Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 3

Theoretical implications of a classical unitary theory of gravitation and the electromagnetism in the explaining of the planetary perihelion precession and the super-heavy astroparticles

Marius Arghirescu

State Office for Inventions and Trademarks, Patents Department, Romania

Correspondence: Marius Arghirescu, State Office for Inventions and Trademarks, Patents Department, Romania

Received: April 14, 2019 | Published: May 14, 2019

Citation: Arghirescu M. Theoretical implications of a classical unitary theory of gravitation and the electromagnetism in the explaining of the planetary perihelion precession and the super-heavy astroparticles. Phys Astron Int J. 2019;3(3):114-121. DOI: 10.15406/paij.2019.03.00168

Download PDF

Abstract

The paper is based on the Galilean relativity and on a theory of cold genesis of matter and fields (CGT), which explains the gravitation and the electro-magnetic interaction by a charge model of static type, with spherical distribution of field quanta, compatible with the Fatio/LeSage model of gravitation and with the observations regarding the light beam deviation in the sun’s gravitic field. The planetary perihelion precession is explained as consequence of the dynamogene component of the gravitation force and of the high density of the sub-quantum medium, given by etheronic winds, in CGT, the electro-dynamic Lorentz’ force resulting as quantum Magnus force. It is shown that the principle of physics laws invariance may be maintained by considering also the d’Alembert paradoxe, without the conclusion of the light speed invariance, of the null rest mass of photons/bosons and of the Einsteinian speed –depending mass increasing, resulting also the possibility to explain the super-heavy astro-particles, experimentally detected, by a model of gammonic or mesonic Bose-Einstein condensate forming and pearlitizing, with the non-destructive collapsing of the formed sub-clusters, according to the cold genesis model of astroparticles of CGT.

Keywords: gravitic interaction, perihelion precession, Lorentz’ force, unitary theory, heavy astro-particles, Bose-Einstein condensate

Introduction

According to a cold genesis theory of fields (CGT1,2), the accelerating force Fe , given by repulsion between the charges Q and q, results from the impulse variation of the field quanta at the quasi-elastic collision with the semi-surface S x = 2n r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaBaaabaWdbiaadIhaa8aabeaapeGaeyypa0Jaaeii aiaaikdacaWGUbGaamOCa8aadaahaaqabKqbGeaapeGaaGOmaaaaaa a@3E57@ , i.e :

F r (q)  =  S x Δ ( p c ) r Δt =  S x 2 ( ρ s Δ x v v ) r Δt = S 0 ρ v v v 2 =q E r (0) ;     q= S 0 k 1  ;     S 0 =4π r 2  = n4π a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaBa aabaGaamOCaaqabaGaaiikaiaabghacaqGPaGaaeiiaiaabccacqGH 9aqpcaqGGaGaae4uamaaBaaabaGaaeiEaaqabaWaaSaaaeaacqqHuo arcaGGOaGaamiCamaaBaaabaGaam4yaaqabaGaaiykamaaBaaabaGa amOCaaqabaaabaGaeuiLdqKaamiDaaaacqGH9aqpcaqGGaGaae4uam aaBaaabaGaaeiEaaqabaWaaSaaaeaacaaIYaGaaiikaiabeg8aYnaa BaaabaGaam4CaaqabaGaeuiLdqKaaeiiaiaadIhacqGHflY1caqG2b WaaSbaaeaacaqG2baabeaacaGGPaWaaSbaaeaacaWGYbaabeaaaeaa cqqHuoarcaWG0baaaiabg2da9iaadofadaahaaqabeaacaaIWaaaai abeg8aYnaaBaaabaGaamODaaqabaGaeyyXICTaaeODamaaDaaabaGa aeODaaqaaiaabkdaaaGaeyypa0JaamyCaiabgwSixlaadweadaWgaa qaaiaadkhaaeqaaiaacIcacaaIWaGaaiykaiaabccacaqG7aGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqGXbGaeyypa0ZaaSaaaeaaca WGtbWaaWbaaeqabaGaaGimaaaaaeaacaWGRbWaaSbaaeaacaaIXaaa beaaaaGaaeiiaiaabUdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabofadaahaaqabeaacaqGWaaaaiabg2da9iaaisdacqaHapaCcqGH flY1caWGYbWaaWbaaeqabaGaaGOmaaaacaqGGaGaeyypa0Jaaeiiai aab6gacqGHflY1caqG0aGaeqiWdaNaeyyXICTaaeyyamaaCaaabeqa aiaabkdaaaaaaa@9229@   (1)

The electric field E is explained- in this case, by the existence of a spherically-symmetric flow of vectorial photons of the accelerating Q-charge’s field, ("vectons" – in CGT), with the impulse density: p v 0  = ρ v c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGWbWdamaaBaaabaWdbiaadAhaa8aabeaadaqadaqaa8qacaaI WaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaeqyWdi3damaaBa aabaWdbiaadAhaa8aabeaapeGaam4yaaaa@4105@  –for a static interaction between Q and q, with an expression of the form:

E c = k 1 ρ c (r) v c 2 = k 1 ρ a 0 a 2 r 2 v c 2 ;       ρ a 0 = ρ c (a) ;   v c =c;     k 1 = 4π a 2 e ;     ρ c (r)= ρ a 0 a 2 r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyramaaBa aabaGaam4yaaqabaGaeyypa0ZaaubeaeqabaGaam4yaaqabeaacaWG RbWaaSbaaeaacaaIXaaabeaacqaHbpGCaaGaamiiaiaadIcacaWGYb GaamykaiabgwSixlaabAhadaqhaaqaaiaabogaaeaacaqGYaaaaiaa d2dacaWGRbWaaSbaaeaacaaIXaaabeaacqaHbpGCdaqhaaqaaiaadg gaaeaacaaIWaaaaiaadccadaWcaaqaamaavacabeqabeaacaWGYaaa baGaamyyaaaaaeaadaqfGaqabeqabaGaamOmaaqaaiaadkhaaaaaai abgwSixlaabAhadaqhaaqaaiaabogaaeaacaqGYaaaaiaadUdacaWG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqaHbpGCdaqhaaqaai aabggaaeaacaqGWaaaaiabg2da9maavababeqaaiaadogaaeqabaGa eqyWdihaaiaadIcacaWGHbGaamykaiaabccacaGG7aGaaeiiaiaabc cacaqG2bWaaSbaaeaacaqGJbaabeaacqGH9aqpcaWGJbGaai4oaiaa bccacaqGGaGaaeiiaiaabccacaqGRbWaaSbaaeaacaqGXaaabeaacq GH9aqpdaWcaaqaaiaabsdacqaHapaCcaqGHbWaaWbaaeqabaGaaeOm aaaaaeaacaWGLbaaaiaabUdacaqGGaGaaeiiaiaabccacaqGGaWaau beaeqabaGaam4yaaqabeaacqaHbpGCaaGaamiiaiaadIcacaWGYbGa amykaiaad2dacqaHbpGCdaqhaaqaaiaadggaaeaacaaIWaaaaiaadc cadaWcaaqaamaavacabeqabeaacaWGYaaabaGaamyyaaaaaeaadaqf GaqabeqabaGaamOmaaqaaiaadkhaaaaaaaaa@875B@  (2)

i.e.- dependent on the vv- speed of quanta relative to the interaction semi-surface: S x = 2π r 0 2 =n·2π a 2 = n S x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaBaaabaWdbiaadIhaa8aabeaapeGaeyypa0Jaaeii aiaaikdacqaHapaCcaWGYbWdamaaBaaabaWdbiaaicdaa8aabeaada ahaaqabeaapeGaaGOmaaaacqGH9aqpcaWGUbGaai4TaiaaikdacqaH apaCcaWGHbWdamaaCaaabeqaa8qacaaIYaaaaiabg2da9iaabccaca WGUbGaam4ua8aadaWgaaqaa8qacaWG4baapaqabaWaaWbaaeqabaWd biaaicdaaaaaaa@4D29@ , of the charge q=n·e, the electric charge’s sign depending on the helicity of the vectons, (on the vecton’s spin orientation relative to the vecton’s impulse), obtained by the (pseudo)magnetic interaction with the polarized vectorial photons of the electron’s surface.1,2 In CGT, Sx0 is considered as being the interaction section of the electron with the E-field quanta: Sx0=na+ rv2, with: a=1,41fm- the radius of an electron with the e-charge on its surface and rv=0,41·a- the gauge radius of the vecton, (CGT), which results by the value of gauge constant k1 calculated by considering that- at electron’s surface (r=a), the electrostatic energy density is equal with the kinetic energy density Îv(a) of the E-field quanta, i.e.:

 ½ e 0 E 2 a  = v a  = ½ ρ a 0 . c 2 = ½ 1/ k 1 ·E a , k 1 = 4π a 2 /e =  S 0 /e = 2 S x 0 /e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaaiyVaiaadwgapaWaaSbaaeaapeGaaGimaaWdaeqaa8qa caWGfbWdamaaCaaabeqaa8qacaaIYaaaa8aadaqadaqaa8qacaWGHb aapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaeyicI48damaaBaaa baWdbiaadAhaa8aabeaadaqadaqaa8qacaWGHbaapaGaayjkaiaawM caa8qacaqGGaGaeyypa0Jaaeiiaiaac2lacqaHbpGCpaWaaSbaaeaa peGaamyyaaWdaeqaamaaCaaabeqaa8qacaaIWaaaa8aacaGGUaWdbi aadogapaWaaWbaaeqabaWdbiaaikdaaaGaeyypa0Jaaeiiaiaac2la paWaaeWaaeaapeGaaGymaiaac+cacaWGRbWdamaaBaaabaWdbiaaig daa8aabeaaaiaawIcacaGLPaaapeGaai4TaiaadweapaWaaeWaaeaa peGaamyyaaWdaiaawIcacaGLPaaapeGaaiilaiabgkDiElaadUgapa WaaSbaaeaapeGaaGymaaWdaeqaa8qacqGH9aqpcaqGGaGaaGinaiab ec8aWjaadggapaWaaWbaaeqabaWdbiaaikdaaaGaai4laiaadwgaca qGGaGaeyypa0JaaeiiaiaadofapaWaaWbaaeqabaWdbiaaicdaaaGa ai4laiaadwgacaqGGaGaeyypa0JaaeiiaiaaikdacaWGtbWdamaaBa aabaWdbiaadIhaa8aabeaadaahaaqabeaapeGaaGimaaaacaGGVaGa amyzaaaa@77A6@  (3)

The magnetic B-field is generated when the (pseudo)charge: qs = S0/k1 has a perpendicular v 0 = v p .cosθ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWG2bWdamaaBaaabaWdbiaaicdaa8aabeaapeGaeyypa0JaamOD a8aadaWgaaqaa8qacaWGWbaapaqabaGaaiOla8qacaWGJbGaam4Bai aadohacqaH4oqCcqGHsislaaa@423B@ speed relative to the E-field (Figure 1), according to the impulse density theorem for ideal fluids derived from a Gauss- Ostrogranski relation, which gives the relation for the total electrodynamic force (including the Lorentz force), in the form:1

F i = m p a i = S 0 k 1 k 1 ρ c v c 2 + k 1 ρ c v c v 0 n i = q s E i 0 + B j v 0 =  F i 0 + F i l  ;   B j = k 1 ρ c v c  ;   v c c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaBa aabaGaamyAaaqabaGaeyypa0JaamyBamaaBaaabaGaamiCaaqabaGa amyyamaaBaaabaGaamyAaaqabaGaeyypa0ZaaSaaaeaacaWGtbWaaW baaeqabaGaaGimaaaaaeaacaWGRbWaaSbaaeaacaaIXaaabeaaaaWa aeWaaeaacaWGRbWaaSbaaeaacaaIXaaabeaacqaHbpGCdaWgaaqaai aadogaaeqaaiaabAhadaqhaaqaaiaabogaaeaacaqGYaaaaiabgUca RiaadUgadaWgaaqaaiaaigdaaeqaaiabeg8aYnaaBaaabaGaam4yaa qabaGaaeODamaaBaaabaGaae4yaaqabaGaaeODamaaBeaabaGaaeim aaqabaaacaGLOaGaayzkaaGaamOBamaaBaaabaGaamyAaaqabaGaey ypa0JaaeyCamaaBaaabaGaae4CaaqabaWaaeWaaeaacaWGfbWaa0ba aeaacaWGPbaabaGaaGimaaaacqGHRaWkcaWGcbWaaSbaaeaacaWGQb aabeaacqGHflY1caqG2bWaaSbaaeaacaaIWaaabeaaaiaawIcacaGL PaaacqGH9aqpcaqGGaGaamOramaaDaaabaGaamyAaaqaaiaaicdaaa Gaey4kaSIaamOramaaDaaabaGaamyAaaqaaiaadYgaaaGaaeiiaiaa bUdacaqGGaGaaeiiaiaabccacaqGcbWaaSbaaeaacaqGQbaabeaacq GH9aqpcaqGRbWaaSbaaeaacaqGXaaabeaacqaHbpGCdaWgaaqaaiaa bogaaeqaaiaabAhadaWgaaqaaiaabogaaeqaaiaabccacaqG7aGaae iiaiaabccacaqGGaGaaeODamaaBeaabaGaae4yaaqabaGaeyyrIaKa am4yaaaa@801B@  (4)

Figure 1 Gravitostatic and gravito-dynami interaction.

