Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 6 Issue 4

Transverse magnetic mode excitation in an atomic mirror

S. Ghezali, M Slimani

1Physics Department, Faculty of Sciences, University Saâd Dahlab of Blida, Algeria
2Lycée Mohamed Boudiaf, Ksar-El-Boukhari, Algeria

Correspondence: S Ghezali, Physics Department, Faculty of Sciences, University Saâd Dahlab of Blida, Road of Soumaa, Blida 09000, Algeria

Received: November 02, 2022 | Published: November 14, 2022

Citation: Ghezali S, Slimani M. Transverse magnetic mode excitation in an atomic mirror. Phys Astron Int J. 2022;6(4):156-160. DOI: 10.15406/paij.2022.06.00269

Download PDF

Abstract

We present a study of a transverse magnetic mode excitation in a multi-layer atomic mirror. We give the continuity relationships at the interfaces of the setting.1 We deduce the transverse and parallel components of the electric field through the atomic mirror and then the total component. We show that there is no enhancement of the electric field in the vaccum contrarily to the transverse electric field excitation.2

Introduction

We introduce a detailed study of a transverse magnetic mode excitation in an atomic mirror. It is easy to demonstrate that in this geometry, we have: y =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamyEaaaacqGH9aqpcaaIWaaaaa@3CCD@ . There are two independant solutions of the Maxwell equations.1 One introduces a TE excitation (Ey, Bx and Bz).  The other one gives a TM excitation (By, Ex and Ez) coupled between them.

Figure 1 Resonant dielectric structure: the waveguide (Ti02, refraction index n3=2.387 and thickness 2d=67.9nm) is separated from the glass prism (LaSFN18, refraction index n1=1.893) by a layer of low index, the gap, (SiO2, thickness a=700nm, refraction index n2=1.49). The dielectric layers are deposited by a laser beam at λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AA@ =780nm. The fourth medium is vacuum (refraction index n4=1).

Maxwell equations:

The Maxwell equations [1, 3] give:

E = 1 C B t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaey 4bIenacaGLxdcacqGHNis2daWhcaqaaiaadweaaiaawEniaiabg2da 9iabgkHiTmaalaaabaGaaGymaaqaaiaadoeaaaWaaSaaaeaacqGHci ITdaWhcaqaaiaadkeaaiaawEniaaqaaiabgkGi2kaadshaaaaaaa@486F@  

H = 4π C J + 1 C D t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaey 4bIenacaGLxdcacqGHNis2daWhcaqaaiaadIeaaiaawEniaiabg2da 9maalaaabaGaaGinaiabec8aWbqaaiaadoeaaaWaa8HaaeaacaWGkb aacaGLxdcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGdbaaamaalaaa baGaeyOaIy7aa8HaaeaacaWGebaacaGLxdcaaeaacqGHciITcaWG0b aaaaaa@4E3F@  

. E =4πρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaey 4bIenacaGLxdcacaGGUaWaa8HaaeaacaWGfbaacaGLxdcacqGH9aqp caaI0aGaeqiWdaNaeqyWdihaaa@42DE@  

. B =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaey 4bIenacaGLxdcacaGGUaWaa8HaaeaacaWGcbaacaGLxdcacqGH9aqp caaIWaaaaa@3F5A@  

In order to introduce the right relationships, we present the electric field in the multi-layer system for a TE excitation.

E y (1) =Aexp(i γ 1 z)+ A \ exp(i γ 1 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamyEaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9iaadgea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZo WzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiykaiabgUcaRiaadgea daahaaWcbeqaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaai ikaiaadMgacqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiyk aaaa@5643@  

E y (2) =Bexp( β 2 z)+ B \ exp( β 2 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamyEaaqaaiaacIcacaaIYaGaaiykaaaakiabg2da9iaadkea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaaca aIYaaabeaakiaadQhacaGGPaGaey4kaSIaamOqamaaCaaaleqabaGa aiixaaaakiaaykW7caWGLbGaamiEaiaadchacaGGOaGaeyOeI0Iaeq OSdi2aaSbaaSqaaiaaikdaaeqaaOGaamOEaiaacMcaaaa@5460@  

E y (3) =Cexp(i γ 3 z)+ C \ exp(i γ 3 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamyEaaqaaiaacIcacaaIZaGaaiykaaaakiabg2da9iaadoea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZo WzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiykaiabgUcaRiaadoea daahaaWcbeqaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaai ikaiaadMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiyk aaaa@564D@  

E y (4) =Dexp( β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamyEaaqaaiaacIcacaaI0aGaaiykaaaakiabg2da9iaadsea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaaca aI0aaabeaakiaadQhacaGGPaaaaa@4767@  

For a transverse magnetic mode excitation, we give the two components of the electric field deduced from the Maxwell equations. The magnetic field By for the TM excitation has the same form as the perpendicular electric field Ey for the TE excitation.1 See the above equations.

E T = E x i + E z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiabg2da9iaadweadaWgaaWcbaGaamiE aaqabaGcceWGPbGbaSaacqGHRaWkcaWGfbWaaSbaaSqaaiaadQhaae qaaOGabm4Aayaalaaaaa@4104@  

E =| i x E x j y 0 k z E z | =i( E z y )j( E z x E x z )+k( E x y )=i K 0 B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaey 4bIenacaGLxdcacqGHNis2daWhcaqaaiaadweaaiaawEniaiabg2da 9maaeeaabaqbaeqabeGaaaqaauaabeqabiaaaqaabeqaaiaadMgaae aadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaaabaGaamyramaa BaaaleaacaWG4baabeaaaaGceaqabeaacaWGQbaabaWaaSaaaeaacq GHciITaeaacqGHciITcaWG5baaaaqaaiaaicdaaaaaaeaadaabcaab aeqabaGaam4AaaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOEaa aaaeaacaWGfbWaaSbaaSqaaiaadQhaaeqaaaaakiaawIa7aaaaaiaa wEa7aiabg2da9iaadMgacaGGOaWaaSaaaeaacqGHciITcaWGfbWaaS baaSqaaiaadQhaaeqaaaGcbaGaeyOaIyRaamyEaaaacaGGPaGaeyOe I0IaamOAaiaacIcadaWcaaqaaiabgkGi2kaadweadaWgaaWcbaGaam OEaaqabaaakeaacqGHciITcaWG4baaaiabgkHiTmaalaaabaGaeyOa IyRaamyramaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2kaadQhaaa GaaiykaiabgUcaRiaadUgacaGGOaGaeyOeI0YaaSaaaeaacqGHciIT caWGfbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRaamyEaaaaca GGPaGaeyypa0JaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGcceWG cbGbaSaaaaa@7D80@  

E x (1) (z)= γ 1 K 0 n 1 2 (Aexp(i γ 1 z)+ A \ exp(i γ 1 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIXaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaa GcbaGaam4samaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGa aGymaaqaaiaaikdaaaaaaOGaaiikaiabgkHiTiaadgeacaaMc8Uaam yzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZoWzdaWgaaWc baGaaGymaaqabaGccaWG6bGaaiykaiabgUcaRiaadgeadaahaaWcbe qaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaaiikaiaadMga cqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiykaiaacMcaaa a@61E9@  

E x (2) (z)= β 2 i K 0 n 2 2 (Bexp( β 2 z) B \ exp( β 2 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIYaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaa GcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaa0ba aSqaaiaaikdaaeaacaaIYaaaaaaakiaacIcacaWGcbGaaGPaVlaadw gacaWG4bGaamiCaiaacIcacqaHYoGydaWgaaWcbaGaaGOmaaqabaGc caWG6bGaaiykaiabgkHiTiaadkeadaahaaWcbeqaaiaacYfaaaGcca aMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiabek7aInaaBaaa leaacaaIYaaabeaakiaadQhacaGGPaGaaiykaaaa@600E@  

E x (3) (z)= γ 3 K 0 n 3 2 (Cexp(i γ 3 z)+ C \ exp(i γ 3 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIZaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaa GcbaGaam4samaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGa aG4maaqaaiaaikdaaaaaaOGaaiikaiabgkHiTiaadoeacaaMc8Uaam yzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZoWzdaWgaaWc baGaaG4maaqabaGccaWG6bGaaiykaiabgUcaRiaadoeadaahaaWcbe qaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaaiikaiaadMga cqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiykaiaacMcaaa a@61F7@  

E x (4) (z)= β 4 i K 0 n 4 2 Dexp( β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaI0aGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeqOSdi2aaSbaaSqaaiaaisdaaeqaaa GcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaa0ba aSqaaiaaisdaaeaacaaIYaaaaaaakiaadseacaaMc8UaamyzaiaadI hacaWGWbGaaiikaiabek7aInaaBaaaleaacaaI0aaabeaakiaadQha caGGPaaaaa@51B5@  

The polarisation of the transmitted wave in the second medium is obtained from the Snell-Descartes law.

de(21) E x = 1 i K 0 n 2 B y z de(20)i K 0 B y =( E x z E z x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadwgacaaMc8UaaGPaVlaacIcacaaIYaGaaGymaiaacMcacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaamyramaaBaaaleaacaWG4baabeaa kiabg2da9maalaaabaGaaGymaaqaaiaadMgacaWGlbWaaSbaaSqaai aaicdaaeqaaOGaamOBamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqa aiabgkGi2kaadkeadaWgaaWcbaGaamyEaaqabaaakeaacqGHciITca WG6baaaaqaaiaadsgacaWGLbGaaGPaVlaaykW7caGGOaGaaGOmaiaa icdacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyAaiaadUeadaWg aaWcbaGaaGimaaqabaGccaWGcbWaaSbaaSqaaiaadMhaaeqaaOGaey ypa0JaaiikamaalaaabaGaeyOaIyRaamyramaaBaaaleaacaWG4baa beaaaOqaaiabgkGi2kaadQhaaaGaeyOeI0YaaSaaaeaacqGHciITca WGfbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIyRaamiEaaaacaGG Paaaaaa@9016@  

iμε K 0 E z =i K x B y E z = K x K 0 n 2 B y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyAai abeY7aTjabew7aLjaadUeadaWgaaWcbaGaaGimaaqabaGccaWGfbWa aSbaaSqaaiaadQhaaeqaaOGaeyypa0JaeyOeI0IaamyAaiaadUeada WgaaWcbaGaamiEaaqabaGccaWGcbWaaSbaaSqaaiaadMhaaeqaaaGc baGaamyramaaBaaaleaacaWG6baabeaakiabg2da9iabgkHiTmaala aabaGaam4samaaBaaaleaacaWG4baabeaaaOqaaiaadUeadaWgaaWc baGaaGimaaqabaGccaWGUbWaaWbaaSqabeaacaaIYaaaaaaakiaadk eadaWgaaWcbaGaamyEaaqabaaaaaa@52BA@  

B y (1) =Aexp(i γ 1 z)+ A \ exp(i γ 1 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaacIcacaaIXaGaaiykaaaakiabg2da9iaadgea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZo WzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiykaiabgUcaRiaadgea daahaaWcbeqaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaai ikaiaadMgacqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiyk aaaa@5640@  

B y (2) =Bexp( β 2 z)+ B \ exp( β 2 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaacIcacaaIYaGaaiykaaaakiabg2da9iaadkea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaaca aIYaaabeaakiaadQhacaGGPaGaey4kaSIaamOqamaaCaaaleqabaGa aiixaaaakiaaykW7caWGLbGaamiEaiaadchacaGGOaGaeyOeI0Iaeq OSdi2aaSbaaSqaaiaaikdaaeqaaOGaamOEaiaacMcaaaa@545D@  

B y (3) =Cexp(i γ 3 z)+ C \ exp(i γ 3 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaacIcacaaIZaGaaiykaaaakiabg2da9iaadoea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZo WzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiykaiabgUcaRiaadoea daahaaWcbeqaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaai ikaiaadMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiyk aaaa@564A@  

B y (4) =Dexp( β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaacIcacaaI0aGaaiykaaaakiabg2da9iaadsea caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaaca aI0aaabeaakiaadQhacaGGPaaaaa@4764@  

y 1 2 = n 1 2 k 0 2 cos 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaqhaa WcbaGaaGymaaqaaiaaikdaaaGccqGH9aqpcaWGUbWaa0baaSqaaiaa igdaaeaacaaIYaaaaOGaam4AamaaDaaaleaacaaIWaaabaGaaGOmaa aakiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiabeI7a Xbaa@469A@  

β 2 2 =( n 1 2 sinθ n 2 ) K 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaaIYaaabaGaaGOmaaaakiabg2da9iaacIcacaWGUbWaa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaci4CaiaacMgacaGGUbGaeqiUde NaeyOeI0IaamOBamaaBaaaleaacaaIYaaabeaakiaacMcacaWGlbWa a0baaSqaaiaaicdaaeaacaaIYaaaaaaa@4A51@  

y 3 2 =( n 3 2 n 1 2 si n 2 θ) K 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaqhaa WcbaGaaG4maaqaaiaaikdaaaGccqGH9aqpcaGGOaGaamOBamaaDaaa leaacaaIZaaabaGaaGOmaaaakiabgkHiTiaad6gadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaGIZbGaaOyAaiaak6gadaahaaWcbeqaaiaa ikdaaaGccqaH4oqCcaGGPaGaam4samaaDaaaleaacaaIWaaabaGaaG Omaaaaaaa@4B76@  

