9D@               (12)

The first multiplier k 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgammaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiabg2da9iaaicdaaaa@4089@ in equation (12) with the solution in the form k z =±i k x 2 + k y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadUgammaaBaaajeaibaqcLbmacaWG6baajeai beaajugibiabg2da9iabgglaXkaaykW7caWGPbqcfa4aaOaaaOqaaK qzGeGaam4AaWWaa0baaKqaGeaajugWaiaadIhaaKqaGeaajugWaiaa ikdaaaqcLbsacqGHRaWkcaWGRbaddaqhaaqcbasaaKqzadGaamyEaa qcbasaaKqzadGaaGOmaaaaaSqabaaaaa@5260@ represents in a collapsed form all kinds of wave processes caused by the effect of compressibility, stratification, rotation, and other physical factors in inhomogeneous liquids in external force fields.

The second multiplier in the dispersion equation (12) defines a pair of identically singular perturbed solutions for identical ligaments

( ω+iν k 2 ) 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaqadaGcbaqcLbsacqaHjpWDcqGHRaWkcaWGPbGa aGPaVlabe27aUjaaykW7caWGRbaddaahaaqcbasabeaajugWaiaaik daaaaakiaawIcacaGLPaaammaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiabg2da9iaaicdaaaa@4D5D@    (13)

Since k0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgacqGHGjsUcaaIWaaaaa@3E79@ , then from (12) and (13) it follows that P=0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadcfacqGH9aqpcaaIWaaaaa@3D99@ . The solution has the character of a degenerate internal periodic boundary layer, in the plane of whose centers v z =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadAhammaaBaaajeaibaqcLbmacaWG6baajeai beaajugibiabg2da9iaaicdaaaa@40FC@ , and the values of the velocity components v x MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaamiEaaWc beaaaaa@3F0E@ , v y MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaamyEaaWc beaaaaa@3F0F@  depend on the local normal coordinate z MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadQhaaaa@3C03@ .

Periodic flow components in homogeneous compressible medium

In a compressible medium, the dispersion equation corresponding to the reduced part of the complete system, which includes only equations (1, 2), has the form

( k 2 ( 1 iω ν ˜ c s 2 ) ω 2 c s 2 ) ( ω+iν k 2 ) 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaqadaGcbaqcLbsacaWGRbqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTK qbaoaalaaakeaajugibiaadMgacqaHjpWDcaaMc8UafqyVd4MbaGaa aOqaaKqzGeGaam4yaWWaa0baaKqaGeaajugWaiaadohaaKqaGeaaju gWaiaaikdaaaaaaaGccaGLOaGaayzkaaqcLbsacqGHsisljuaGdaWc aaGcbaqcLbsacqaHjpWDmmaaCaaajeaibeqaaKqzadGaaGOmaaaaaO qaaKqzGeGaam4yaWWaa0baaKqaGeaajugWaiaadohaaKqaGeaajugW aiaaikdaaaaaaaGccaGLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaeq yYdCNaey4kaSIaamyAaiabe27aUjaaykW7caWGRbaddaahaaqcbasa beaajugWaiaaikdaaaaakiaawIcacaGLPaaammaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabg2da9iaaicdaaaa@70D9@               (14)

Where ν ˜ =ζ+ 4ν/3 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiqbe27aUzaaiaGaeyypa0JaeqOTdONaey4kaSsc fa4aaSGbaOqaaKqzGeGaaGinaiabe27aUbGcbaqcLbsacaaIZaaaaa aa@4579@ ; ν MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabe27aUbaa@3CBC@ , ζ MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeA7a6baa@3CC1@ are shear (first) and convergence (second) kinematic viscosity, c s MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadogajuaGdaWgaaqcbasaaKqzadGaam4CaaWc beaaaaa@3EF6@ is the sound velocity. The first multiplier in (14) is the classical dispersion relation for a sound wave in a dissipative medium, which describes waves with a frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeM8a3baa@3CD1@ and wave vector k MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaahUgaaaa@3BF8@ propagating with a velocity с s MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadgebmmaaBaaajeaibaqcLbmacaWGZbaajeai beaaaaa@3E75@ . The second multiplier is a doubly degenerate singularly perturbed solution of Stokes type, describing two merged identical ligaments. Consequently, therefore, the account of compressibility does not remove the degeneracy of the equations set for a homogeneous fluid.