The eq. (4) resulting by the impulse density: p i = r c v c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGWbWdamaaBaaabaWdbiaadMgaa8aabeaapeGaeyypa0JaamOC a8aadaWgaaqaa8qacaWGJbaapaqabaWdbiaadAhapaWaaSbaaeaape Gaam4yaaWdaeqaaaaa@3E61@ included in the tensor ik MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4dIu9aaS baaeaaqaaaaaaaaaWdbiaadMgacaWGRbaapaqabaaaaa@3A49@ , that is:

F i = m p a i = - d dt s ρ c v c dτ  = Π ik dS k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaeqaba GaamyAaaqabeaacaWGgbaaaiaadccacaWG9aGaamiiamaavababeqa aiaadchaaeqabaGaamyBaaaacqGHflY1daqfqaqabeaacaWGPbaabe qaaiaadggaaaGaamiiaiaad2dacaWGGaGaamylaiaadccadaWcaaqa aiaadsgaaeaacaWGKbGaamiDaaaadaqfqaqabeaacaWGZbaabeqaai abgUIiYdaadaqfqaqabeaacaWGJbaabeqaaiabeg8aYbaacqGHflY1 caWGGaWaaubeaeqabaGaam4yaaqabeaacaqG2baaaiabgwSixlaads gacqaHepaDcaqGGaGaamiiaiaad2dacaWGGaGaey4kIi=aaubeaeqa baGaamyAaiaadUgaaeqabaGaeuiOdafaaiaadccacqGHflY1daqfqa qabeaacaWGRbaabeqaaiaadsgacaWGtbaaaaaa@64DA@  (5)

with: ik MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4dIu9aaS baaeaaqaaaaaaaaaWdbiaadMgacaWGRbaapaqabaaaaa@3A49@ -the impulse density tensor:

Πik=Pcδik+ρc(vivk);  with:  δik= (nink)=nj;  ni=nk=1;  dSk=nkdS 

(ni;nk-unit vectors);   Pc =ρcvc2;  vi=vcni;   vk=v0nk;      (6)

For ik MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4dIu9aaS baaeaaqaaaaaaaaaWdbiaadMgacaWGRbaapaqabaaaaa@3A49@ =constant and d S k =  S 0 . n k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqGHRiI8caWGKbGaam4ua8aadaWgaaqaa8qacaWGRbaapaqabaWd biabg2da9iaabccacaWGtbWdamaaCaaabeqaa8qacaaIWaaaa8aaca GGUaWdbiaad6gapaWaaSbaaeaapeGaam4AaaWdaeqaaaaa@4203@ , with: S 0 = 4n r 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaCaaabeqaa8qacaaIWaaaaiabg2da9iaabccacaaI 0aGaamOBaiaadkhapaWaaSbaaeaapeGaaGimaaWdaeqaamaaCaaabe qaa8qacaaIYaaaaaaa@3EC4@  for elastic interaction with the field quanta and with: r 0 = a =  e 2 /8π ε 0 m e c 2 = 1.41 fm MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGYbWdamaaBaaabaWdbiaaicdaa8aabeaapeGaeyypa0Jaaeii aiaadggacaqGGaGaeyypa0JaaeiiaiaadwgapaWaaWbaaeqabaWdbi aaikdaaaGaai4laiaaiIdacqaHapaCcqaH1oqzpaWaaSbaaeaapeGa aGimaaWdaeqaa8qacaWGTbWdamaaBaaabaWdbiaadwgaa8aabeaape Gaam4ya8aadaahaaqabeaapeGaaGOmaaaacqGH9aqpcaqGGaGaaGym aiaac6cacaaI0aGaaGymaiaabccacaWGMbGaamyBaaaa@509C@ , (i.e the e-charge in surface), it results that: k 1 = 1.57x 10 10 m 2 /C si MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGRbWdamaaBaaabaWdbiaaigdaa8aabeaapeGaeyypa0Jaaeii aiaaigdacaGGUaGaaGynaiaaiEdacaWG4bGaaGymaiaaicdapaWaaW baaeqabaWdbiabgkHiTiaaigdacaaIWaaaa8aadaWadaqaa8qacaWG TbWdamaaCaaabeqaa8qacaaIYaaaaiaac+cacaWGdbaapaGaay5wai aaw2faamaaBaaabaWdbiaadohacaWGPbaapaqabaaaaa@4A0E@ . Conform to eqn. (3), the expression of the magnetic induction results- in CGT, in the form:

B(r)  =   k 1 ρ c v v  ;   v v c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaiaacI cacaWGYbGaaiykaiaabccacaqGGaGaeyypa0JaaeiiaiaabccacaWG RbWaaSbaaeaacaaIXaaabeaacqGHflY1cqaHbpGCdaWgaaqaaiaado gaaeqaaiaadAhadaWgaaqaaiaadAhaaeqaaiaabccacaGG7aGaaeii aiaabccacaWG2bWaaSbaaeaacaWG2baabeaacqGHijYUcaWGJbaaaa@4DB0@  (7)

For the elementary electric charge ‘e’ of the electron, the charge’ sign depends on its intrinsic chirality: ζ e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOTdO3aaS baaeaaqaaaaaaaaaWdbiaadwgaa8aabeaaaaa@3980@ and the magnetic moment of particles μ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd02aaS baaeaaqaaaaaaaaaWdbiaahchaa8aabeaaaaa@3988@  results in CGT from an etherono-quantonic vortex of primordial dark energy: Γ μ = Γ A + Γ B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC0aaS baaeaacqaH8oqBaeqaaabaaaaaaaaapeGaeyypa0Zdaiabfo5ahnaa BaaabaWdbiaadgeaa8aabeaapeGaey4kaSYdaiabfo5ahnaaBaaaba Wdbiaadkeaa8aabeaaaaa@40DB@ , formed by a component Γ A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC0aaS baaeaaqaaaaaaaaaWdbiaadgeaa8aabeaaaaa@3907@  of ”heavy” etherons (s-etherons, m s 10 60 kg/ m 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGTbWdamaaBaaabaWdbiaadohaa8aabeaacqGHijYUpeGaaGym aiaaicdapaWaaWbaaeqabaWdbiabgkHiTiaaiAdacaaIWaaaaiaadU gacaWGNbGaai4laiaad2gapaWaaWbaaeqabaWdbiaaiodaaaaaaa@433F@ ), explaining physically the magnetic potential A and a component of ”quantons” (mh = hn/c2 = h·1/c2 =7.37x10-51 kg/m3), explaining physically the magnetic induction B = rot. A, generates the field lines of the induction B by the gradient of the impulse density: r p A = d p A /dr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe9aaS baaeaaqaaaaaaaaaWdbiaadkhaa8aabeaapeGaamiCa8aadaWgaaqa a8qacaWGbbaapaqabaWdbiabg2da9iaabccacaWGKbGaamiCa8aada Wgaaqaa8qacaWGbbaapaqabaWdbiaac+cacaWGKbGaamOCaaaa@42BF@ , which induces ζ B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOTdO3aaS baaeaacaWGcbaabeaaaaa@392E@ -vortex-tubes of the B -induction around the vectons of the electric E- field.1,2

The argument for a Q-charge model with sperical distribution of E-field quanta consists in the fact that an atomic proton, for example, may interact simultaneously with n electrons with the same force as in the case of the interaction with a single electron. The Maxwell’s electromagnetic field equations results in CGT according to eqs. (3)-(4), in a general vectorial form, of a vectorial E- or H- field intensity reciprocal generation:

B = 1 c 2 v E x E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaeaaca WGcbaabeqaaiabgkziUcaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG JbWaaWbaaeqabaGaaGOmaaaaaaWaaCbiaeaacaqG2bWaaSbaaeaaca qGfbaabeaaaeqabaGaeyOKH4kaaiaadIhadaWfGaqaaiaadweaaeqa baGaeyOKH4kaaaaa@4511@   E l = v 0 x B = v B x B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiaeaaca WGfbWaaWbaaeqabaGaamiBaaaaaeqabaGaeyOKH4kaaiabg2da9maa xacabaGaaeODamaaBaaabaGaaeimaaqabaaabeqaaiabgkziUcaaca WG4bWaaCbiaeaacaWGcbaabeqaaiabgkziUcaacqGH9aqpcqGHsisl daWfGaqaaiaabAhadaWgaaqaaiaabkeaaeqaaaqabeaacqGHsgIRaa GaamiEamaaxacabaGaamOqaaqabeaacqGHsgIRaaaaaa@4D6A@  (8)

 another specific field equation resulting also in a general way from the continuity equation:

  ρ c t = - ( ρ c v E ) ;     1 c 2 ( k 1 ρ c c 2 ) t = - ( k 1 ρ c v E ); 1 c 2 E t =B=divB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaeaacq GHciITdaqfqaqabeaacaWGJbaabeqaaiabeg8aYbaaaeaacqGHciIT caWG0baaaiaadccacaWG9aGaamiiaiaad2cacaWGGaGaey4bIeTaam ikamaavababeqaaiaadogaaeqabaGaeqyWdihaaiabgwSixlaabAha daWgaaqaaiaabweaaeqaaiaadMcacaWGGaGaam4oaiaadccacaqGGa GaaeiiaiaabccacaWGGaWaaSaaaeaacaWGXaaabaGaam4yamaaCaaa beqaaiaaikdaaaaaaiabgwSixpaalaaabaGaeyOaIyRaamikamaava babeqaaiaaigdaaeqabaGaam4AaaaadaqfqaqabeaacaWGJbaabeqa aiabeg8aYbaadaqfGaqabeqabaGaamOmaaqaaiaadogaaaGaamykaa qaaiabgkGi2kaadshaaaGaamiiaiaad2dacaWGGaGaamylaiaadcca cqGHhis0caWGOaWaaubeaeqabaGaaGymaaqabeaacaWGRbaaamaava babeqaaiaadogaaeqabaGaeqyWdihaaiaabAhadaWgaaqaaiaabwea aeqaaiaadMcacaGG7aGaeyO0H49aaSaaaeaacaaIXaaabaGaam4yam aaCaaabeqaaiaaikdaaaaaamaalaaabaGaeyOaIyRaamyraaqaaiab gkGi2kaadshaaaGaeyypa0JaeyOeI0Iaey4bIeTaeyyXICTaamOqai abg2da9iabgkHiTiaadsgacaWGPbGaamODaiaadkeaaaa@82DB@  (9)

For the electron, according to eq. (4), for r>>rm =3.86fm representing its Compton radius, the spinning of quantons in the GB-vortex around the e-charge, is realized in conditions of quantum non-equilibrium, according to the Γ B = 2πr. v ct = 2π r m c = ct MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC0aaS baaeaaqaaaaaaaaaWdbiaadkeaa8aabeaapeGaeyypa0Jaaeiiaiaa ikdacqaHapaCcaWGYbGaaiOlaiaadAhapaWaaSbaaeaapeGaam4yai aadshaa8aabeaapeGaeyypa0JaaeiiaiaaikdacqaHapaCcaWGYbWd amaaBaaabaWdbiaad2gaa8aabeaapeGaam4yaiaabccacqGH9aqpca qGGaGaam4yaiaadshaaaa@4D9D@ , and B(r) has the vortexial kinetic moment conservation law: form found by the classic magnetism:

B (r) = k 1 ρ v v ct r   k 1 ρ a 0 a 2 r 2 r μ c r = k 1 ρ B c = μ 0 2π μ e r 3 ;      ρ a 0 = μ 0 k 1 2  ;   ρ B = v v r c ρ v ;   r > r μ ;  MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqaiaadc cacaWGOaGaamOCaiaadMcacaWGGaGaamypaiaadccadaqfqaqabeaa caaIXaaabeqaaiaadUgaaaWaaubeaeqabaGaamODaaqabeaacqaHbp GCaaGaaeODamaaDaaabaGaae4yaiaabshaaeaacaqGYbaaaiaadcca cqGHfjcqcaqGGaGaamiiamaavababeqaaiaaigdaaeqabaGaam4Aaa aacqaHbpGCdaqhaaqaaiaadggaaeaacaaIWaaaamaalaaabaWaaubi aeqabeqaaiaadkdaaeaacaWGHbaaaaqaamaavacabeqabeaacaWGYa aabaGaamOCaaaaaaGaeyyXIC9aaSaaaeaacaWGYbWaaSbaaeaacqaH 8oqBaeqaaiaadogaaeaacaWGYbaaaiabg2da9maavababeqaaiaaig daaeqabaGaam4AaaaadaqfqaqabeaacaWGcbaabeqaaiabeg8aYbaa caWGJbGaamiiaiaad2dacaWGGaWaaSaaaeaadaqfqaqabeaacaqGWa aabeqaaiabeY7aTbaaaeaacaWGYaGaeqiWdahaaiabgwSixpaalaaa baWaaubeaeqabaGaamyzaaqabeaacqaH8oqBaaaabaWaaubiaeqabe qaaiaadodaaeaacaWGYbaaaaaacaWGGaGaai4oaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaeqyWdi3aa0baaeaacaWGHbaabaGaaGimaa aacqGH9aqpdaWcaaqaamaavababeqaaiaabcdaaeqabaGaeqiVd0ga aaqaaiaadUgadaqhaaqaaiaaigdaaeaacaaIYaaaaaaacaqGGaGaae 4oaiaabccacaqGGaWaaubeaeqabaGaamOqaaqabeaacqaHbpGCaaGa eyypa0ZaaSaaaeaacaqG2bWaa0baaeaacaqG2baabaGaaeOCaaaaae aacaqGJbaaamaavababeqaaiaadAhaaeqabaGaeqyWdihaaiaacUda caqGGaGaaeiiaiaabccacaWGYbGaamiiaiaad6dacaWGGaWaaubeae qabaGaeqiVd0gabeqaaiaadkhaaaGaamiiaiaacUdacaqGGaaaaa@9336@  (10)