β 4 2 =( n 1 2 sin 2 θ n 4 2 ) K 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaDa aaleaacaaI0aaabaGaaGOmaaaakiabg2da9iaacIcacaWGUbWaa0ba aSqaaiaaigdaaeaacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaS qabeaacaaIYaaaaOGaeqiUdeNaeyOeI0IaamOBamaaDaaaleaacaaI 0aaabaGaaGOmaaaakiaacMcacaWGlbWaa0baaSqaaiaaicdaaeaaca aIYaaaaaaa@4C05@  

E x = 1 i K 0 n 2 B y z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGPbGa am4samaaBaaaleaacaaIWaaabeaakiaad6gadaahaaWcbeqaaiaaik daaaaaaOWaaSaaaeaacqGHciITcaWGcbWaaSbaaSqaaiaadMhaaeqa aaGcbaGaeyOaIyRaamOEaaaaaaa@4666@  

E x (1) (z)= γ 1 K 0 n 1 2 (Aexp(i γ 1 z)+ A \ exp(i γ 1 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIXaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaa GcbaGaam4samaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGa aGymaaqaaiaaikdaaaaaaOGaaiikaiabgkHiTiaadgeacaaMc8Uaam yzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZoWzdaWgaaWc baGaaGymaaqabaGccaWG6bGaaiykaiabgUcaRiaadgeadaahaaWcbe qaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaaiikaiaadMga cqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaWG6bGaaiykaiaacMcaaa a@61E9@  

E x (2) (z)= β 2 i K 0 n 2 2 (Bexp( β 2 z) B \ exp( β 2 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIYaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaa GcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaa0ba aSqaaiaaikdaaeaacaaIYaaaaaaakiaacIcacaWGcbGaaGPaVlaadw gacaWG4bGaamiCaiaacIcacqaHYoGydaWgaaWcbaGaaGOmaaqabaGc caWG6bGaaiykaiabgkHiTiaadkeadaahaaWcbeqaaiaacYfaaaGcca aMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiabek7aInaaBaaa leaacaaIYaaabeaakiaadQhacaGGPaGaaiykaaaa@600E@  

E x (3) (z)= γ 3 K 0 n 3 2 (Cexp(i γ 3 z)+ C \ exp(i γ 3 z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaIZaGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaa GcbaGaam4samaaBaaaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGa aG4maaqaaiaaikdaaaaaaOGaaiikaiabgkHiTiaadoeacaaMc8Uaam yzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZoWzdaWgaaWc baGaaG4maaqabaGccaWG6bGaaiykaiabgUcaRiaadoeadaahaaWcbe qaaiaacYfaaaGccaaMc8UaamyzaiaadIhacaWGWbGaaiikaiaadMga cqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWG6bGaaiykaiaacMcaaa a@61F7@  

E x (4) (z)= β 4 i K 0 n 4 2 Dexp( β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaacIcacaaI0aGaaiykaaaakiaacIcacaWG6bGa aiykaiabg2da9maalaaabaGaeqOSdi2aaSbaaSqaaiaaisdaaeqaaa GcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaa0ba aSqaaiaaisdaaeaacaaIYaaaaaaakiaadseacaaMc8UaamyzaiaadI hacaWGWbGaaiikaiabek7aInaaBaaaleaacaaI0aaabeaakiaadQha caGGPaaaaa@51B5@  

We give the continuity equations in the multi-layer system:

s. ( D 2 D 1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaam 4Caiaac6caaiaawEniaiaacIcadaWhcaqaaiaadseaaiaawEniamaa BaaaleaacaaIYaaabeaakiabgkHiTmaaFiaabaGaamiraaGaay51Ga WaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaaicdaaaa@466F@  

n i 2 E i 1 (z)= n i+1 2 E i+1 1 (z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaqhaa WcbaGaamyAaaqaaiaaikdaaaGccaWGfbWaa0baaSqaaiaadMgaaeaa caaIXaaaaOGaaiikaiaadQhacaGGPaGaeyypa0JaamOBamaaDaaale aacaWGPbGaey4kaSIaaGymaaqaaiaaikdaaaGccaWGfbWaa0baaSqa aiaadMgacqGHRaWkcaaIXaaabaGaaGymaaaakiaacIcacaWG6bGaai ykaaaa@4C1A@  

s ×( E 2 E 1 )= 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaam 4CaaGaay51GaGaey41aqRaaiikamaaFiaabaGaamyraaGaay51GaWa aSbaaSqaaiaaikdaaeqaaOGaeyOeI0Yaa8HaaeaacaWGfbaacaGLxd cadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0Zaa8HaaeaacaaI WaaacaGLxdcaaaa@498A@  

E x (i)= E x (i+1)i=1;2;3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaaaakiaacIcacaWGPbGaaiykaiabg2da9iaadwea daqhaaWcbaGaamiEaaqaaaaakiaacIcacaWGPbGaey4kaSIaaGymai aacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amyAaiabg2da9iaaigdacaGG7aGaaGOmaiaacUdacaaIZaaaaa@53CE@   at each interface.

s ×( H 2 H 1 )= 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFiaabaGaam 4CaaGaay51GaGaey41aqRaaiikamaaFiaabaGaamisaaGaay51GaWa aSbaaSqaaiaaikdaaeqaaOGaeyOeI0Yaa8HaaeaacaWGibaacaGLxd cadaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0Zaa8HaaeaacaaI WaaacaGLxdcaaaa@4990@   

B y 1 (d+a)= B y 2 (d+a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaaigdaaaGccaGGOaGaamizaiabgUcaRiaadgga caGGPaGaeyypa0JaamOqamaaDaaaleaacaWG5baabaGaaGOmaaaaki aacIcacaWGKbGaey4kaSIaamyyaiaacMcaaaa@46B7@   

E x 1 (d+a)= E x 2 (d+a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaaigdaaaGccaGGOaGaamizaiabgUcaRiaadgga caGGPaGaeyypa0JaamyramaaDaaaleaacaWG4baabaGaaGOmaaaaki aacIcacaWGKbGaey4kaSIaamyyaiaacMcaaaa@46BB@   

B y 2 (d)= B y 3 (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaaikdaaaGccaGGOaGaamizaiaacMcacqGH9aqp caWGcbWaa0baaSqaaiaadMhaaeaacaaIZaaaaOGaaiikaiaadsgaca GGPaaaaa@4329@   

E x 2 (d)= E x 3 (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaaikdaaaGccaGGOaGaamizaiaacMcacqGH9aqp caWGfbWaa0baaSqaaiaadIhaaeaacaaIZaaaaOGaaiikaiaadsgaca GGPaaaaa@432D@   

B y 3 (d)= B y 4 (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaqhaa WcbaGaamyEaaqaaiaaiodaaaGccaGGOaGaeyOeI0IaamizaiaacMca cqGH9aqpcaWGcbWaa0baaSqaaiaadMhaaeaacaaI0aaaaOGaaiikai abgkHiTiaadsgacaGGPaaaaa@4505@   

E x 3 (d)= E x 4 (d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamiEaaqaaiaaiodaaaGccaGGOaGaeyOeI0IaamizaiaacMca cqGH9aqpcaWGfbWaa0baaSqaaiaadIhaaeaacaaI0aaaaOGaaiikai abgkHiTiaadsgacaGGPaaaaa@4509@   

n i 2 E z (i)= n i+1 2 E z (i+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaqhaa WcbaGaamyAaaqaaiaaikdaaaGccaWGfbWaa0baaSqaaiaadQhaaeaa aaGccaGGOaGaamyAaiaacMcacqGH9aqpcaWGUbWaa0baaSqaaiaadM gacqGHRaWkcaaIXaaabaGaaGOmaaaakiaadweadaqhaaWcbaGaamOE aaqaaaaakiaacIcacaWGPbGaey4kaSIaaGymaiaacMcaaaa@4AA4@   

 for i=1,2,3 for each interface in the multi-layer.

Aexp(i γ 1 (d+a))=A e xp(i γ 1 (d+a))+Bexp( β 2 (d+a))+B e xp( β 2 (d+a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGLb GaamiEaiaadchacaGGOaGaeyOeI0IaamyAaiabeo7aNnaaBaaaleaa caaIXaaabeaakiaacIcacaWGKbGaey4kaSIaamyyaiaacMcacaGGPa Gaeyypa0JaeyOeI0IaamyqaiqadwgagaWbaiaadIhacaWGWbGaaiik aiabgkHiTiaadMgacqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaGGOa GaamizaiabgUcaRiaadggacaGGPaGaaiykaiabgUcaRiaadkeacaWG LbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaO GaaiikaiaadsgacqGHRaWkcaWGHbGaaiykaiaacMcacqGHRaWkcaWG cbGabmyzayaahaGaamiEaiaadchacaGGOaGaeyOeI0IaeqOSdi2aaS baaSqaaiaaikdaaeqaaOGaaiikaiaadsgacqGHRaWkcaWGHbGaaiyk aiaacMcaaaa@6F10@   

γ 1 n 1 2 K 0 Aexp(i γ 1 (d+a))= γ 1 n 1 2 K 0 A e xp(i γ 1 (d+a)) β 2 i n 1 2 K 0 [Bexp( β 2 (d+a))B e xp( β 2 (d+a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq 4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOBamaaDaaaleaacaaI XaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqabaaaaOGaam yqaiaadwgacaWG4bGaamiCaiaacIcacqGHsislcaWGPbGaeq4SdC2a aSbaaSqaaiaaigdaaeqaaOGaaiikaiaadsgacqGHRaWkcaWGHbGaai ykaiaacMcacqGH9aqpdaWcaaqaaiabeo7aNnaaBaaaleaacaaIXaaa beaaaOqaaiaad6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGlb WaaSbaaSqaaiaaicdaaeqaaaaakiabgkHiTiaadgeaceWGLbGbaCaa caWG4bGaamiCaiaacIcacqGHsislcaWGPbGaeq4SdC2aaSbaaSqaai aaigdaaeqaaOGaaiikaiaadsgacqGHRaWkcaWGHbGaaiykaiaacMca cqGHsisldaWcaaqaaiabek7aInaaBaaaleaacaaIYaaabeaaaOqaai aadMgacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam4samaa BaaaleaacaaIWaaabeaaaaGccaGGBbGaamOqaiaadwgacaWG4bGaam iCaiaacIcacqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiz aiabgUcaRiaadggacaGGPaGaaiykaiabgkHiTiaadkeaceWGLbGbaC aacaWG4bGaamiCaiaacIcacqGHsislcqaHYoGydaWgaaWcbaGaaGOm aaqabaGccaGGOaGaamizaiabgUcaRiaadggacaGGPaGaaiykaaaa@8609@   

0=Bexp( β 2 d) B \ exp( β 2 d)+Cexp(i γ 3 d)+ C \ exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpcqGHsislcaWGcbGaamyzaiaadIhacaWGWbGaaiikaiabek7aInaa BaaaleaacaaIYaaabeaakiaadsgacaGGPaGaeyOeI0IaamOqamaaCa aaleqabaGaaiixaaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsisl cqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWGKbGaaiykaiabgUcaRi aadoeacaWGLbGaamiEaiaadchacaGGOaGaeyOeI0IaamyAaiabeo7a NnaaBaaaleaacaaIZaaabeaakiaadsgacaGGPaGaey4kaSIaam4qam aaCaaaleqabaGaaiixaaaakiaadwgacaWG4bGaamiCaiaacIcacaWG PbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcaaaa@6560@   

0=+ β 2 i n 2 2 K 0 [Bexp( β 2 d) B \ exp( β 2 d)+ γ 3 n 3 2 K 0 [Cexp(i γ 3 d) C \ exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpcqGHRaWkdaWcaaqaaiabek7aInaaBaaaleaacaaIYaaabeaaaOqa aiaadMgacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaam4sam aaBaaaleaacaaIWaaabeaaaaGccaGGBbGaamOqaiaadwgacaWG4bGa amiCaiaacIcacqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWGKbGaai ykaiabgkHiTiaadkeadaahaaWcbeqaaiaacYfaaaGccaWGLbGaamiE aiaadchacaGGOaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqaaO GaamizaiaacMcacqGHRaWkdaWcaaqaaiabeo7aNnaaBaaaleaacaaI ZaaabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGcca WGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaacUfacaWGdbGaamyzaiaa dIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZoWzdaWgaaWcbaGaaG 4maaqabaGccaWGKbGaaiykaiabgkHiTiaadoeadaahaaWcbeqaaiaa cYfaaaGccaWGLbGaamiEaiaadchacaGGOaGaamyAaiabeo7aNnaaBa aaleaacaaIZaaabeaakiaadsgacaGGPaaaaa@761E@   

0=Cexp(i γ 3 d)+ C \ exp(i γ 3 d)+Dexp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpcqGHsislcaWGdbGaamyzaiaadIhacaWGWbGaaiikaiaadMgacqaH ZoWzdaWgaaWcbaGaaG4maaqabaGccaWGKbGaaiykaiabgUcaRiaado eadaahaaWcbeqaaiaacYfaaaGccaWGLbGaamiEaiaadchacaGGOaGa eyOeI0IaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaadsgaca GGPaGaey4kaSIaamiraiaadwgacaWG4bGaamiCaiaacIcacqGHsisl cqaHYoGydaWgaaWcbaGaaGinaaqabaGccaWGKbGaaiykaaaa@5AE8@   

