Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 2

Theory of a superluminous vacuum quanta as the fabric of Space

Rajan Iyer,1 Emmanouil Markoulakis2

1Department of Physical Mathematics Sciences Engineering Project Technologies, Engineering inc International Operational Teknet Earth Global, United States of America
2Department of Electronic Engineering, Romanou, Hellenic Mediterranean University, Greece

Correspondence: Rajan Iyer, Department of Physical Mathematics Sciences Engineering Project Technologies, Engineeringinc International Operational Teknet Earth Global, United States of America, Tel 4802870663

Received: February 15, 2021 | Published: June 24, 2021

Citation: Iyer R, Markoulakis E. Theory of a superluminous vacuum quanta as the fabric of Space. Phys Astron Int J. 2021;5(2):43-53. DOI: 10.15406/paij.2021.05.00233

Download PDF

Abstract

Our observations of magneton with Ferrolens shows evidence pointing to such magneton entity, and more evidently in recent results with the synthetic vacuum unipole experiments. Physics formalism ansatz novel model analyses demonstrate how vacuum quanta may have sufficient energy for vacuum genesis, by constructing eigen spinors of zero_point microblackhole Hamiltonian quantum mechanics with Helmholtz decomposition matrix of gradient and rotational tensors, that are characteristic of translational vortex fields. With these mathematical physics processes, we obtain resulting energy fields spatial property partial differential equations characterizing eigen state energetics of zero point vacuum quagmire, as well as eigen state vortex fields of micro black hole, both together making up plasmodial zones within quagmire. Specific eigen spinors Hamiltonian partial differential equations quantifying energy and fields eigen functions. Vacuum that is dipole vacuum may have superposition of complex input of quagmire vortex fields acting to create non–hermitian quantum relativistic physics.

Keywords: quantum cosmology, vacuum space quanta, Hamiltonian operator, eigen functions, magneton, observables, general formalism, Hamiltonian analysis, vortex vacuum eigen spinors, gradient zero point source rotational micro black hole sink tensors

Introduction

Energetics of a vacuum space quanta that maybe unit of fabric of vacuum space had been quite perplexing physicists over many centuries, from classical to relativistic to quantum mechanics.1,2 Classical physics with Galilean Newtonian equations of motion and Maxwell’s electro vacuum equations3–5 started to analyze quantitatively nature of gravity, space, and time, although it was elusive to explain wholesomely universal phenomena from micro to macro universe.6,7 Einstein’s relativistic theories proposed a way of bringing together the concept of space and time, topologically, to explain gravity to unify all four forces of nature known to humans: electromagnetism, strong and the weak nuclear forces, and the gravity.8–11 Fundamentally, pure, and applied mathematics had been all the while playing a major role in quantifying physics through enabling parametric measurements of observations.12 To explain the microcosm of universe, quantum mechanics with Schrodinger’s wave function Hamiltonian equations came to explain the duality of the wave and particle aspects, with de Broglie’s assertion of simultaneity of energy and matter presence.13 Standard Model had put together spectra of quantum particles, with Higgs Boson identifying observable as the mass giver for particles, that will evolve onto real matter into existence.14 Quantum density matrix had formed the flavor of special unitary symmetries constituting typical gage invariance,15 with many grand unified theories establishing necessity of monopoles existing to account for energy densities of universal systems. However, the question of origin of energy and of quantum vacuum had been eluding physicists’ total quantify ability. Parametric analysis with experimental observations had posed a measurement problem. In his original introduction of mathematically provable quantization of monopole –charge aspects, noting knowhow physics, Dirac argued quantitatively vacuum quantum necessitating existence of monopoles based on fundamentals of quantum mechanics.16 To understand about vacuum space quantum vortex systems, generalized and/or modified Maxwell equations to include monopoles had been advanced mathematically analytically.17 A detailed knowledge with mechanics of quantifying vortex systems to monopoles18 to more specific Lagrangian and Hamiltonian derivation mathematically of vortex systems suitable to analyze vacuum quagmire with monopole & the dipole had already been modeled.2,19–23 These studies show that monopoles’ physics had mechanics like the fluid system’s hydro dynamical vortex systems Searches for monopoles, with scientists all over the world, consisted of two categories experimentally typically: (1) detecting preexisting monopoles, (2) creating and detecting then new monopoles.24–33 Mathematical techniques explored here to solve eigen value problem might set a precedence to abstract who listic observational physics with mathematical preciseness, applicable further to provable generalized quantum relativistic grand formalism. In this paper, Helmholtz decomposition fields are only considered to come up with general formalism, especially since research experimentation measurements with Ferrolens observational results have shown that magnetism is exclusively a dipole phenomenon, which in contrast to eclecticism, hence cannot be mono pole. If an isolated natural occurring magnetic monopole charge is found, it would not create a gauge field – force field spatially around it radiated in space, all energy flows inward with none radiated outside, whereas a monopole electric charge which is a physically spinning magnetic dipole charge, radiates energy to the outside and therefore can create a field.34,35

Standard techniques established by vast amount of quantum physics literature on constructing, analyzing, interpreting, quantifying as well as problem solving eigenvalues, eigenmatrices, eigenvectors, and fields of Hermitian and/or non –Hermitian Hamiltonian operator36–43 generating characteristic energy and field spectrum were widely utilized here to configure quantum characterization of matrix systems. Within all theoretical endeavors, matrix rules and quantifiable formulations follow integrated procedures configured from the research of physics literature articles, samples of which appear in the reference list, with44–48 in this paper. Zero –point analysis of quantum vacuum would refer to energy at the vacuum quanta zero –point fluctuation energy.49,68 Micro –black holes considered here in analysis would essentially be quantum blackholes.51,52 General theoretical modeling is extendable to ansatz modeling superluminal multiphase systems that will grand unify fields, while explaining how such high energies originate in primordial universe.

Explanations of magneton, quantum magnet, and type of fields they exhibit:53–56,58,59

The term magneton53 refers to the elementary magnetic dipole quanta of any magnetic dipole charge either if it is an electron or quark or any particle that has a 1/2 spin, i. e. fermions.60 The difference of the Bohr magneton with the term we are using "magneton" is that the Bohr magneton refers to the bound electrons of an atom whereas the term magneton refers in general to the "Quantum Magnet" and magnetic moment of any particle either it is free or bound in the atomic structure.53–56 In any event, the magneton53 is a monopole charge. With that said, our observations with the ferrolens of the Quantum Magnet field53 reveals that it consists of two opposite magnetic monopole charges thus two joint counter rotating magnetic flux monopole vortices jointed together to form a magnetic dipole or else a magnetic flux dipole vortex.53–56,61 This is now exactly to what our term "magneton"53 refers to, according to our research.53–56 However, any vortex field is essentially a monopole field,58 therefore our observation and previous research reveals that the nature of the Quantum Magnet is essentially Gilbertian in nature and not Amperian.59 Thus, it effectively consists of two joint monopoles of opposite magnetic charges, the only form in our space time magnetic monopole charges can exist, i. e. jointly in a dipole formation.53–56

Now, one of the central emphases with theory of the paper will be based on the conjecture that in our space –time these dipole magnetons53 can exist only as dipoles but in the super luminous energy phase of vacuum space, per Figure 1, the magnetons53 exist only as monopole energy vortices thus monopole magnetons,53 vibrating at super luminous speed and are like the pixels and elementary quanta of discrete vacuum space occupying each point of it. Consequently, in the fabric of our space time, for whatever reason these monopole magnetons53 lose their super luminous kinetic energy and drop down their energy level to luminous or sub luminous, brought out in Figure 1, they change phase and fall into our space time and instantly join into elementary magnetic dipoles, thereby forming the basis of fermionic matter in our universe. In the super luminous phase of vacuum space, this is totally undetectable by us and perceived by us as "empty space" in our space time.

Figure 1 Schematic showing super luminous phase of vacuum space monopole magnetons53–56 essentially empty space manifesting subsequent phase transitions.
Schematic sketching of phase transitioned luminous and sub luminous phase of vacuum space Einsteinian space time formation of dipole magnetons.53–56

Experimental interpretations

Our recent observations of magneton with Ferrolens quoted literature53,56 briefly show within the Figures 2 & 3 real –time observations of quantum field magnetism (QFM) of vortex dipoles, as well as physical mechanism explaining classical macroscopic electric E –field of a macro vacuum quantum dipole field, having vortex casuality effects, that are observed with the Ferrolens.53 Hedgehog field lines displayed by the Ferrolens, diverging out of the unipolar vacuum ring array’s vortex field shows effect of synthetic monopole quasi particle effect, like a ferro vacuum Dirac quantum vacuum monopole trap, referring to Figure XI (source: Emmanouil Markoulakis et al.)56 Also, screw –like unipole vortex formations, and non –classical vortex quantas, that appear as Quantum Magnet Field (QMF) Figure IV & X (source: Emmanouil Markoulakis et al.)56 are indicative of special features of monopole –like unipole synthetic vacuum array. Apart from our recent results, highlighted above suggesting monopoles spontaneously transform to dipoles, further observation with the vacuum 3D fields visualizations53–56 have proved that magnetons53 form the fundamental fields and that they are constituted by uni poles, quite likely building blocks of everything universally.

Figure 2 (a) A logarithmic spiral. (b) QFM vortex dipole field magnetism. (c) left arm of spirutal segment of the QFM. (d) Right arm spiral segment, these measurements comparatively show real-time observations originally per Figure VI (source: Emmanouil Markoulakis et al.)53 measurements with the Ferrolens.53

Figure 3 Physical mechanism for explaining classical macroscopic E-field of macro vacuum quantum field dipole magnetism with vortex casualty effect originally Figure VI (source: Emmanouil Markoulakis et al.)53 observations with the Ferrolens.53

Theoretical results observables formalisms

We are attempting to establish theoretical basis to mathematically analyze these systems, with a key goal of identifying observables that are provable verifiably with experimental techniques, such as the quantum vacuum –optic flux viewer Ferrolens to probe inside the ferro vacuum materials, as well as Bose –Einstein condensate that can detect polar –core spin vortices especially of Dirac monopole. Standard techniques established by vast amount of quantum physics literature on constructing, analyzing, interpreting, quantifying as well as problem solving eigenvalues, eigen matrices, eigenvectors, and fields of Hermitian and/or non –Hermitian Hamiltonian operator36–45 generating characteristic energy and field spectrum are widely utilized to configure characterization of quantum vortex systems considered here. In all theoretical endeavors, matrix rules and quantifiable formulations follow integrated procedures that are adapted from the research of physics literature articles, samples of which appear in the reference list, with44–48,62,64,67 in this paper.

Simple reasons that justify formalism, applying Helmholtz decomposition fields analysis of vortex dynamics:

  1. Magneton53 experimental observations measurements show that the vortex fields are main characteristics. Helmholtz decomposition fields have already in –built rotational (vortex) fields and the gradient fields,57,62–69 which provide driving force to vortex fields, metrics, that can be expressed as a 2x2 matrix.
  2. It is possible to transform from Helmholtz metrics, using Coulomb gage that will link to Coulomb branch gage groupwith Hilbert series having SuperSymmetry (SUSY) Quantum Field Theory (QFT) charge conjugation.57,70 We can then link charge conjugation to rotating charges per Dirac Maxwell Einstein Kerr Newmann metrics.71,72
  3. Hence, in this formalism, we adopt Helmholtz decomposition fields tensor matrixapproach, due to above mentioned reasons.

Generalized formalism hamiltonian
helmholtz eigenfields

Helmholtz mathematical physics theorem62 describes how a vector field can be expressed as a gradient scalar potential and a curl of vector field potential. We will expect the curl of the field being zero at the zero point,63 where authors have argued that for each stationary classical background field there is a ground state of the associated quantized field; this is the vacuum for that background. Helmholtz theorem has generality that can be used to connect quantum with relativitistic physics.64 On the other hand, gradient of field zero at a black –hole with a nonzero curl65 causes highly energetic compaction within increasing internal pressure asymptotically; here authors have brought out the effect of rotation on simulations of black hole events at the LHC showing that the angular momentum of the black hole cannot be ignored, and it makes a non –trivial contribution for most of the lifetime of the black hole. A key consequence of the rotation of the black hole is that the Hawking radiation is no longer isotropic, making it more difficult to infer space –time parameters from measurements of the emitted particles.65 In this letter, they had studied the angular distribution of the Hawking emission of non –zero spin particles with specific helicity on the brane, arguing that the shape of the distribution could be used as a measure of the angular momentum of the black hole.65

The Helmholtz theorem vector decomposition of field66 equates F = Φ +xA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGgbGaaeiiaiabg2da9iaabccacqGHsislcqGHhis0cqqH MoGrcaqGGaGaey4kaSIaey4bIeTaamiEaiaadgeaaaa@449F@ , where F is a vector field defined on a bounded domain VR3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGwbGaeyOHI0SaamOuaiaaiodaaaa@3D3D@ , which is twice continuously differentiable, having surface S enclosing domain V. F then thus can be decomposed into a curl –free component and a divergence –free component, such that any sufficiently smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an irrotational (curl –free) vector field and a solenoidal (divergence –free) vector field. This is known as the Helmholtz decomposition,66 with Φ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqqHMoGrcaqGGaGaeyypa0daaa@3BF0@ scalar potential; A = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGbbGaaeiiaiabg2da9aaa@3B3C@ vector field potential; thereby, F =  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGgbGaaeiiaiabg2da9iaabccacqGHsislaaa@3CD1@ grad Φ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqqHMoGrcaqGGaGaey4kaScaaa@3BCC@ curl.