  ρ B the density of  ζ B vortextubes), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi3aaS baaeaaqaaaaaaaaaWdbiaadkeaa8aabeaapeGaai4eGiaadshacaWG ObGaamyzaiaabccacaWGKbGaamyzaiaad6gacaWGZbGaamyAaiaads hacaWG5bGaaeiiaiaad+gacaWGMbGaaiiOaiabeA7a69aadaWgaaqa a8qacaWGcbaapaqabaWdbiabgkHiTiaadAhacaWGVbGaamOCaiaads hacaWGLbGaamiEaiabgkHiTiaadshacaWG1bGaamOyaiaadwgacaWG ZbWdaiaacMcapeGaaiilaaaa@589E@ the magnetic potential resulting in the form:

A k (r)= B j (r)r 2 = k 1 r μ c 2 ρ a 0 a 2 r 2  = k 1 Γ A ( r μ ) 4π ρ s (r);    r r μ ρ s (r)= ρ a 0 a 2 r 2  ;  Γ A ( r μ )=2π. r μ c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqamaaBa aabaGaam4AaaqabaGaaiikaiaadkhacaGGPaGaeyypa0ZaaSaaaeaa caWGcbWaaSbaaeaacaWGQbaabeaacaGGOaGaamOCaiaacMcacqGHfl Y1caWGYbaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadUgadaWgaaqa aiaaigdaaeqaaiaadkhadaWgaaqaaiabeY7aTbqabaGaam4yaaqaai aaikdaaaGaeqyWdi3aa0baaeaacaWGHbaabaGaaGimaaaadaWcaaqa aiaadggadaahaaqabeaacaaIYaaaaaqaaiaadkhadaahaaqabeaaca aIYaaaaaaacaqGGaGaeyypa0ZaaSaaaeaacaWGRbWaaSbaaeaacaaI XaaabeaacqGHflY1cqqHtoWrdaWgaaqaaiaadgeaaeqaaiaacIcaca WGYbWaaSbaaeaacqaH8oqBaeqaaiaacMcaaeaacaaI0aGaeqiWdaha aiabeg8aYnaaBaaabaGaam4CaaqabaGaaiikaiaadkhacaGGPaGaae 4oaiaabccacaqGGaGaaeiiaiaabccacaqGYbGaeyyzImRaaeOCamaa BaaabaGaeqiVd0gabeaacaqG7aGaaeiiaiabeg8aYnaaBaaabaGaam 4CaaqabaGaaiikaiaadkhacaGGPaGaeyypa0JaeqyWdi3aa0baaeaa caWGHbaabaGaaGimaaaadaWcaaqaaiaadggadaahaaqabeaacaaIYa aaaaqaaiaadkhadaahaaqabeaacaaIYaaaaaaacaqGGaGaae4oaiaa bccacqqHtoWrdaWgaaqaaiaadgeaaeqaaiaacIcacaWGYbWaaSbaae aacqaH8oqBaeqaaiaacMcacqGH9aqpcaaIYaGaeqiWdaNaaiOlaiaa dkhadaWgaaqaaiabeY7aTbqabaGaam4yaaaa@8E3F@  (11)

Also, the Lorentz force results of Magnus type - according also to other theories,3 considering a pseudo-cylinder (barrel like) form of the electron with the high le=2a and a relative impulse density of the E-field vectons: pv= revvr, generating the B-field according to eq. (4):

F L =2a Γ a * n B v e =qB v e =  e ζ e k 1 ( n e v v r ) r v e  ;        Γ a * =2πac ζ e ;       n B = n e (r)[ v v r /c] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaBa aabaGaamitaaqabaGaeyypa0JaaGOmaiaadggacqGHflY1cqqHtoWr daqhaaqaaiaadggaaeaacaGGQaaaaiabgwSixlaad6gadaWgaaqaai aadkeaaeqaaiabgwSixlaabAhadaWgaaqaaiaabwgaaeqaaiabg2da 9iaadghacqGHflY1caWGcbGaeyyXICTaaeODamaaBaaabaGaaeyzaa qabaGaeyypa0JaaeiiaiaabccacaWGLbGaeqOTdO3aaSbaaeaacaWG LbaabeaacqGHflY1caWGRbWaaSbaaeaacaaIXaaabeaacaGGOaGaam OBamaaBaaabaGaamyzaaqabaGaaeODamaaDaaabaGaaeODaaqaaiaa bkhaaaGaaiykamaaBaaabaGaamOCaaqabaGaeyyXICTaaeODamaaBa aabaGaaeyzaaqabaGaaeiiaiaacUdacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaeu4KdC0aa0baaeaacaqGHbaabaGaae OkaaaacqGH9aqpcaaIYaGaeqiWdaNaeyyXICTaamyyaiabgwSixlaa dogacqGHflY1cqaH2oGEdaWgaaqaaiaadwgaaeqaaiaabUdacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaWGUbWaaSbaaeaacaqG cbaabeaacqGH9aqpcaWGUbWaaSbaaeaacaWGLbaabeaacaGGOaGaam OCaiaacMcacqGHflY1caGGBbGaaeODamaaDaaabaGaaeODaaqaaiaa bkhaaaGaai4laiaadogacaGGDbaaaa@9448@  (12)

The mp-particle being formed- according to CGT, by np quantons having the mh-mass, the eq. (4) is generalisable for the gravito-dynamic force and field, by the relation: S 0 g =  p p .½ S h =  m q / m h .½ S h , ( S h = 4 r h 2 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaCaaabeqaa8qacaaIWaaaa8aadaWgaaqaa8qacaWG NbaapaqabaWdbiabg2da9iaabccacaWGWbWdamaaBaaabaWdbiaadc haa8aabeaacaGGUaWdbiaac2lacaWGtbWdamaaBaaabaWdbiaadIga a8aabeaapeGaeyypa0Jaaeiia8aadaqadaqaa8qacaWGTbWdamaaBa aabaWdbiaadghaa8aabeaapeGaai4laiaad2gapaWaaSbaaeaapeGa amiAaaWdaeqaaaGaayjkaiaawMcaaiaac6capeGaaiyVaiaadofapa WaaSbaaeaapeGaamiAaaWdaeqaa8qacaGGSaGaaeiia8aacaGGOaWd biaadofapaWaaSbaaeaapeGaamiAaaWdaeqaa8qacqGH9aqpcaqGGa GaaGinaGGabWGae83dIuDcfaOaamOCa8aadaWgaaqaa8qacaWGObaa paqabaWaaWbaaeqabaWdbiaaikdaaaWdaiaacMcapeGaaiilaaaa@5BE6@  with: rh-the quanton radius, resulted from its penetrability to the g- and s-etherons action. For the attracted mp-mass and for the gravitic field of an attractive mass M of a particle or of a body, it may be assigned an “electrogravitic” pseudo-charge, qG, respective- by eq. (4), -also an “electrogravitic” field, EG(r,QG), i.e.:

Fig=mpaGi=qGEG(r,QG) =  khmp(ρgvg2+ρgvgvo)ni;

kh=Sh/2mh qG=Sg0/k1;   EG=± k1ρgc2;   Sg0=khmp;   vgc;  v0 vgni

In the expression (13b) of the electrogravitic field intensity, EG, the meaning of the sign:± is that the electrogravitic QG -charge generating the EG-field is given by an uniform spheric distribution of an etheronic flux with a non-compensated component, i.e. –by the difference between the received etheronic flux and the etheronic flux reflected by the super-dense centrols of the inertial M-mass structure, in the case of an attractive, gravitic M-charge.

 Therefore, considering this non-compensated etheronic component as a gravitonic field flux, having the impulse density p g r r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWHWbWdamaaBaaabaWdbiaadEgaa8aabeaadaqadaqaa8qacaWG YbaapaGaayjkaiaawMcaaiabggziTkabgoziV+qacaWHYbaaaa@4061@ , the generation of the gravitation force, FN , complies with the Lesage’s hypothesis4 which presumes the screening of the mp-mass by the M-mass in report with the cosmic etheronic winds that comes radial-symmetrically towards the M-mass, (Figure 1). The etheronic flux formed by a M-mass with disturbed sinergonic vortex which emits s-etherons, gives an antigravitic pseudocharge, generating a positive, i.e. repulsive EG-field. The gauge value of kh is obtained considering for the electron’s case the gauge condition: qG »e, which complies with the expression obtained by M. Agop,5 starting from the acceleration of an electron in the field of another electron:

a i e = F N e m e + F e e m e = a Gi e + e m e e 4πε r 2 = e m e ( E G e (r)+ E e e (r));      E G = m e e a Gi e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyamaaDa aabaGaamyAaaqaaiaadwgaaaGaeyypa0ZaaSaaaeaacaWGgbWaa0ba aeaacaWGobaabaGaamyzaaaaaeaacaWGTbWaaSbaaeaacaWGLbaabe aaaaGaey4kaSYaaSaaaeaacaWGgbWaa0baaeaacaWGLbaabaGaamyz aaaaaeaacaWGTbWaaSbaaeaacaWGLbaabeaaaaGaeyypa0Jaamyyam aaDaaabaGaam4raiaadMgaaeaacaWGLbaaaiabgUcaRmaabmaabaWa aSaaaeaacaWGLbaabaGaamyBamaaBaaabaGaamyzaaqabaaaaaGaay jkaiaawMcaaiabgwSixpaalaaabaGaamyzaaqaaiaaisdacqaHapaC cqaH1oqzcqGHflY1caWGYbWaaWbaaeqabaGaaGOmaaaaaaGaeyypa0 ZaaeWaaeaadaWcaaqaaiaadwgaaeaacaWGTbWaaSbaaeaacaWGLbaa beaaaaaacaGLOaGaayzkaaGaeyyXICTaaiikaiaadweadaqhaaqaai aadEeaaeaacaWGLbaaaiaacIcacaWGYbGaaiykaiabgUcaRiaadwea daqhaaqaaiaadwgaaeaacaWGLbaaaiaacIcacaWGYbGaaiykaiaacM cacaGG7aGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGfbWaa0ba aeaacaqGhbaabaGaaeyzaiaabccaaaGaeyypa0ZaaeWaaeaadaWcaa qaaiaad2gadaWgaaqaaiaadwgaaeqaaaqaaiaadwgaaaaacaGLOaGa ayzkaaGaeyyXICTaamyyamaaDaaabaGaam4raiaadMgaaeaacaWGLb aaaaaa@8125@  (14)

which gives by eqn. (13) the gauge values: kh = (e/me)·k1 = 27.4 [m2/kg], rh =1.79x10-25 m.