Internal waves and ligaments in viscous inhomogeneous incompressible fluid

The system of governing equations for a viscous inhomogeneous incompressible exponentially stratified fluid which is characterized by the buoyancy scale Λ ρ = | dlnρ/dz | 1 MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabfU5amLqbaoaaBaaajeaibaqcLbmacqaHbpGC aSqabaqcLbsacqGH9aqpjuaGdaabdaGcbaqcLbsacaWGKbGaciiBai aac6gacqaHbpGCcaGGVaGaamizaiaadQhaaOGaay5bSlaawIa7aWWa aWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaaaa@5088@ , frequency N= g/Λ MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaad6eacqGH9aqpjuaGdaGcaaGcbaqcLbsacaWG NbGaai4laiabfU5ambWcbeaaaaa@4132@  and period T b =2π/N MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadsfammaaBaaajeaibaqcLbmacaWGIbaajeai beaajugibiabg2da9iaaikdacqaHapaCcaGGVaGaamOtaaaa@4406@  is usually written in the form

ρ ˜ t v z Λ =0,divv=0 ρ 0 (z) v i t = p ˜ x i +ν ρ 0 (z)Δ v i δ i3 ρ ˜ g MathType@MTEF@5@5@+= feaagKart1ev2aaarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakqaabeqaaKqbaoaalaaakeaajugibiabgkGi2kqbeg8aYzaa iaaakeaajugibiabgkGi2kaaykW7caWG0baaaiabgkHiTKqbaoaala aakeaajugibiaadAhajuaGdaWgaaqcbasaaKqzadGaamOEaaWcbeaa aOqaaKqzGeGaeu4MdWeaaiabg2da9iaaicdacaGGSaGaaGPaVlaayk W7caaMc8UaaqozaiaaKNgacaa52bGaaGjbVlaahAhacqGH9aqpcaaI Waaakeaajugibiabeg8aYXWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaaiikaiaadQhacaGGPaqcfa4aaSaaaOqaaKqzGeGaeyOa IyRaamODaWWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaaGcbaqcLb sacqGHciITcaaMc8UaamiDaaaacqGH9aqpcqGHsisljuaGdaWcaaGc baqcLbsacqGHciITceWGWbGbaGaaaOqaaKqzGeGaeyOaIyRaaGPaVl aadIhammaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaqcLbsacqGH RaWkcqaH9oGBcaaMc8UaeqyWdihddaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacaGGOaGaamOEaiaacMcacqqHuoarcaaMc8UaamOD aWWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyOeI0Iaeq iTdqgddaWgaaqcbasaaKqzadGaamyAaiaaiodaaKqaGeqaaKqzGeGa fqyWdiNbaGaacaaMc8Uaam4zaaaaaa@97B0@              (15)

Where ρ= ρ 0 (z)+ ρ ˜ ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiabeg8aYjabg2da9iabeg8aYXWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaaiikaiaadQhacaGGPaGaey4kaS IafqyWdiNbaGaajuaGdaqadaGcbaqcLbsacaWH4bGaaiilaiaaysW7 caWG0baakiaawIcacaGLPaaaaaa@4E7C@ , P= P 0 (z)+ P ˜ ( x,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajugibiaadcfacqGH9aqpcaWGqbaddaWgaaqcbasaaKqz adGaaGimaaqcbasabaqcLbsacaGGOaGaamOEaiaacMcacqGHRaWkce WGqbGbaGaajuaGdaqadaGcbaqcLbsacaWH4bGaaiilaiaaysW7caWG 0baakiaawIcacaGLPaaaaaa@4BBB@ .

The dispersion equation of system (15) has the form

( ω 2 k 2 N 2 k 2 +iων k 4 )( ω+iν k 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn 0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B 1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yrpy0dcbf9H8WrFfeuY= Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq 0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaacaGacmaadaWaaiqacaabai aafaaakeaajuaGdaqadaGcbaqcLbsacqaHjpWDjuaGdaahaaWcbeqc basaaKqzadGaaGOmaaaajugibiaahUgammaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiabgkHiTiaad6eammaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiaahUgammaaDaaajeaibaqcLbmacqGHLkIxaKqaGe aajugWaiaaikdaaaqcLbsacqGHRaWkcaWGPbGaeqyYdCNaeqyVd4Ma aGPaVlaahUgammaaCaaajeaibeqaaKqzadGaaGinaaaaaOGaayjkai aawMcaaKqbaoaabmaakeaajugibiabeM8a3jabgUcaRiaadMgacqaH 9oGBcaaMc8UaaC4AaWWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGcca GLOaGaayzkaaqcLbsacqGH9aqpcaaIWaaaaa@6AB5@           (16)

Solutions (16) are either internal waves whose oscillations occur in the direction of the wave propagation (the group velocity), which are accompanied by two kinds of different ligaments describing the fine structure components of the flows in the volume and on the boundary of the medium. It should also be noted, that from the no slip boundary condition on the fixed reflecting wave plane it follows that the oscillations in the internal waves (incident and reflected) and in formed the boundary layer are in antiphase.

In one dimensional and two dimensional formulations, all the considered types of model equations are solvable. In the three dimensional case in a homogeneous compressible and incompressible fluid, the complete solution of the linear system is degenerate with respect to the singular components.

Stratification ensures the existence of two different types of singularly perturbed solutions, which removes second order degeneracy in problems of radiation, propagation or reflection of internal waves from an inclined surface. Complete classification of periodic motions in viscous stratified and rotating medium is given in.9 With increasing of the flow velocity fine ligaments interact between themselves and form pronounced fine components including tangential discontinuities and shock waves.