Upper and the lower indices, such as εμν& ε μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqaH1oqzcqaH8oqBcqaH9oGBcaGGMaGaeqyTdu2damaaBaaa leaapeGaeqiVd0MaeqyVd4gapaqabaaaaa@43F9@ , considered here in our detailed analysis of the general field tensors, follow normal tensor calculus mathematical notations.67 The zero –point vector field above brings out interesting situation of curl A > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGbbGaaeiiaiabgkHiTiabg6da+iaabccacaaIWaaaaa@3D88@ , which is justifiable since rotational component will not exist at zero –point, although grad Φ  0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqqHMoGrcaqGGaGaeyiyIKRaaeiiaiaaicdaaaa@3E0E@ ; conversely, at a micro –black –hole, F > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGgbGaaeiiaiabgkHiTiabg6da+iaabccacaaIWaaaaa@3D8D@ , where the field may be collapsed electro vacuum light – electric + vacuum – vector field, and then xA=Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqGHhis0caWG4bGaamyqaiabg2da9iabgEGirlabfA6agjaa cobiaaa@40D3@ perhaps manifesting as Hawking radiation out of zero –point within a micro –black –hole. This is a conjecture borne out of Poincare’s Theorem stating that if xF =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqGHhis0caWG4bGaamOraiaabccacqGH9aqpcaaIWaaaaa@3E7E@ (i.e ., F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaGGUaGaaiilaiaabccacaWGgbWdamaabmaabaWdbiaadIha a8aacaGLOaGaayzkaaaaaa@3E51@ is an irrotational field) in a simply connected neighborhood U(x) of a point x, then in this neighborhood, F is the gradient of a scalar field φ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqaHgpGApaWaaeWaaeaapeGaamiEaaWdaiaawIcacaGLPaaa aaa@3D3E@ .68 Rotational component is associated through Helmholtz decomposition to pressure, especially in fluid flow.69

Oliverknill37,69-85 highlights references related to detailed Helmholtz decomposition of the gradient and the rotational fields, considered extensively here to come up with general formalism Hamiltonian operator analysis quantum relativity. Also, mathematical matrix operational manipulations with outer and inner product space applied mathematical physics principles are listed also with69-85 containing Dirac matrix quantum notations. Authors have adapted many techniques applied to quantum physical analysis within the framework of the quantum field theory, as well as Hermitian and non –Hermitian Hamiltonian operator quantum relativistic physics with quarternions, encountered often in these systems. Already, the reasons for applying Helmholtz decomposition fields analysis of vortex dynamics have been mentioned above, consistent with physics literature.57,62–72 Mathematically, matrix quantum techniques with outer product of Helmholtz decomposition density field matrix are utilized to come up with eigenvector fields Hamiltonian characteristics69-85 below.

Outer product helmholtz decomposition density field matrix eigenvector operators constructs

| ε r , ε g > < μν μν | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhaqaaaaa aaaaWdbiabew7aL9aadaWgaaWcbaWdbiaahkhaa8aabeaak8qacaGG SaGaeqyTdu2damaaBaaaleaapeGaaC4zaaWdaeqaaOWdbiabg6da+i abgYda88aadaWgaaWcbaWdbiaahY7acaWH9oaapaqabaGcdaahaaWc beqaa8qacaWH8oGaaCyVdaaak8aacaGG8baaaa@4904@ = ( ε ^ r,μν ε ^ g,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaWgaaWcbaGaamOCaiaacYcacqaH8oqBcqaH9oGBaeqaaaGc baGafqyTduMbaKaadaWgaaWcbaGaam4zaiaacYcacqaH8oqBcqaH9o GBaeqaaaaaaa@4621@ ε ^ g μν ε ^ r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaqhaaWcbaGaam4zaaqaaiabeY7aTjabe27aUbaaaOqaaiqb ew7aLzaajaWaa0baaSqaaiaadkhaaeaacqaH8oqBcqaH9oGBaaaaaa a@44C3@ )=( ε ^ r ε ^ g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaWgaaWcbaGaamOCaaqabaaakeaacuaH1oqzgaqcamaaBaaa leaacaWGNbaabeaaaaaa@3DE5@ )( μν μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBeaaleaacq aH8oqBcqaH9oGBaeqaaOWaaSraaSqaaiabeY7aTjabe27aUbqabaaa aa@3F6B@ )                                           (1)          

with ε r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhaa8aabeaaaaa@3B28@ : Helmholtz decomposition rotational field; ε g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahEgaa8aabeaaaaa@3B1D@ : Helmholtz decomposition gradient field; μν , μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbiabeY7aTjabe27aUbWdaeqaaOWdbiabgYcaS8aadaah aaWcbeqaa8qacqaH8oqBcqaH9oGBaaaaaa@40AA@ are lower and the upper referential frame tensor calculus notations;67 | ε r , ε g > < μν μν | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacYhaqaaaaa aaaaWdbiabew7aL9aadaWgaaWcbaWdbiaahkhaa8aabeaak8qacaGG SaGaeqyTdu2damaaBaaaleaapeGaaC4zaaWdaeqaaOWdbiabg6da+i abgYda88aadaWgaaWcbaWdbiabeY7aTjabe27aUbWdaeqaaOWaaWba aSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacYhaaaa@4ABC@ gives the outer product of both of the fields with the indices to generate 2x2 Dirac matrix forms( ε ^ r,μν ε ^ g,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaWgaaWcbaGaamOCaiaacYcacqaH8oqBcqaH9oGBaeqaaaGc baGafqyTduMbaKaadaWgaaWcbaGaam4zaiaacYcacqaH8oqBcqaH9o GBaeqaaaaaaa@4621@ ε ^ g μν ε ^ r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaqhaaWcbaGaam4zaaqaaiabeY7aTjabe27aUbaaaOqaaiqb ew7aLzaajaWaa0baaSqaaiaadkhaaeaacqaH8oqBcqaH9oGBaaaaaa a@44C3@ ), which is equivalent to vector forms ( ε ^ r ε ^ g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGafqyTdu MbaKaadaWgaaWcbaGaamOCaaqabaaakeaacuaH1oqzgaqcamaaBaaa leaacaWGNbaabeaaaaaa@3DE5@ ) ( μν μν ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcadaWgaa Wcbaaeaaaaaaaaa8qacqaH8oqBcqaH9oGBa8aabeaakmaaCaaaleqa baWdbiabeY7aTjabe27aUbaak8aacaGGPaWdbiaac6caaaa@41DB@  Note that tensor notations fields are true for rotational and the gradient fields, permutated to the index values to have representation of both senses with rotations as well as the gradients, thereby, upward, downward, outward, & the inward field tensors are fully generalized by this format. All the matrix manipulations to achieve quantum derivations have normal techniques employed conform to those given in physics literature,69-85 as also mentioned above.

To get eigen values of characteristic field matrix above, we equate | Aλ I | = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaaeaa aaaaaaa8qacaWGbbGaeyOeI0Iaeq4UdWMaaeiiaiaadMeaa8aacaGL hWUaayjcSdWdbiaabccacqGH9aqpcaqGGaGaaGimaaaa@436A@ ; hence

( εr, μν λ εg,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaH1oqzcaWGYbGaaiilaiaabccacqaH8oqBcqaH9oGBcaqG GaGaeyOeI0Iaeq4UdWgabaGaeqyTduMaam4zaiaacYcacqaH8oqBcq aH9oGBaaaa@49A6@ ε g μν ε r μν λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqaH1oqzdaqhaaWcbaGaam4zaaqaaiabeY7aTjabe27aUbaa aOqaaiabew7aLnaaDaaaleaacaWGYbaabaGaeqiVd0MaeqyVd4gaaO GaeyOeI0Iaeq4UdWgaaaa@476E@ )=0 & solving quadratic equation in λ:

 i.e. ( ε r,μν λ)( ε r μν  λ)  ε g,μν ε g μν = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqaH1o qzdaWgaaWcbaaeaaaaaaaaa8qacaWGYbGaaiilaiabeY7aTjabe27a UbWdaeqaaOWdbiabgkHiTiabeU7aSjaacMcapaGaaiikaiabew7aLn aaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0Ma eqyVd4gaaOGaeyOeI0IaaiiOaiabeU7aSjaacMcacqGHsislcaqGGa Wdaiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8oqBcqaH9oGB a8aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaS qabeaapeGaeqiVd0MaeqyVd4gaaOGaeyypa0Jaaeiiaiaaicdaaaa@60D0@ having

λ 2  ( ε r,μν +  ε r μν ) λ+ ( ε r,μν ε r μν ε g,μν ε g μν ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaCa aaleqabaaeaaaaaaaaa8qacaaIYaaaaOGaai4eGiaabccapaGaaiik aiabew7aLnaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8 aabeaak8qacqGHRaWkcaqGGaGaeqyTdu2damaaBaaaleaapeGaamOC aaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacM capeGaaiiOaiabeU7aSjabgUcaRiaabccapaGaaiika8qacqaH1oqz paWaaSbaaSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaO Wdbiabew7aL9aadaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqa baWdbiabeY7aTjabe27aUbaakiabgkHiTiabew7aL9aadaWgaaWcba WdbiaadEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaeqyTdu2d amaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0 MaeqyVd4gaaOWdaiaacMcapeGaaeiiaiabg2da9iaabccacaaIWaaa aa@72CF@ eigen values will have characteristic eigen value solutions – magnitude– general:

λ = ( 1/2 ){( ε r,μν +  ε r μν )±  [ ( ε r,μν +  ε r μν ) 2  4( ε r,μν ε r μν ε g,μν ε g μν )] 1/2 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaaiiOaiabg2da9iaabccapaWaaeWaaeaapeGaaGymaiaa c+cacaaIYaaapaGaayjkaiaawMcaaiaacUhacaGGOaGaeqyTdu2aaS baaSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiab gUcaRiaabccapaGaeqyTdu2aaSbaaSqaa8qacaWGYbaapaqabaGcda ahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaGaaiyka8qacqGHXcqS caqGGaWdaiaacUfacaGGOaGaeqyTdu2aaSbaaSqaa8qacaWGYbGaai ilaiabeY7aTjabe27aUbWdaeqaaOWdbiabgUcaRiaabccapaGaeqyT du2aaSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8o qBcqaH9oGBaaGcpaGaaiykamaaCaaaleqabaWdbiaaikdaaaGccaGG taIaaeiiaiaaisdapaGaaiikaiabew7aLnaaBaaaleaapeGaamOCai aacYcacqaH8oqBcqaH9oGBa8aabeaakiabew7aLnaaBaaaleaapeGa amOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOGaey OeI0Ydaiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8oqBcqaH 9oGBa8aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqaaOWaaW baaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcacaGGDbWaaWba aSqabeaapeGaaGymaiaac+cacaaIYaaaaOWdaiaac2hapeGaaiOlaa aa@8CD3@ Therefore,

λ=( 1/2 ){( ε r,μν + ε r μν )±  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 }       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0ZdamaabmaabaWdbiaaigdacaGGVaGaaGOmaaWd aiaawIcacaGLPaaacaGG7bGaaiika8qacqaH1oqzpaWaaSbaaSqaa8 qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiabgUcaRiab ew7aL9aadaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbi abeY7aTjabe27aUbaak8aacaGGPaWdbiabgglaXkaabccapaGaai4w aiaacIcapeGaeqyTdu2damaaBaaaleaapeGaamOCaiaacYcacqaH8o qBcqaH9oGBa8aabeaak8qacqGHsislcaqGGaGaeqyTdu2damaaBaaa leaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4 gaaOWdaiaacMcadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGin aiabew7aL9aadaWgaaWcbaWdbiaadEgacaGGSaGaeqiVd0MaeqyVd4 gapaqabaGcpeGaeqyTdu2damaaBaaaleaapeGaam4zaaWdaeqaaOWa aWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaac2fadaahaaWcbe qaa8qacaaIXaGaai4laiaaikdaaaGcpaGaaiyFa8qacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckaaaa@8071@       (2)

λ 1 = ( 1/2 ){( ε r,μν + ε r μν )+  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaGcpeGaeyypa0Ja aeiia8aadaqadaqaa8qacaaIXaGaai4laiaaikdaa8aacaGLOaGaay zkaaGaai4EaiaacIcacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGa eqiVd0MaeqyVd4gapaqabaGcpeGaey4kaSYdaiabew7aLnaaBaaale aapeGaamOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4ga aOWdaiaacMcapeGaey4kaSIaaeiia8aacaGGBbGaaiikaiabew7aLn aaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8qa cqGHsislcaqGGaWdaiabew7aLnaaBaaaleaapeGaamOCaaWdaeqaaO WaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcadaahaaWc beqaa8qacaaIYaaaaOGaey4kaSIaaGina8aacqaH1oqzdaWgaaWcba WdbiaadEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaGccqaH1oqzdaWg aaWcbaWdbiaadEgaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaak8aacaGGDbWaaWbaaSqabeaapeGaaGymaiaac+cacaaIYaaa aOWdaiaac2haaaa@7A25@                  (3)

λ 2 =( 1/2 ){( ε r,μν + ε r μν )  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 }      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyOmaidapaqabaGcpeGaeyypa0Zd amaabmaabaWdbiaaigdacaGGVaGaaGOmaaWdaiaawIcacaGLPaaaca GG7bGaaiika8qacqaH1oqzpaWaaSbaaSqaa8qacaWGYbGaaiilaiab eY7aTjabe27aUbWdaeqaaOWdbiabgUcaRiabew7aL9aadaWgaaWcba Wdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaa k8aacaGGPaWdbiabgkHiTiaabccapaGaai4waiaacIcapeGaeqyTdu 2damaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaa k8qacqGHsislcaqGGaGaeqyTdu2damaaBaaaleaapeGaamOCaaWdae qaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcadaah aaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGinaiabew7aL9aadaWgaa WcbaWdbiaadEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaeqyT du2damaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaSqabeaapeGaeq iVd0MaeqyVd4gaaOWdaiaac2fadaahaaWcbeqaa8qacaaIXaGaai4l aiaaikdaaaGcpaGaaiyFa8qacaGGGcGaaiiOaiaacckacaGGGcGaai iOaaaa@7FB0@                                                        (4)

The diagonal elements of eigen matrix, for λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaaaaa@3B47@ is equivalently:

2 ε r,μν {( ε r,μν + ε r μν )+  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 } ={( ε r,μν   ε r μν )  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOma8aacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeqiVd0Ma eqyVd4gapaqabaGcpeGaeyOeI0YdaiaacUhacaGGOaGaeqyTdu2aaS baaSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiab gUcaR8aacqaH1oqzdaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaale qabaWdbiabeY7aTjabe27aUbaak8aacaGGPaWdbiabgUcaRiaabcca paGaai4waiaacIcacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeq iVd0MaeqyVd4gapaqabaGcpeGaeyOeI0Iaaeiia8aacqaH1oqzdaWg aaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaak8aacaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa isdapaGaeqyTdu2aaSbaaSqaa8qacaWGNbGaaiilaiabeY7aTjabe2 7aUbWdaeqaaOGaeqyTdu2aaSbaaSqaa8qacaWGNbaapaqabaGcdaah aaWcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaGaaiyxamaaCaaaleqaba WdbiaaigdacaGGVaGaaGOmaaaak8aacaGG9bWdbiaabccacqGH9aqp paGaai4EaiaacIcacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeq iVd0MaeqyVd4gapaqabaGcpeGaeyOeI0Iaaeiia8aacqaH1oqzdaWg aaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaak8aacaGGPaWdbiabgkHiTiaabccapaWaamWaaeaadaqadaqa aiabew7aLnaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8 aabeaak8qacqGHsislcaqGGaWdaiabew7aLnaaBaaaleaapeGaamOC aaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaaGcpaGaay jkaiaawMcaamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI0aWd aiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8oqBcqaH9oGBa8 aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaSqa beaapeGaeqiVd0MaeqyVd4gaaaGcpaGaay5waiaaw2faamaaCaaale qabaWdbiaaigdacaGGVaGaaGOmaaaak8aacaGG9baaaa@B68A@

||ly, 2 ε r μν {( ε r,μν + ε r μν )+  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 }={( ε r,μν + ε r μν )  [ ( ε r,μν   ε r μν ) 2 +4 ε g,μν ε g μν ] 1/2 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacaGG8b aeaaaaaaaaa8qacaWGSbGaamyEaiaacYcacaqGGaGaaGOma8aacqaH 1oqzdaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY 7aTjabe27aUbaakiabgkHiT8aacaGG7bGaaiikaiabew7aLnaaBaaa leaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8qacqGHRa WkpaGaeqyTdu2aaSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqa a8qacqaH8oqBcqaH9oGBaaGcpaGaaiyka8qacqGHRaWkcaqGGaWdai aacUfacaGGOaGaeqyTdu2aaSbaaSqaa8qacaWGYbGaaiilaiabeY7a Tjabe27aUbWdaeqaaOWdbiabgkHiTiaabccapaGaeqyTdu2aaSbaaS qaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGB aaGcpaGaaiykamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaI0a Wdaiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8oqBcqaH9oGB a8aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaS qabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaac2fadaahaaWcbeqaa8qa caaIXaGaai4laiaaikdaaaGcpaGaaiyFa8qacqGH9aqppaGaai4Eai aacIcapeGaeyOeI0Ydaiabew7aLnaaBaaaleaapeGaamOCaiaacYca cqaH8oqBcqaH9oGBa8aabeaak8qacqGHRaWkpaGaeqyTdu2aaSbaaS qaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGB aaGcpaGaaiyka8qacqGHsislcaqGGaWdamaadmaabaWaaeWaaeaacq aH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeqiVd0MaeqyVd4gapaqa baGcpeGaeyOeI0Iaaeiia8aacqaH1oqzdaWgaaWcbaWdbiaadkhaa8 aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaaaOWdaiaawIca caGLPaaadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaaGina8aacq aH1oqzdaWgaaWcbaWdbiaadEgacaGGSaGaeqiVd0MaeqyVd4gapaqa baGccqaH1oqzdaWgaaWcbaWdbiaadEgaa8aabeaakmaaCaaaleqaba WdbiabeY7aTjabe27aUbaaaOWdaiaawUfacaGLDbaadaahaaWcbeqa a8qacaaIXaGaai4laiaaikdaaaGcpaGaaiyFaaaa@BB0E@

Thus, eigenmatrix eigenvector | Ψ i, j > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhaqaaaaa aaaaWdbiabfI6az9aadaWgaaWcbaWdbiaahMgacaGGSaaapaqabaGc daWgaaWcbaWdbiaadQgaa8aabeaak8qacqGH+aGpaaa@3F3C@ with eigenvalue λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaaa@3AE6@ :

( 0.5{(εr,μν ε r μν ) [ (εr,μν ε r μν ) 2 +4εg,μν ε g μν ] 0.5 ε g μν εg,μν 0.5{(εr,μν ε r μν ) [ (εr,μν ε r μν ) 2 +4εg,μν ε g μν ] 0.5 )( ψ1,1 ψ1,2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaaiaaicdacaGGUaGaaGynaiaacUhacaGGOaGaeqyTduMa amOCaiaacYcacqaH8oqBcqaH9oGBcqGHsislcqaH1oqzdaqhaaWcba GaamOCaaqaaiabeY7aTjabe27aUbaakiaacMcacqGHsislcaGGBbGa aiikaiabew7aLjaadkhacaGGSaGaeqiVd0MaeqyVd4MaeyOeI0Iaeq yTdu2aa0baaSqaaiaadkhaaeaacqaH8oqBcqaH9oGBaaGccaGGPaWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabew7aLjaadEgaca GGSaGaeqiVd0MaeqyVd4MaeyOeI0IaeqyTdu2aa0baaSqaaiaadEga aeaacqaH8oqBcqaH9oGBaaGccaGGDbWaaWbaaSqabeaacaaIWaGaai OlaiaaiwdaaaaakeaacqaH1oqzdaqhaaWcbaGaam4zaaqaaiabeY7a Tjabe27aUbaaaOqaaiabew7aLjaadEgacaGGSaGaeqiVd0MaeqyVd4 gabaGaaGimaiaac6cacaaI1aGaai4EaiaacIcacqGHsislcqaH1oqz caWGYbGaaiilaiabeY7aTjabe27aUjabgkHiTiabew7aLnaaDaaale aacaWGYbaabaGaeqiVd0MaeqyVd4gaaOGaaiykaiabgkHiTiaacUfa caGGOaGaeqyTduMaamOCaiaacYcacqaH8oqBcqaH9oGBcqGHsislcq aH1oqzdaqhaaWcbaGaamOCaaqaaiabeY7aTjabe27aUbaakiaacMca daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqyTduMaam4zai aacYcacqaH8oqBcqaH9oGBcqGHsislcqaH1oqzdaqhaaWcbaGaam4z aaqaaiabeY7aTjabe27aUbaakiaac2fadaahaaWcbeqaaiaaicdaca GGUaGaaGynaaaaaaaakiaawIcacaGLPaaadaqadaabaeqabaGaeqiY dKNaaGymaiaacYcacaaIXaaabaGaeqiYdKNaaGymaiaacYcacaaIYa aaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@C12B@                                                                                  (5)

Solving these equations and normalizing with respect to Φ values two eigenvectors with eigenvalue of λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIXaaabeaaaaa@3AC6@ form – general:       

εgμv((0.5{(εr,μvεrμv)[(εr,μvεrμv)2=4εg,μvεgμv]0.5]}/εgμv1)      (6.i)

εg,μv(1(0.5{(εr,μv+εrμv)[(εr,μvεrμv)2=4εg,μvεgμv]0.5}/εg,μv)    (6.ii)

Equations (6.i) and (6.ii) together form Equation (6).

Similarly, other two eigenvectors with eigenvalue λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIYaaabeaaaaa@3AC7@ form Equation (7): Equations(7.i) and (7.ii)

εgμν((0.5{(εr,μνεrμν){(εr,μνεrμν)2 +4εg,μνεgμν]0.5 }/εgμν)1) (7.i)

εgμν(1(εgμν/εr,μν)0.5)(7.ii)

Modeling zero point & micro black hole eigen spinors protocol

Eigenvectors zero –point vector fields

Only gradient with ε g,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGNbGaaiilaiabeY7aTjabe27aUbqabaaaaa@3F08@ & ε g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahEgaa8aabeaakmaaCaaaleqabaWdbiab eY7aTjabe27aUbaaaaa@3ED0@ tensor fields expected to be active. However, ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhaa8aabeaakmaaCaaaleqabaWdbiab eY7aTjabe27aUbaaaaa@3EDB@ & ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhacaGGSaGaeqiVd0MaeqyVd4gapaqa baaaaa@3F44@ , up and down curl of the tensor fields are expected to be zero. Therefore, equation (2) will become:

λ= ( 1/2 ){( ε r,μν +  ε r μν )±  [ ( ε r,μν   ε r μν ) 2 + 4 ε g,μν ε g μν ] 1/2 }=±  ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0Jaaeiia8aadaqadaqaa8qacaaIXaGaai4laiaa ikdaa8aacaGLOaGaayzkaaGaai4EaiaacIcacqaH1oqzdaWgaaWcba WdbiaadkhacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaey4kaSIa aeiia8aacqaH1oqzdaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaale qabaWdbiabeY7aTjabe27aUbaak8aacaGGPaWdbiabgglaXkaabcca paGaai4waiaacIcacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeq iVd0MaeqyVd4gapaqabaGcpeGaeyOeI0Iaaeiia8aacqaH1oqzdaWg aaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaak8aacaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa bccacaaI0aWdaiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8o qBcqaH9oGBa8aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqa aOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaac2fadaahaa Wcbeqaa8qacaaIXaGaai4laiaaikdaaaGcpaGaaiyFa8qacqGH9aqp cqGHXcqScaqGGaWdamaabmaabaGaeqyTdu2aaSbaaSqaa8qacaWGNb GaaiilaiabeY7aTjabe27aUbWdaeqaaOGaeqyTdu2aaSbaaSqaa8qa caWGNbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaaak8 aacaGLOaGaayzkaaWaaWbaaSqabeaapeGaaGymaiaac+cacaaIYaaa aaaa@906D@ . That is,

λ 1 =  ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaGcpeGaeyypa0Ja aeiia8aacaGGOaGaeqyTdu2aaSbaaSqaa8qacaWGNbGaaiilaiabeY 7aTjabe27aUbWdaeqaaOGaeqyTdu2aaSbaaSqaa8qacaWGNbaapaqa baGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaGaaiykamaaCa aaleqabaWdbiaaigdacaGGVaGaaGOmaaaaaaa@4E8B@                         (8)

λ 2 = ( ε g,μν ε g μν ) 1/2          MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyOmaidapaqabaGcpeGaeyypa0Ja eyOeI0YdaiaacIcacqaH1oqzdaWgaaWcbaWdbiaadEgacaGGSaGaeq iVd0MaeqyVd4gapaqabaGccqaH1oqzdaWgaaWcbaWdbiaadEgaa8aa beaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaak8aacaGGPaWaaW baaSqabeaapeGaaGymaiaac+cacaaIYaaaaOGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaaaa@5801@                                                                                                                       (9)

Thus, eigenmatrix eigenvector | Ψ i,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaBaaaleaapeGaaCyAaiaacYcacaWHQbaapaqabaaa aa@3CC9@  >with eigenvalue λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIXaaabeaaaaa@3AC6@ :

( (εg,μν ε g μν ) 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiika8aacqaH1oqzpeGaam4zaiaacYcapaGaeqiVd0MaeqyVd4Ma eqyTdu2aa0baaSqaaiaadEgaaeaapeGaeqiVd0MaeqyVd4gaaOWdai aacMcadaahaaWcbeqaaiaaicdacaGGUaGaaGynaaaaaaa@4932@ ε g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaDa aaleaacaWGNbaabaaeaaaaaaaaa8qacqaH8oqBcqaH9oGBaaaaaa@3E79@ )( ψ1zp ψ2zp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiYdK NaaGymaiaadQhacaWGWbaabaGaeqiYdKNaaGOmaiaadQhacaWGWbaa aaa@412D@ )=0

εg,μν  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLbbaaa aaaaaapeGaam4zaiaacYcapaGaeqiVd0MaeqyVd42dbiaacckaaaa@403F@ (εg,μν ε g μν ) 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaiika8aacqaH1oqzpeGaam4zaiaacYcapaGaeqiVd0MaeqyVd4Ma eqyTdu2aa0baaSqaaiaadEgaaeaapeGaeqiVd0MaeqyVd4gaaOWdai aacMcadaahaaWcbeqaaiaaicdacaGGUaGaaGynaaaaaaa@4932@                                                           (10)

Two eigenvectors with eigenvalue λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIXaaabeaaaaa@3AC6@ = ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqaH1o qzdaWgaaWcbaaeaaaaaaaaa8qacaWGNbGaaiilaiabeY7aTjabe27a UbWdaeqaaOGaeqyTdu2aaSbaaSqaa8qacaWGNbaapaqabaGcdaahaa Wcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaGaaiykamaaCaaaleqabaWd biaaigdacaGGVaGaaGOmaaaaaaa@49AD@ @zero –point:

εgμν((εr,μν/εgμν)0.51)     (11.i)&

εgμν(1(εgμν/εr,μν)0.5)      (11.ii)

Equations (11.i) and (11.ii) together form Equation (11).

Two eigenvectors with eigenvalue λ 2 =  ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaeiiaiabgkHi T8aacaGGOaGaeqyTdu2aaSbaaSqaa8qacaWGNbGaaiilaiabeY7aTj abe27aUbWdaeqaaOGaeqyTdu2aaSbaaSqaa8qacaWGNbaapaqabaGc daahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaGaaiykamaaCaaale qabaWdbiaaigdacaGGVaGaaGOmaaaaaaa@4F08@ @zero –point:

εgμν((-(εg,μν/εgμν)0.51)     (12.i)                                                     

εgμν(1-(εgμν/εg,μν)0.5) (12.ii)

Equations (12.i) and (12.ii) together form Equation (12).