0= β 4 i K 0 Bexp( β 4 d) γ 3 n 3 2 K 0 [Cexp(i γ 3 d) C \ exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH9a qpdaWcaaqaaiabek7aInaaBaaaleaacaaI0aaabeaaaOqaaiaadMga caWGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaadkeacaWGLbGaamiEai aadchacaGGOaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaisdaaeqaaOGa amizaiaacMcacqGHsisldaWcaaqaaiabeo7aNnaaBaaaleaacaaIZa aabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaWG lbWaaSbaaSqaaiaaicdaaeqaaaaakiaacUfacaWGdbGaamyzaiaadI hacaWGWbGaaiikaiaadMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGc caWGKbGaaiykaiabgkHiTiaadoeadaahaaWcbeqaaiaacYfaaaGcca WGLbGaamiEaiaadchacaGGOaGaeyOeI0IaamyAaiabeo7aNnaaBaaa leaacaaIZaaabeaakiaadsgacaGGPaaaaa@674E@   

We extract some factors from the matrix and call them I, II, III, IV, V, VI and VII:

I=exp(i γ 1 (d+a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabMeacqGH9a qpcaWGLbGaamiEaiaadchacaGGOaGaeyOeI0IaamyAaiabeo7aNnaa BaaaleaacaaIXaaabeaakiaacIcacaWGKbGaey4kaSIaamyyaiaacM cacaGGPaaaaa@46B2@   

II=exp(i γ 1 (d+a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabMeacaqGjb Gaeyypa0JaamyzaiaadIhacaWGWbGaaiikaiaadMgacqaHZoWzdaWg aaWcbaGaaGymaaqabaGccaGGOaGaamizaiabgUcaRiaadggacaGGPa Gaaiykaaaa@4691@   

III=exp( β 2 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacMeacaGGjb Gaaiysaiabg2da9iaadwgacaWG4bGaamiCaiaacIcacqaHYoGydaWg aaWcbaGaaGOmaaqabaGccaWGKbGaaiykaaaa@434E@   

IV=exp( β 2 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabMeacaqGwb Gaeyypa0JaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiabek7aInaa BaaaleaacaaIYaaabeaakiaadsgacaGGPaaaaa@4377@   

V=exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabAfacqGH9a qpcaWGLbGaamiEaiaadchacaGGOaGaeyOeI0IaamyAaiabeo7aNnaa BaaaleaacaaIZaaabeaakiaadsgacaGGPaaaaa@43A0@   

VI=exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabAfacaqGjb Gaeyypa0JaamyzaiaadIhacaWGWbGaaiikaiaadMgacqaHZoWzdaWg aaWcbaGaaG4maaqabaGccaWGKbGaaiykaaaa@437F@   

VII=exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabAfacaqGjb Gaaeysaiabg2da9iaadwgacaWG4bGaamiCaiaacIcacqGHsislcqaH YoGydaWgaaWcbaGaaGinaaqabaGccaWGKbGaaiykaaaa@4445@   

I 1 =| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | I 2 =| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaajmeaaca qGjbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0ZaaqqaaKaaGraabeqa aaqaaaqaaaqaaaqaaaqaaaaacaGLhWoajaaqfaqabeabeaaaaaqaai aaigdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGymaaqaaiaaicda aeaakmaalaaajaaqbaGaeqOSdiMcdaWgaaqcbauaaiaaikdaaeqaaa qcaauaaiaadMgacaWGUbGcdaqhaaWcbaGaaGOmaaqaaiaaikdaaaqc aaKaam4saOWaaSbaaKqaafaacaaIWaaabeaaaaaajaaqbaGcdaWcaa qcaauaaiabgkHiTiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaaaKaa afaacaWGUbGcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqcaaKaam4saO WaaSbaaKqaafaacaaIWaaabeaaaaaajaaqbaGcdaWcaaqcaauaaiab eo7aNPWaaSbaaKqaafaacaaIZaaabeaaaKaaafaacaWGUbGcdaqhaa WcbaGaaG4maaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaI WaaabeaaaaaajaaqbaGaaGimaaqaaiaaicdaaeaacaWGLbGaamiEai aadchacaGGOaGaaGOmaiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaa jaaqcaWGKbGaaiykaaqaaiaadwgacaWG4bGaamiCaiaacIcacqGHsi slcaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaKaaajaadsga caGGPaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaakmaalaaajaaqba Gaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaaqcaauaaiaad6gakmaa DaaaleaacaaIZaaabaGaaGOmaaaajaaqcaWGlbGcdaWgaaqcbauaai aaicdaaeqaaaaajaaqcaWGLbGaamiEaiaadchacaGGOaGaaGOmaiab eo7aNPWaaSbaaKqaafaacaaIZaaabeaajaaqcaWGKbGaaiykaaqaaO WaaSaaaKaaafaacqGHsislcqaHZoWzkmaaBaaajeaqbaGaaG4maaqa baaajaaqbaGaamOBaOWaa0baaSqaaiaaiodaaeaacaaIYaaaaKaaaj aadUeakmaaBaaajeaqbaGaaGimaaqabaaaaKaaajaadwgacaWG4bGa amiCaiaacIcacqGHsislcaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaio daaeqaaKaaajaadsgacaGGPaGaaGPaVdqaaOWaaSaaaKaaafaacqaH YoGykmaaBaaajeaqbaGaaGinaaqabaaajaaqbaGaamyAaiaadUeakm aaBaaajeaqbaGaaGimaaqabaaaaaaakmaaeiaajaaqeaqabeaaaeaa aeaaaeaaaeaaaeaaaaGaayjcSdGccaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaa ykW7caqGjbWaaSbaaSqaaiaabkdaaeqaaOGaeyypa0ZaaqqaaKaaar aabeqaaaqaaaqaaaqaaaqaaaqaaaaacaGLhWoafaqabeabeaaaaaqa aiaaigdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGymaaqaaiaaic daaeaacqGHsislkmaalaaajaaqbaGaeqOSdiMcdaWgaaqcbauaaiaa ikdaaeqaaaqcaauaaiaadMgacaWGUbGcdaqhaaWcbaGaaGOmaaqaai aaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaIWaaabeaaaaaajaaq baGcdaWcaaqcaauaaiabgkHiTiabeo7aNPWaaSbaaKqaafaacaaIZa aabeaaaKaaafaacaWGUbGcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqc aaKaam4saOWaaSbaaKqaafaacaaIWaaabeaaaaaajaaqbaGcdaWcaa qcaauaaiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaaaKaaafaacaWG UbGcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqcaaKaam4saOWaaSbaaK qaafaacaaIWaaabeaaaaaajaaqbaGaaGimaaqaaiaaicdaaeaacaWG LbGaamiEaiaadchacaGGOaGaaGOmaiabeo7aNPWaaSbaaKqaafaaca aIZaaabeaajaaqcaWGKbGaaiykaaqaaiaadwgacaWG4bGaamiCaiaa cIcacqGHsislcaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaK aaajaadsgacaGGPaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaakmaa laaajaaqbaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaaqcaauaai aad6gakmaaDaaaleaacaaIZaaabaGaaGOmaaaajaaqcaWGlbGcdaWg aaqcbauaaiaaicdaaeqaaaaajaaqcaWGLbGaamiEaiaadchacaGGOa GaaGOmaiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaajaaqcaWGKbGa aiykaaqaaOWaaSaaaKaaafaacqGHsislcqaHZoWzkmaaBaaajeaqba GaaG4maaqabaaajaaqbaGaamOBaOWaa0baaSqaaiaaiodaaeaacaaI YaaaaKaaajaadUeakmaaBaaajeaqbaGaaGimaaqabaaaaKaaajaadw gacaWG4bGaamiCaiaacIcacqGHsislcaaIYaGaeq4SdCMcdaWgaaqc bauaaiaaiodaaeqaaKaaajaadsgacaGGPaGaaGPaVdqaaOWaaSaaaK aaafaacqaHYoGykmaaBaaajeaqbaGaaGinaaqabaaajaaqbaGaamyA aiaadUeakmaaBaaajeaqbaGaaGimaaqabaaaaaaakmaaeiaajaaqea qabeaaaeaaaeaaaeaaaeaaaeaaaaGaayjcSdaakeaacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 oabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVdaaaa@4220@   

I 1 = 2i K 0 2 [ γ 3 n 3 2 ( β 2 n 2 2 + β 4 )cos(2 γ 3 d)( γ 3 2 n 3 4 β 2 β 4 n 2 2 )sin(2 γ 3 d) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeysam aaBaaaleaacaqGXaaabeaakiabg2da9maalaaabaGaaGOmaiaadMga aeaacaWGlbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakmaadmaaba WaaSaaaeaacqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWGUbWa a0baaSqaaiaaiodaaeaacaaIYaaaaaaakiaacIcadaWcaaqaaiabek 7aInaaBaaaleaacaaIYaaabeaaaOqaaiaad6gadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaaaOGaey4kaSIaeqOSdi2aaSbaaSqaaiaaisdaae qaaOGaaiykaiaadogacaWGVbGaam4CaiaacIcacaaIYaGaeq4SdC2a aSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcacqGHsislcaGGOaWaaS aaaeaacqaHZoWzdaqhaaWcbaGaaG4maaqaaiaaikdaaaaakeaacaWG UbWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgkHiTmaalaaaba GaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaeqOSdi2aaSbaaSqaaiaa isdaaeqaaaGcbaGaamOBamaaDaaaleaacaaIYaaabaGaaGOmaaaaaa GccaGGPaGaam4CaiaadMgacaWGUbGaaiikaiaaikdacqaHZoWzdaWg aaWcbaGaaG4maaqabaGccaWGKbGaaiykaaGaay5waiaaw2faaaaa@729E@   

I 2 = 2i K 0 2 [ γ 3 n 3 2 ( β 2 n 2 2 + β 4 )cos(2 γ 3 d)( γ 3 2 n 3 4 + β 2 β 4 n 2 2 )sin(2 γ 3 d) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeysam aaBaaaleaacaqGYaaabeaakiabg2da9maalaaabaGaaGOmaiaadMga aeaacaWGlbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakmaadmaaba WaaSaaaeaacqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWGUbWa a0baaSqaaiaaiodaaeaacaaIYaaaaaaakiaacIcacqGHsisldaWcaa qaaiabek7aInaaBaaaleaacaaIYaaabeaaaOqaaiaad6gadaqhaaWc baGaaGOmaaqaaiaaikdaaaaaaOGaey4kaSIaeqOSdi2aaSbaaSqaai aaisdaaeqaaOGaaiykaiaadogacaWGVbGaam4CaiaacIcacaaIYaGa eq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcacqGHsislca GGOaWaaSaaaeaacqaHZoWzdaqhaaWcbaGaaG4maaqaaiaaikdaaaaa keaacaWGUbWaa0baaSqaaiaaiodaaeaacaaI0aaaaaaakiabgUcaRm aalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaeqOSdi2aaSba aSqaaiaaisdaaeqaaaGcbaGaamOBamaaDaaaleaacaaIYaaabaGaaG OmaaaaaaGccaGGPaGaam4CaiaadMgacaWGUbGaaiikaiaaikdacqaH ZoWzdaWgaaWcbaGaaG4maaqabaGccaWGKbGaaiykaaGaay5waiaaw2 faaaaa@7381@   

X= γ 3 n 3 2 ( β 2 n 2 2 + β 4 )cos2 γ 3 d( γ 3 2 n 3 4 β 2 β 4 n 2 2 )sin2 γ 3 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeiwai abg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGa amOBamaaDaaaleaacaaIZaaabaGaaGOmaaaaaaGccaGGOaWaaSaaae aacqaHYoGydaWgaaWcbaGaaGOmaaqabaaakeaacaWGUbWaa0baaSqa aiaaikdaaeaacaaIYaaaaaaakiabgUcaRiabek7aInaaBaaaleaaca aI0aaabeaakiaacMcacaWGJbGaam4BaiaadohacaaIYaGaeq4SdC2a aSbaaSqaaiaaiodaaeqaaOGaamizaiabgkHiTiaacIcadaWcaaqaai abeo7aNnaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaad6gadaqh aaWcbaGaaG4maaqaaiaaisdaaaaaaOGaeyOeI0YaaSaaaeaacqaHYo GydaWgaaWcbaGaaGOmaaqabaGccqaHYoGydaWgaaWcbaGaaGinaaqa baaakeaacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaakiaacM cacaWGZbGaamyAaiaad6gacaaIYaGaeq4SdC2aaSbaaSqaaiaaioda aeqaaOGaamizaaaa@68E8@   

Y= γ 3 n 3 2 ( β 2 n 2 2 + β 4 )cos2 γ 3 d( γ 3 2 n 3 4 + β 2 β 4 n 2 2 )sin2 γ 3 d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeywai abg2da9maalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGa amOBamaaDaaaleaacaaIZaaabaGaaGOmaaaaaaGccaGGOaGaeyOeI0 YaaSaaaeaacqaHYoGydaWgaaWcbaGaaGOmaaqabaaakeaacaWGUbWa a0baaSqaaiaaikdaaeaacaaIYaaaaaaakiabgUcaRiabek7aInaaBa aaleaacaaI0aaabeaakiaacMcacaWGJbGaam4BaiaadohacaaIYaGa eq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiabgkHiTiaacIcada Wcaaqaaiabeo7aNnaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaa d6gadaqhaaWcbaGaaG4maaqaaiaaisdaaaaaaOGaey4kaSYaaSaaae aacqaHYoGydaWgaaWcbaGaaGOmaaqabaGccqaHYoGydaWgaaWcbaGa aGinaaqabaaakeaacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaa aakiaacMcacaWGZbGaamyAaiaad6gacaaIYaGaeq4SdC2aaSbaaSqa aiaaiodaaeqaaOGaamizaaaa@69CB@   

detA= 2 K 0 3 (G+iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGLb GaamiDaiaaykW7caWGbbGaeyypa0ZaaSaaaeaacaaIYaaabaGaam4s amaaDaaaleaacaaIWaaabaGaaG4maaaaaaGccaGGOaGaam4raiabgU caRiaadMgacaWGibGaaiykaaaa@465D@   detA= 2 K 0 3 (G+iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGLb GaamiDaiaaykW7caWGbbGaeyypa0ZaaSaaaeaacaaIYaaabaGaam4s amaaDaaaleaacaaIWaaabaGaaG4maaaaaaGccaGGOaGaam4raiabgU caRiaadMgacaWGibGaaiykaaaa@465D@  

detA= 2 K 0 3 (G+iH)exp(i γ 3 (d+a))exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadgeacqGH9aqpdaWcaaqaaiaaikdaaeaa caWGlbWaa0baaSqaaiaaicdaaeaacaaIZaaaaaaakiaacIcacaWGhb Gaey4kaSIaamyAaiaadIeacaGGPaGaaGPaVlaadwgacaWG4bGaamiC aiaacIcacaWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaaiikai aadsgacqGHRaWkcaWGHbGaaiykaiaacMcacaaMc8UaamyzaiaadIha caWGWbGaaiikaiabgkHiTiabek7aInaaBaaaleaacaaI0aaabeaaki aadsgacaGGPaaaaa@5E0D@   