For the variation of ρ g r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHbpGCpaWaaSbaaeaapeGaam4zaaWdaeqaamaabmaabaWdbiaa dkhaa8aacaGLOaGaayzkaaaaaa@3C43@ -density of the gravitonic wind, in compliance with eq. (12) of the electrogravitic qG(M)-charge of the M-mass having the radius r0 and for v g = c;  v 0 =  v p .cos v g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWG2bWdamaaBaaabaWdbiaadEgaa8aabeaapeGaeyypa0Jaaeii aiaadogacaGG7aGaaeiiaiaadAhapaWaaSbaaeaapeGaaGimaaWdae qaa8qacqGH9aqpcaqGGaGaamODa8aadaWgaaqaa8qacaWGWbaapaqa baGaaiOla8qacaWGJbGaam4BaiaadohacqGHDisTcqGHLkIxcaWG2b WdamaaBaaabaWdbiaadEgaa8aabeaaaaa@4BDB@ , the gravitic force results from eq. (12) as having the form:

F i g = k h m p . ρ g c 2 1+ v 0 c n i = G m p M r 2 1+ v 0 c n i ;     ρ g (r) = ρ g 0 r 0 2 r 2 M m h ρ g h r h 2 r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaDa aabaGaamyAaaqaaiaadEgaaaGaamiiaiaad2dacaWGGaWaaubeaeqa baGaamiAaaqabeaacqGHsislcaWGRbaaaiaadccadaqfqaqabeaaca WGWbaabeqaaiaad2gaaaGaamOlamaavababeqaaiaadEgaaeqabaGa eqyWdihaamaavacabeqabeaacaWGYaaabaGaam4yaaaadaqadaqaai aaigdacqGHRaWkdaWcaaqaaiaabAhadaWgaaqaaiaabcdaaeqaaaqa aiaabogaaaaacaGLOaGaayzkaaWaaubeaeqabaGaamyAaaqabeaaca WGUbaaaiaadccacaWG9aGaamiiaiabgkHiTiaadEeacaWGGaWaaSaa aeaadaqfqaqabeaacaWGWbaabeqaaiaad2gaaaGaamiiaiaad2eaae aacaWGYbWaaWbaaeqabaGaaGOmaaaaaaWaaeWaaeaacaaIXaGaey4k aSYaaSaaaeaacaqG2bWaaSbaaeaacaqGWaaabeaaaeaacaqGJbaaaa GaayjkaiaawMcaamaavababeqaaiaadMgaaeqabaGaamOBaaaacaWG GaGaai4oaiaadccacaWGGaGaaeiiaiaabccacaqGGaWaaubeaeqaba Gaam4zaaqabeaacqaHbpGCaaGaamikaiaadkhacaWGPaGaamiiaiaa d2dacaWGGaWaaubmaeqabaGaam4zaaqaaiaabcdaaeaacqaHbpGCaa WaaSaaaeaacaWGYbWaa0baaeaacaaIWaaabaGaaGOmaaaaaeaadaqf GaqabeqabaGaamOmaaqaaiaadkhaaaaaaiabgIKi7oaalaaabaGaam ytaaqaaiaad2gadaWgaaqaaiaadIgaaeqaaaaacqaHbpGCdaqhaaqa aiaadEgaaeaacaWGObaaamaalaaabaGaamOCamaaDaaabaGaamiAaa qaaiaaikdaaaaabaGaamOCamaaCaaabeqaaiaaikdaaaaaaaaa@813E@  (15)

Where: ρ g 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHbpGCpaWaaSbaaeaapeGaam4zaaWdaeqaamaaCaaabeqaa8qa caaIWaaaaaaa@3A90@  and ρ g h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHbpGCpaWaaSbaaeaapeGaam4zaaWdaeqaamaaCaaabeqaaiaa dIgaaaaaaa@3AB3@  are the density of the gravitonic flux (i.e.-of the uncompensed etheronic wind) at the M (r0)-mass surface and- respectively- at the mh(rh)- quanton surface.

Particularizations; the planetary perihelion precession case and the Lorentz’ force

In the case of the gravitation force, we may conclude that the force Fig given by eqn. (15) results from a potential:

V i g r  =  V i 0 1 +  v 0 /c ; ( v 0 =  v p × cosθ// n i ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGwbWdamaaBaaabaWdbiaadMgaa8aabeaadaahaaqabeaapeGa am4zaaaapaWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaae iiaiabg2da9iaabccacaWGwbWdamaaBaaabaWdbiaadMgaa8aabeaa daahaaqabeaapeGaaGimaaaapaWaaeWaaeaapeGaaGymaiaabccacq GHRaWkcaqGGaGaamODa8aadaWgaaqaa8qacaaIWaaapaqabaWdbiaa c+cacaWGJbaapaGaayjkaiaawMcaa8qacaGG7aGaaeiia8aacaGGOa WdbiaadAhapaWaaSbaaeaapeGaaGimaaWdaeqaa8qacqGH9aqpcaqG GaGaamODa8aadaWgaaqaa8qacaWGWbaapaqabaWaaSbaaeaapeGaey 41aqlapaqabaWdbiaadogacaWGVbGaam4CaiabeI7aXjaac+cacaGG VaGaamOBa8aadaWgaaqaa8qacaWGPbaapaqabaGaaiykaiaac6caaa a@5E55@

 If the mp-mass represents a photon having the speed v0 = c, the value of the Fig -force, acting as a gravitic type force, results from the equation (13) as being: F g r,c =2  F g r,0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGgbWdamaaCaaabeqaa8qacaWGNbaaa8aadaqadaqaa8qacaWG YbGaaiilaiaadogaa8aacaGLOaGaayzkaaWdbiabg2da9iaaikdaca qGGaGaamOra8aadaahaaqabeaapeGaam4zaaaapaWaaeWaaeaapeGa amOCaiaacYcacaaIWaaapaGaayjkaiaawMcaa8qacaGGSaaaaa@462C@ of a double value comparing to Newtonian static gravitational force, in accordance with the Einstein’s theory of relativity and the astrophysical observations. A form with lorentzian type term of the total gravitation force Fig , is obtained also in the tensorial theory of gravitation for a weak gravitational field, giving as solutions the gravitational analogs to Maxwell’s equations for electromagnetism,5,6,7 the increasing of Fig with the v-speed, being equivalent with an transversal relativistic effect of the gravitational mass growth:

F v =  g g . m p (1+β) =  g g . m p v , (β=  v 0 /c) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGgbWdamaaBaaabaWdbiaadAhaa8aabeaapeGaeyypa0Jaaeii aiaadEgapaWaaSbaaeaapeGaam4zaaWdaeqaaiaac6capeGaamyBa8 aadaWgaaqaa8qacaWGWbaapaqabaGaaiika8qacaaIXaGaey4kaSIa eqOSdi2daiaacMcapeGaaeiiaiabg2da9iaabccacaWGNbWdamaaBa aabaWdbiaadEgaa8aabeaacaGGUaWdbiaad2gapaWaaSbaaeaapeGa amiCaaWdaeqaamaaCaaabeqaa8qacaWG2baaaiaacYcacaqGGaWdai aacIcacqaHYoGypeGaeyypa0JaaeiiaiaadAhapaWaaSbaaeaapeGa aGimaaWdaeqaa8qacaGGVaGaam4ya8aacaGGPaaaaa@56C7@  (16)

We observe also that the form 15) of the total (static +dynamic) gravitation force Fig, for the case of a celestial body with a (quasi)constant value of v0 corresponds: by the Kepler’s law: v0×r=h=const., to the extended expression of the Newtonian law of gravity including an additional term, of the form:

F G = (G·Mm/ r 2 + B·Mm/ r 3 ),B constant MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGgbWdamaaBaaabaWdbiaadEeaa8aabeaapeGaeyypa0Jaaeii aiabgkHiT8aacaGGOaWdbiaadEeacaGG3cGaamytaiaad2gacaGGVa GaamOCa8aadaahaaqabeaapeGaaGOmaaaacqGHRaWkcaqGGaGaamOq aiaacElacaWGnbGaamyBaiaac+cacaWGYbWdamaaCaaabeqaa8qaca aIZaaaa8aacaGGPaWdbiaacYcacaWGcbGaaeiiaiaabogacaqGVbGa aeOBaiaabohacaqG0bGaaeyyaiaab6gacaqG0baaaa@54CD@  (17)

proposed by Newton in Newton his book: Phylosophiae naturalis Principia mathematica,attempting to explain the Moon's apsidal motion. But even if the resulted relation 13a) is compatible with the linearized form of the Einstein’s relation of general relativity in the approximation of the weak field and may explain the deviation of the light beams at the Sun’s surface, it cannot explain- in the form 13), the planetary perihelion precession without a correction, the expression of the force which may explain simultaneously the gravitational deflection of light and the planetary perihelion precession (ppp) being of the form:

F i g = G m p M r 2 1+ v 0 2 c 2 n i ; n i =1      MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaDa aabaGaamyAaaqaaiaadEgaaaGaamiiaiaad2dacaWGGaGaeyOeI0Ia am4raiaadccadaWcaaqaamaavababeqaaiaadchaaeqabaGaamyBaa aacaWGGaGaamytaaqaaiaadkhadaahaaqabeaacaaIYaaaaaaadaqa daqaaiaaigdacqGHRaWkdaWcaaqaaiaabAhadaqhaaqaaiaabcdaae aacaqGYaaaaaqaaiaabogadaahaaqabeaacaqGYaaaaaaaaiaawIca caGLPaaadaqfqaqabeaacaWGPbaabeqaaiaad6gaaaGaamiiaiaacU dacaWGGaGaamiiamaaemaabaGaamOBamaaBaaabaGaamyAaaqabaaa caGLhWUaayjcSdGaaeypaiaabgdacaqGGaGaaeiiaiaabccacaqGGa Gaaeiiaiaadccaaaa@59CA@  (18)

which for v0 –(quasi)constant to a short time interval dt, may be considered as derived from a gravitation potential VG(r) with the same variation with the v0 –speed.

But the general Einsteinian relativity, even if gives verifiable quantitative results, is a geometrized theory based on transformation relations specific to the special theory of relativity, (on the light speed constancy postulate), which generated also some controversial phenomenological interpretations, such as those of the “twins paradoxe” or those of the speed- depending mass increasing to infinity at relativist speed vc. There were proposed some non-einsteinian explicative models and relations of the total gravitation force which generates the planetary perihelion precession, (Clairaut, Maillard, Bertrand, Tisserand, Lecornu, etc.). Trying a possible returning to a Galilean relativity with the re-interpretation of some experimental results11 such as those of Kaufmann-Bucherer experiments by avoiding paradoxes such as those of the null rest –mass of the photon (conclusion which is in contradiction with the experimentally proven possibility of the photonic Bose- Einstein condensate producing and with the corpuscular model of photon9), it is raised the quescion: which phenomenon may determine the variation of the dynamogene term Fil with v02 instead a variation with v0 , in the frame of the Galilean relativity?

A plausible suggestion may result from the propose of M Fedi8 which considered a Stokes" type force as cause of the ppp phenomenon, generated by the planet"s passing with the v –speed through the superfluid physical vacuum which is considered as non-newtonian fluid, i.e.- with speed- depending viscosity, being proposed a modified Stokes"s equation for the explaining of the planetary perihelion precession, in the form:

F i g = 6πrη= - 6πr(γ -1)κ =- 6πr 1 1 v c 2 1 κ ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaDa aabaGaamyAaaqaaiaadEgaaaGaamiiaiaad2dacaWGGaGaeyOeI0Ia aGOnaiabec8aWjabgwSixlaadkhacqGHflY1cqaH3oaAcqGHflY1ca qG2bGaaeiiaiabg2da9iaabccacaqGTaGaaeiiaiaabAdacqaHapaC cqGHflY1caqGYbGaeyyXICTaaeikaiabeo7aNjaabccacaqGTaGaae ymaiaabMcacqGHflY1cqaH6oWAcaqGGaGaeyypa0Jaaeylaiaabcca caqG2aGaeqiWdaNaeyyXICTaaeOCaiabgwSixpaabmaabaWaaSGaae aacaaIXaaabaWaaOaaaeaacaaIXaGaeyOeI0YaaeWaaeaadaWccaqa aiaabAhaaeaacaqGJbaaaaGaayjkaiaawMcaamaaCaaabeqaaiaaik daaaaabeaaaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgwSixlab eQ7aRjaadccacaGG7aGaamiiaaaa@78ED@  (19)

where: r – the m –body’s radius, h - the dynamic viscosity, k -unitary constant (k = 1 Kg×s-2). For the obtaining of the ppp angle during a rotation period T:

δφ = 24 π 3 A 2 T 2 (1 e 2 ) c 2 =6π v c 2 1 1 e 2 6π G(M+m) A(1 e 2 ) c 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdqMaeq OXdOMaamiiaiaad2dacaWGGaWaaSaaaeaacaaIYaGaaGinaiabec8a WnaaCaaabeqcfauaaiaaiodaaaqcfaOaamyqamaaCaaabeqcfauaai aaikdaaaaajuaGbaGaamivamaaCaaabeqaaiaaikdaaaGaaiikaiaa igdacqGHsislcaWGLbWaaWbaaeqajuaibaGaaGOmaaaajuaGcaGGPa GaeyyXICTaam4yamaaCaaabeqaaiaaikdaaaaaaiabg2da9iaaiAda cqaHapaCdaqadaqaamaalaaabaGaaeODaaqaaiaabogaaaaacaGLOa GaayzkaaWaaWbaaeqajuaqbaGaaGOmaaaajuaGdaWcaaqaaiaaigda aeaacaaIXaGaeyOeI0IaamyzamaaCaaabeqaaiaaikdaaaaaaiabgI Ki7kaaiAdacqaHapaCdaWcaaqaaiaadEeacaGGOaGaamytaiabgUca Riaad2gacaGGPaaabaGaamyqaiaacIcacaaIXaGaeyOeI0Iaamyzam aaCaaabeqaaiaaikdaaaGaaiykaiaadogadaahaaqabeaacaaIYaaa aaaacaWGGaGaai4oaiaadccaaaa@6E1C@  (20)

resulted by the equivalence T 2 = 4 π 2 a 2 / v 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGubWdamaaCaaabeqaa8qacaaIYaaaaiabg2da9iaabccacaaI 0aGaeqiWda3damaaCaaabeqaa8qacaaIYaaaaiaadggapaWaaWbaae qabaWdbiaaikdaaaGaai4laiaadAhapaWaaWbaaeqabaWdbiaaikda aaaaaa@422E@ , with A= ra –the major semi-axis and: =  GM/r a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeODaiaabc cacqGH9aqpcaqGGaWaaOaaaeaacaqGhbGaaeytaiaab+cacaqGYbWa aSbaaeaacaqGHbaabeaaaeqaaaaa@3E24@ the stable second cosmic velocity, is used the Taylor approximation: 2(γ 1) v/c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaaIYaWdaiaacIcacqaHZoWzpeGaeyOeI0IaaeiiaiaaigdapaGa aiykaiabgIKi7oaabmaabaWdbiaadAhacaGGVaGaam4yaaWdaiaawI cacaGLPaaadaahaaqabeaapeGaaGOmaaaaaaa@43BB@ . We observe that the correction f(v/c) necessary in the relations 13) and 15) for concordance with the relations 18) and 19) is applied only to the dynamogene term: Fil and must have the form:

f c = f v/c  =  k i v/c l with:  k i = 1; l =  0;1 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGMbWdamaaBaaabaWdbiaadogaa8aabeaapeGaeyypa0Jaaeii aiaadAgapaWaaeWaaeaapeGaamODaiaac+cacaWGJbaapaGaayjkai aawMcaa8qacaqGGaGaeyypa0JaaeiiaiaadUgapaWaaSbaaeaapeGa amyAaaWdaeqaamaabmaabaWdbiaadAhacaGGVaGaam4yaaWdaiaawI cacaGLPaaadaahaaqabeaapeGaamiBaaaacaWG3bGaamyAaiaadsha caWGObGaaiOoaiaabccacaWGRbWdamaaBaaabaWdbiaadMgaa8aabe aapeGaeyypa0JaaeiiaiaaigdacaGG7aGaaeiiaiaadYgacaqGGaGa eyypa0Jaaeiia8aadaWadaqaa8qacaaIWaGaai4oaiaaigdaa8aaca GLBbGaayzxaaGaai4oaaaa@5D2A@  (21)

where ki=1 , while l = 0 only for a neglijible value of the quantum vacuum density and l=1 for a high density of the quantum vacuum, the values ki ; l being given by the fact that the gravitation force given by the eqn. (15) at the limit: v = c is equal with those given by eqn. (18) which explains also the photonic rays bending at the sun’s surface. Equivalating similarly- in the relation 13a) of CGT, the dynamogene pseudo-lorentzian part Fil of the total gravitation force with a Stokes’ type force FSl, η c =η v=c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaH3oaApaWaaWbaaeqabaWdbiaadogaaaWdaiabg2da9iabeE7a OnaabmaabaWdbiaadAhacqGH9aqpcaWGJbaapaGaayjkaiaawMcaaa aa@40D0@ with it results that:

F i g = k h m p ρ g c 2 v c f c =6πr η c f c v=- 6πr v c 2 κ ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOramaaDa aabaGaamyAaaqaaiaadEgaaaGaamiiaiaad2dacqGHsislcaWGRbWa aSbaaeaacaWGObaabeaacaWGTbWaaSbaaeaacaWGWbaabeaacqGHfl Y1cqaHbpGCdaWgaaqaaiaadEgaaeqaaiaadogadaahaaqabeaacaaI YaaaamaabmaabaWaaSaaaeaacaqG2baabaGaae4yaaaaaiaawIcaca GLPaaacaWGMbWaaSbaaeaacaWGJbaabeaacaWGGaGaeyypa0JaeyOe I0IaaGOnaiabec8aWjabgwSixlaadkhacqGHflY1cqaH3oaAdaahaa qabeaacaWGJbaaaiaadAgadaWgaaqaaiaadogaaeqaaiabgwSixlaa bAhacqGH9aqpcaqGTaGaaeiiaiaabAdacqaHapaCcqGHflY1caqGYb GaeyyXIC9aaeWaaeaadaWcaaqaaiaabAhaaeaacaqGJbaaaaGaayjk aiaawMcaamaaCaaabeqaaiaaikdaaaGaeyyXICTaeqOUdSMaamiiai aacUdacaWGGaaaaa@7333@  (22)

From eqn. (22) it results that the corrective factor fc must be applied to the viscosity η c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG2aaW baaeqabaaeaaaaaaaaa8qacaWGJbaaaaaa@395F@ . However, η= ρ g .v, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaH3oaAcqGH9aqpcqaHbpGCpaWaaSbaaeaapeGaam4zaaWdaeqa aiaac6cacaGG2bWdbiaacYcaaaa@3EC2@  (n -the kinematic viscosity) and because rg is the un-compensated component of the gravitonic (etheronic) flux  δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaeqiTdqMaeqy1dy2aaSbaaeaacaWGNbaabeaaaaa@3C47@  which generates the gravitation force and n must characterize this etheronic flux, the fact that the corrective factor fc is not applied also to the static newtonian first term, Fgs, indicates that a better interpretation of the corrective factor fc may be given by the conclusion that it modify the scattering section S k 0 =  S 0 g . n k =  n p .½ S h × n k =  m q / m h .½ S h , ( S h = 4π r h 2 ;  n k v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaBaaabaWdbiaadUgaa8aabeaadaahaaqabeaapeGa aGimaaaacqGH9aqpcaqGGaGaam4ua8aadaahaaqabeaapeGaaGimaa aapaWaaSbaaeaapeGaam4zaaWdaeqaaiaac6capeGaamOBa8aadaWg aaqaa8qacaWGRbaapaqabaWdbiabg2da9iaabccacaWGUbWdamaaBa aabaWdbiaadchaa8aabeaacaGGUaWdbiaac2lacaWGtbWdamaaBaaa baWdbiaadIgaa8aabeaapeGaey41aqRaamOBa8aadaWgaaqaa8qaca WGRbaapaqabaWdbiabg2da9iaabccapaWaaeWaaeaapeGaamyBa8aa daWgaaqaa8qacaWGXbaapaqabaWdbiaac+cacaWGTbWdamaaBaaaba WdbiaadIgaa8aabeaaaiaawIcacaGLPaaacaGGUaWdbiaac2lacaWG tbWdamaaBaaabaWdbiaadIgaa8aabeaapeGaaiilaiaabccapaGaai ika8qacaWGtbWdamaaBaaabaWdbiaadIgaa8aabeaapeGaeyypa0Ja aeiiaiaaisdacqaHapaCcaWGYbWdamaaBaaabaWdbiaadIgaa8aabe aadaahaaqabeaapeGaaGOmaaaacaGG7aGaaeiiaiaad6gapaWaaSba aeaapeGaam4AaaWdaeqaaiablwIiq9qacaWG2bWdaiaacMcaaaa@6C71@ given by eqns (6) and (13b) for the limit v = c , in the sense that the etheronic flux  δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaeqiTdqMaeqy1dy2aaSbaaeaacaWGNbaabeaaaaa@3C47@ but also the etheronic component of the quantum vacuum, ϕ q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHvpGzpaWaaSbaaeaapeGaamyCaaWdaeqaaaaa@39B6@ , have a laminary flow at the level of the surface S h k = ½ S h . n k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGtbWdamaaBaaabaWdbiaadIgaa8aabeaadaahaaqabeaapeGa am4AaaaacqGH9aqpcaqGGaGaaiyVaiaadofapaWaaSbaaeaapeGaam iAaaWdaeqaaiaac6capeGaamOBa8aadaWgaaqaa8qacaWGRbaapaqa baaaaa@41D1@  of the quanton and the last component ϕ q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHvpGzpaWaaSbaaeaapeGaamyCaaWdaeqaaaaa@39B6@ – bigger than the etheronic flux dfg , generates a “screening” effect in report with the action of  δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaeqiTdqMaeqy1dy2aaSbaaeaacaWGNbaabeaaaaa@3C47@ over the Shk semi-surface of the quanton, effect which is diminished with the v –speed increasing, possible- by the reciprocally compensated etheronic components ϕ¯g'= ϕ¯g δϕghaving laminary flow at the level of Shk-surface and being parallel with the un-compensated etheronic flux  δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaeqiTdqMaeqy1dy2aaSbaaeaacaWGNbaabeaaaaa@3C47@ which generates the gravitation force, the static and dynamogene forces Fl generated by the components ϕ g '= ϕ g δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHvpGzdaWgaaqaaiaadEgaaeqaaiaacEcacqGH9aqpcqGHsisl cqaHvpGzdaWgaaqaaiaadEgaaeqaaiablwIiqjabes7aKjabew9aMn aaBaaabaGaam4zaaqabaaaaa@4493@ being reciprocally compensated. Regarding the compensated etheronic components ϕ ¯ v '=  ϕ ¯ v   v ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacuaHvpGzgaqeamaaBaaabaGaamODaaqabaGaai4jaiabg2da9iaa bccacqGHsislcuaHvpGzgaqeamaaBaaabaGaamODaaqabaGaeSyjIa LaaiiOaiqacAhagaqeaiaacYcaaaa@43F0@ we may suppose that they have a screening effect in report with the action of the  δ ϕ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGGGcGaeqiTdqMaeqy1dy2aaSbaaeaacaWGNbaabeaaaaa@3C47@ -etheronic flux but for` v ¯ ϕ ¯ v , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmODayaara GaeSyjIaLafqy1dyMbaebadaWgaaqaaiaadAhaaeqaaiaacYcaaaa@3C70@ because the total density of their etherons is constant: ρ( ϕ v )+ρ( ϕ v )= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdiNaai ikaiabew9aMnaaBaaabaaeaaaaaaaaa8qacaWG2baapaqabaGaaiyk a8qacqGHRaWkcqaHbpGCpaGaaiikaiabew9aMnaaBaaabaWdbiaadA haa8aabeaacaGGPaWdbiabg2da9aaa@44E8@ constant, the screening effect is also constant, explaining the fact that the corrective factor fc is not applied to the Newtonian term of the gravitation force. We may equate the previous conclusions considering in the expression 13a) of the gravitation force that the effective value of ρ g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi3aaS baaeaaqaaaaaaaaaWdbiaadEgaa8aabeaaaaa@3985@ , generating the effective value of the gravitic force, depends to an anisotropic dynamic viscosity, η n =η v n ;  n = i, j, k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4TdG2aaS baaeaaqaaaaaaaaaWdbiaad6gaa8aabeaapeGaeyypa0Jaeq4TdG2d amaabmaabaWdbiaadAhapaWaaSbaaeaapeGaamOBaaWdaeqaaaGaay jkaiaawMcaa8qacaGG7aGaaeiia8aadaqadaqaa8qacaWGUbGaaeii aiabg2da9iaabccacaWGPbGaaiilaiaabccacaWGQbGaaiilaiaabc cacaWGRbaapaGaayjkaiaawMcaaaaa@4BFA@ in the form:

ρ ge = ρ g n = η n ν = η c f c n ν = ρ g c   f c n ;   ρ g c =  η c ν ;   f c n =  v n c l η c =η( v n =c); l=[0,1];n = i, j, k  MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi3aaS baaeaacaWGNbGaamyzaaqabaGaeyypa0JaeqyWdi3aa0baaeaacaWG NbaabaGaamOBaaaacaWGGaGaeyypa0JaamiiamaalaaabaGaeq4TdG 2aaSbaaeaacaWGUbaabeaaaeaacqaH9oGBaaGaeyypa0Jaamiiamaa laaabaGaeq4TdG2aaWbaaeqabaGaam4yaaaacqGHflY1caWGMbWaa0 baaeaacaWGJbaabaGaamOBaaaaaeaacqaH9oGBaaGaeyypa0JaeqyW di3aa0baaeaacaWGNbaabaGaam4yaaaacqGHflY1caqGGaGaamOzam aaDaaabaGaam4yaaqaaiaad6gaaaGaai4oaiaabccacaqGGaGaeqyW di3aa0baaeaacaWGNbaabaGaam4yaaaacqGH9aqpcaqGGaWaaSaaae aacqaH3oaAdaahaaqabeaacaWGJbaaaaqaaiabe27aUbaacaGG7aGa aeiiaiaabccacaWGMbWaa0baaeaacaWGJbaabaGaamOBaaaacqGH9a qpcaqGGaWaaeWaaeaadaWcaaqaaiaadAhadaWgaaqaaiaad6gaaeqa aaqaaiaadogaaaaacaGLOaGaayzkaaWaaWbaaeqabaGaamiBaaaaca qG7aGaaeiiaiabeE7aOnaaCaaabeqaaiaadogaaaGaeyypa0Jaeq4T dGMaaiikaiaadAhadaWgaaqaaiaad6gaaeqaaiabg2da9iaadogaca GGPaGaai4oaiaabccacaWGSbGaeyypa0Jaai4waiaaicdacaGGSaGa aGymaiaac2facaGG7aGaamOBaiaabccacqGH9aqpcaqGGaGaamyAai aacYcacaqGGaGaamOAaiaacYcacaqGGaGaam4Aaiaabccaaaa@9157@  (23)

in which vn is the graviton’s speed relative to the Sn –semi-surface on which it acts. The relation 13a) of the total gravitation force for l=1 results in this case in the form:

F i g = F g s + F g l = G m p M r 2 f c i + v 0 c f c k n i =   G m p M r 2 1 + v 0 2 c 2 n i ;   f c i = v i c   = v g c = 1;   f c k = v k c   = v 0 c   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqhaa qaaiaadMgaaeaacaWGNbaaaiaadccacaWG9aGaamiiaiaadAeadaqh aaqaaiaadEgaaeaacaWGZbaaaiabgUcaRiaadccacaWGgbWaa0baae aacaWGNbaabaGaamiBaaaacqGH9aqpcqGHsislcaWGhbGaamiiamaa laaabaWaaubeaeqabaGaamiCaaqabeaacaWGTbaaaiaadccacaWGnb aabaGaamOCamaaCaaabeqaaiaaikdaaaaaamaabmaabaGaamOzamaa DaaabaGaam4yaaqaaiaadMgaaaGaey4kaSYaaSaaaeaacaqG2bWaaS baaeaacaqGWaaabeaaaeaacaqGJbaaaiaadAgadaqhaaqaaiaadoga aeaacaWGRbaaaaGaayjkaiaawMcaaiaad6gadaWgaaqaaiaadMgaae qaaiabg2da9iaabccacqGHsislcaWGhbGaamiiamaalaaabaWaaube aeqabaGaamiCaaqabeaacaWGTbaaaiaadccacaWGnbaabaGaamOCam aaCaaabeqaaiaaikdaaaaaamaabmaabaGaaGymaiabgUcaRmaalaaa baGaaeODamaaDaaabaGaaeimaaqaaiaabkdaaaaabaGaae4yamaaCa aabeqaaiaabkdaaaaaaaGaayjkaiaawMcaaiaad6gadaWgaaqaaiaa dMgaaeqaaiaacUdacaWGGaGaaeiiaiaadAgadaqhaaqaaiaadogaae aacaWGPbaaaiabg2da9maalaaabaGaaeODamaaBaaabaGaaeyAaaqa baaabaGaae4yaaaacaqGGaGaeyypa0ZaaSaaaeaacaqG2bWaaSbaae aacaqGNbaabeaaaeaacaqGJbaaaiabg2da9iaabgdacaqG7aGaaeii aiaabccacaWGMbWaa0baaeaacaWGJbaabaGaam4AaaaacqGH9aqpda WcaaqaaiaabAhadaWgaaqaaiaabUgaaeqaaaqaaiaabogaaaGaaeii aiabg2da9maalaaabaGaaeODamaaBaaabaGaaeimaaqabaaabaGaae 4yaaaacaqGGaaaaa@87D7@  (24)

the index l=1 in the eqns (21), (23) and (24) corresponding to the mp -particle passing through a non-newtonian fluid, resulting that the index l = 0 correspons to the action of a newtonian ideal fluid. Considering that the total gravitation force FG obtained by eqns. (13), (15), (21) and (24) results from a gravitation potential VG(r) with v0 –(quasi)constant to a short time interval dt:

V i g = G m p M r 1+ v 0 2 c 2 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfadaqhaa qaaiaadMgaaeaacaWGNbaaaiaadccacaWG9aGaamiiaiabgkHiTiaa dEeacaWGGaWaaSaaaeaadaqfqaqabeaacaWGWbaabeqaaiaad2gaaa Gaamiiaiaad2eaaeaacaWGYbaaamaabmaabaGaaGymaiabgUcaRmaa laaabaGaaeODamaaDaaabaGaaeimaaqaaiaabkdaaaaabaGaae4yam aaCaaabeqaaiaabkdaaaaaaaGaayjkaiaawMcaaiaacUdacaWGGaaa aa@4A8E@  (25)

the effective potential V acting over a planet with the reduced mass mr in the gravitational field of the sun with the mass M, can be re-written in terms of the length a = h/c.

V i g = G m r M r 1+ v 0 2 c 2 + m r v 0 2 2 = m r c 2 2 r S r + r S a 2 r 3 a 2 r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfadaqhaa qaaiaadMgaaeaacaWGNbaaaiaadccacaWG9aGaamiiaiabgkHiTiaa dEeacaWGGaWaaSaaaeaacaWGTbWaaSbaaeaacaWGYbaabeaacaWGGa GaamytaaqaaiaadkhaaaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaa caqG2bWaa0baaeaacaqGWaaabaGaaeOmaaaaaeaacaqGJbWaaWbaae qabaGaaeOmaaaaaaaacaGLOaGaayzkaaGaey4kaSIaamyBamaaBaaa baGaamOCaaqabaWaaSaaaeaacaqG2bWaa0baaeaacaqGWaaabaGaae OmaaaaaeaacaqGYaaaaiabg2da9iabgkHiTmaalaaabaGaamyBamaa BaaabaGaamOCaaqabaGaam4yamaaCaaabeqaaiaaikdaaaaabaGaaG OmaaaadaqadaqaamaalaaabaGaamOCamaaBaaabaGaam4uaaqabaaa baGaamOCaaaacqGHRaWkdaWcaaqaaiaadkhadaWgaaqaaiaadofaae qaaiabgwSixlaadggadaahaaqabeaacaaIYaaaaaqaaiaadkhadaah aaqabeaacaaIZaaaaaaacqGHsisldaWcaaqaaiaadggadaahaaqabe aacaaIYaaaaaqaaiaadkhadaahaaqabeaacaaIYaaaaaaaaiaawIca caGLPaaaaaa@67BE@  (26)

with: r S = 2GM/ c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGYbWdamaaBaaabaWdbiaadofaa8aabeaapeGaeyypa0Jaaeii aiaaikdacaWGhbGaamytaiaac+cacaWGJbWdamaaCaaabeqaa8qaca aIYaaaaaaa@3F72@  -the Schwarzschild radius and a =h/c; h=L / m r = r 2 (dφ/dτ) v 0 .r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGHbGaaeiiaiabg2da9iaadIgacaGGVaGaam4yaiaacUdacaqG GaGaamiAaiabg2da9iaadYeacaqGGaGaai4laiaad2gapaWaaSbaae aapeGaamOCaaWdaeqaa8qacqGH9aqpcaWGYbWdamaaCaaabeqaa8qa caaIYaaaa8aacaGGOaWdbiaadsgacqaHgpGAcaGGVaGaamizaiabes 8a09aacaGGPaGaeyisIS7dbiaadAhapaWaaSbaaeaapeGaaGimaaWd aeqaaiaac6capeGaamOCaiaacYcaaaa@543A@ (L -the total angular momentum of the two bodies, which is constant –according to the second Kepler’s lawr s {\displaystyle r_{s}} ), the last term being the centrifugal potential. This total potential is the same as those resulted from the Schwarzschild metric.

 Circular orbits are possible when the effective force is zero :

F i g = d V i g dr = m r c 2 2 r 4 r S r+3 r S a 2 2 a 2 r =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqhaa qaaiaadMgaaeaacaWGNbaaaiaadccacaWG9aGaamiiaiabgkHiTmaa laaabaGaamizaiaadAfadaqhaaqaaiaadMgaaeaacaWGNbaaaaqaai aadsgacaWGYbaaaiabg2da9iabgkHiTmaalaaabaGaamyBamaaBaaa baGaamOCaaqabaGaam4yamaaCaaabeqaaiaaikdaaaaabaGaaGOmai abgwSixlaadkhadaahaaqabeaacaaI0aaaaaaadaqadaqaaiaadkha daWgaaqaaiaadofaaeqaaiabgwSixlaadkhacqGHRaWkcaaIZaGaam OCamaaBaaabaGaam4uaaqabaGaeyyXICTaamyyamaaCaaabeqaaiaa ikdaaaGaeyOeI0IaaGOmaiaadggadaahaaqabeaacaaIYaaaaiaadk haaiaawIcacaGLPaaacqGH9aqpcaqGWaaaaa@6074@  (27)

The precession of the planetary orbit per revolution period T resulting in the known way:

δφ =T( ω φ ω r )2π 3 r S 2 4 a 2 = 3π m 2 c 2 2 L 2 r S 2 6π G(M+m) A(1 e 2 ) c 2 ; ω r ω φ (1 3 r S 2 4 a 2 )        MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKjabeA 8aQjaadccacaWG9aGaamivaiaacIcacqaHjpWDdaWgaaqaaiabeA8a QbqabaGaeyOeI0IaeqyYdC3aaSbaaeaacaWGYbaabeaacaGGPaGaey isISRaaGOmaiabec8aWnaabmaabaWaaSaaaeaacaaIZaGaamOCamaa DaaabaGaam4uaaqaaiaaikdaaaaabaGaaGinaiaadggadaahaaqabe aacaaIYaaaaaaaaiaawIcacaGLPaaacqGH9aqpcaWGGaWaaSaaaeaa caaIZaGaeqiWdaNaeyyXICTaamyBamaaCaaabeqaaiaaikdaaaGaam 4yamaaCaaabeqaaiaaikdaaaaabaGaaGOmaiaadYeadaahaaqabeaa caaIYaaaaaaacaWGYbWaa0baaeaacaWGtbaabaGaaGOmaaaacqGHij YUcaaI2aGaeqiWda3aaSaaaeaacaWGhbGaaiikaiaad2eacqGHRaWk caWGTbGaaiykaaqaaiaadgeacaGGOaGaaGymaiabgkHiTiaadwgada ahaaqabeaacaaIYaaaaiaacMcacaWGJbWaaWbaaeqabaGaaGOmaaaa aaGaamiiaiaacUdacaWGGaGaeqyYdC3aaSbaaeaacaqGYbaabeaacq GHijYUcqaHjpWDdaWgaaqaaiabeA8aQbqabaGaaiikaiaaigdacqGH sisldaWcaaqaaiaaiodacaWGYbWaa0baaeaacaWGtbaabaGaaGOmaa aaaeaacaaI0aGaamyyamaaCaaabeqaaiaaikdaaaaaaiaacMcacaWG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaamiiaaaa@87F3@  (28)

(e- the elliptic orbit’s eccentricity; m =  m p ; ω j T = 2π; a = h/c = L/ m r c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGTbGaaeiiaiabg2da9iaabccacaWGTbWdamaaBaaabaWdbiaa dchaa8aabeaapeGaai4oaiabeM8a39aadaWgaaqaa8qacaWGQbaapa qabaWdbiaadsfacaqGGaGaeyypa0JaaeiiaiaaikdacqaHapaCcaGG 7aGaaeiiaiaadggacaqGGaGaeyypa0JaaeiiaiaadIgacaGGVaGaam 4yaiaabccacqGH9aqpcaqGGaGaamitaiaac+cacaWGTbWdamaaBaaa baWdbiaadkhaa8aabeaapeGaam4yaaaa@53C1@ ; A- the major semi-axis)

b) Even if the general relation (4) permits the deducing of the microphysical gauge expression of the magnetic induction B, it must be observed that the Lorentzian force Fil , in the case of interaction with an external E-field, results only for charges q composed of n elementary charges e, as consequence of the fact that the Lorentzian force is generated by the roto-activity of the electron’s surface, resulting that- without this particularity of the e-charge, i.e- for q=0, the Fil - force is of null value , at least to non-relativistic speeds v0. The non-generating of a dynamogene force similar to the case of the gravitic force, may be explained by the fact that the electrostatic force is generated by a magnetic-like interaction between the vectorial photons of the E-field (“vectons”) with the vectorial photons of the e-charge’s surface (“vexons”- in CGT) and not by mechanical interaction with the electron’s surface.