Typical eigenvectors micro black hole vector fields

Only gradient with ε g,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahEgacaGGSaGaeqiVd0MaeqyVd4gapaqa baaaaa@3F39@ & ε g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaadEgaa8aabeaakmaaCaaaleqabaWdbiab eY7aTjabe27aUbaaaaa@3ECE@ tensor fields are expected to be zero. However, ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhaa8aabeaakmaaCaaaleqabaWdbiab eY7aTjabe27aUbaaaaa@3EDB@  & ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhacaGGSaGaeqiVd0MaeqyVd4gapaqa baaaaa@3F44@ , up and down curl of the tensor fields are expected to be active. Therefore, equation (2) will become:

λ= ( 1/2 ){( ε r,μν +  ε r μν )±  [ ( ε r,μν   ε r μν ) 2 + 4 ε g,μν ε g μν ] 1/2 }=( 1/2 ){( ε r,μν +  ε r μν )±( ε r,μν   ε r μν ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0Jaaeiia8aadaqadaqaa8qacaaIXaGaai4laiaa ikdaa8aacaGLOaGaayzkaaGaai4EaiaacIcacqaH1oqzdaWgaaWcba WdbiaadkhacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaey4kaSIa aeiia8aacqaH1oqzdaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaale qabaWdbiabeY7aTjabe27aUbaak8aacaGGPaWdbiabgglaXkaabcca paGaai4waiaacIcacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeq iVd0MaeqyVd4gapaqabaGcpeGaeyOeI0Iaaeiia8aacqaH1oqzdaWg aaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaak8aacaGGPaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaa bccacaaI0aWdaiabew7aLnaaBaaaleaapeGaam4zaiaacYcacqaH8o qBcqaH9oGBa8aabeaakiabew7aLnaaBaaaleaapeGaam4zaaWdaeqa aOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaac2fadaahaa Wcbeqaa8qacaaIXaGaai4laiaaikdaaaGcpaGaaiyFa8qacqGH9aqp paWaaeWaaeaapeGaaGymaiaac+cacaaIYaaapaGaayjkaiaawMcaai aacUhacaGGOaGaeqyTdu2aaSbaaSqaa8qacaWGYbGaaiilaiabeY7a Tjabe27aUbWdaeqaaOWdbiabgUcaRiaabccapaGaeqyTdu2aaSbaaS qaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGB aaGcpaGaaiyka8qacqGHXcqSpaGaaiikaiabew7aLnaaBaaaleaape GaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8qacqGHsislcaqG GaWdaiabew7aLnaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabe aapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcapeGaaiOlaaaa@A56F@ That is,

λ 1 = ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaGcpeGaeyypa0Ja eqyTdu2damaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8 aabeaaaaa@437D@                                                                                                                                                                (13)

λ 2 = ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyOmaidapaqabaGcpeGaeyypa0Ja eqyTdu2damaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaape GaeqiVd0MaeqyVd4gaaaaa@4316@                                                                                                                                                                (14)

Thus, eigenmatrix eigenvector | Ψ i,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaBaaaleaapeGaaCyAaiaacYcacaWHQbaapaqabaaa aa@3CC9@  >with eigenvalue λ 1 = ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaGcpeGaeyypa0Ja eqyTdu2damaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8 aabeaaaaa@437D@ :

( 0 0 0 ε r μν εr,μν) )( ψ1mb ψ2mb )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabew7aLnaa DaaaleaacaWGYbaabaGaeqiVd0MaeqyVd4gaaOGaeyOeI0IaeqyTdu MaamOCaiaacYcacqaH8oqBcqaH9oGBcaGGPaaaaaGaayjkaiaawMca amaabmaaeaqabeaacqaHipqEcaaIXaGaamyBaiaadkgaaeaacqaHip qEcaaIYaGaamyBaiaadkgaaaGaayjkaiaawMcaaiabg2da9iaaicda aaa@56A0@                                                                                          (15)

Eigenvector with eigenvalue λ 1 = ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyymaedapaqabaGcpeGaeyypa0Ja eqyTdu2damaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8 aabeaaaaa@437D@  @microblackhole:

( 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGymaa qaaiaaicdaaaaa@39A7@ )                                                                                                                                                                          (16)

Similarly, eigenmatrix eigenvector | Ψ i,j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaBaaaleaapeGaaCyAaiaacYcacaWHQbaapaqabaaa aa@3CC9@ >with eigenvalue λ 2 = ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyOmaidapaqabaGcpeGaeyypa0Ja eqyTdu2damaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaape GaeqiVd0MaeqyVd4gaaaaa@4316@ :

( εr,μν ε r μν 0 0 0 )( Ψ1mb Ψ2mb )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaqbaeqabiGaaaqaa8qacqaH1oqzcaqGYbGaaiilaiab eY7aTjabe27aUjabgkHiTiabew7aL9aadaqhaaWcbaWdbiaadkhaa8 aabaWdbiabeY7aTjabe27aUbaaaOWdaeaapeGaaGimaaWdaeaapeGa aGimaaWdaeaapeGaaGimaaaaaiaawIcacaGLPaaadaqadaWdaeaafa qabeGabaaabaWdbiabfI6azjaaigdacaWHTbGaaCOyaaWdaeaapeGa euiQdKLaaGOmaiaah2gacaWHIbaaaaGaayjkaiaawMcaaiabg2da9i aaicdaaaa@56A0@                                                                                                                (17)

Eigenvectors with eigenvalue λ 2 = ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaeyOmaidapaqabaGcpeGaeyypa0Zd aiabew7aLnaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaape GaeqiVd0MaeqyVd4gaaaaa@4316@ @microblackhole:

( 0 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaqbaeqabiqaaaqaa8qacaaIWaaapaqaa8qacaaIXaaa aaGaayjkaiaawMcaaaaa@3B95@ (18)

Hamiltonian operator eigenfields zero point gradient & microblackhole rotational eigenspinors

In zero_point (zp) Hamiltonian, Hzp, operating on wavefunction, | Ψ z p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiQdK1damaaBaaaleaapeGaaCOEaiaahchaa8aabeaaaaa@3C30@ >, generating zero –point energy, E z p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCyra8aadaWgaaWcbaWdbiaahQhacaWHWbaapaqabaaaaa@3B6F@ , gives:

H zp | Ψ zp > =  E zp | Ψ zp >    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCisa8aadaWgaaWcbaWdbiaadQhacaWGWbaapaqabaGcdaabdaqa a8qacqqHOoqwpaWaaSbaaSqaa8qacaWH6bGaaCiCaaWdaeqaaOWdbi abg6da+iaabccacqGH9aqpcaqGGaGaaCyra8aadaWgaaWcbaWdbiaa hQhacaWHWbaapaqabaaakiaawEa7caGLiWoapeGaeuiQdK1damaaBa aaleaapeGaaCOEaiaahchaa8aabeaak8qacqGH+aGpcaGGGcGaaiiO aiaacckaaaa@51AA@                                                                                                                                   (19)

Procedures with physics literature69-85 since only sense –like fields are expected to occur in zero –point regions, with no time fields, only gradient Hamiltonian exists:  H zp = icħ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCisa8aadaWgaaWcbaWdbiaadQhacaWGWbaapaqabaGcpeGaeyyp a0JaaeiiaiaadMgacaWGJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNv NBGC0B0HwAJbacfaGaa83jbiabgEGir=aadaWgaaWcbaWdbiaadkha a8aabeaaaaa@4D4E@     (20)

Equation (11){Equations (11.i) and (11.ii)} giving eigenvectors with λ 1zp =  ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaqaaaaaaaaaWdbiaaigdacaWG6bGaamiCaaWdaeqaaOWdbiab g2da9iaabccapaGaaiikaiabew7aLnaaBaaaleaapeGaam4zaiaacY cacqaH8oqBcqaH9oGBa8aabeaakiabew7aLnaaBaaaleaapeGaam4z aaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacM cadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaaaaa@502D@ : 

| λ 1zp > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaaIXaGaamOEaiaadchaa8aabeaa k8qacqGH+aGpaaa@3F0B@ =((εg,μνεgμν)0.5εgμν )                                                                                                                     (21.i)     

(εg,μν(εg,μνεgμν)0.5 )                                        (21.ii)

Equations (21.i) and (21.ii) together form Equation (21).

Equations (19), (20), & (21) will give result:

H zp | λ 1zp > =icħ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCisa8aadaWgaaWcbaWdbiaadQhacaWGWbaapaqabaGccaGG8bGa eq4UdW2aaSbaaSqaa8qacaWHXaGaaCOEaiaahchaa8aabeaak8qacq GH+aGpcaqGGaGaeyypa0JaamyAaiaadogatCvAUfeBSn0BKvguHDwz Zbqeg0uySDwDUbYrVrhAPngaiuaacaWFNeaaaa@513E@  (r(εg,μνεgμν)0.5rεgμν (22.i)                      

icħ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadogatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhA PngaiuaacaWFNeaaaa@4595@ rεg,μν((εg,μνεgμν)0.5 (22.ii)

Equations (22.i) and (22.ii) together form Equation (22).

Performing differential algebraic manipulations, like Equation (19), having set of differential equations, for | λ 1zp >= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHXaGaaCOEaiaahchaa8aabeaa k8qacqGH+aGpcqGH9aqpaaa@4018@ ((εg,μνεgμν)0.5εgμν ) per the Equation (21), will give following equations:

( icħ/2 )[( ε g μν /r ) ( ε g,μν / ε g μν ) 1/2 +  ( ε g μν / ε g,μν ) 1/2 ( ε g,μν /r)] = E zp ( ε g μν / ε g,μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGPbGaam4yamXvP5wqSX2qVrwzqf2zLnharyqtHX2z 15gih9gDOL2yaGqbaiaa=DsacaGGVaGaaGOmaaWdaiaawIcacaGLPa aacaGGBbWaaeWaaeaacqGHciITcqaH1oqzdaWgaaWcbaWdbiaahEga a8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaakiaac+capa GaeyOaIy7dbiaahkhaa8aacaGLOaGaayzkaaGaaiikaiabew7aLnaa BaaaleaapeGaaC4zaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8qaca GGVaWdaiabew7aLnaaBaaaleaapeGaaC4zaaWdaeqaaOWaaWbaaSqa beaapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcadaahaaWcbeqaa8qaca aIXaGaai4laiaaikdaaaGccqGHRaWkcaqGGaWdamaabmaabaGaeqyT du2aaSbaaSqaa8qacaWHNbaapaqabaGcdaahaaWcbeqaa8qacqaH8o qBcqaH9oGBaaGccaGGVaWdaiabew7aLnaaBaaaleaapeGaaC4zaiaa cYcacqaH8oqBcqaH9oGBa8aabeaaaOGaayjkaiaawMcaamaaCaaale qabaWdbiaaigdacaGGVaGaaGOmaaaak8aacaGGOaGaeyOaIyRaeqyT du2aaSbaaSqaa8qacaWHNbGaaiilaiabeY7aTjabe27aUbWdaeqaaO Wdbiaac+capaGaeyOaIy7dbiaahkhapaGaaiykaiaac2fapeGaaeii aiabg2da9iaahweapaWaaSbaaSqaa8qacaWH6bGaaCiCaaWdaeqaaO WaaeWaaeaacqaH1oqzdaWgaaWcbaWdbiaahEgaa8aabeaakmaaCaaa leqabaWdbiabeY7aTjabe27aUbaakiaac+capaGaeqyTdu2aaSbaaS qaa8qacaWHNbGaaiilaiabeY7aTjabe27aUbWdaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaapeGaaGymaiaac+cacaaIYaaaaaaa@A1EB@                  (23)

( ε g μν /r ) = E zp ε g μν      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqGHciITcqaH1oqzpaWaaSbaaSqaa8qacaWHNbaapaqa baGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaGaeyOaIy RaaCOCaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaahweapaWa aSbaaSqaa8qacaWH6bGaaCiCaaWdaeqaaOWdbiabew7aL9aadaWgaa WcbaWdbiaahEgaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27a UbaakiaacckacaGGGcGaaiiOaiaacckaaaa@5542@                                                                                                                                        (24)

Per field –energy physics literature – listed here, we may write fields as systems 2nd order differentials of energy, appropriately taking care of indices within the procedures; therefore,

ε g μν =( 2 Ε g μν / r 2 ); ( ε g μν /r ) = ( 3 Ε g μν / r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahEgaa8aabeaakmaaCaaaleqabaWdbiab eY7aTjabe27aUbaakiabg2da98aadaqadaqaaiabgkGi2oaaCaaale qabaWdbiaaikdaaaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNbaapaqa baGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWdaiabgk Gi2+qacaWHYbWdamaaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGa ayzkaaWdbiaacUdacaqGGaWdamaabmaabaGaeyOaIyRaeqyTdu2aaS baaSqaa8qacaWHNbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH 9oGBaaGccaGGVaWdaiabgkGi2+qacaWHYbaapaGaayjkaiaawMcaa8 qacaqGGaGaeyypa0Jaaeiia8aadaqadaqaaiabgkGi2oaaCaaaleqa baWdbiaaiodaaaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNbaapaqaba GcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWdaiabgkGi 2+qacaWHYbWdamaaCaaaleqabaWdbiaaiodaaaaak8aacaGLOaGaay zkaaaaaa@6E1D@

ε g,μν =( 2 Ε g,μν / r 2 ); ( ε g,μν /r) = ( 3 Ε g,μν / r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahEgacaGGSaGaeqiVd0MaeqyVd4gapaqa baGcpeGaeyypa0ZdaiaacIcacqGHciITdaahaaWcbeqaa8qacaaIYa aaaOGaeuyLdu0damaaBaaaleaapeGaaC4zaiaacYcacqaH8oqBcqaH 9oGBa8aabeaak8qacaGGVaWdaiabgkGi2+qacaWHYbWdamaaCaaale qabaWdbiaaikdaaaGcpaGaaiyka8qacaGG7aGaaeiia8aacaGGOaGa eyOaIyRaeqyTdu2aaSbaaSqaa8qacaWHNbGaaiilaiabeY7aTjabe2 7aUbWdaeqaaOWdbiaac+capaGaeyOaIy7dbiaahkhapaGaaiyka8qa caqGGaGaeyypa0Jaaeiia8aacaGGOaGaeyOaIy7aaWbaaSqabeaape GaaG4maaaakiabfw5af9aadaWgaaWcbaWdbiaahEgacaGGSaGaeqiV d0MaeqyVd4gapaqabaGcpeGaai4la8aacqGHciITpeGaaCOCa8aada ahaaWcbeqaa8qacaaIZaaaaOWdaiaacMcaaaa@6F73@                                 (25)

Applying these equalities, and simplifying Equation (24), we can write:

E ZP =( 3 E g,μν / r 3 )/( 2 E g μν / r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOwaiaadcfaaeqaaOGaeyypa0JaaiikaiabgkGi2oaaCaaa leqabaGaaG4maaaakiaadweadaWgaaWcbaGaam4zaiaacYcacqaH8o qBcqaH9oGBaeqaaOGaai4laiabgkGi2kaadkhadaahaaWcbeqaaiaa iodaaaGccaGGPaGaai4laiaacIcacqGHciITdaahaaWcbeqaaiaaik daaaGccaGGfbWaa0baaSqaaiaadEgaaeaacqaH8oqBcqaH9oGBaaGc caGGVaGaeyOaIyRaamOCamaaCaaaleqabaGaaGOmaaaakiaacMcaaa a@5768@                                                                                                                 (26)