With: G= β 2 n 2 2 (Xexp( β 2 a)+Yexp( β 2 a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaae4rai aab2dadaWcaaqaaiabek7aInaaBaaaleaacaaIYaaabeaaaOqaaiaa d6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaaaOGaaiikaiGacIfaca WGLbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqa aOGaamyyaiaacMcacqGHRaWkcaqGzbGaamyzaiaadIhacaWGWbGaai ikaiabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaakiaadggacaGG PaGaaiykaaaa@536E@   

H= γ 1 n 1 2 (Xexp( β 2 a)+Yexp( β 2 a)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeisai aab2dadaWcaaqaaiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaa d6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaaOGaaiikaiabgkHiTi GacIfacaWGLbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaa ikdaaeqaaOGaamyyaiaacMcacqGHRaWkcaqGzbGaamyzaiaadIhaca WGWbGaaiikaiabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaakiaa dggacaGGPaGaaiykaaaa@5460@   

( 1 exp( β 2 a) exp( β 2 a) 0 0 0 γ 1 n 1 2 K 0 β 2 i n 2 2 K 0 exp( β 2 a) β 2 i n 2 2 K 0 exp( β 2 a) 0 0 0 0 1 1 1 1 0 0 β 2 i n 2 2 K 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 0 0 exp(2i γ 3 d) exp(2i γ 3 d) 1 0 0 0 γ 3 n 3 2 K 0 exp(2i γ 3 d) γ 3 n 3 2 K 0 exp(2i γ 3 d) β 4 i K 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaiabgkHiTiaaigdaaeaaaeaacqGHsislcaWG LbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaO GaamyyaiaacMcaaeaacqGHsislcaWGLbGaamiEaiaadchacaGGOaGa eyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyaiaacMcaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaadaWcaaqaaiabgkHiTiab eo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaOqa aaqaamaalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaam yAaiaad6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSba aSqaaiaaicdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaamaalaaabaGa eyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaamyAaiaad6 gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaa icdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsislcqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaaaeaacaaIXaaabaGaaGymaa qaaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaa icdaaeaaaeaadaWcaaqaaiabgkHiTiabek7aInaaBaaaleaacaaIYa aabeaaaOqaaiaadMgacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaa aOGaam4samaaBaaaleaacaaIWaaabeaaaaaakeaadaWcaaqaaiabek 7aInaaBaaaleaacaaIYaaabeaaaOqaaiaadMgacaWGUbWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaam4samaaBaaaleaacaaIWaaabeaaaa aakeaadaWcaaqaaiabgkHiTiabeo7aNnaaBaaaleaacaaIZaaabeaa aOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaWGlbWaaS baaSqaaiaaicdaaeqaaaaaaOqaamaalaaabaGaeq4SdC2aaSbaaSqa aiaaiodaaeqaaaGcbaGaamOBamaaDaaaleaacaaIZaaabaGaaGOmaa aakiaadUeadaWgaaWcbaGaaGimaaqabaaaaaGcbaGaaGimaaqaaiaa icdaaeaaaeaacaaIWaaabaGaaGimaaqaaiaadwgacaWG4bGaamiCai aacIcacaaIYaGaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaa dsgacaGGPaaabaGaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaaik dacaWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMca aeaacqGHsislcaaIXaaabaGaaGimaaqaaaqaaiaaicdaaeaacaaIWa aabaWaaSaaaeaacqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWG UbWaa0baaSqaaiaaiodaaeaacaaIYaaaaOGaam4samaaBaaaleaaca aIWaaabeaaaaGccaWGLbGaamiEaiaadchacaGGOaGaaGOmaiaadMga cqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWGKbGaaiykaaqaaiabgk HiTmaalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGaamOB amaaDaaaleaacaaIZaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaG imaaqabaaaaOGaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaaikda caWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcaae aadaWcaaqaaiabek7aInaaBaaaleaacaaI0aaabeaaaOqaaiaadMga caWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaaaakiaawIcacaGLPaaaaa a@E3AF@  

det A \ = β 2 i n 2 2 K 0 exp( β 2 a)| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | β 2 i n 2 2 K 0 exp( β 2 a)| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaajmeaaja aycaWGKbGaamyzaiaadshacaaMc8UaamyqaOWaaWbaaSqabeaacaGG CbaaaKaaGjabg2da9iabgkHiTOWaaSaaaKaaGfaacqaHYoGykmaaBa aajeaybaGaaGOmaaqabaaajaaybaGaamyAaiaad6gakmaaDaaaleaa caaIYaaabaGaaGOmaaaajaaycaWGlbGcdaWgaaqcbawaaiaaicdaae qaaaaajaaycaWGLbGaamiEaiaadchacaGGOaGaeqOSdiMcdaWgaaqc bawaaiaaikdaaeqaaKaaGjaadggacaGGPaGcdaabbaqcaagbaeqaba aabaaabaaabaaabaaabaaaaiaawEa7aKaaavaabeqaeqaaaaaabaGa aGymaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaabaGaaGimaa qaaOWaaSaaaKaaafaacqaHYoGykmaaBaaajeaqbaGaaGOmaaqabaaa jaaqbaGaamyAaiaad6gakmaaDaaaleaacaaIYaaabaGaaGOmaaaaja aqcaWGlbGcdaWgaaqcbauaaiaaicdaaeqaaaaaaKaaafaakmaalaaa jaaqbaGaeyOeI0Iaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaaqcaa uaaiaad6gakmaaDaaaleaacaaIZaaabaGaaGOmaaaajaaqcaWGlbGc daWgaaqcbauaaiaaicdaaeqaaaaaaKaaafaakmaalaaajaaqbaGaeq 4SdCMcdaWgaaqcbauaaiaaiodaaeqaaaqcaauaaiaad6gakmaaDaaa leaacaaIZaaabaGaaGOmaaaajaaqcaWGlbGcdaWgaaqcbauaaiaaic daaeqaaaaaaKaaafaacaaIWaaabaGaaGimaaqaaiaadwgacaWG4bGa amiCaiaacIcacaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaK aaajaadsgacaGGPaaabaGaamyzaiaadIhacaWGWbGaaiikaiabgkHi TiaaikdacqaHZoWzkmaaBaaajeaqbaGaaG4maaqabaqcaaKaamizai aacMcaaeaacqGHsislcaaIXaaabaGaaGimaaqaaOWaaSaaaKaaafaa cqaHZoWzkmaaBaaajeaqbaGaaG4maaqabaaajaaqbaGaamOBaOWaa0 baaSqaaiaaiodaaeaacaaIYaaaaKaaajaadUeakmaaBaaajeaqbaGa aGimaaqabaaaaKaaajaadwgacaWG4bGaamiCaiaacIcacaaIYaGaeq 4SdCMcdaWgaaqcbauaaiaaiodaaeqaaKaaajaadsgacaGGPaaabaGc daWcaaqcaauaaiabgkHiTiabeo7aNPWaaSbaaKqaafaacaaIZaaabe aaaKaaafaacaWGUbGcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqcaaKa am4saOWaaSbaaKqaafaacaaIWaaabeaaaaqcaaKaamyzaiaadIhaca WGWbGaaiikaiabgkHiTiaaikdacqaHZoWzkmaaBaaajeaqbaGaaG4m aaqabaqcaaKaamizaiaacMcacaaMc8oabaGcdaWcaaqcaauaaiabek 7aIPWaaSbaaKqaafaacaaI0aaabeaaaKaaafaacaWGPbGaam4saOWa aSbaaKqaafaacaaIWaaabeaaaaaaaOWaaqGaaKaaaraabeqaaaqaaa qaaaqaaaqaaaqaaaaacaGLiWoaaOqaaiabgkHiTmaalaaajaaqbaGa eqOSdiMcdaWgaaqcbauaaiaaikdaaeqaaaqcaauaaiaadMgacaWGUb GcdaqhaaWcbaGaaGOmaaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqa afaacaaIWaaabeaaaaqcaaKaamyzaiaadIhacaWGWbGaaiikaiabgk HiTiabek7aIPWaaSbaaKqaafaacaaIYaaabeaajaaqcaWGHbGaaiyk aOWaaqqaaKaaaraabeqaaaqaaaqaaaqaaaqaaaqaaaaacaGLhWoafa qabeabeaaaaaqaaiaaigdaaeaacqGHsislcaaIXaaabaGaeyOeI0Ia aGymaaqaaiaaicdaaeaacqGHsislkmaalaaajaaqbaGaeqOSdiMcda WgaaqcbauaaiaaikdaaeqaaaqcaauaaiaadMgacaWGUbGcdaqhaaWc baGaaGOmaaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaIWa aabeaaaaaajaaqbaGcdaWcaaqcaauaaiabgkHiTiabeo7aNPWaaSba aKqaafaacaaIZaaabeaaaKaaafaacaWGUbGcdaqhaaWcbaGaaG4maa qaaiaaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaIWaaabeaaaaaa jaaqbaGcdaWcaaqcaauaaiabeo7aNPWaaSbaaKqaafaacaaIZaaabe aaaKaaafaacaWGUbGcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqcaaKa am4saOWaaSbaaKqaafaacaaIWaaabeaaaaaajaaqbaGaaGimaaqaai aaicdaaeaacaWGLbGaamiEaiaadchacaGGOaGaaGOmaiabeo7aNPWa aSbaaKqaafaacaaIZaaabeaajaaqcaWGKbGaaiykaaqaaiaadwgaca WG4bGaamiCaiaacIcacqGHsislcaaIYaGaeq4SdCMcdaWgaaqcbaua aiaaiodaaeqaaKaaajaadsgacaGGPaaabaGaeyOeI0IaaGymaaqaai aaicdaaeaakmaalaaajaaqbaGaeq4SdCMcdaWgaaqcbauaaiaaioda aeqaaaqcaauaaiaad6gakmaaDaaaleaacaaIZaaabaGaaGOmaaaaja aqcaWGlbGcdaWgaaqcbauaaiaaicdaaeqaaaaajaaqcaWGLbGaamiE aiaadchacaGGOaGaaGOmaiabeo7aNPWaaSbaaKqaafaacaaIZaaabe aajaaqcaWGKbGaaiykaaqaaOWaaSaaaKaaafaacqGHsislcqaHZoWz kmaaBaaajeaqbaGaaG4maaqabaaajaaqbaGaamOBaOWaa0baaSqaai aaiodaaeaacaaIYaaaaKaaajaadUeakmaaBaaajeaqbaGaaGimaaqa baaaaKaaajaadwgacaWG4bGaamiCaiaacIcacqGHsislcaaIYaGaeq 4SdCMcdaWgaaqcbauaaiaaiodaaeqaaKaaajaadsgacaGGPaGaaGPa VdqaaOWaaSaaaKaaafaacqaHYoGykmaaBaaajeaqbaGaaGinaaqaba aajaaqbaGaamyAaiaadUeakmaaBaaajeaqbaGaaGimaaqabaaaaaaa kmaaeiaajaaqeaqabeaaaeaaaeaaaeaaaeaaaeaaaaGaayjcSdaaaa a@3ABB@  