Other theoretical consequences

In the absence of the action of electrical or gravitational fields, the advancement through the sub-quantum medium of a particle with relativist speed v®c, particularly- a photon, is obtained in the laminar regime and the specific drag force is of Stokes type.9 The approximation value of the drag force can be equated by equivalating the action of the quantum vacuum etheronic quanta with the action of some omnidirectional etheronic winds of the same mean impulse density: p si = ρ s ·c//x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGWbWdamaaBaaabaWdbiaadohacaWGPbaapaqabaWdbiabg2da 9iabeg8aY9aadaWgaaqaa8qacaWGZbaapaqabaWdbiaacElacaWGJb Gaai4laiaac+cacaWG4baaaa@4286@  in a point Ps in which the mp-particle is stationary. If the mp- particle will receive an impulse mp·v in a direction x-x ', by the Galilean relativity we may obtain the expression of the drag force in accordance with the expression (17) of the Stokes force, by the relation:

F s m p, v = k h· f a · m p × ρ s c+v 2 cv 2 =4 f a · k h m p . ρ s c.v6 f a m p / m h π. r c . ρ s . v s ×v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGgbWdamaaBaaabaWdbiaadohaa8aabeaadaqadaqaa8qacaWG TbWdamaaBaaabaWdbiaadchacaGGSaaapaqabaWdbiaadAhaa8aaca GLOaGaayzkaaWdbiabg2da9iaadUgapaWaaSbaaeaapeGaamiAaiaa cElaa8aabeaapeGaamOza8aadaWgaaqaa8qacaWGHbaapaqabaWdbi aacElacaWGTbWdamaaBaaabaWdbiaadchaa8aabeaapeGaey41aqRa eqyWdi3damaaBaaabaWdbiaadohaa8aabeaadaWadaqaamaabmaaba WdbiaadogacqGHRaWkcaWG2baapaGaayjkaiaawMcaamaaCaaabeqa a8qacaaIYaaaaiabgkHiT8aadaqadaqaa8qacaWGJbGaeyOeI0Iaam ODaaWdaiaawIcacaGLPaaadaahaaqabeaapeGaaGOmaaaaa8aacaGL BbGaayzxaaWdbiabg2da9iaaisdacaWGMbWdamaaBaaabaWdbiaadg gaa8aabeaapeGaai4TaiaadUgapaWaaSbaaeaapeGaamiAaaWdaeqa a8qacaWGTbWdamaaBaaabaWdbiaadchaa8aabeaacaGGUaGaeqyWdi 3aaSbaaeaapeGaam4CaaWdaeqaa8qacaWGJbGaaiOlaiaadAhacqGH ijYUcaaI2aGaamOza8aadaWgaaqaa8qacaWGHbaapaqabaWaaeWaae aapeGaamyBa8aadaWgaaqaa8qacaWGWbaapaqabaWdbiaac+cacaWG TbWdamaaBaaabaWdbiaadIgaa8aabeaaaiaawIcacaGLPaaacqaHap aCcaGGUaWdbiaadkhapaWaaSbaaeaapeGaam4yaaWdaeqaaiaac6ca cqaHbpGCdaWgaaqaa8qacaWGZbaapaqabaGaaiOlaiaacAhadaWgaa qaa8qacaWGZbaapaqabaWdbiabgEna0kaadAhaaaa@851C@  (29)

In which: rc » 1,8x10-25m -the quanton’s calibration radius (CGT, [2]), v s = η v / ρ s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWG2bWdamaaBaaabaWdbiaadohaa8aabeaapeGaeyypa0Jaeq4T dG2damaaBaaabaWdbiaadAhaa8aabeaapeGaai4laiabeg8aY9aada Wgaaqaa8qacaWGZbaapaqabaaaaa@40C1@  –the kinematic viscosity ( η v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaH3oaApaWaaSbaaeaapeGaamODaaWdaeqaaaaa@399F@ –the dynamic viscosity), and fa<1 - particle’s form factor, which takes into account also d’Alembert paradoxe.10 From the relation (29) it results the approximation: v s =  2 / 3 . r c .c3,6x 10 17 m 2 /s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWG2bWdamaaBaaabaWdbiaadohaa8aabeaapeGaeyypa0Jaaeii a8aadaqadaqaamaaCaaabeqaa8qacaaIYaaaaiaac+capaWaaSbaae aapeGaaG4maaWdaeqaaaGaayjkaiaawMcaaiaac6capeGaamOCa8aa daWgaaqaa8qacaWGJbaapaqabaGaaiOla8qacaWGJbGaeyisISRaaG 4maiaacYcacaaI2aGaamiEaiaaigdacaaIWaWdamaaCaaabeqaa8qa cqGHsislcaaIXaGaaG4naaaacaWGTbWdamaaCaaabeqaa8qacaaIYa aaaiaac+cacaWGZbaaaa@5017@ .

Identifying- for the case of the interstellary space, the sub-quantum medium with the dark energy, we can take: ρ s = 1.2x 10 26 kg/ m 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi3aaS baaeaaqaaaaaaaaaWdbiaadohaa8aabeaapeGaeyypa0Jaaeiiaiaa igdacaGGUaGaaGOmaiaadIhacaaIXaGaaGima8aadaahaaqabeaape GaeyOeI0IaaGOmaiaaiAdaaaGaam4AaiaadEgacaGGVaGaamyBa8aa daahaaqabeaapeGaaG4maaaaaaa@470E@ , resulting- to the limit: v=c, that: a sM = F s M / m p 3,31x 10 8 N/kg MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGHbWdamaaBaaabaWdbiaadohacaWGnbaapaqabaWdbiabg2da 9iaadAeapaWaaSbaaeaapeGaam4CaaWdaeqaamaaCaaabeqaa8qaca WGnbaaaiaac+cacaWGTbWdamaaBaaabaWdbiaadchaa8aabeaacqGH ijYUpeGaaG4maiaacYcacaaIZaGaaGymaiaadIhacaaIXaGaaGima8 aadaahaaqabeaapeGaeyOeI0IaaGioaaaacaWGobGaai4laiaadUga caWGNbaaaa@4D27@  - a value comparable to the gravitational acceleration generated by a mass of 1 ton at a distance of 1m, thus negligible on non-cosmic distances, compared to the terrestrial gravitational force, for example. We observe that- if the form factor fa is very small by taking into account also d’Alembert paradoxe, (~10-10–according to CGT, for concordance with the action radius of the electrostatic force11), the drag force Fs is almost neglijible for a photon –for example, as in the case of a null rest-mass, and the first Newton‘s law may be considered as respected on non-cosmic distances. We may observe also that- in the einsteinian relativity, as consequence of the light speed constancy postulate and of the einsteinian formula of the speed composing, the drag force given by eqn. (29) is of null value even at very high density ρ s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi3aaS baaeaaqaaaaaaaaaWdbiaadohaa8aabeaaaaa@3991@ of the etheronic quantum vacuum, as in the case in which the mean speed of the etheronic winds acting over a particle is the same in each point, in each direction and for each speed of the particle. So, it results that the postulate of the light speed constancy is not antagonic with the concept of ether and may be replaced with the postulate of the constancy of the etheronic winds mean speed on each direction and in each point of the space, which maintains un-changed the Newton’s laws but avoids the paradoxical conclusions of the null rest-mass of photon and of the relativist mass increasing with the speed in the Einsteinian form.11 b) Another consequence of the return to the Galilean relativity is the possibility to explain without the paradoxical einsteinian hypothesis of speed-depending mass variation the astro-particles of ultra-high energy ~ 10 17 ÷ 10 20 eV MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaGG+bGaaGymaiaaicdapaWaaWbaaeqabaWdbiaaigdacaaI3aaa a8aacqGH3daUpeGaaGymaiaaicdapaWaaWbaaeqabaWdbiaaikdaca aIWaaaaiaadwgacaWGwbaaaa@4228@ , recently evidenced,12 considered as being protons or iron nuclei with r elativist speed (v®c) and increased relativist mass,13 emitted by some unknown physical process and which were not predicted by the Standard Model of particles.

The argument for the conclusion that the mass of an elementary particle like the electron or the proton cannot increase really until values much higher than the rest-mass of the particle may be given by the law of (matter +energy) sum conservation, analyzing two hypothetical possibilities of speed-depending mass increasing: - Classical: The increase of the intensity of the relativist etherono-quantonic vortex Γ r v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC0aaS baaeaaqaaaaaaaaaWdbiaadkhaa8aabeaadaqadaqaa8qacaWG2baa paGaayjkaiaawMcaaaaa@3BDB@ which is generated around the (super)dense centroid(s) of the elementary particle at its passing throungh the quantum and sub-quantum vacuum ; by the condition of sub-solitons forming condition, which require that the energy of the forming vortex must be at least double than the energy of the formed mass, this mechanism, for the explaining the highest mass of some astroparticles (~1020eV) imply the existence of a value of the etherono-quantonic density of the quantum vacuum much higher than the dark energy density, in contradiction with the possibility to receive photons from far gallaxies.

Quantum: The mass increasing by the attraction of already formed neutran bosons, particularly- of „dark photons” and/or Higgs bosons from the polarised quantum vacuum, by hypothetical gluonic quanta; this hypothesis supposes a high probability to meet dark photons and/or Higgs bosons in the quantum vacuum , in contradiction with the astrophysical observations regarding the possibility to receive astroparticles with ~1020eV from far cellestial bodies. Also, the considered hypothesis imply the necessity to exists dark photons or other quantum vacuum bosons (particularly-Higgs bosons with parallel trajectory and relativist speed as those of the accelerated (astro)particle, for the possibility to explain phenomenologically the speed-depending mass variation of the relativist particle. In some previous papers of the author,13,14 the discovered elementary particles were explained by a vortexial model, of composite fermion type, as Bose –Einstein Condensate of N gammons considered as thermalized pairs: γ * =  e e + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC2aaW baaeqabaaeaaaaaaaaa8qacaGGQaaaaiabg2da9iaabccapaWaaeWa aeaapeGaamyza8aadaahaaqabeaapeGaeyOeI0caaiaadwgapaWaaW baaeqabaWdbiabgUcaRaaaa8aacaGLOaGaayzkaaaaaa@40A5@ of axially coupled electrons with opposed charges. It was argued that the particles cold forming from chiral quantum vacuum fluctuations is possible at T ®0K by already formed gammons, in a “step-by-step” process, by two possible mechanisms:

  • by clusterizing, with the forming of cold preons: z0=34 me, and of basic z bosons: z π =7 z 0 ; z 2 =4 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWG6bWdamaaBaaabaGaeqiWdahabeaacqGH9aqppeGaaG4naiaa dQhapaWaaWbaaeqabaWdbiaaicdaaaGaai4oaiaadQhapaWaaSbaae aapeGaaGOmaaWdaeqaa8qacqGH9aqpcaaI0aGaamOEa8aadaahaaqa beaapeGaaGimaaaaaaa@43FD@ , with hexagonal symmetry and thereafter- of cold quarks q± and pseudo-quarks q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGXbWdamaaCaaabeqaa8qacaaIWaaaaaaa@389A@ , by a mechanism with a first step of z*/(q±/q0)*- pre-cluster forming by magnetic interaction and a second step, of z/(q±/q0)- collapsed cluster forming , without destruction, with the aid of magnetic confinement given by residual magnetic moments mr of the clusterized gammons, which gives a superficial tension s, and:
  • by pearlitizing, by the transforming of a bigger Bose-Einstein condensate of gammons or other light bosons, formed in a gravitational field of a black-hole or in a strong magnetaric-like magnetic field, into smaller gammonic clusters which may become particle-like collapsed BEC clusters by the non-destructive collapse of the gammonic BEC secondary clusters, the pearlitizing of the BEC resulting by the temperature oscillation around the equilibrium temperature TB of the initial BEC.
  • The model allows the conclusion that a part of the dark matter may be formed by cold astro-particles. Some experimental arguments for the proposed model, are:

It was argued that-while the a)-mechanism explains the known elementary astroparticles, the second, b)-mechanism of particle-like collapsed cluster forming, may explain the super-heavy astroparticles of ~1020eV, by a gammonic or mesonic BEC pearlitizing and non-destructive collapsing of the formed sub-clusters. For example, considering a radius rp of meta-stable equilibrium of a drop of BEC formed by the BEC’s pearlitization and maintained by the equilibrium between the force generated by the internal vibration (thermal) energy Ft(rp) =V×N0kBTi and the force generated by the surface tension, σ:

d E d r = P 0 d V d r + σ d S d r = 0 ; V = 4 π 3 r 3 ; S  =  4 π r 2 ;    MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaabaGaam izaiaadweaaeaacaWGKbGaamOCaaaacqGH9aqpcqGHsislcaWGqbWa aSbaaeaacaaIWaaabeaadaWcaaqaaiaadsgacaWGwbaabaGaamizai aadkhaaaGaey4kaSIaeq4Wdm3aaSaaaeaacaWGKbGaam4uaaqaaiaa dsgacaWGYbaaaiabg2da9iaaicdacaqG7aGaaeiiaiaabAfacqGH9a qpdaWcaaqaaiaabsdacqaHapaCaeaacaqGZaaaaiaadkhadaahaaqa beaacaaIZaaaaiaabUdacaqGGaGaae4uaiaabccacqGH9aqpcaqGGa Gaaeinaiabec8aWjabgwSixlaabkhadaahaaqabeaacaqGYaaaaiaa cUdacaqGGaGaaeiiaaaa@5E82@  (30)