Inputting E zp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCyra8aadaWgaaWcbaWdbiaahQhacaWHWbaapaqabaaaaa@3B6F@ , per the Equation (26) into Equation (8), and simplifying after multiplication with (2/icħ) ( ε g μν /  ε g,μν ) 1/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWHNbaapaqabaGcdaah aaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaGaaeiiaiabew7aL9 aadaWgaaWcbaWdbiaahEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaaa kiaawIcacaGLPaaadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaa GccaGGSaaaaa@4C12@  we obtain resulting property with partial differential equation characterizing eigenstate energetics of zero point vacuum quagmire:

( 3 Ε g,μν / r 3 ).( 2 Ε g μν / r 2 ) = [ ( 2icħ )/icħ ]( 3 Ε g μν / r 3 ).( 2 Ε g,μν / r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqGHci ITdaahaaWcbeqaaabaaaaaaaaapeGaaG4maaaakiabfw5af9aadaWg aaWcbaWdbiaahEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaai 4la8aacqGHciITpeGaaCOCa8aadaahaaWcbeqaa8qacaaIZaaaaOWd aiaacMcapeGaaiOla8aadaqadaqaaiabgkGi2oaaCaaaleqabaWdbi aaikdaaaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNbaapaqabaGcdaah aaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWdaiabgkGi2+qaca WHYbWdamaaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGaayzkaaWd biaabccacqGH9aqpcaqGGaWdamaadmaabaWaaeWaaeaapeGaaGOmai abgkHiTiaadMgacaWGJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfaGaa83jbaWdaiaawIcacaGLPaaapeGaai4laiaadM gacaWGJbGaa83jbaWdaiaawUfacaGLDbaadaqadaqaaiabgkGi2oaa CaaaleqabaWdbiaaiodaaaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNb aapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWd aiabgkGi2+qacaWHYbWdamaaCaaaleqabaWdbiaaiodaaaaak8aaca GLOaGaayzkaaWdbiaac6capaGaaiikaiabgkGi2oaaCaaaleqabaWd biaaikdaaaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNbGaaiilaiabeY 7aTjabe27aUbWdaeqaaOWdbiaac+capaGaeyOaIy7dbiaahkhapaWa aWbaaSqabeaapeGaaGOmaaaak8aacaGGPaaaaa@8D98@                     (27)

For | λ 1 * zp >= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHXaaapaqabaGcdaahaaWcbeqa a8qacaGGQaaaaOWdamaaBaaaleaapeGaaCOEaiaahchaa8aabeaak8 qacqGH+aGpcqGH9aqpaaa@4171@ (εg,μν(εg,μνεgμν)0.5 ) per the Equation (21), similar calculations applying symmetry equivalents, we will obtain result:

(3Egμν/r3).(2Eg,μν/r2)=[(2ich)/ich](3Eg,μν/r3).(2Egμν/r2)       (28)

Equivalently,

3 E g μν . 2 E g,μν =[(2ich)/ich] 3 E g,μν . 2 E g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaCa aaleqabaGaaG4maaaakiaacweadaqhaaWcbaGaam4zaaqaaiabeY7a Tjabe27aUbaakiaac6cacqGHhis0daahaaWcbeqaaiaaikdaaaGcca WGfbWaaSbaaSqaaiaadEgacaGGSaGaeqiVd0MaeqyVd4gabeaakiab g2da9iaacUfacaGGOaGaaGOmaiabgkHiTiaabMgacaqGJbGaaeiAai aacMcacaGGVaGaaeyAaiaabogacaqGObGaaiyxaiabgEGirpaaCaaa leqabaGaaG4maaaakiaadweadaWgaaWcbaGaam4zaiaacYcacqaH8o qBcqaH9oGBaeqaaOGaaiOlaiabgEGirpaaCaaaleqabaGaaGOmaaaa kiaacweadaqhaaWcbaGaam4zaaqaaiabeY7aTjabe27aUbaaaaa@6628@                                                                           (29)

Similarly, λ 2zp =  ( ε g,μν ε g μν ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaqaaaaaaaaaWdbiaaikdacaWG6bGaamiCaaWdaeqaaOWdbiab g2da9iaabccacqGHsislpaGaaiikaiabew7aLnaaBaaaleaapeGaam 4zaiaacYcacqaH8oqBcqaH9oGBa8aabeaakiabew7aLnaaBaaaleaa peGaam4zaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaO WdaiaacMcadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaaaaa@511B@ @zero –point will give resulting property with partial differential equations characterizing eigenstate energetics of zero point vacuum quagmire, by mathematically operating symmetry equivalents.

For | λ 2zp >=  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHYaGaaCOEaiaahchaa8aabeaa k8qacqGH+aGpcqGH9aqpcaGGGcaaaa@413D@ ((εg,μνεgμν)0.5εgμν ) per the Equation (12) and applying Hamiltonian procedure like | λ 1zp > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaaIXaGaaCOEaiaahchaa8aabeaa k8qacqGH+aGpaaa@3F13@ above, we obtain equations:

( 3 Ε g,μν / r 3 ).( 2 Ε g μν / r 2 ) = [ ( 2icħ )/icħ ]( 3 Ε g μν / r 3 ).( 2 Ε g,μν / r 2 )        MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIZaaaaOGaeuyLdu0d amaaBaaaleaapeGaaC4zaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8 qacaGGVaGaeyOaIyRaaCOCa8aadaahaaWcbeqaa8qacaaIZaaaaOWd aiaacMcapeGaaiOla8aadaqadaqaa8qacqGHciITpaWaaWbaaSqabe aapeGaaGOmaaaakiabfw5af9aadaWgaaWcbaWdbiaahEgaa8aabeaa kmaaCaaaleqabaWdbiabeY7aTjabe27aUbaakiaac+cacqGHciITca WHYbWdamaaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGaayzkaaWd biaabccacqGH9aqpcaqGGaWdamaadmaabaWaaeWaaeaapeGaaGOmai abgkHiTiaadMgacaWGJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfaGaa83jbaWdaiaawIcacaGLPaaapeGaai4laiaadM gacaWGJbGaa83jbaWdaiaawUfacaGLDbaadaqadaqaa8qacqGHciIT paWaaWbaaSqabeaapeGaaG4maaaakiabfw5af9aadaWgaaWcbaWdbi aahEgaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaakiaa c+cacqGHciITcaWHYbWdamaaCaaaleqabaWdbiaaiodaaaaak8aaca GLOaGaayzkaaWdbiaac6capaGaaiika8qacqGHciITpaWaaWbaaSqa beaapeGaaGOmaaaakiabfw5af9aadaWgaaWcbaWdbiaahEgacaGGSa GaeqiVd0MaeqyVd4gapaqabaGcpeGaai4laiabgkGi2kaahkhapaWa aWbaaSqabeaapeGaaGOmaaaak8aacaGGPaWdbiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckaaaa@95A4@                                                         (30)

and for | λ 2 * zp >=  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHYaaapaqabaGcdaahaaWcbeqa a8qacaGGQaaaaOWdamaaBaaaleaapeGaaCOEaiaahchaa8aabeaak8 qacqGH+aGpcqGH9aqpcaGGGcaaaa@4296@ (εg,μν-(εg,μνεgμν)0.5 ) per the Equation (12) and applying Hamiltonian procedure like | λ 1 * zp > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHXaaapaqabaGcdaahaaWcbeqa a8qacaGGQaaaaOWdamaaBaaaleaapeGaaCOEaiaahchaa8aabeaak8 qacqGH+aGpaaa@406B@ above, we obtain equations:

( 3 Ε g μν / r 3 ).( 2 Ε g,μν / r 2 ) = [ ( 2icħ )/icħ ] ( 3 Ε g,μν / r 3 ).( 2 Ε g μν / r 2 )       MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OaIy7aaWbaaSqabeaaqaaaaaaaaaWdbiaaiodaaaGccqqHvoqrpaWa aSbaaSqaa8qacaWHNbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcq aH9oGBaaGccaGGVaWdaiabgkGi2+qacaWHYbWdamaaCaaaleqabaWd biaaiodaaaaak8aacaGLOaGaayzkaaWdbiaac6capaGaaiikaiabgk Gi2oaaCaaaleqabaWdbiaaikdaaaGccqqHvoqrpaWaaSbaaSqaa8qa caWHNbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiaac+capaGaey OaIy7dbiaahkhapaWaaWbaaSqabeaapeGaaGOmaaaak8aacaGGPaWd biaabccacqGH9aqpcaqGGaWdamaadmaabaWaaeWaaeaapeGaaGOmai abgkHiTiaadMgacaWGJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfaGaa83jbaWdaiaawIcacaGLPaaapeGaai4laiaadM gacaWGJbGaa83jbaWdaiaawUfacaGLDbaapeGaaeiia8aacaGGOaGa eyOaIy7aaWbaaSqabeaapeGaaG4maaaakiabfw5af9aadaWgaaWcba WdbiaahEgacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaai4la8aa cqGHciITpeGaaCOCa8aadaahaaWcbeqaa8qacaaIZaaaaOWdaiaacM capeGaaiOla8aadaqadaqaaiabgkGi2oaaCaaaleqabaWdbiaaikda aaGccqqHvoqrpaWaaSbaaSqaa8qacaWHNbaapaqabaGcdaahaaWcbe qaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWdaiabgkGi2+qacaWHYbWd amaaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGaayzkaaWdbiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaaaa@9542@                       (31)

Equivalently,

3 Ε g μν . 2 Ε g,μν = [ ( 2icħ )/icħ ] 3 Ε g,μν . 2 Ε g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIe9damaaCaaaleqabaWdbiabgodaZaaakiabfw5af9aadaWg aaWcbaWdbiaahEgaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe2 7aUbaakiaac6cacqGHhis0paWaaWbaaSqabeaapeGaeyOmaidaaOGa euyLdu0damaaBaaaleaapeGaaC4zaiaacYcacqaH8oqBcqaH9oGBa8 aabeaak8qacqGH9aqpcaqGGaWdamaadmaabaWaaeWaaeaapeGaaCOm aiabgkHiTiaahMgacaWHJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNv NBGC0B0HwAJbacfeGaa83jbaWdaiaawIcacaGLPaaapeGaai4laiaa hMgacaWHJbGaa83jbaWdaiaawUfacaGLDbaapeGaey4bIe9damaaCa aaleqabaWdbiabgodaZaaakiabfw5af9aadaWgaaWcbaWdbiaahEga caGGSaGaeqiVd0MaeqyVd4gapaqabaGcpeGaaiOlaiabgEGir=aada ahaaWcbeqaa8qacqGHYaGmaaGccqqHvoqrpaWaaSbaaSqaa8qacaWH NbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaaaaa@7745@            (32)

Symmetrical nature with energy indices, with [ ( 2icħ )/icħ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaWaae WaaeaaqaaaaaaaaaWdbiaaikdacqGHsislcaWGPbGaam4yamXvP5wq SX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=Dsaa8aaca GLOaGaayzkaaWdbiaac+cacaWGPbGaam4yaiaa=Dsaa8aacaGLBbGa ayzxaaaaaa@4E19@  having MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyisISlaaa@39FC@ value of order 10 26 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGOmaiaaiAdaaaaaaa@3B88@ after numerically conjugating, then analytically interpreting will tell us that extremely high order energy transfers are possible at zero point, perhaps pointing to inflationary processes having quantum Diracian energy operational gradient exhibiting. One may note that if ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaaCOCaaWdaeqaaOWaaWbaaSqabeaa peGaeqiVd0MaeqyVd4gaaaaa@3EFA@ & ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaaCOCaiaacYcacqaH8oqBcqaH9oGB a8aabeaaaaa@3F63@ are zero, it will imply that corresponding energy of 2nd order derivative to be zero, pointing to the inflection of energy, that can induce consequent flow of flux due to gradient. This aspect we will notice that while analyzing micro black hole Hamiltonian values. Energy levels having order of magnitude of 10 26 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGOmaiaaiAdaaaaaaa@3B88@  may not mean automatically that all these are one chunk, but more likely n.m c 2 =  10 26 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaac6cacaWHTbGaam4ya8aadaahaaWcbeqaa8qacaaIYaaa aOGaeyypa0JaaeiiaiaaigdacaaIWaWdamaaCaaaleqabaWdbiaaik dacaaI2aaaaaaa@41C6@ metric units; if m is constituting positrons & electrons, then n may be as high as order of magnitude of 10 55 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGynaiaaiwdaaaaaaa@3B8A@ particles, the flavor mass m of particles 10 28 to  10 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmaiaaiIda aaGccaWG0bGaam4BaiaabccacaaIXaGaaGima8aadaahaaWcbeqaa8 qacqGHsislcaaIZaGaaGymaaaaaaa@4337@  mass units (mu) order of magnitude. These are likely progenitors’ propagators that may account for formation of plasma in star systems. These highest levels of possible inflective Diracian energies will imply possibility of infinite energy, especially with superluminal multiphase systems, that will make sense of the finite mass constraints of the real universe; subsequently, we will be investigating these in greater detail further in our ongoing work. Mathematically, one may think of these as combinatorial particles within permutational density matrix of energy source of superluminal vacuum quagmire.

We will analyze now how the sink of the energies may be constituting crucible for creation of vast majority of Standard Model particles, within context typically micro –black holes. Hamiltonian operator eigen –fields rotational eigen spinors protocol will be examined further also.