γ 1 n 1 2 K 0 exp( β 2 a)| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | + γ 1 n 1 2 K 0 exp( β 2 a)| 1 1 1 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 exp(2 γ 3 d) exp(2 γ 3 d) 1 0 γ 3 n 3 2 K 0 exp(2 γ 3 d) γ 3 n 3 2 K 0 exp(2 γ 3 d) β 4 i K 0 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaajmeaacq GHsisldaWcaaqcaawaaiabeo7aNPWaaSbaaSqaaiaaigdaaeqaaaqc aawaaiaad6gakmaaDaaaleaacaaIXaaabaGaaGOmaaaajaaycaWGlb GcdaWgaaqcbawaaiaaicdaaeqaaaaajaaycaWGLbGaamiEaiaadcha caGGOaGaeqOSdiMcdaWgaaqcbawaaiaaikdaaeqaaKaaGjaadggaca GGPaGcdaabbaqcaagbaeqabaaabaaabaaabaaabaaabaaaaiaawEa7 aKaaavaabeqaeqaaaaaabaGaaGymaaqaaiabgkHiTiaaigdaaeaacq GHsislcaaIXaaabaGaaGimaaqaaOWaaSaaaKaaafaacqaHYoGykmaa BaaajeaqbaGaaGOmaaqabaaajaaqbaGaamyAaiaad6gakmaaDaaale aacaaIYaaabaGaaGOmaaaajaaqcaWGlbGcdaWgaaqcbauaaiaaicda aeqaaaaaaKaaafaakmaalaaajaaqbaGaeyOeI0Iaeq4SdCMcdaWgaa qcbauaaiaaiodaaeqaaaqcaauaaiaad6gakmaaDaaaleaacaaIZaaa baGaaGOmaaaajaaqcaWGlbGcdaWgaaqcbauaaiaaicdaaeqaaaaaaK aaafaakmaalaaajaaqbaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqa aaqcaauaaiaad6gakmaaDaaaleaacaaIZaaabaGaaGOmaaaajaaqca WGlbGcdaWgaaqcbauaaiaaicdaaeqaaaaaaKaaafaacaaIWaaabaGa aGimaaqaaiaadwgacaWG4bGaamiCaiaacIcacaaIYaGaeq4SdCMcda WgaaqcbauaaiaaiodaaeqaaKaaajaadsgacaGGPaaabaGaamyzaiaa dIhacaWGWbGaaiikaiabgkHiTiaaikdacqaHZoWzkmaaBaaajeaqba GaaG4maaqabaqcaaKaamizaiaacMcaaeaacqGHsislcaaIXaaabaGa aGimaaqaaOWaaSaaaKaaafaacqaHZoWzkmaaBaaajeaqbaGaaG4maa qabaaajaaqbaGaamOBaOWaa0baaSqaaiaaiodaaeaacaaIYaaaaKaa ajaadUeakmaaBaaajeaqbaGaaGimaaqabaaaaKaaajaadwgacaWG4b GaamiCaiaacIcacaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqa aKaaajaadsgacaGGPaaabaGcdaWcaaqcaauaaiabgkHiTiabeo7aNP WaaSbaaKqaafaacaaIZaaabeaaaKaaafaacaWGUbGcdaqhaaWcbaGa aG4maaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaIWaaabe aaaaqcaaKaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaaikdacqaH ZoWzkmaaBaaajeaqbaGaaG4maaqabaqcaaKaamizaiaacMcacaaMc8 oabaGcdaWcaaqcaauaaiabek7aIPWaaSbaaKqaafaacaaI0aaabeaa aKaaafaacaWGPbGaam4saOWaaSbaaKqaafaacaaIWaaabeaaaaaaaO WaaqGaaKaaaraabeqaaaqaaaqaaaqaaaqaaaqaaaaacaGLiWoaaOqa aKaaajabgUcaROWaaSaaaKaaGfaacqaHZoWzkmaaBaaaleaacaaIXa aabeaaaKaaGfaacaWGUbGcdaqhaaWcbaGaaGymaaqaaiaaikdaaaqc aaMaam4saOWaaSbaaKqaGfaacaaIWaaabeaaaaqcaaKaamyzaiaadI hacaWGWbGaaiikaiabgkHiTiabek7aIPWaaSbaaKqaafaacaaIYaaa beaajaaqcaWGHbGaaiykaOWaaqqaaKaaaraabeqaaaqaaaqaaaqaaa qaaaqaaaaacaGLhWoafaqabeabeaaaaaqaaiaaigdaaeaacqGHsisl caaIXaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaacqGHsislkmaala aajaaqbaGaeqOSdiMcdaWgaaqcbauaaiaaikdaaeqaaaqcaauaaiaa dMgacaWGUbGcdaqhaaWcbaGaaGOmaaqaaiaaikdaaaqcaaKaam4saO WaaSbaaKqaafaacaaIWaaabeaaaaaajaaqbaGcdaWcaaqcaauaaiab gkHiTiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaaaKaaafaacaWGUb GcdaqhaaWcbaGaaG4maaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqa afaacaaIWaaabeaaaaaajaaqbaGcdaWcaaqcaauaaiabeo7aNPWaaS baaKqaafaacaaIZaaabeaaaKaaafaacaWGUbGcdaqhaaWcbaGaaG4m aaqaaiaaikdaaaqcaaKaam4saOWaaSbaaKqaafaacaaIWaaabeaaaa aajaaqbaGaaGimaaqaaiaaicdaaeaacaWGLbGaamiEaiaadchacaGG OaGaaGOmaiabeo7aNPWaaSbaaKqaafaacaaIZaaabeaajaaqcaWGKb GaaiykaaqaaiaadwgacaWG4bGaamiCaiaacIcacqGHsislcaaIYaGa eq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaKaaajaadsgacaGGPaaaba GaeyOeI0IaaGymaaqaaiaaicdaaeaakmaalaaajaaqbaGaeq4SdCMc daWgaaqcbauaaiaaiodaaeqaaaqcaauaaiaad6gakmaaDaaaleaaca aIZaaabaGaaGOmaaaajaaqcaWGlbGcdaWgaaqcbauaaiaaicdaaeqa aaaajaaqcaWGLbGaamiEaiaadchacaGGOaGaaGOmaiabeo7aNPWaaS baaKqaafaacaaIZaaabeaajaaqcaWGKbGaaiykaaqaaOWaaSaaaKaa afaacqGHsislcqaHZoWzkmaaBaaajeaqbaGaaG4maaqabaaajaaqba GaamOBaOWaa0baaSqaaiaaiodaaeaacaaIYaaaaKaaajaadUeakmaa BaaajeaqbaGaaGimaaqabaaaaKaaajaadwgacaWG4bGaamiCaiaacI cacqGHsislcaaIYaGaeq4SdCMcdaWgaaqcbauaaiaaiodaaeqaaKaa ajaadsgacaGGPaGaaGPaVdqaaOWaaSaaaKaaafaacqaHYoGykmaaBa aajeaqbaGaaGinaaqabaaajaaqbaGaamyAaiaadUeakmaaBaaajeaq baGaaGimaaqabaaaaaaakmaaeiaajaaqeaqabeaaaeaaaeaaaeaaae aaaeaaaaGaayjcSdaaaaa@30FB@  

det A \ =( β 2 i n 2 2 K 0 + γ 1 n 1 2 K 0 )exp( β 2 a) I 1 ( β 2 i n 2 2 K 0 γ 1 n 1 2 K 0 )exp( β 2 a) I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaamyqamaaCaaaleqabaGaaiixaaaakiabg2da9iab gkHiTiaacIcadaWcaaqaaiabek7aInaaBaaaleaacaaIYaaabeaaaO qaaiaadMgacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaam4s amaaBaaaleaacaaIWaaabeaaaaGccqGHRaWkdaWcaaqaaiabeo7aNn aaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWcbaGaaGymaaqa aiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaacMcaca WGLbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqa aOGaamyyaiaacMcacaaMc8UaaeysamaaBaaaleaacaqGXaaabeaaki abgkHiTiaacIcadaWcaaqaaiabek7aInaaBaaaleaacaaIYaaabeaa aOqaaiaadMgacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaam 4samaaBaaaleaacaaIWaaabeaaaaGccqGHsisldaWcaaqaaiabeo7a NnaaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWcbaGaaGymaa qaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaacMca caWGLbGaamiEaiaadchacaGGOaGaeyOeI0IaeqOSdi2aaSbaaSqaai aaikdaaeqaaOGaamyyaiaacMcacaaMc8UaaeysamaaBaaaleaacaqG Yaaabeaaaaa@7925@  

det A \ = 2 K 0 3 (GiH)exp(i γ 3 (d+a))exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaamyqamaaCaaaleqabaGaaiixaaaakiabg2da9iab gkHiTmaalaaabaGaaGOmaaqaaiaadUeadaqhaaWcbaGaaGimaaqaai aaiodaaaaaaOGaaiikaiaadEeacqGHsislcaWGPbGaamisaiaacMca caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadMgacqaHZo WzdaWgaaWcbaGaaG4maaqabaGccaGGOaGaamizaiabgUcaRiaadgga caGGPaGaaiykaiaaykW7caWGLbGaamiEaiaadchacaGGOaGaeyOeI0 IaeqOSdi2aaSbaaSqaaiaaisdaaeqaaOGaamizaiaacMcaaaa@5F7E@  

j= 2 K 0 3 exp(i γ 3 (d+a))exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeOAai abg2da9maalaaabaGaaGOmaaqaaiaadUeadaqhaaWcbaGaaGimaaqa aiaaiodaaaaaaOGaaGPaVlaaykW7caWGLbGaamiEaiaadchacaGGOa GaeyOeI0IaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaacIca caWGKbGaey4kaSIaamyyaiaacMcacaGGPaGaaGPaVlaaykW7caWGLb GaamiEaiaadchacaGGOaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaisda aeqaaOGaamizaiaacMcaaaa@591E@  

detA=j(G+iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaamyqaiabg2da9iaabQgacaqGOaGaae4raiaabUca caqGPbGaaeisaiaabMcaaaa@426C@   

:  j* is the conjugate of j

det A \ = j (G-iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaamyqamaaCaaaleqabaGaaiixaaaakiabg2da9iab gkHiTiaabQgadaahaaWcbeqaaiabgEHiQaaakiaabIcacaqGhbGaae ylaiaabMgacaqGibGaaeykaaaa@4598@   

( 1 1 exp( β 2 a) 0 0 0 γ 1 n 1 2 K 0 γ 1 n 1 2 K 0 β 2 i n 2 2 K 0 exp( β 2 a) 0 0 0 0 0 1 1 1 0 0 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 0 0 exp(2i γ 3 d) exp(2i γ 3 d) 1 0 0 0 γ 3 n 3 2 K 0 exp(2i γ 3 d) γ 3 n 3 2 K 0 exp(2i γ 3 d) β 4 i K 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaaqaaiaaigdaaeaacqGHsislcaaIXaaabaGa eyOeI0IaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiabek7aInaaBa aaleaacaaIYaaabeaakiaadggacaGGPaaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaaabaWaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcba GaaGymaaqabaaakeaacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaam4samaaBaaaleaacaaIWaaabeaaaaaakeaadaWcaaqaaiabgk HiTiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWc baGaaGymaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaa aaaOqaamaalaaabaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqa aaGcbaGaamyAaiaad6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGcca WGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaadwgacaWG4bGaamiCaiaa cIcacqGHsislcqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaai ykaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaaqaaiaaicdaaeaa caaIWaaabaGaaGymaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXa aabaGaaGimaaqaaaqaaiaaicdaaeaacaaIWaaabaWaaSaaaeaacqaH YoGydaWgaaWcbaGaaGOmaaqabaaakeaacaWGPbGaamOBamaaDaaale aacaaIYaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqabaaa aaGcbaWaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcbaGaaG4maaqaba aakeaacaWGUbWaa0baaSqaaiaaiodaaeaacaaIYaaaaOGaam4samaa BaaaleaacaaIWaaabeaaaaaakeaadaWcaaqaaiabeo7aNnaaBaaale aacaaIZaaabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikda aaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaaiaaicdaaeaaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGLbGaamiEaiaadcha caGGOaGaaGOmaiaadMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGcca WGKbGaaiykaaqaaiaadwgacaWG4bGaamiCaiaacIcacqGHsislcaaI YaGaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaadsgacaGGPa aabaGaeyOeI0IaaGymaaqaaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaamaalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGaam OBamaaDaaaleaacaaIZaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGa aGimaaqabaaaaOGaamyzaiaadIhacaWGWbGaaiikaiaaikdacaWGPb Gaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcaaeaacqGH sisldaWcaaqaaiabeo7aNnaaBaaaleaacaaIZaaabeaaaOqaaiaad6 gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaa icdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsislcaaIYa GaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaadsgacaGGPaaa baWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGinaaqabaaakeaacaWGPb Gaam4samaaBaaaleaacaaIWaaabeaaaaaaaaGccaGLOaGaayzkaaaa aa@CBFD@   

detB= 2 γ 1 n 1 2 K 0 I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadkeacqGH9aqpcqGHsisldaWcaaqaaiaa ikdacqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacaWGUbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaam4samaaBaaaleaacaaIWaaabeaa aaGccaaMc8UaaGPaVlaabMeadaWgaaWcbaGaaeymaaqabaaaaa@4AFE@   with I 1 = 2i K 0 2 X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeysam aaBaaaleaacaqGXaaabeaakiabg2da9maalaaabaGaaGOmaiaadMga aeaacaWGlbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakiaaykW7ca qGybaaaa@40BF@

detB=4 i γ 1 n 1 2 K 0 3 exp(-d( β 2 + β 4 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadkeacqGH9aqpcqGHsislcaaI0aWaaSaa aeaacaWGPbGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOBam aaDaaaleaacaaIXaaabaGaaGOmaaaakiaadUeadaqhaaWcbaGaaGim aaqaaiaaiodaaaaaaOGaaGPaVlaabIfacaqGGaGaamyzaiaadIhaca WGWbGaaeikaiaab2cacaWGKbGaaeikaiabek7aInaaBaaaleaacaaI YaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaI0aaabeaakiaacM cacaGGPaaaaa@5822@   