Observations of ligaments

All images of flow patterns can be registered by sensitive optic instrument with a high spatial resolution, for example in observation of stratified flows. The typical schlieren side view image of flow produced by the uniformly towing vertical plate is given in Figure 1. In the experiments the plate with height h=2.5cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamiAaiabg2da9iaaikdacaGGUaGaaGynaiaaysW7caqG JbGaaeyBaaaa@41A8@ was uniformly towed with velocity U=0.87cm/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamyvaiabg2da9iaaicdacaGGUaGaaGioaiaaiEdacaaM e8Uaae4yaiaab2gacaqGVaGaae4Caaaa@43FF@ in the rectangular tank filled with continuously stratified common salt solution with buoyancy period T b =12.7s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamivaKqbaoaaBaaajeaibaqcLbmacaWGIbaaleqaaKqz GeGaeyypa0JaaGymaiaaikdacaGGUaGaaG4naiaaysW7caqGZbaaaa@44F9@ (coefficient of kinematic viscosity is ν=0.01 cm 2 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaeqyVd4Maeyypa0JaaGimaiaac6cacaaIWaGaaGymaiaa ysW7caqGJbGaaeyBaWWaaWbaaKqaGeqabaqcLbmacaqGYaaaaKqzGe Gaae4laiaabohaaaa@4799@ and salinity diffusivity is κ S =1.43 cm 2 /s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaeqOUdSwcfa4aaSbaaKazba0=baqcLbmacaWGtbaajeai beaajugibiabg2da9iaaigdacaGGUaGaaGinaiaaiodacaqGJbGaae yBaKqbaoaaCaaajeaibeqcKfaq=haajugWaiaabkdaaaqcLbsacaqG VaGaae4Caaaa@4D57@ ). Schlieren instrument IAB‒458 with aperture 23 cm with vertical illuminating slit and vertical Foucault knife was used for flow visualization. In this instrumental configuration, the variations of the horizontal components of the index of refraction gradient (or the fluid density gradient) define the brightness of the schlieren image of the flow pattern.

Figure 1Classical schlieren image of the flow pattern including upstream disturbances, attached internal waves and vortices and ligaments in the downstream wake past uniformly moving vertical plate ( T b =12.7s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamivaWWaaSbaaKqaGeaajugWaiaadkgaaKqaGeqaaKqz GeGaeyypa0JaaGymaiaaikdacaGGUaGaaG4naiaaysW7caqGZbaaaa@4496@ , h=2.5cm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamiAaiabg2da9iaaikdacaGGUaGaaGynaiaaysW7caqG JbGaaeyBaaaa@41A8@ , U=0.87cm/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaieYlh9Grpieu0hYdh9vqqj=hEeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaO qaaKqzGeGaamyvaiabg2da9iaaicdacaGGUaGaaGioaiaaiEdacaaM e8Uaae4yaiaab2gacaqGVaGaae4Caaaa@43FF@ ).

The main part of the flow pattern is covered by semi‒circular light and dark strips visualizing attached internal waves. Sharp boundaries between strips are crests and troughs of the waves. In the wake past the strip, the rear vortex and the “vortex bubble” are distinguished. Ahead of the strip, black and light bands denote upstream disturbances. Past the body, a wake with rich layered fine structure is visualized.

Vortices inside the wake are bounded by a high gradient envelope (the boundary ligament) separating domains with vortex and waves flow structures. Rear and bubble vortices are connected by the family of linear and loops ligaments forming by the set of sharp fine interfaces. Separate ligaments are described by singular perturbed solutions of the general set (1–4).

Conclusion

Analysis of the fundamental equations system complete solutions has shown existence of two types solutions: regularly and singularly perturbed. Regular solutions describe waves of different types (inertial, internal and surface gravity, acoustical). Singularly perturbed solutions describe ligaments that are extended fine surfaces and filaments with a high gradient of physical quantities.

Equations of 3D flows of homogeneous compressible and incompressible media are classified as degenerated as at least two singularly perturbed solutions become identical. The equation set of 6th rank for 4 physical variables (pressure and three component of the velocity) is over determined and ill posed.

The equations set become well‒posed when variations of density are taken into account and all flow components that are waves, vortices and ligaments, are investigated. In schlieren images of stratified flows the internal waves form specialized regular pattern, vortices are bounded by a high gradient envelope and ligaments manifest themselves as family of high gradient filaments and surfaces inside the fluid bulk and on boundaries of regions of intensive fluid motions.

The system of the fundamental equations is universal and describes flows in all temporal and spatial scales and the basic flows components that are waves, vortices and ligaments exist in the whole range of the fluid flows from microscopic to macroscopic length scales.

Acknowledgements

The work was carried out with the partial financial support of the IPMekh RAS (project AAAA‒A17‒117021310378‒8 – Development of coordinated analytical numerical methods for calculating the dynamics and structure of fluid flows and comparison techniques with the data of high‒resolution experiments at the USU "GFK IPMekh RAS" stands) and RFBR (grant 18 ‒05‒00870.)

Conflict of interest

Author declares there is no conflict of inertest.

References

Creative Commons Attribution License

©2018 Chashechkin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.