In micro –blackhole (mb) Hamiltonian, H m b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCisa8aadaWgaaWcbaWdbiaah2gacaWHIbaapaqabaaaaa@3B57@ , operating on wave function, | Ψ m b > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhaqaaaaa aaaaWdbiabfI6az9aadaWgaaWcbaWdbiaah2gacaWHIbaapaqabaGc peGaeyOpa4daaa@3E37@ ,generating energy, E m b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCyra8aadaWgaaWcbaWdbiaah2gacaWHIbaapaqabaaaaa@3B54@ , gives:

Η mb | Ψ mb > =  Ε mb | Ψ mb > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4LdG0damaaBaaaleaapeGaamyBaiaadkgaa8aabeaakmaaemaa baWdbiabfI6az9aadaWgaaWcbaWdbiaah2gacaWHIbaapaqabaGcpe GaeyOpa4Jaaeiiaiabg2da9iaabccacqqHvoqrpaWaaSbaaSqaa8qa caWHTbGaaCOyaaWdaeqaaaGccaGLhWUaayjcSdWdbiabfI6az9aada WgaaWcbaWdbiaah2gacaWHIbaapaqabaGcpeGaeyOpa4daaa@4F08@                                                                                                                  (33)

Procedures perphysics literature,69-85 for time –like fields since no space –fields are expected at micro –black hole, we consider time differential of the Hamiltonian only:

H mb = icħ /t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaCisa8aadaWgaaWcbaWdbiaad2gacaWGIbaapaqabaGcpeGaeyyp a0JaaeiiaiaadMgacaWGJbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNv NBGC0B0HwAJbacfaGaa83jbiaabccacqGHciITcaGGVaGaeyOaIyRa amiDaaaa@4F77@                                                                                                                                     (34)

Equation (12) will give eigenvectors with λ 1mb = ε r,μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaqaaaaaaaaaWdbiaaigdacaWGTbGaamOyaaWdaeqaaOWdbiab g2da9iabew7aL9aadaWgaaWcbaWdbiaadkhacaGGSaGaeqiVd0Maeq yVd4gapaqabaaaaa@4504@ :

| λ 1mb > =   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacqaH7o aBdaWgaaWcbaaeaaaaaaaaa8qacaWHXaGaaCyBaiaahkgaa8aabeaa k8qacqGH+aGpcaqGGaGaeyypa0JaaiiOaiaacckaaaa@42E8@ ( 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGymaa qaaiaaicdaaaaa@39A7@ )                                      (35)

Constructing time evolution field following physics procedures:65 –86

ε r,μν ( t )= ε r,μν,0 e (iHt/ ħ)                    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaaCOCaiaacYcacqaH8oqBcqaH9oGB a8aabeaakmaabmaabaWdbiaadshaa8aacaGLOaGaayzkaaWdbiabg2 da9iabew7aL9aadaWgaaWcbaWdbiaahkhacaGGSaGaeqiVd0MaeqyV d4Maaiilaiaahcdaa8aabeaak8qacaWGLbWdamaaCaaaleqabaGaai ika8qacqGHsislcaWGPbGaamisaiaadshacaGGVaaaaOWdamaaCaaa leqabaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfa Wdbiaa=DsapaGaaiyka8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaaaa@743B@                                                                                                                                                           (36)

Then on performing differentiation of ε r,μν ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdu2damaaBaaaleaapeGaaCOCaiaacYcacqaH8oqBcqaH9oGB a8aabeaakmaabmaabaWdbiaadshaa8aacaGLOaGaayzkaaaaaa@4210@ with respect to time, we will arrive at:

ε r,μν ( t )/t = ε r,μν,0 (iH/ħ) e (iHt/ ħ) =(iH/ħ) ε r,μν ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOaIyRaeqyTdu2damaaBaaaleaapeGaaCOCaiaacYcacqaH8oqB cqaH9oGBa8aabeaakmaabmaabaWdbiaadshaa8aacaGLOaGaayzkaa Wdbiaac+cacqGHciITcaWG0bGaaeiiaiabg2da9iabew7aL9aadaWg aaWcbaWdbiaahkhacaGGSaGaeqiVd0MaeqyVd4Maaiilaiaahcdaa8 aabeaakiaacIcapeGaeyOeI0IaamyAaiaadIeacaGGVaWexLMBbXgB d9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa83jb8aacaGGPa WdbiaadwgapaWaaWbaaSqabeaacaGGOaWdbiabgkHiTiaadMgacaWG ibGaamiDaiaac+caaaGcpaWaaWbaaSqabeaapeGaa83jb8aacaGGPa aaaOWdbiabg2da98aacaGGOaWdbiabgkHiTiaadMgacaWGibGaai4l aiaa=DsapaGaaiyka8qacqaH1oqzpaWaaSbaaSqaa8qacaWHYbGaai ilaiabeY7aTjabe27aUbWdaeqaaOWaaeWaaeaapeGaamiDaaWdaiaa wIcacaGLPaaaaaa@7996@                                                                                                 (37)

On integration with respect to time, t = t i to  t f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiaabccacqGH9aqpcaWG0bWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiaadshacaWGVbGaaeiiaiaadshapaWaaSbaaSqaa8qaca WGMbaapaqabaaaaa@4216@ , we get

[ ε r,μν ( t )/ ε r,μν ( t )] =  t i t f (iH/h) t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa8qaaeaacaGGBbGaeyOaIyRaeqyTdu2damaaBaaaleaapeGaaCOC aiaacYcacqaH8oqBcqaH9oGBa8aabeaakmaabmaabaWdbiaadshaa8 aacaGLOaGaayzkaaWdbiaac+cacqaH1oqzpaWaaSbaaSqaa8qacaWH YbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWaaeWaaeaapeGaamiDaa WdaiaawIcacaGLPaaacaGGDbWdbiaabccacqGH9aqpcaGGGcaaleqa beqdcqGHRiI8aOWaa8qaaeaadaqhaaWcbaWaaSbaaWqaaiaadshada WgaaqaaiaadMgaaeqaaaqabaaaleaacaWG0bWaaSbaaWqaaiaadAga aeqaaaaaaSqabeqaniabgUIiYdGccaGGOaGaeyOeI0IaamyAaiaadI eacaGGVaGaaiiAaiaacMcacaGGGcGaeyOaIyRaamiDaaaa@6446@                                                                                                               (38)

After manipulations mathematically, we arrive at:

H = { iħ/( t f   t i ) }[ ln| ε r,μν ( t )| ]     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisaiaabccacqGH9aqpcaqGGaWdamaacmaabaWdbiaadMgatCvA UfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFNeGaai 4la8aadaqadaqaa8qacaWG0bWdamaaBaaaleaapeGaamOzaaWdaeqa aOWdbiabgkHiTiaabccacaWG0bWdamaaBaaaleaapeGaamyAaaWdae qaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaWaamWaaeaapeGaamiB aiaad6gapaGaaiiFaiabew7aLnaaBaaaleaapeGaamOCaiaacYcacq aH8oqBcqaH9oGBa8aabeaakmaabmaabaWdbiaadshaa8aacaGLOaGa ayzkaaGaaiiFaaGaay5waiaaw2faa8qacaGGGcGaaiiOaiaacckaca GGGcaaaa@66EB@                                                                                                                  (39)

Performing procedural relationship like in the Equation (25), we may write fields as systems of the 2nd order differentials of energy, i.e. ε r,μν =( 2 E μν,mb / r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaaqaaaaaaaaaWdbiaahkhacaGGSaGaeqiVd0MaeqyVd4gapaqa baGcpeGaeyypa0ZdamaabmaabaGaeyOaIy7aaWbaaSqabeaapeGaaG OmaaaakiaahweapaWaaSbaaSqaa8qacqaH8oqBcqaH9oGBcaGGSaGa aCyBaiaahkgaa8aabeaak8qacaGGVaWdaiabgkGi2+qacaWHYbWdam aaCaaaleqabaWdbiaaikdaaaaak8aacaGLOaGaayzkaaaaaa@4FFC@ , taking care of appropriate indices within the procedures as also, noting that the following relationships hold true:

Eμν,mb=rεr,μν.dr     (40)

Operating Hamiltonian per the Equations (33), (35), & (39), we can get result:

{ ih/(t f t i )}[ln| ε r,μν |]. ε r,μν ( 1 0 )= r ε r,μν .dr ε r,μν ( 1 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhacaqGPb GaaeiAaiaab+cacaqGOaGaaeiDamaaBaaaleaacaqGMbaabeaakiab gkHiTiaabshadaWgaaWcbaGaaeyAaaqabaGccaGGPaGaaiyFaiaacU facaGGSbGaaiOBaiaacYhacqaH1oqzdaWgaaWcbaWaaSbaaWqaaiaa ckhacaGGSaGaeqiVd0MaeqyVd4gabeaaaSqabaGccaGG8bGaaiyxai aac6cacqaH1oqzdaWgaaWcbaWaaSbaaWqaaiaackhacaGGSaGaeqiV d0MaeqyVd4gabeaaaSqabaGcdaqadaabaeqabaGaaGymaaqaaiaaic daaaGaayjkaiaawMcaaiabg2da9maapifabaGaeqyTdu2aaSbaaSqa amaaBaaameaacaGGYbGaaiilaiabeY7aTjabe27aUbqabaaaleqaaa qaaiaadkhaaeqaniabgUIiYlabgUIiYdGccaGGUaGaaeizaiaabkha cqaH1oqzdaWgaaWcbaWaaSbaaWqaaiaackhacaGGSaGaeqiVd0Maeq yVd4gabeaaaSqabaGcdaqadaabaeqabaGaaGymaaqaaiaaicdaaaGa ayjkaiaawMcaaaaa@74C0@ (41)

Partial differential operations with respect to dr performing twice, the simplified result after having multiplication throughout by

i( t f   t i )/{ ħ(1+ln| ε r,μν | } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyAa8aadaqadaqaa8qacaWG0bWdamaaBaaaleaapeGa amOzaaWdaeqaaOWdbiabgkHiTiaabccacaWG0bWdamaaBaaaleaape GaamyAaaWdaeqaaaGccaGLOaGaayzkaaWdbiaac+capaWaaiWaaeaa tCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaapeGaa8 3jb8aacaGGOaWdbiaaigdacqGHRaWkcaWGSbGaamOBa8aacaGG8bGa eqyTdu2aaSbaaSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdae qaaOGaaiiFaaGaay5Eaiaaw2haaaaa@5DF4@

, we get this as the differential equation having 2ndorder terms, for λ 1mb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaqaaaaaaaaaWdbiaaigdacaWGTbGaamOyaaWdaeqaaaaa@3CCE@ @micro black hole:

( 2 ε r,μν / r 2 )  { i( t f   t i )/ħ } [ ε r,μν ( 1+ln| ε r,μν | ] 1 ( ε r,μν /r ) 2  + { i( t f   t i )/ħ } [ ε r,μν /( 1+ln| ε r,μν | ] = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OaIy7aaWbaaSqabeaaqaaaaaaaaaWdbiaaikdaaaGcpaGaeqyTdu2a aSbaaSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbi aac+capaGaeyOaIy7dbiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaa aOWdaiaawIcacaGLPaaapeGaaiiOaiaacobicaGGGcWdamaacmaaba WdbiaadMgapaWaaeWaaeaapeGaamiDa8aadaWgaaWcbaWdbiaadAga a8aabeaak8qacqGHsislcaqGGaGaamiDa8aadaWgaaWcbaWdbiaadM gaa8aabeaaaOGaayjkaiaawMcaa8qacaGGVaWexLMBbXgBd9gzLbvy Nv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa83jbaWdaiaawUhacaGL9b aadaqcIaqaaiabew7aLnaaBaaaleaapeGaamOCaiaacYcacqaH8oqB cqaH9oGBa8aabeaakmaajadabaWdbiaaigdacqGHRaWkcaWGSbGaam OBa8aadaabdaqaaiabew7aLnaaBaaaleaapeGaamOCaiaacYcacqaH 8oqBcqaH9oGBa8aabeaaaOGaay5bSlaawIa7aaGaayjkaiaaw2faam aaCaaaleqabaWdbiabgkHiTiaaigdaaaGcpaWaaeWaaeaacqGHciIT cqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeqiVd0MaeqyVd4gapa qabaGcpeGaai4la8aacqGHciITpeGaamOCaaWdaiaawIcacaGLPaaa daahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiabgUcaRiaabccapaWaai WaaeaapeGaamyAa8aadaqadaqaa8qacaWG0bWdamaaBaaaleaapeGa amOzaaWdaeqaaOWdbiabgkHiTiaabccacaWG0bWdamaaBaaaleaape GaamyAaaWdaeqaaaGccaGLOaGaayzkaaWdbiaac+cacaWFNeaapaGa ay5Eaiaaw2haaaGaay5waiaawUfaaiabew7aLnaaBaaaleaapeGaam OCaiaacYcacqaH8oqBcqaH9oGBa8aabeaak8qacaGGVaWdamaajada baWdbiaaigdacqGHRaWkcaWGSbGaamOBa8aadaabdaqaaiabew7aLn aaBaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaaaOGa ay5bSlaawIa7aaGaayjkaiaaw2faa8qacaqGGaGaeyypa0Jaaeiiai aaicdaaaa@B550@              (42)

Equivalently,

2 ε r,μν  { i( t f   t i )/ħ } [ ε r,μν ( 1+ln| ε r,μν | ] 1 ( ε r,μν ) 2 + { i( t f   t i )/ħ } [ ε r,μν /( 1+ln| ε r,μν | ] = 0      MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGcpaGaeqyTdu2aaSba aSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiaaco bicaqGGaWdamaacmaabaWdbiaadMgapaWaaeWaaeaapeGaamiDa8aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHsislcaqGGaGaamiDa8 aadaWgaaWcbaWdbiaadMgaa8aabeaaaOGaayjkaiaawMcaa8qacaGG VaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8 3jbaWdaiaawUhacaGL9baadaqcIaqaaiabew7aLnaaBaaaleaapeGa amOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaakmaajadabaWdbiaaig dacqGHRaWkcaWGSbGaamOBa8aadaabdaqaaiabew7aLnaaBaaaleaa peGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaaaOGaay5bSlaawI a7aaGaayjkaiaaw2faamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGc paWaaeWaaeaapeGaey4bIe9daiabew7aLnaaBaaaleaapeGaamOCai aacYcacqaH8oqBcqaH9oGBa8aabeaaaOGaayjkaiaawMcaamaaCaaa leqabaWdbiaaikdaaaGccqGHRaWkcaqGGaWdamaacmaabaWdbiaadM gapaWaaeWaaeaapeGaamiDa8aadaWgaaWcbaWdbiaadAgaa8aabeaa k8qacqGHsislcaqGGaGaamiDa8aadaWgaaWcbaWdbiaadMgaa8aabe aaaOGaayjkaiaawMcaa8qacaGGVaGaa83jbaWdaiaawUhacaGL9baa aiaawUfacaGLBbaacqaH1oqzdaWgaaWcbaWdbiaadkhacaGGSaGaeq iVd0MaeqyVd4gapaqabaGcpeGaai4la8aadaqcWaqaa8qacaaIXaGa ey4kaSIaamiBaiaad6gapaWaaqWaaeaacqaH1oqzdaWgaaWcbaWdbi aadkhacaGGSaGaeqiVd0MaeqyVd4gapaqabaaakiaawEa7caGLiWoa aiaawIcacaGLDbaapeGaaeiiaiabg2da9iaabccacaaIWaGaaiiOai aacckacaGGGcGaaiiOaiaacckaaaa@AF82@       (43)