( 1 exp( β 2 a) 1 0 0 0 γ 1 n 1 2 K 0 β 2 i n 2 2 K 0 exp( β 2 a) γ 1 n 1 2 K 0 0 0 0 0 1 0 1 1 0 0 β 2 i n 2 2 K 0 0 γ 3 n 3 2 K 0 γ 3 n 3 2 K 0 0 0 0 0 exp(2i γ 3 d) exp(2i γ 3 d) 1 0 0 0 γ 3 n 3 2 K 0 exp(2i γ 3 d) γ 3 n 3 2 K 0 exp(2i γ 3 d) β 4 i K 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaaqaaiaaigdaaeaacqGHsislcaWGLbGaamiE aiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyai aacMcaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaaabaWaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcbaGaaGymaa qabaaakeaacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam4s amaaBaaaleaacaaIWaaabeaaaaaakeaadaWcaaqaaiabek7aInaaBa aaleaacaaIYaaabeaaaOqaaiaadMgacaWGUbWaa0baaSqaaiaaikda aeaacaaIYaaaaOGaam4samaaBaaaleaacaaIWaaabeaaaaGccaWGLb GaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGa amyyaiaacMcaaeaadaWcaaqaaiabgkHiTiabeo7aNnaaBaaaleaaca aIXaaabeaaaOqaaiaad6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc caWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiab gkHiTiaaigdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaaqaaiaaic daaeaadaWcaaqaaiabgkHiTiabek7aInaaBaaaleaacaaIYaaabeaa aOqaaiaadMgacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaam 4samaaBaaaleaacaaIWaaabeaaaaaakeaacaaIWaaabaWaaSaaaeaa cqGHsislcqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWGUbWaa0 baaSqaaiaaiodaaeaacaaIYaaaaOGaam4samaaBaaaleaacaaIWaaa beaaaaaakeaadaWcaaqaaiabeo7aNnaaBaaaleaacaaIZaaabeaaaO qaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaWGlbWaaSba aSqaaiaaicdaaeqaaaaaaOqaaiaaicdaaeaaaeaacaaIWaaabaGaaG imaaqaaiaaicdaaeaacaWGLbGaamiEaiaadchacaGGOaGaaGOmaiaa dMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaWGKbGaaiykaaqaai aadwgacaWG4bGaamiCaiaacIcacqGHsislcaaIYaGaamyAaiabeo7a NnaaBaaaleaacaaIZaaabeaakiaadsgacaGGPaaabaGaeyOeI0IaaG ymaaqaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaamaalaaabaGa eq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGaamOBamaaDaaaleaaca aIZaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqabaaaaOGa amyzaiaadIhacaWGWbGaaiikaiaaikdacaWGPbGaeq4SdC2aaSbaaS qaaiaaiodaaeqaaOGaamizaiaacMcaaeaacqGHsisldaWcaaqaaiab eo7aNnaaBaaaleaacaaIZaaabeaaaOqaaiaad6gadaqhaaWcbaGaaG 4maaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaa dwgacaWG4bGaamiCaiaacIcacqGHsislcaaIYaGaamyAaiabeo7aNn aaBaaaleaacaaIZaaabeaakiaadsgacaGGPaaabaWaaSaaaeaacqaH YoGydaWgaaWcbaGaaGinaaqabaaakeaacaWGPbGaam4samaaBaaale aacaaIWaaabeaaaaaaaaGccaGLOaGaayzkaaaaaa@CA23@   

det B \ = 2 γ 1 n 1 2 K 0 I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadkeadaahaaWcbeqaaiaadYfaaaGccqGH 9aqpdaWcaaqaaiaaikdacqaHZoWzdaWgaaWcbaGaaGymaaqabaaake aacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam4samaaBaaa leaacaaIWaaabeaaaaGccaaMc8UaaGPaVlaabMeadaWgaaWcbaGaaG Omaaqabaaaaa@4B31@   with I 2 = 2i K 0 2 Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaeysam aaBaaaleaacaqGYaaabeaakiabg2da9maalaaabaGaaGOmaiaadMga aeaacaWGlbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakiaaykW7ca aMc8Uaaeywaaaa@424C@

det B \ =4 i γ 1 n 1 2 K 0 3 exp(d( β 2 β 4 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadkeadaahaaWcbeqaaiaadYfaaaGccqGH 9aqpcaaI0aWaaSaaaeaacaWGPbGaeq4SdC2aaSbaaSqaaiaaigdaae qaaaGcbaGaamOBamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadUea daqhaaWcbaGaaGimaaqaaiaaiodaaaaaaOGaaGPaVlaabMfacaqGGa GaamyzaiaadIhacaWGWbGaaeikaiaadsgacaqGOaGaeqOSdi2aaSba aSqaaiaaikdaaeqaaOGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaisdaae qaaOGaaiykaiaacMcaaaa@57A9@  

( 1 exp( β 2 a) exp( β 2 a) 1 0 0 γ 1 n 1 2 K 0 β 2 i n 2 2 K 0 exp( β 2 a) β 2 i n 2 2 K 0 exp( β 2 a) γ 1 n 1 2 K 0 0 0 0 1 1 0 1 0 0 β 2 i n 2 2 K 0 β 2 i n 2 2 K 0 0 γ 3 n 3 2 K 0 0 0 0 0 0 exp(2i γ 3 d) 1 0 0 0 0 γ 3 n 3 2 K 0 exp(2i γ 3 d) β 4 i K 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaaqaaiaaigdaaeaacqGHsislcaWGLbGaamiE aiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyai aacMcaaeaacqGHsislcaWGLbGaamiEaiaadchacaGGOaGaeyOeI0Ia eqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyaiaacMcaaeaacqGHsi slcaaIXaaabaGaaGimaaqaaiaaicdaaeaaaeaadaWcaaqaaiabgkHi Tiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWcba GaaGymaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaa aOqaamaalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaam yAaiaad6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSba aSqaaiaaicdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaamaalaaabaGa eyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaamyAaiaad6 gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaa icdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsislcqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaamaalaaabaGa eyOeI0Iaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOBamaaDa aaleaacaaIXaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqa baaaaaGcbaGaaGimaaqaaiaaicdaaeaaaeaacaaIWaaabaGaaGymaa qaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaaGymaaqaaiaaicdaaeaa aeaacaaIWaaabaWaaSaaaeaacqGHsislcqaHYoGydaWgaaWcbaGaaG OmaaqabaaakeaacaWGPbGaamOBamaaDaaaleaacaaIYaaabaGaaGOm aaaakiaadUeadaWgaaWcbaGaaGimaaqabaaaaaGcbaWaaSaaaeaacq aHYoGydaWgaaWcbaGaaGOmaaqabaaakeaacaWGPbGaamOBamaaDaaa leaacaaIYaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqaba aaaaGcbaGaaGimaaqaamaalaaabaGaeq4SdC2aaSbaaSqaaiaaioda aeqaaaGcbaGaamOBamaaDaaaleaacaaIZaaabaGaaGOmaaaakiaadU eadaWgaaWcbaGaaGimaaqabaaaaaGcbaGaaGimaaqaaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGLbGaamiEaiaadc hacaGGOaGaeyOeI0IaaGOmaiaadMgacqaHZoWzdaWgaaWcbaGaaG4m aaqabaGccaWGKbGaaiykaaqaaiabgkHiTiaaigdaaeaaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0YaaSaaaeaa cqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWGUbWaa0baaSqaai aaiodaaeaacaaIYaaaaOGaam4samaaBaaaleaacaaIWaaabeaaaaGc caWGLbGaamiEaiaadchacaGGOaGaeyOeI0IaaGOmaiaadMgacqaHZo WzdaWgaaWcbaGaaG4maaqabaGccaWGKbGaaiykaaqaamaalaaabaGa eqOSdi2aaSbaaSqaaiaaisdaaeqaaaGcbaGaamyAaiaadUeadaWgaa WcbaGaaGimaaqabaaaaaaaaOGaayjkaiaawMcaaaaa@CA61@   

detC= 2 β 2 γ 1 i n 2 2 n 1 2 K 0 2 | γ 1 K 0 0 0 0 exp(2 γ 3 d) 1 0 γ 3 K 0 exp(2 γ 3 d) β 4 i K 0 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadoeacqGH9aqpdaWcaaqaaiaaikdacqaH YoGydaWgaaWcbaGaaGOmaaqabaGccqaHZoWzdaWgaaWcbaGaaGymaa qabaaakeaacaWGPbGaamOBamaaDaaaleaacaaIYaaabaGaaGOmaaaa kiaad6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGlbWaa0baaS qaaiaaicdaaeaacaaIYaaaaaaakiaaykW7caaMc8UaaGPaVpaaeeaa baWaaqGaaeaafaqabeWadaaabaGaeyOeI0YaaSaaaeaacqaHZoWzda WgaaWcbaGaaGymaaqabaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqa aaaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadwgacaWG4b GaamiCaiaacIcacqGHsislcaaIYaGaeq4SdC2aaSbaaSqaaiaaioda aeqaaOGaamizaiaacMcaaeaacqGHsislcaaIXaaabaGaaGimaaqaai abgkHiTmaalaaabaGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaaGcbaGa am4samaaBaaaleaacaaIWaaabeaaaaGccaWGLbGaamiEaiaadchaca GGOaGaeyOeI0IaaGOmaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaa dsgacaGGPaaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGinaaqaba aakeaacaWGPbGaam4samaaBaaaleaacaaIWaaabeaaaaaaaaGccaGL iWoaaiaawEa7aaaa@7B63@  

detC= 4 β 2 γ 1 n 1 2 n 2 2 K 0 3 ( β 4 i γ 3 n 3 2 )exp(2i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadoeacqGH9aqpdaWcaaqaaiaaisdacqaH YoGydaWgaaWcbaGaaGOmaaqabaGccqaHZoWzdaWgaaWcbaGaaGymaa qabaaakeaacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaamOB amaaDaaaleaacaaIYaaabaGaaGOmaaaakiaadUeadaqhaaWcbaGaaG imaaqaaiaaiodaaaaaaOGaaiikaiabek7aInaaBaaaleaacaaI0aaa beaakiabgkHiTiaadMgadaWcaaqaaiabeo7aNnaaBaaaleaacaaIZa aabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaOGa aiykaiaaykW7caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTi aaikdacaWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaa cMcaaaa@63C0@  

detC= 4 β 2 γ 1 n 1 2 n 2 2 K 0 3 ( β 4 i γ 3 n 3 2 )exp(2i γ 3 d)exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadoeacqGH9aqpdaWcaaqaaiaaisdacqaH YoGydaWgaaWcbaGaaGOmaaqabaGccqaHZoWzdaWgaaWcbaGaaGymaa qabaaakeaacaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaamOB amaaDaaaleaacaaIYaaabaGaaGOmaaaakiaadUeadaqhaaWcbaGaaG imaaqaaiaaiodaaaaaaOGaaiikaiabek7aInaaBaaaleaacaaI0aaa beaakiabgkHiTiaadMgadaWcaaqaaiabeo7aNnaaBaaaleaacaaIZa aabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaaaaOGa aiykaiaaykW7caaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTi aaikdacaWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaa cMcacaaMc8UaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiabek7aIn aaBaaaleaacaaI0aaabeaakiaadsgacaGGPaaaaa@6DEB@  

( 1 exp( β 2 a) exp( β 2 a) 0 1 0 γ 1 n 1 1 K 0 β 2 i n 2 2 K 0 exp( β 2 a) β 2 i n 2 2 K 0 exp( β 2 a) 0 γ 1 n 1 2 K 0 0 0 1 1 1 0 0 0 β 2 i n 2 2 K 0 β 2 i n 2 2 K 0 γ 3 n 3 2 K 0 0 0 0 0 0 exp(2i γ 3 d) 0 1 0 0 0 γ 3 n 3 2 K 0 exp(2i γ 3 d) 0 β 4 i K 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaaqaaiaaigdaaeaacqGHsislcaWGLbGaamiE aiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyai aacMcaaeaacqGHsislcaWGLbGaamiEaiaadchacaGGOaGaeyOeI0Ia eqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyaiaacMcaaeaacaaIWa aabaGaeyOeI0IaaGymaaqaaiaaicdaaeaaaeaadaWcaaqaaiabgkHi Tiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaad6gadaqhaaWcba GaaGymaaqaaiaaigdaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaa aOqaamaalaaabaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaam yAaiaad6gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSba aSqaaiaaicdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaamaalaaabaGa eyOeI0IaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGcbaGaamyAaiaad6 gadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGlbWaaSbaaSqaaiaa icdaaeqaaaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsislcqaHYo GydaWgaaWcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaaiaaicdaaeaa daWcaaqaaiabgkHiTiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaai aad6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGlbWaaSbaaSqa aiaaicdaaeqaaaaaaOqaaiaaicdaaeaaaeaacaaIWaaabaGaaGymaa qaaiaaigdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaicdaaeaa aeaacaaIWaaabaWaaSaaaeaacqGHsislcqaHYoGydaWgaaWcbaGaaG OmaaqabaaakeaacaWGPbGaamOBamaaDaaaleaacaaIYaaabaGaaGOm aaaakiaadUeadaWgaaWcbaGaaGimaaqabaaaaaGcbaWaaSaaaeaacq aHYoGydaWgaaWcbaGaaGOmaaqabaaakeaacaWGPbGaamOBamaaDaaa leaacaaIYaaabaGaaGOmaaaakiaadUeadaWgaaWcbaGaaGimaaqaba aaaaGcbaWaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcbaGaaG4maaqa baaakeaacaWGUbWaa0baaSqaaiaaiodaaeaacaaIYaaaaOGaam4sam aaBaaaleaacaaIWaaabeaaaaaakeaacaaIWaaabaGaaGimaaqaaaqa aiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadwgacaWG4bGaamiCai aacIcacaaIYaGaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaakiaa dsgacaGGPaaabaGaaGimaaqaaiabgkHiTiaaigdaaeaaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaadaWcaaqaaiabeo7aNnaaBaaaleaa caaIZaaabeaaaOqaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaa GccaWGlbWaaSbaaSqaaiaaicdaaeqaaaaakiaadwgacaWG4bGaamiC aiaacIcacaaIYaGaamyAaiabeo7aNnaaBaaaleaacaaIZaaabeaaki aadsgacaGGPaaabaGaaGimaaqaamaalaaabaGaeqOSdi2aaSbaaSqa aiaaisdaaeqaaaGcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqaba aaaaaaaOGaayjkaiaawMcaaaaa@C886@  

det C \ = 4 β 2 γ 1 i n 1 2 n 2 2 K 0 3 ( β 4 +i γ 3 n 3 2 )exp(2i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadoeadaahaaWcbeqaaiaacYfaaaGccqGH 9aqpcqGHsisldaWcaaqaaiaaisdacqaHYoGydaWgaaWcbaGaaGOmaa qabaGccqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacaWGPbGaamOB amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaad6gadaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccaWGlbWaa0baaSqaaiaaicdaaeaacaaIZaaa aaaakiaacIcacqaHYoGydaWgaaWcbaGaaGinaaqabaGccqGHRaWkca WGPbWaaSaaaeaacqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWG UbWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiaacMcacaaMc8UaaG PaVlaadwgacaWG4bGaamiCaiaacIcacaaIYaGaamyAaiabeo7aNnaa BaaaleaacaaIZaaabeaakiaadsgacaGGPaaaaa@65BA@  

det C \ = 4 β 2 γ 1 i n 1 2 n 2 2 K 0 3 ( β 4 +i γ 3 n 3 2 )exp(2i γ 3 d)exp( β 4 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadoeadaahaaWcbeqaaiaacYfaaaGccqGH 9aqpcqGHsisldaWcaaqaaiaaisdacqaHYoGydaWgaaWcbaGaaGOmaa qabaGccqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacaWGPbGaamOB amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaad6gadaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccaWGlbWaa0baaSqaaiaaicdaaeaacaaIZaaa aaaakiaacIcacqaHYoGydaWgaaWcbaGaaGinaaqabaGccqGHRaWkca WGPbWaaSaaaeaacqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaacaWG UbWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaakiaacMcacaaMc8UaaG PaVlaadwgacaWG4bGaamiCaiaacIcacaaIYaGaamyAaiabeo7aNnaa BaaaleaacaaIZaaabeaakiaadsgacaGGPaGaaGPaVlaadwgacaWG4b GaamiCaiaacIcacqGHsislcqaHYoGydaWgaaWcbaGaaGinaaqabaGc caWGKbGaaiykaiaaykW7aaa@7170@  

( 1 exp( β 2 a) exp( β 2 a) 0 0 1 γ 1 K 0 β 2 i K 0 exp( β 2 a) β 2 i K 0 exp( β 2 a) 0 0 γ 1 K 0 0 1 1 1 1 0 0 β 2 i K 0 β 2 i K 0 γ 3 K 0 γ 3 K 0 0 0 0 0 exp(2i γ 3 d) exp(2i γ 3 d) 0 0 0 0 γ 3 K 0 exp(2i γ 3 d) γ 3 K 0 exp(2i γ 3 d) 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaeWaae aafaqabeGbhaaaaaqaaaqaaiaaigdaaeaacqGHsislcaWGLbGaamiE aiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyai aacMcaaeaacqGHsislcaWGLbGaamiEaiaadchacaGGOaGaeyOeI0Ia eqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaamyyaiaacMcaaeaacaaIWa aabaGaaGimaaqaaiabgkHiTiaaigdaaeaaaeaadaWcaaqaaiabgkHi Tiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaaiaadUeadaWgaaWcba GaaGimaaqabaaaaaGcbaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGOm aaqabaaakeaacaWGPbGaam4samaaBaaaleaacaaIWaaabeaaaaGcca WGLbGaamiEaiaadchacaGGOaGaeqOSdi2aaSbaaSqaaiaaikdaaeqa aOGaamyyaiaacMcaaeaadaWcaaqaaiabgkHiTiabek7aInaaBaaale aacaaIYaaabeaaaOqaaiaadMgacaWGlbWaaSbaaSqaaiaaicdaaeqa aaaakiaadwgacaWG4bGaamiCaiaacIcacqGHsislcqaHYoGydaWgaa WcbaGaaGOmaaqabaGccaWGHbGaaiykaaqaaiaaicdaaeaacaaIWaaa baWaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcbaGaaGymaaqabaaake aacaWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaaaqaaiaaicdaaeaa caaIXaaabaGaaGymaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXa aabaGaaGimaaqaaaqaaiaaicdaaeaadaWcaaqaaiabgkHiTiabek7a InaaBaaaleaacaaIYaaabeaaaOqaaiaadMgacaWGlbWaaSbaaSqaai aaicdaaeqaaaaaaOqaamaalaaabaGaeqOSdi2aaSbaaSqaaiaaikda aeqaaaGcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaaaaaGcba WaaSaaaeaacqGHsislcqaHZoWzdaWgaaWcbaGaaG4maaqabaaakeaa caWGlbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaamaalaaabaGaeq4SdC 2aaSbaaSqaaiaaiodaaeqaaaGcbaGaam4samaaBaaaleaacaaIWaaa beaaaaaakeaacaaIWaaabaaabaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaamyzaiaadIhacaWGWbGaaiikaiaaikdacaWGPbGaeq4SdC2a aSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcaaeaacaWGLbGaamiEai aadchacaGGOaGaeyOeI0IaaGOmaiaadMgacqaHZoWzdaWgaaWcbaGa aG4maaqabaGccaWGKbGaaiykaaqaaiaaicdaaeaaaeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaadaWcaaqaaiabeo7aNnaaBaaaleaacaaI ZaaabeaaaOqaaiaadUeadaWgaaWcbaGaaGimaaqabaaaaOGaamyzai aadIhacaWGWbGaaiikaiaaikdacaWGPbGaeq4SdC2aaSbaaSqaaiaa iodaaeqaaOGaamizaiaacMcaaeaacqGHsisldaWcaaqaaiabeo7aNn aaBaaaleaacaaIZaaabeaaaOqaaiaadUeadaWgaaWcbaGaaGimaaqa baaaaOGaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaaikdacaWGPb Gaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMcaaeaacaaI WaaaaaGaayjkaiaawMcaaaaa@CB0F@  

detD= 8i γ 1 γ 3 β 2 K 0 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamizai aadwgacaWG0bGaaGPaVlaadseacqGH9aqpdaWcaaqaaiabgkHiTiaa iIdacaWGPbGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGaeq4SdC2aaS baaSqaaiaaiodaaeqaaOGaeqOSdi2aaSbaaSqaaiaaikdaaeqaaaGc baGaam4samaaDaaaleaacaaIWaaabaGaaG4maaaaaaaaaa@4A72@  

The coefficients A, A \ ,B, B \ ,C, C \ ,D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamyqai aacYcacaaMc8UaamyqamaaCaaaleqabaGaaiixaaaakiaacYcacaaM c8UaamOqaiaaykW7caGGSaGaamOqamaaCaaaleqabaGaaiixaaaaki aacYcacaaMc8Uaam4qaiaacYcacaaMc8Uaam4qamaaCaaaleqabaGa aiixaaaakiaacYcacaaMc8Uaamiraaaa@4D80@ are given by the following relationship:

A detA = A \ det A \ = B detB = B \ det B \ = C detC = C \ det C \ = D detD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWWaaSaaae aacaWGbbaabaGaamizaiaadwgacaWG0bGaaGPaVlaadgeaaaGaeyyp a0ZaaSaaaeaacaWGbbWaaWbaaSqabeaacaGGCbaaaaGcbaGaamizai aadwgacaWG0bGaaGPaVlaadgeadaahaaWcbeqaaiaacYfaaaaaaOGa eyypa0ZaaSaaaeaacaWGcbaabaGaamizaiaadwgacaWG0bGaaGPaVl aadkeaaaGaeyypa0ZaaSaaaeaacaWGcbWaaWbaaSqabeaacaGGCbaa aaGcbaGaamizaiaadwgacaWG0bGaaGPaVlaadkeadaahaaWcbeqaai aacYfaaaaaaOGaeyypa0ZaaSaaaeaacaWGdbaabaGaamizaiaadwga caWG0bGaaGPaVlaadoeaaaGaeyypa0ZaaSaaaeaacaWGdbWaaWbaaS qabeaacaGGCbaaaaGcbaGaamizaiaadwgacaWG0bGaaGPaVlaadoea daahaaWcbeqaaiaacYfaaaaaaOGaeyypa0ZaaSaaaeaacaWGebaaba GaamizaiaadwgacaWG0bGaaGPaVlaadseaaaaaaa@6DCB@  

A \ =A j * (GiH) j(G+iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamyqam aaCaaaleqabaGaaiixaaaakiabg2da9iabgkHiTiaadgeacaaMc8Ua aGPaVpaalaaabaGaaeOAamaaCaaaleqabaGaaiOkaaaakiaacIcaca WGhbGaeyOeI0IaamyAaiaadIeacaGGPaaabaGaaeOAaiaaykW7caGG OaGaam4raiabgUcaRiaadMgacaWGibGaaiykaaaaaaa@4CFB@  

B=A 4i γ 1 X K 0 3 J(G+iH) exp(d( β 2 + β 4 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamOqai abg2da9iabgkHiTiaadgeadaWcaaqaaiaaisdacaWGPbGaeq4SdC2a aSbaaSqaaiaaigdaaeqaaOGaaeiwaaqaaiaadUeadaqhaaWcbaGaaG imaaqaaiaaiodaaaGccaqGkbGaaiikaiaadEeacqGHRaWkcaWGPbGa amisaiaacMcaaaGaaGPaVlaaykW7caWGLbGaamiEaiaadchacaGGOa GaeyOeI0IaamizaiaacIcacqaHYoGydaWgaaWcbaGaaGOmaaqabaGc cqGHRaWkcqaHYoGydaWgaaWcbaGaaGinaaqabaGccaGGPaGaaiykaa aa@58A6@  

B \ =A 4i γ 1 Y K 0 3 J(G+iH) exp(d( β 2 β 4 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaamOqam aaCaaaleqabaGaaiixaaaakiabg2da9iaadgeadaWcaaqaaiaaisda caWGPbGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGaaeywaaqaaiaadU eadaqhaaWcbaGaaGimaaqaaiaaiodaaaGccaqGkbGaaiikaiaadEea cqGHRaWkcaWGPbGaamisaiaacMcaaaGaaGPaVlaaykW7caWGLbGaam iEaiaadchacaGGOaGaeyOeI0IaamizaiaacIcacqaHYoGydaWgaaWc baGaaGOmaaqabaGccqGHsislcqaHYoGydaWgaaWcbaGaaGinaaqaba GccaGGPaGaaiykaaaa@58DC@  

C=A 4 β 2 γ 1 K 0 3 J(G+iH) ( β 4 i γ 3 )exp(d β 4 )exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaam4qai abg2da9iaadgeadaWcaaqaaiaaisdacqaHYoGydaWgaaWcbaGaaGOm aaqabaGccqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacaWGlbWaa0 baaSqaaiaaicdaaeaacaaIZaaaaOGaaeOsaiaacIcacaWGhbGaey4k aSIaamyAaiaadIeacaGGPaaaaiaaykW7caaMc8Uaaiikaiabek7aIn aaBaaaleaacaaI0aaabeaakiabgkHiTiaadMgacqaHZoWzdaWgaaWc baGaaG4maaqabaGccaGGPaGaaGPaVlaaykW7caWGLbGaamiEaiaadc hacaGGOaGaeyOeI0Iaamizaiabek7aInaaBaaaleaacaaI0aaabeaa kiaacMcacaaMc8UaaGPaVlaadwgacaWG4bGaamiCaiaacIcacqGHsi slcaWGPbGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaamizaiaacMca aaa@6BD8@  

C \ =A 4 β 2 γ 1 K 0 3 J(G+iH) ( β 4 +i γ 3 )exp(d β 4 )exp(i γ 3 d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaam4qam aaCaaaleqabaGaaiixaaaakiabg2da9iabgkHiTiaadgeadaWcaaqa aiaaisdacqaHYoGydaWgaaWcbaGaaGOmaaqabaGccqaHZoWzdaWgaa WcbaGaaGymaaqabaaakeaacaWGlbWaa0baaSqaaiaaicdaaeaacaaI ZaaaaOGaaeOsaiaacIcacaWGhbGaey4kaSIaamyAaiaadIeacaGGPa aaaiaaykW7caaMc8Uaaiikaiabek7aInaaBaaaleaacaaI0aaabeaa kiabgUcaRiaadMgacqaHZoWzdaWgaaWcbaGaaG4maaqabaGccaGGPa GaaGPaVlaaykW7caWGLbGaamiEaiaadchacaGGOaGaeyOeI0Iaamiz aiabek7aInaaBaaaleaacaaI0aaabeaakiaacMcacaaMc8UaaGPaVl aadwgacaWG4bGaamiCaiaacIcacaWGPbGaeq4SdC2aaSbaaSqaaiaa iodaaeqaaOGaamizaiaacMcaaaa@6CE4@  

D=A 8i γ 1 γ 3 β 2 K 0 3 j(G+iH) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=ws0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaKWGaaGPaVl aadseacqGH9aqpcqGHsislcaWGbbWaaSaaaeaacaaI4aGaamyAaiab eo7aNnaaBaaaleaacaaIXaaabeaakiabeo7aNnaaBaaaleaacaaIZa aabeaakiabek7aInaaBaaaleaacaaIYaaabeaaaOqaaiaadUeadaqh aaWcbaGaaGimaaqaaiaaiodaaaGccaqGQbGaaGPaVlaacIcacaWGhb Gaey4kaSIaamyAaiaadIeacaGGPaaaaaaa@4FB0@  

Results:

We take an incidence angle close to the critical angle (optimum of transmission in the TE mode). See reference.1  

θ inc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH4oqCpaWaaSbaaSqaa8qacaWGPbGaamOBaiaadogaa8aabeaa aaa@3AF0@   =520