Similarly, λ 2mb = ε r μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaaqaaaaaaaaaWdbiaaikdacaWGTbGaamOyaaWdaeqaaOWdbiab g2da98aacqaH1oqzdaWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaale qabaWdbiabeY7aTjabe27aUbaaaaa@449C@ @micro –black hole will give resulting property with partial differential equations characterizing eigen state rotational Hamiltonian characteristic operator time fields of micro –black hole vacuum quagmire; by mathematically operating symmetry equivalents eigen functions, Equation (18) will become:

{ iħ/( t f   t i ) }[ ln| ε r μν | ]. ε r μν ( 0 1 )= r ε r μν .dr ε r μν ( 0 1 )        MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaaeaa aaaaaaa8qacaWGPbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B 0HwAJbacfaGaa83jbiaac+capaWaaeWaaeaapeGaamiDa8aadaWgaa WcbaWdbiaadAgaa8aabeaak8qacqGHsislcaqGGaGaamiDa8aadaWg aaWcbaWdbiaadMgaa8aabeaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2 haamaadmaabaWdbiaadYgacaWGUbWdaiaacYhapeGaeqyTdu2damaa BaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0Maeq yVd4gaaOWdaiaacYhaaiaawUfacaGLDbaapeGaaiOlaiabew7aL9aa daWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTj abe27aUbaakmaabmaapaqaauaabeqaceaaaeaapeGaaGimaaWdaeaa peGaaGymaaaaaiaawIcacaGLPaaacqGH9aqpdaWdsbqaaaWcbaGaam OCaaqab0Gaey4kIiVaey4kIipakiabew7aL9aadaWgaaWcbaWdbiaa hkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUbaakiaac6 cacaWGKbGaamOCaiabew7aL9aadaWgaaWcbaWdbiaadkhaa8aabeaa kmaaCaaaleqabaWdbiabeY7aTjabe27aUbaakmaabmaapaqaauaabe qaceaaaeaapeGaaGimaaWdaeaapeGaaGymaaaaaiaawIcacaGLPaaa caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaa@885F@                         (44)

Partial differential operations with respect to drper forming twice, the simplified result after having multiplication throughout by i( t f   t i )/{ ħ(1+|ln ε r,μν | } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqGHsislcaWGPbWdamaabmaabaWdbiaadshapaWaaSbaaSqa a8qacaWGMbaapaqabaGcpeGaeyOeI0IaaeiiaiaadshapaWaaSbaaS qaa8qacaWGPbaapaqabaaakiaawIcacaGLPaaapeGaai4la8aadaGa daqaamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqba8 qacaWFNeWdaiaacIcapeGaaGymaiabgUcaR8aacaGG8bWdbiaadYga caWGUbGaeqyTdu2damaaBaaaleaapeGaamOCaiaacYcacqaH8oqBcq aH9oGBa8aabeaakiaacYhaaiaawUhacaGL9baaaaa@5E95@ , we get this as the differential equation having 2ndorder terms, for λ 2mb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjHaeq4UdW 2aaSbaaSqaaabaaaaaaaaapeGaaGOmaiaad2gacaWGIbaapaqabaaa aa@3D51@ @micro –black hole:

( 2 ε r μν / r 2 ){ i( t f   t i )/ħ } [ ε r μν ( 1+ln| ε r μν | ] 1 ( ε r μν /r ) 2  + { i( t f   t i )/ħ } [ ε r μν /( 1+ln| ε r μν | ]= 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjXaaeWaae aaqaaaaaaaaaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGa eqyTdu2damaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaape GaeqiVd0MaeqyVd4gaaOGaai4laiabgkGi2kaadkhapaWaaWbaaSqa beaapeGaaGOmaaaaaOWdaiaawIcacaGLPaaapeGaai4eG8aadaGada qaa8qacaWGPbWdamaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWG MbaapaqabaGcpeGaeyOeI0IaaeiiaiaadshapaWaaSbaaSqaa8qaca WGPbaapaqabaaakiaawIcacaGLPaaapeGaai4lamXvP5wqSX2qVrwz qf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=Dsaa8aacaGL7bGaay zFaaWaaKGiaeaapeGaeqyTdu2damaaBaaaleaapeGaamOCaaWdaeqa aOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdamaajadabaWdbi aaigdacqGHRaWkcaWGSbGaamOBa8aadaabdaqaa8qacqaH1oqzpaWa aSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcq aH9oGBaaaak8aacaGLhWUaayjcSdaacaGLOaGaayzxaaWaaWbaaSqa beaapeGaeyOeI0IaaGymaaaak8aadaqadaqaa8qacqGHciITcqaH1o qzpaWaaSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH 8oqBcqaH9oGBaaGccaGGVaGaeyOaIyRaamOCaaWdaiaawIcacaGLPa aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiabgUcaRiaabccapaWa aiWaaeaapeGaamyAa8aadaqadaqaa8qacaWG0bWdamaaBaaaleaape GaamOzaaWdaeqaaOWdbiabgkHiTiaabccacaWG0bWdamaaBaaaleaa peGaamyAaaWdaeqaaaGccaGLOaGaayzkaaWdbiaac+cacaWFNeaapa Gaay5Eaiaaw2haaaGaay5waiaawUfaa8qacqaH1oqzpaWaaSbaaSqa a8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9oGBaa GccaGGVaWdamaajadabaWdbiaaigdacqGHRaWkcaWGSbGaamOBa8aa daabdaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGYbaapaqabaGcda ahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaaak8aacaGLhWUaayjcSdaa caGLOaGaayzxaaWdbiabg2da9iaabccacaaIWaaaaa@B0EA@    (45)

Equivalently,

2 ε r μν  { i( t f   t i )/ħ } [   ε r μν ( 1+ln| ε r μν | ] 1 ( ε r μν ) 2 + { i( t f   t i )/ħ } [ ε r μν /( 1+ln| ε r μν | ] = 0         MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqGHhis0paWaaWbaaSqabeaapeGaaGOmaaaak8aacqaH1oqz daWgaaWcbaWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTj abe27aUbaakiaacobicaqGGaWdamaacmaabaWdbiaadMgapaWaaeWa aeaapeGaamiDa8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHsi slcaqGGaGaamiDa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOGaayjk aiaawMcaa8qacaGGVaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC 0B0HwAJbacfaGaa83jbaWdaiaawUhacaGL9baadaqcIaqaa8qacaqG GaWdaiabew7aLnaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabe aapeGaeqiVd0MaeqyVd4gaaOWdamaajadabaWdbiaaigdacqGHRaWk caWGSbGaamOBa8aadaabdaqaaiabew7aLnaaBaaaleaapeGaamOCaa WdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaaGcpaGaay5b SlaawIa7aaGaayjkaiaaw2faamaaCaaaleqabaWdbiabgkHiTiaaig daaaGcpaWaaeWaaeaapeGaey4bIe9daiabew7aLnaaBaaaleaapeGa amOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaaGcpa GaayjkaiaawMcaamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaqG GaWdamaacmaabaWdbiaadMgapaWaaeWaaeaapeGaamiDa8aadaWgaa WcbaWdbiaadAgaa8aabeaak8qacqGHsislcaqGGaGaamiDa8aadaWg aaWcbaWdbiaadMgaa8aabeaaaOGaayjkaiaawMcaa8qacaGGVaGaa8 3jbaWdaiaawUhacaGL9baaaiaawUfacaGLBbaacqaH1oqzdaWgaaWc baWdbiaadkhaa8aabeaakmaaCaaaleqabaWdbiabeY7aTjabe27aUb aakiaac+capaWaaKamaeaapeGaaGymaiabgUcaRiaadYgacaWGUbWd amaaemaabaGaeqyTdu2aaSbaaSqaa8qacaWGYbaapaqabaGcdaahaa Wcbeqaa8qacqaH8oqBcqaH9oGBaaaak8aacaGLhWUaayjcSdaacaGL OaGaayzxaaWdbiaabccacqGH9aqpcaqGGaGaaGimaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcaaaa@B1D8@       (46)

Partial differential Equations (32), (43), & (46), that were derived above justify formalism, applying tensor matrix Helmholtz decomposition fields analysis of vortex dynamics. They show that consistent quantifications are possible of magneton53 experimental observations measurements verifying vortex fields to beone of the main field characteristics. Mentioned also earlier, itt is possible to transform from Helmholtz metrics, using Coulomb gage that will link to Coulomb branch gage group with Hilbert series having Super Symmetry (SUSY) Quantum Field Theory (QFT) charge conjugation.57,70 We can then link charge conjugation to rotating charges per Dirac Maxwell Einstein Kerr Newmann metrics.71,72 Hencethis formalism has already generality to able to model magneto –electro vacuum quanta space, that we are verifying experimentally and theoretically in our ongoing investigations.

Theoretical results observable discussions

We noted above, nature of general solutions giving eigen functions to be revealing vacuum fields energy possibly possessing higher order 10 26 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaaIXaGaaGima8aadaahaaWcbeqaa8qacaaIYaGaaGOnaaaa aaa@3C0A@ metric units at quantum zero point; these situations are analogous to situations that may be encountered at inflationary vacuum zero point, whose characteristic energies are well known in physics literature.65–85 Based on all these, we would be able to infer that Equation (46) would be capable of giving insight through micro –black hole general solutions’ eigen value eigen functions like “fields” equations. These are too analogous to the relativistic physics with macro black holes; hence these are further extensions to micro –black holes that have been actively considered subjects within physics literature.69-85 We can analytically quantitatively interpret with partial differential equations systems (43) & (46) these physics aspects. Especially evident while noticing, that time aspect ( t f   t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjXaaeWaae aaqaaaaaaaaaWdbiaadshapaWaaSbaaSqaa8qacaWGMbaapaqabaGc peGaeyOeI0IaaeiiaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqaba aakiaawIcacaGLPaaaaaa@4089@ can be quite analogous to real and proper time, with field up and down differentially spatially varying with relativistic systems. Also, notable are special requirements with rotational fields, ε r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjHaeqyTdu 2aaSbaaSqaaabaaaaaaaaapeGaamOCaaWdaeqaaaaa@3BA6@ , both up and down indices stipulating positive values due to logarithmic functionality, i.e. ln| ε r μν | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacaWGSbGaamOBa8aadaabdaqaaiabew7aLnaaBaaaleaapeGa amOCaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaaGcpa Gaay5bSlaawIa7aaaa@4499@ and the apparent symmetry with 2nd order, 1st order, & 0th order differential terms, per differential equations (32), (43), &(46). Special Relativity (SR) and General Relativity (GR) although prohibit the propagation of energy and information inside vacuum space with a group velocity larger than the light speed c limit, it does not impose any restrictions on the speed by which space itself can move, expand, or deform locally. Subsequently, we can deduce that its discrete quanta units uniformly consisting of all vacuum space in our Universe are not imposed by such a light speed limitation and therefore a hypothetically super –luminous phase of the vacuum space quanta is possible.77 There are many analytical interpretations possible that are surprisingly evident, borne out of development of mathematical general solutions here, a non –assumptive pure theory primarily based on physics model of vacuum space quantum field, extendable eventually to analysis of a superluminal multiphase system that we are proposing to grand unify everything. Superluminal multiphase system models will explain all known phenomena of dark energy, dark matter, real matter, real energy with all the four fundamental forces, thus accounting totally for the enormous almost infinite energies seemingly possessed by the natural universe. Spin –offs of the superluminal multiphase systems theoretical modeling, with eventual experimental verifications, we hope may solve the problem of antimatter matter paradox of neutrino physics. Further, symmetrical aspects that we can notice with nonlinear quaternion differential equations (32), (42), & (46) above manifest vortex hydrodynamic like vacuum quanta. Our observational measurements of magneton53 bears verification of these theoretical observables. Investigations by scientists spanning many international laboratories have brought out critical observations with measurements experimentally with spin ice a few salient features of mono polar possibilities, a few of which have been highlighted earlier.

 Energy fields partial differential equations

Equations (32), (43), & (46) represent fields differential equations with zero –point vacuum energy and the micro black hole field mathematical physics. One of the ways that physics can be characterized to vacuum space quanta solutions will be to input the functional form of the energy and that of field forces.

We will examine specifically vacuum fields that may follow inverse square law as well as an inverse cubic law in our subsequent paper. Typically, available physics literature shows vacuum monopoles may exhibit inverse square relation with distance, however, dipoles tend to show also an inverse cubic relation with distance. We can apply these criteria to differential equations that are developed here, i. e. Equations (32), (43), & (46) to analyze function field energy, identifying thus whether monopoles have high energy densities to initiate generation of particles within vacuum quanta; if so, then how signal output may generate in what sequences these phenomena. Performing analyses sequentially will be critical to come up with superluminal aspects, that we are currently working collaboratively with several scientists, to obtain proof of a concept hinting high energy creations, within vacuum quanta to sustain almost infinite extent universally of matter systems, manifesting geodesics as well as non –geodesics. We hope to embark on the problem –solving mathematical physics formalisms within the framework of generalized Hamiltonian operator analysis presented here, extending vacuum quanta analysis to superluminal multi phases systems modeling capable of explaining paradoxical nature with matter, antimatter, dark matter, dark energy, and the creation of stable geodesics within galactical star systems sustaining live cosmos.