{ E x = 1 i K 0 n 2 B y z E z = K x K 0 n 2 B y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGfbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaaW baaSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIyRaamOqamaaBaaa leaacaWG5baabeaaaOqaaiabgkGi2kaadQhaaaaabaGaamyramaaBa aaleaacaWG6baabeaakiabg2da9iabgkHiTmaalaaabaGaam4samaa BaaaleaacaWG4baabeaaaOqaaiaadUeadaWgaaWcbaGaaGimaaqaba GccaWGUbWaaWbaaSqabeaacaaIYaaaaaaakiaadkeadaWgaaWcbaGa amyEaaqabaaaaOGaay5Eaaaaaa@532D@   

E T = E x i + E z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiabg2da9iaadweadaWgaaWcbaGaamiE aaqabaGccaaMc8UabmyAayaalaGaey4kaSIaamyramaaBaaaleaaca WG6baabeaakiaaykW7ceWGRbGbaSaaaaa@4515@   

E T (4)= E x (4) i + E z (4) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaI0aGaaiykaiabg2da9iaa dweadaWgaaWcbaGaamiEaaqabaGccaGGOaGaaGinaiaacMcacaaMc8 UabmyAayaalaGaey4kaSIaamyramaaBaaaleaacaWG6baabeaakiaa cIcacaaI0aGaaiykaiaaykW7ceWGRbGbaSaaaaa@4B5A@  

E T = β 4 i K 0 n 4 Dexp( β 4 z) i K x K 0 n 4 Dexp( β 4 z) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiabg2da9maalaaabaGaeqOSdi2aaSba aSqaaiaaisdaaeqaaaGcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaa qabaGccaWGUbWaaWbaaSqabeaacaaI0aaaaaaakiaadseacaaMc8Ua amyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaacaaI0aaabe aakiaadQhacaGGPaGaaGPaVlqadMgagaWcaiabgkHiTmaalaaabaGa am4samaaBaaaleaacaWG4baabeaaaOqaaiaadUeadaWgaaWcbaGaaG imaaqabaGccaWGUbWaaWbaaSqabeaacaaI0aaaaaaakiaadseacaaM c8UaamyzaiaadIhacaWGWbGaciikaiabek7aInaaBaaaleaacaaI0a aabeaakiaadQhacaGGPaGaaGPaVlqadUgagaWcaaaa@6256@   

E T (4).conj( E T (4))= | D| 2 exp(2 β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaI0aGaaiykaiaac6cacaWG JbGaam4Baiaad6gacaWGQbGaaiikaiqadweagaWcamaaBaaaleaaca WGubaabeaakiaacIcacaaI0aGaaiykaiaacMcacqGH9aqpdaabbaqa amaaeiaabaGaamiraaGaayjcSdaacaGLhWoadaahaaWcbeqaaiaaik daaaGccaaMc8UaciyzaiaacIhacaGGWbGaaiikaiaaikdacqaHYoGy daWgaaWcbaGaaGinaaqabaGccaWG6bGaaiykaaaa@55F6@   

E T (1)= γ 1 K 0 n 1 2 (Aexp(i γ 1 z)+A`exp(i γ 1 z)) i K x K 0 n 1 2 (Aexp(i γ 1 z)+A`exp(i γ 1 z)) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaIXaGaaiykaiabg2da9maa laaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaam4samaaBa aaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGaaGymaaqaaiaaikda aaaaaOGaaiikaiabgkHiTiaadgeacaWGLbGaamiEaiaadchacaGGOa GaeyOeI0IaamyAaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadQha caGGPaGaey4kaSIaamyqaiaaccgacaWGLbGaamiEaiaadchacaGGOa GaamyAaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadQhacaGGPaGa aiykaiaaykW7ceWGPbGbaSaacqGHsisldaWcaaqaaiaadUeadaWgaa WcbaGaamiEaaqabaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGa amOBamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccaGGOaGaamyqai aadwgacaWG4bGaamiCaiaacIcacqGHsislcaWGPbGaeq4SdC2aaSba aSqaaiaaigdaaeqaaOGaamOEaiaacMcacqGHRaWkcaWGbbGaaiiyai aadwgacaWG4bGaamiCaiaacIcacaWGPbGaeq4SdC2aaSbaaSqaaiaa igdaaeqaaOGaamOEaiaacMcacaGGPaGaaGPaVlqadUgagaWcaaaa@7FBA@  

Figure 2 The perpendicular component EZ of the electric field (V/m).

Figure 3 The parallel component EX of the electric field (V/m).

{ E x = 1 i K 0 n 2 B y z E z = K x K 0 n 2 B y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGfbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaI XaaabaGaamyAaiaadUeadaWgaaWcbaGaaGimaaqabaGccaWGUbWaaW baaSqabeaacaaIYaaaaaaakmaalaaabaGaeyOaIyRaamOqamaaBaaa leaacaWG5baabeaaaOqaaiabgkGi2kaadQhaaaaabaGaamyramaaBa aaleaacaWG6baabeaakiabg2da9iabgkHiTmaalaaabaGaam4samaa BaaaleaacaWG4baabeaaaOqaaiaadUeadaWgaaWcbaGaaGimaaqaba GccaWGUbWaaWbaaSqabeaacaaIYaaaaaaakiaadkeadaWgaaWcbaGa amyEaaqabaaaaOGaay5Eaaaaaa@532D@  

E T = E x i + E z k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiabg2da9iaadweadaWgaaWcbaGaamiE aaqabaGccaaMc8UabmyAayaalaGaey4kaSIaamyramaaBaaaleaaca WG6baabeaakiaaykW7ceWGRbGbaSaaaaa@4515@  

E T (4)= E x (4) i + E z (4) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaI0aGaaiykaiabg2da9iaa dweadaWgaaWcbaGaamiEaaqabaGccaGGOaGaaGinaiaacMcacaaMc8 UabmyAayaalaGaey4kaSIaamyramaaBaaaleaacaWG6baabeaakiaa cIcacaaI0aGaaiykaiaaykW7ceWGRbGbaSaaaaa@4B5A@  

E T = β 4 i K 0 n 4 Dexp( β 4 z) i K x K 0 n 4 Dexp( β 4 z) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiabg2da9maalaaabaGaeqOSdi2aaSba aSqaaiaaisdaaeqaaaGcbaGaamyAaiaadUeadaWgaaWcbaGaaGimaa qabaGccaWGUbWaaWbaaSqabeaacaaI0aaaaaaakiaadseacaaMc8Ua amyzaiaadIhacaWGWbGaaiikaiabek7aInaaBaaaleaacaaI0aaabe aakiaadQhacaGGPaGaaGPaVlqadMgagaWcaiabgkHiTmaalaaabaGa am4samaaBaaaleaacaWG4baabeaaaOqaaiaadUeadaWgaaWcbaGaaG imaaqabaGccaWGUbWaaWbaaSqabeaacaaI0aaaaaaakiaadseacaaM c8UaamyzaiaadIhacaWGWbGaciikaiabek7aInaaBaaaleaacaaI0a aabeaakiaadQhacaGGPaGaaGPaVlqadUgagaWcaaaa@6256@  

E T (4).conj( E T (4))= | D| 2 exp(2 β 4 z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaI0aGaaiykaiaac6cacaWG JbGaam4Baiaad6gacaWGQbGaaiikaiqadweagaWcamaaBaaaleaaca WGubaabeaakiaacIcacaaI0aGaaiykaiaacMcacqGH9aqpdaabbaqa amaaeiaabaGaamiraaGaayjcSdaacaGLhWoadaahaaWcbeqaaiaaik daaaGccaaMc8UaciyzaiaacIhacaGGWbGaaiikaiaaikdacqaHYoGy daWgaaWcbaGaaGinaaqabaGccaWG6bGaaiykaaaa@55F6@  

E T (1)= γ 1 K 0 n 1 2 (Aexp(i γ 1 z)+A`exp(i γ 1 z)) i K x K 0 n 1 2 (Aexp(i γ 1 z)+A`exp(i γ 1 z)) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaIXaGaaiykaiabg2da9maa laaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaam4samaaBa aaleaacaaIWaaabeaakiaad6gadaqhaaWcbaGaaGymaaqaaiaaikda aaaaaOGaaiikaiabgkHiTiaadgeacaWGLbGaamiEaiaadchacaGGOa GaeyOeI0IaamyAaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadQha caGGPaGaey4kaSIaamyqaiaaccgacaWGLbGaamiEaiaadchacaGGOa GaamyAaiabeo7aNnaaBaaaleaacaaIXaaabeaakiaadQhacaGGPaGa aiykaiaaykW7ceWGPbGbaSaacqGHsisldaWcaaqaaiaadUeadaWgaa WcbaGaamiEaaqabaaakeaacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGa amOBamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccaGGOaGaamyqai aadwgacaWG4bGaamiCaiaacIcacqGHsislcaWGPbGaeq4SdC2aaSba aSqaaiaaigdaaeqaaOGaamOEaiaacMcacqGHRaWkcaWGbbGaaiiyai aadwgacaWG4bGaamiCaiaacIcacaWGPbGaeq4SdC2aaSbaaSqaaiaa igdaaeqaaOGaamOEaiaacMcacaGGPaGaaGPaVlqadUgagaWcaaaa@7FBA@  

E T (1).conj( E T (1))= | A| 2 n 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadweagaWcam aaBaaaleaacaWGubaabeaakiaacIcacaaIXaGaaiykaiaac6cacaWG JbGaam4Baiaad6gacaWGQbGaaiikaiqadweagaWcamaaBaaaleaaca WGubaabeaakiaacIcacaaIXaGaaiykaiaacMcacqGH9aqpdaWcaaqa amaaeeaabaWaaqGaaeaacaqGbbaacaGLiWoadaahaaWcbeqaaiaaik daaaaakiaawEa7aaqaaiaad6gadaqhaaWcbaGaaGymaaqaaiaaisda aaaaaaaa@4E85@  

Figure 4 The total electric field ET in the atomic mirror function of the transverse coordinate z.

We notice that the electric field is bigger in the gap and then decreases in the vaccum where it is smaller than in the prism.

The transmission factor is given by:4

T= | E T (4)z=d E T (1)z=d+a | 2 = E T (4).conj( E T (4))z=d E T (1).conj( E T (1))z=d+a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacsfacqGH9a qpdaabdaqaamaalaaabaGabmyrayaalaWaaSbaaSqaaiaadsfaaeqa aOGaaiikaiaaisdacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaadQhacqGH9aqpcqGHsislcaWGKbGaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7aeaaceWGfbGbaSaadaWgaaWc baGaamivaaqabaGccaGGOaGaaGymaiaacMcacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG6bGaeyyp a0JaamizaiabgUcaRiaadggacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7aaaacaGLhWUaayjcSdWaaWba aSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaaceWGfbGbaSaadaWgaa WcbaGaamivaaqabaGccaGGOaGaaGinaiaacMcacaaMc8UaaiOlaiaa ykW7caaMc8Uaam4yaiaad+gacaWGUbGaamOAaiaacIcaceWGfbGbaS aadaWgaaWcbaGaamivaaqabaGccaGGOaGaaGinaiaacMcacaGGPaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca WG6bGaeyypa0JaeyOeI0IaamizaiaaykW7caaMc8UaaGPaVdqaaiqa dweagaWcamaaBaaaleaacaWGubaabeaakiaacIcacaaIXaGaaiykai aaykW7caaMc8UaaiOlaiaaykW7caWGJbGaam4Baiaad6gacaWGQbGa aiikaiqadweagaWcamaaBaaaleaacaWGubaabeaakiaacIcacaaIXa GaaiykaiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamOEaiabg2da9iaadsgacqGHRaWkcaWGHbGaaGPaVlaayk W7aaGaaGPaVlaaykW7caaMc8oaaa@DCEC@   

T= (4 γ 1 γ 3 β 2 ) 2 n 2 2 n 3 2 ( G 2 + H 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacsfacqGH9a qpdaWcaaqaaiaacIcacaaI0aGaeq4SdC2aaSbaaSqaaiaaigdaaeqa aOGaeq4SdC2aaSbaaSqaaiaaiodaaeqaaOGaeqOSdi2aaSbaaSqaai aaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaad6ga daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGUbWaa0baaSqaaiaaio daaeaacaaIYaaaaOGaaiikaiaadEeadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaWGibWaaWbaaSqabeaacaaIYaaaaOGaaiykaaaaaaa@4FEC@   

Figure 5 The transmission factor in the atomic mirror.

We conclude that there is no enhancement in the vaccum for the electric field and there is no technological progress or advantage for this kind of excitation.1,5-7

Acknowledgments

None.

Conflicts of interest

None.

References

  1. M Slimani. Master thesis. University Yahia Farès of Médéa. Algeria. December 2015.
  2. S Ghezali, A Taleb. Transmission factor in an enhanced evanescent wave atomic mirror. CNPA’2015. USTHB, Algiers. November 2015.
  3. RJ Cook. Atomic motion in resonant radiation: an application of Ehrenfest’s theorem. Phys Rev A. 1979;1(1).
  4. G Labeyrie. PhD thesis. University of Paris-Sud. France. December 1997.
  5. G Labeyrie. Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors. Quantum Semiclass Opt. 1996;603–627.
  6. Landragin, PhD thesis. University of Paris Sud. France. 1997.
  7. S Ghezali, A Taleb. A detailed study of a dielectric waveguide structure for an enhanced evanescent wave atomic mirror. International Journal of Physics and Astronomy. 2014;2(3&4):21–32.
Creative Commons Attribution License

©2022 Ghezali, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.