Summary

Experiments, as well as measurements of real time observations of magneton by Ferrolens, reported earlier, was pointing to a fundamental vacuum quanta mechanism. The term magneton refers to elementary magnetic dipole quanta of fermions and having two joint counter rotating magnetic flux monopole vortices, forming magnetic dipole, and thus a quantum magnet. This is essentially Gilbertian having opposite magnetic charges. We propose space –time these exist only as dipoles within super luminous energy phase of “empty” vacuum space, which can phase transition to luminous or sub luminous space time, shown by schematics.

We applied Helmholtz decomposition fields with magneton experimental observations measurements showing the vortex field, reasoning that it is possible to convert from Helmholtz metrics onto Dirac –Einstein –Maxwell –Kerr –Newton metrics, by applying Coulomb gage. Ansatz generalized Hamiltonian quantum mechanics of vacuum quanta formalism was advanced here, constructing outer product Helmholtz decomposition field density matrix eigenvector operators’ Hamiltonian characteristics.

Helmholtz decomposition matrix consisted of both gradient up and down field tensors as well as the rotational up and down field tensors, that were reasoned to fit well mathematically to analyze zero –point and micro black hole in vacuum quanta. Eigen values as well as eigenvectors of characteristic general field matrix and specifically of zero –point and micro black hole eigen spinors’ vector fields were derived analytically quantitatively. Eigen matrix eigenvector |Ψi,j>s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjHaaiiFaa baaaaaaaaapeGaeuiQdKLaamyAaiaacYcacaWGQbGaeyOpa4Jaam4C aaaa@3FE9@ with eigen value λs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceqaSjbeaaaaaa aaa8qacqaH7oaBcaWGZbaaaa@3B79@ were quantified completely mathematically. These quantifications successfully eventually generated systems partial differential equations, characterizing zero –point and microblackhole vortex and gradient energy fields of vacuum quanta.Such quantification physics techniques are quite useful in knowing as well as analyzing super luminous fabric of space aspects of vacuum quanta. This formalism has already generality to model further magneto –electro vacuum quanta space, that we are verifying in our ongoing investigations.

We hope having next set of papers on problem solving mathematical physics formalisms within well the framework of generalized Hamiltonian operator analysis, achieved here as a new ansatz, extending vacuum quanta analysis to superluminal multi phases systems modeling. This will be then capable of explaining paradoxical nature with physics, sorting quantitatively matter, antimatter, dark matter, dark energy, and the creation of stable geodesics within galactical star systems sustaining live cosmos.

Acknowledgments

None.

Conflicts of interest

Author declared there are no conflicts of interest.

References

  1. Brian Green: The fabric of the cosmos. space time and the texture of reality. Published in the United States by Alfred A. Knopf a division of Random House Inc., New York. 2004.
  2. David Gross, Marc Henneaux, Alexander Sevrin. The Quantum Structure of Space and Time Proceedings of the 23rd Solvay Conference on Physics Brussels. Belgium. 2005.
  3. Andrzej Horzela, Edward Kapuścik, Jarosław Kempczyński. On the Galilean Covariance of Classical Mechanics. INP No 1556/PH Kraków. 1991.
  4. Tom WB Kibble, Frank H Berkshire. Classical Mechanics. 5th 2004.
  5. Richard Fitzpatrick. Maxwell’s Equations and the Principles of Electromagnetism. Infinity Science Press. 2008.
  6. Anna Teresa Tymieniecka. Phenomenology of Space and Time. The Forces of the Cosmos and the Ontopoietic Genesis of Life. Book Series Analecta Husserliana. 1971 – 2018.
  7. Stephen W Hawking , Roger Penrose: The Nature of Space and Time. Scientific American. 1996.
  8. Hubert FM Goenner. On the History of Unified Field Theories. Living Rev Relativity. 2014;17(1):5.
  9. Maya Miller. Einstein’s Greatest Theory Validated on a Galactic Scale. Scientific American. 2018.
  10. Christine Sutton. Unified field theory. Physics.
  11. Albert Einstein. Relativity: The Special and General Theory 1920 original. Paperback. 2010.
  12. Gesche Pospiech, Marisa Michelini, Bat–Sheva Eylon. Mathematics in Physics Education.
  13. Steven Weinberg. Lectures on Quantum Mechanics. 2nd edn. Cambridge University Press. 2013.
  14. Matthew D Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press.2014.
  15. BR Martin, G Shaw. Particle Physics.John Wiley & Sons Ltd. Publications.2008.
  16. Paul Adrien Maurice Dirac. Quantised singularities in the electro vacuum field. Proc R Soc Lond. 1931;A133(821):60–72.
  17. M Peskin, D Schroeder. Feynman Diagrams and Quantum Electrodynamics. An Introduction to Quantum Field Theory. West view Press. 1995. I Bialynicki Birula , Z. Bialynicka Birula. Vacuum Monopoles in the Hydrodynamic Formulation of Quantum Mechanics. Phys Rev.
  18. EA Kuznetsov, VP Ruban. Hamiltonian dynamics of vortex and vacuum lines in hydrodynamic type systems. Phys Rev. 2000;61(1):831–841.
  19. Kicheon Kan. Local field–interaction approach to the Dirac monopole. quant–ph. 2020.
  20. Lewis A Williamson, PB Blakie. A damped point–vortex model for polar–core spin vortices in a ferro vacuum spin–1 Bose–Einstein condensate. Phys Rev Research. 2020.
  21. SB Prasad, BC Mulkerin, AM Martin. Arbitrary–angle rotation of the polarization of a dipolar Bose–Einstein condensate. 2020.
  22. Rajan Iyer. Observables versus observations quantum relativity operator metrics physics.
  23. Rajan Iyer. Signal/Noise Analysis with Poisson Laplace Maxwell Helmholtz Mathematical Physics of Micro Black Hole Zero Point Space Time. Working Paper.
  24. Aad Georges et al., Search for vacuum monopoles and stable high–electric–charge objects in 13 TeV proton–proton collisions with the ATLAS detector. Phys Rev Lett. 2020;124(3).
  25. C Castelnovo, R Moessner, SL Sondhi. Vacuum monopoles in spin ice. Nature. 2008;451(7174):42–45.
  26. MW Ray, E Ruokokoski, S Kandel et al. Observation of Dirac monopoles in a synthetic vacuum field. Nature. 2014;505(7485):657–660.
  27. T Ollikainen, K Tiurev, A Blinova et al. Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole. Phys Rev X. 2017;7(2):021023.
  28. E Yakaboylu, A Deuchert, M.Lemeshko. Emergence of Non Abelian Vacuum Monopoles in a Quantum Impurity Problem. Physical Review Letters. 2017;119(23).
  29. ST Bramwell, SR Giblin, S Calder, et al. Measurement of the charge and current of vacuum monopoles in spin ice. Nature. 2009;461(7266):956–959.
  30. Giblin, ST Bramwell, D Prabhakaran, et al. Creation and measurement of long–lived vacuum monopole currents in spin ice. Nature Physics. 2011;7(3):252–258.
  31. N Keswani, R Lopes, P Das, et al. Controlled creation and annihilation of stringless robust emergent vacuum monopoles in artificial spin ice. 2020.
  32. Ville Pietilä, Mikko Möttönen. Creation of Dirac Monopoles in Spinor Bose Einstein Condensates. Rev. Lett. 2009;103(3):030401.
  33. Elizabeth Gibney. Quantum cloud simulates vacuum monopole. Nature. 2014.
  34. Chris RaDFORD. The Maxwell–Dirac Equations, Some Non–Perturbative Results. 2002;43:666–671.
  35. http://128.84.4.18/pdf/2012.11370.
  36. Maurice A de Gosson. The Principles of Newtonian and Quantum Mechanics. The Need for Planck's Constant h. 2nd edn. World Scientific Publishers. 2017.
  37. The Helmholtz Hamiltonian System. Graph theory. Quantum Calculus. 2017.
  38. Emmy Noether. Invariant Variation Problems. Transport Theory and Statistical Physics. 1(3):186–207.
  39. Katherine Jones–Smith. Identifying quasi–particles using non Hermitian quantum mechanics. Philos Trans A Math Phy Eng Sci. 2013;371(1989):1–14.
  40. Carl M Bender. Making sense of non–Hermitian Hamiltonians. Reports on Progress in Physics. 2007;70(6).
  41. Tibor Antal, ZoltánRácz, László Sasvári. Nonequilibrium Steady State in a Quantum System: One–Dimensional Transverse Ising Model with Energy Current. Phys Rev Lett. 1997;78(2):167.
  42. Ram Mehar Singh. Real Eigenvalue of a Non–Hermitian Hamiltonian System. Applied Mathematics. 2012;3:1117–1123.
  43. Richard Lopp, Eduardo Martín Martínez. Quantum delocalization, gauge and quantum optics: The light–matter interaction in relativistic quantum information. quant–ph.
  44. Carl M Bender. PT Symmetry: In Quantum and Classical Physics. 2019.
  45. Katherine Jones Smith, Harsh Mathur. Relativistic non–Hermitian quantum mechanics. Phys Rev D. 2014:89(12).
  46. Rajan Iyer: Absolute genesis fire fifth dimension mathematical physics. 2000.
  47. Lisa Randall. The Boundaries of KKLT. 2020;68:3–4
  48. ShamitKachru, Renata Kallosh, Andrei Linde, et al. de Sitter Vacua in String Theory. Physical Review D. 2003;68(4):046005.
  49. Paul AM Dirac. The Quantum Theory of the Emission and Absorption of Radiation. Proc Roy Soc. 1927;114(767):243–265.
  50. PW Milonni, ML Shih. Zero‐point energy in early quantum theory. American Journal of Physics. 1991;59(8):684–698.
  51. BJ Carr, SB Giddings. Quantum Black Holes. Scientific American. 2006;292:48–55.
  52. Tomohiro Nakama, Jun'ichi Yokoyama. Micro black holes formed in the early Universe and their cosmological implications. Phys Rev D. 2019;99:061303.
  53. Emmanouil Markoulakis, Antonios Konstantaras, John Chatzakis, et al. Real time observation of a stationary magneton. Results in Physics, 2019;15:102793.
  54. Emmanouil Markoulakis, Iraklis Rigakis, Emmanuel Antonidakis, et al. Real time visualization of dynamic vacuum fields with a nanomagnetic ferrolens. Journal of Magnetism and Magnetic Materials. 2018;451:741–748.
  55. Emmanouil Markoulakis, Antonios Konstantaras, Emmanuel Antonidakis. The Quantum Field Of A Magnet Shown By A Nanovacuum Ferrolens. Journal of Magnetism and Vacuum Materials. 2018;466: 252–259.
  56. Emmanouil Markoulakis, John Chatzakis, Anthony Konstantaras, et al. A synthetic macroscopic vacuum unipole. Physica Scripta. 2020;95(9):095811.
  57. Kirk T McDonald. The Helmholtz Decomposition and the Coulomb Gauge. 2020.
  58. MW Ray, E Ruokokoski, S Kandel, et al. Observation of Dirac monopoles in a synthetic magnetic field. Nature.2014;505:657–660
  59. Omer Zor, On interactions of static magnetic fields. journal of electrical engineering. 2019;70(3):253–255.
  60. The Standard Model of Particles and Interactions. Sub–nucleonic Structure and the Modern Picture of a Nucleus.
  61. Sizov RA. Real magnetic charges as a negation of the electric magnetism Maxwell and electrified Dirac’s monopole. Physics & Astronomy International Journal. 2018;2(1):17–20.
  62. George B Arfken, Hans J Weber. Mathematical Methods for Physicists. 6th edn, 2005;95–101.
  63. Tian Yu Cao: Conceptual Foundations of Quantum Field Theory. Cambridge University Press. 2004;179.
  64. Andrew Chubykalo, Augusto Espinoza, Rolando Alvarado Flores. Helmholtz Theorems, Gauge Transformations, General Covariance and the Empirical Meaning of Gauge Conditions. Journal of Modern Physics. 2016;7:1021–1044.
  65. M Casals, SR Dolan, P Kanti, et al. Angular profile of emission of non–zero spin fields from a higher–dimensional black hole. Lett. 2009;680:365–370.
  66. Jean Bladel. On Helmholtz's Theorem in Finite Regions. IRE Transactions on Antennas and Propagation. 1959;7(5).
  67. DC Kay. Tensor Calculus, Schaum’s Outlines. McGraw–Hill. New York. 1988.
  68. Eric W Weisstein. Poincaré's Theorem From MathWorld A Wolfram Web Resource.
  69. Daniel D Joseph. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid. Proceedings of the National Academy of Sciences. 2006;103(39):14272–14277.
  70. Guillermo Arias Tamargo, Antoine Bourget, Alessandro Pini, Diego Rodríguez Gómez. Discrete gauge theories of charge conjugation. Nuclear Physics B. 2019;946:114721.
  71. Tim Adamoa, ET Newman. The Kerr–Newman metric: A Review. 9(10):31791.
  72. Dietrich Hafner, Jean–Philippe Nicolas. Scattering of Massless Dirac Fields by a Kerr Black Hole. Reviews in Mathematical Physics. 2004;16(1):29–123.
  73. Antonio Galbis, Manuel Maestre. Vector Analysis Versus Vector Calculus. 2012.
  74. Loring W Tu. Vector fields –An Introduction to Manifolds. 2010;149.
  75. Theresa M Korn, Granino Arthur Korn. Mathematical Handbook for Scientists and Engineers. New York. Dover Publications. 1968;157–160.
  76. Clarke David A. A Primer on Tensor Calculus. 2011.
  77. Francois Trèves. Topological Vector Spaces. 1967. Mineola NY Dover Publications.
  78. Helmut H Schaefer, Manfred P Wolff. Topological Vector Spaces. 2nd 1999. New York.
  79. RG Lerner, GL Trigg. Encyclopaedia of Physics. 2nd 1991.
  80. S Lipschutz, M Lipson. Linear Algebra. Schaum’s Outlines 4th 2009.
  81. https://www.math.mcgill.ca/darmon/pub/Articles/Research/03.Lehmer/paper.pdf.
  82. gyrovector_space oscillator_representation. Lorentz group.
  83. https://quantumfrontiers.com/2018/03/27/the–math–of–multiboundary–wormholes (PDF).
  84. Robert B Leighton, Matthew Sands. The Feynman Lectures on Physics. III. Reading MA. Addison–Wesley.
  85. Carl D Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics. 2001.
Creative Commons Attribution License

©2021 Iyer, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.