Because σ=  ½ F γ /l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHdpWCcqGH9aqpcaqGGaWdamaabmaabaWdbiaac2laa8aacaGL OaGaayzkaaWdbiaadAeapaWaaSbaaeaacqaHZoWzaeqaa8qacaGGVa GaamiBaaaa@4173@ , (the force rectangular on unit length), for: N0»1/a3=3.57x1044, (a=1.41 fm- the metastable equilibrium inter-distance between gammons14), the equilibrium radius is:

r p = 2σ P 0 = F γ l γ P 0 μ 0 2π l γ μ γ 2 d e 3 1 N 0 k B T i  [m] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkhadaWgaa qaaiaadchaaeqaaiabg2da9maalaaabaGaaGOmaiabeo8aZbqaaiaa dcfadaWgaaqaaiaaicdaaeqaaaaacqGH9aqpdaWcaaqaaiaadAeada Wgaaqaaiabeo7aNbqabaaabaGaamiBamaaBaaabaGaeq4SdCgabeaa cqGHflY1caWGqbWaaSbaaeaacaaIWaaabeaaaaGaeyisIS7aaSaaae aacqaH8oqBdaWgaaqaaiaaicdaaeqaaaqaaiaaikdacqaHapaCcqGH flY1caWGSbWaaSbaaeaacqaHZoWzaeqaaaaacqGHhis0daqadaqaam aalaaabaGaeqiVd02aa0baaeaacqaHZoWzaeaacaaIYaaaaaqaaiaa dsgadaqhaaqaaiaadwgaaeaacaaIZaaaaaaaaiaawIcacaGLPaaada WcaaqaaiaabgdaaeaacaqGobWaaSbaaeaacaqGWaaabeaacaWGRbWa aSbaaeaacaWGcbaabeaacaWGubaaamaaBaaabaGaaeyAaaqabaGaae iiaiaacUfacaWGTbGaaiyxaaaa@66E4@  (31)

in which de is the metastable equilibrium inter-distance between adjacent electronic gammons and lg is the length of a linked gammon of the B-E condensate (BEC), for which we may approximate that: de» lg » a=1.41 fm. The equality: de » a results in the gammonic z0, z2, zp clusters but also for the Cooper pairs of electrons (in superconductors), from the quasi-equality between the magnetic Vm(d) potential and the electric potential between the Cooper electrons, Ve(d) = e*2/4ped2 , for d = a, as consequence of the electric permittivity increasing: e(a)=e0·er»2e0 - for d»a , the refraction index depending on the quanta density at electron’ surface:11

n a  =  c/vl ε r a ~ρc a ~d2 = a2 ; (μr a 1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGUbWdamaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbiaa bccacqGH9aqpcaqGGaWdamaabmaabaWdbiaadogacaGGVaGaamODai aadYgaa8aacaGLOaGaayzkaaGaeyisIS7aaOaaaeaacqaH1oqzaeqa a8qacaWGYbWdamaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbi aac6hacqaHbpGCcaWGJbWdamaabmaabaWdbiaadggaa8aacaGLOaGa ayzkaaWdbiaac6hacaWGKbGaeyOeI0IaaGOmaiaabccacqGH9aqpca qGGaGaamyyaiabgkHiTiaaikdacaqGGaGaai4oaiaabccapaGaaiik aiabeY7aT9qacaWGYbWdamaabmaabaWdbiaadggaa8aacaGLOaGaay zkaaWdbiabgIKi7kaaigdapaGaaiyka8qacaGGSaaaaa@63C7@

The refraction index depending on the quanta density: n a = c/ v l ε r a ~ ρ c ; ( m r a 1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGUbWdamaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbiab g2da98aadaqadaqaa8qacaWGJbGaai4laiaadAhapaWaaSbaaeaape GaamiBaaWdaeqaaaGaayjkaiaawMcaaiabgIKi7oaakaaabaGaeqyT dugabeaadaWgaaqaa8qacaWGYbaapaqabaWaaeWaaeaapeGaamyyaa WdaiaawIcacaGLPaaapeGaaiOFaiabeg8aY9aadaWgaaqaa8qacaWG JbaapaqabaWdbiaacUdacaqGGaWdaiaacIcapeGaamyBa8aadaWgaa qaa8qacaWGYbaapaqabaWaaeWaaeaapeGaamyyaaWdaiaawIcacaGL PaaacqGHijYUpeGaaGyma8aacaGGPaaaaa@563E@ , with ε r 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu2aaS baaeaaqaaaaaaaaaWdbiaadkhaa8aabeaacqGHijYUpeGaaGymaaaa @3BF3@ for d ³ 1.5a,14 the correlation: d = 1.5a®er » 1 resulting as consequence of the relation:

E γ = 2 m e c 2 =  V e d i + V μ d i ;  V μ d i  = μ r ·B d i e 2 /8π ε 0 · d i ; ( d i 1.5a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGfbWdamaaBaaabaGaeq4SdCgabeaapeGaeyypa0Jaaeiiaiaa ikdacaWGTbWdamaaBaaabaWdbiaadwgaa8aabeaapeGaam4ya8aada ahaaqabeaapeGaaGOmaaaacqGH9aqpcaqGGaGaamOva8aadaWgaaqa a8qacaWGLbaapaqabaWaaeWaaeaapeGaamiza8aadaWgaaqaa8qaca WGPbaapaqabaaacaGLOaGaayzkaaWdbiabgUcaRiaadAfapaWaaSba aeaacqaH8oqBaeqaamaabmaabaWdbiaadsgapaWaaSbaaeaapeGaam yAaaWdaeqaaaGaayjkaiaawMcaa8qacaGG7aGaaeiiaiaadAfapaWa aSbaaeaacqaH8oqBaeqaamaabmaabaWdbiaadsgapaWaaSbaaeaape GaamyAaaWdaeqaaaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaeqiV d02damaaBaaabaWdbiaadkhaa8aabeaapeGaai4TaiaadkeapaWaae WaaeaapeGaamiza8aadaWgaaqaa8qacaWGPbaapaqabaaacaGLOaGa ayzkaaGaeyisIS7dbiaadwgapaWaaWbaaeqabaWdbiaaikdaaaGaai 4laiaaiIdacqaHapaCcqaH1oqzpaWaaSbaaeaapeGaaGimaaWdaeqa a8qacaGG3cGaamiza8aadaWgaaqaa8qacaWGPbaapaqabaWdbiaacU dacaqGGaWdaiaacIcapeGaamiza8aadaWgaaqaa8qacaWGPbaapaqa baGaeyizIm6dbiaaigdacaGGUaGaaGynaiaadggapaGaaiykaaaa@7845@  (32) the value: di=1.5a being specific to the hard γ -quantum and the value d i   = a   –to the gammon.14 The expression (32) of Vμ(di) results in CGT by eqn. (7), because the magnetic moment radius, rμ, represents- in the etheronic, quantum-vortexial model of magnetic moment, the radius until which the B-field quanta have the light speed, c, and because -for di < rλ=h/2mec=386 fm, for e- -e+ interaction is maintained the relation: B= E/c , resulting that:

B(d) =  E(d) c  =  e 4πε d 2 c   =  μ 0 2π μ r d 3   =  μ 0 2π e r μ c 2 d 3 ,  a <  r λ   r μ =d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadkeacaGGOa GaamizaiaacMcacaqGGaGaeyypa0JaaeiiamaalaaabaGaaeyraiaa bIcacaqGKbGaaeykaaqaaiaabogaaaGaaeiiaiabg2da9iaabccada WcaaqaaiaadwgaaeaacaaI0aGaeqiWdaNaeqyTduMaeyyXICTaamiz amaaCaaabeqaaiaaikdaaaGaam4yaaaacaqGGaGaaeiiaiabg2da9i aabccadaWcaaqaaiabeY7aTnaaBaaabaGaaGimaaqabaaabaGaaGOm aiabec8aWbaadaWcaaqaaiabeY7aTnaaBaaabaGaaeOCaaqabaaaba GaaeizamaaCaaabeqaaiaabodaaaaaaiaabccacaqGGaGaeyypa0Ja aeiiamaalaaabaGaeqiVd02aaSbaaeaacaaIWaaabeaaaeaacaaIYa GaeqiWdahaamaalaaabaGaamyzaiabgwSixlaadkhadaWgaaqaaiab eY7aTbqabaGaam4yaaqaaiaaikdacqGHflY1caWGKbWaaWbaaeqaba GaaG4maaaaaaGaaiilaiaabccacaqGGaGaaeyyaiaabccacqGHKjYO caqGKbGaaeiiaiabgYda8iaabccacaqGYbWaaSbaaeaacqaH7oaBae qaaiaabUdacaqGGaGaeyO0H4TaaeiiaiaabccacaqGYbWaaSbaaeaa cqaH8oqBaeqaaiabg2da9iaadsgaaaa@80F3@  (33)

resulting –in consequence, that -at inter-distances d  rλ, , we have: μ= μ e (d/ r λ ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaH8oqBcqGH9aqpcqaH8oqBpaWaaSbaaeaapeGaamyzaaWdaeqa aiaacIcapeGaamizaiaac+cacaWGYbWdamaaBaaabaGaeq4UdWgabe aacaGGPaWdbiaacYcaaaa@42F4@ with μ e = μ PB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaSbaaS qaaabaaaaaaaaapeGaamyzaaWdaeqaaOWdbiabg2da9iabeY7aT9aa daWgaaWcbaWdbiaadcfacaWGcbaapaqabaaaaa@3DC2@ .

Inside the gammonic BEC, the metastable equilibrium interdistance between gammonic electrons: de»a corresponds –at a quantum temperature Teγ specific to the γ-quantum, to a mean value between the values: di = h » 0.96 fm and 1.5a =2.11 fm (which are values of un-stable, respective- of stable equilibrium, at the quantum temperature Teγ specific to the γ-quantum, which determine a gammonic self-resonnance). The electric interaction between gammons results as neglijible inside the gammonic BEC. Considering the correspondence with the quantum mechanics for the linking energy of the gammonic electrons, in the form (32), and approximating that- for d»a =1.41fm, lg » a, it may be shown14that the residual magnetic potential is: Vμ(a) = μrB(a)1/2Eγ = mec2, and –neglecting the variation of Vμ(d)  with the temperature, the values: Fr, s and rp have the expressions:

F a = V μ (a) a ;  r p = 2σ P 0 = F γ (a) l γ P 0 m e c 2 a 2 1 N 0 k B T i =  m e c 2 a k B T e  = 8 .35x10 6 T e [m] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeadaqada qaaiaadggaaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaqaaiaa bAfadaWgaaqaaiabeY7aTbqabaGaaeikaiaabggacaqGPaaabaGaae yyaaaacaGG7aGaaeiiaiaadkhadaWgaaqaaiaadchaaeqaaiabg2da 9maalaaabaGaaGOmaiabeo8aZbqaaiaadcfadaWgaaqaaiaaicdaae qaaaaacqGH9aqpdaWcaaqaaiaadAeadaWgaaqaaiabeo7aNbqabaGa aiikaiaadggacaGGPaaabaGaamiBamaaBaaabaGaeq4SdCgabeaacq GHflY1caWGqbWaaSbaaeaacaaIWaaabeaaaaGaeyisIS7aaSaaaeaa caWGTbWaaSbaaeaacaWGLbaabeaacaWGJbWaaWbaaeqabaGaaGOmaa aaaeaacaWGHbWaaWbaaeqabaGaaGOmaaaaaaWaaSaaaeaacaqGXaaa baGaaeOtamaaBaaabaGaaeimaaqabaGaam4AamaaBaaabaGaamOqaa qabaGaamivaaaadaWgaaqaaiaabMgaaeqaaiabg2da9iaabccadaWc aaqaaiaad2gadaWgaaqaaiaadwgaaeqaaiaadogadaahaaqabeaaca aIYaaaaiaadggaaeaacaWGRbWaaSbaaeaacaWGcbaabeaacaWGubWa aSbaaeaacaWGLbaabeaaaaGaaeiiaiabg2da9maalaaabaGaaeioai aab6cacaqGZaGaaeynaiaabIhacaqGXaGaaeimamaaCaaabeqaaiab gkHiTiaaiAdaaaaabaGaamivamaaBaaabaGaamyzaaqabaaaaiaacU facaWGTbGaaiyxaaaa@7B22@  (34)

resulted by the neglecting of the contribution of the electrostatic interaction force between adjacent gammons. The mass of the gammonic BEC may be approximated in this case by the relation:

M q = N 0 m p 4π r p 3 3 = 4π 3 m p m e c 2 k B T e 3 = m p m e 0.79 T e 3  [kg] ; (m p =  m e ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0=Mr0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad2eadaWgaa qaaiaadghaaeqaaiabg2da9iaad6eadaWgaaqaaiaaicdaaeqaaiaa d2gadaWgaaqaaiaadchaaeqaamaalaaabaGaaGinaiabec8aWjabgw SixlaadkhadaqhaaqaaiaadchaaeaacaaIZaaaaaqaaiaaiodaaaGa eyypa0ZaaSaaaeaacaaI0aGaeqiWdahabaGaaG4maaaacaWGTbWaaS baaeaacaWGWbaabeaadaqadaqaamaalaaabaGaaeyBamaaBaaabaGa aeyzaaqabaGaam4yamaaCaaabeqaaiaaikdaaaaabaGaam4AamaaBa aabaGaamOqaaqabaGaamivamaaBaaabaGaamyzaaqabaaaaaGaayjk aiaawMcaamaaCaaabeqaaiaabodaaaGaeyypa0ZaaSaaaeaacaWGTb WaaSbaaeaacaWGWbaabeaaaeaacaWGTbWaaSbaaeaacaWGLbaabeaa aaWaaSaaaeaacaqGWaGaaeOlaiaabEdacaqG5aaabaGaaeivamaaDa aabaGaaeyzaaqaaiaabodaaaaaaiaabccacaGGBbGaam4AaiaadEga caGGDbGaae4oaiaabccacaqGOaGaaeyBamaaBaaabaGaaeiCaaqaba Gaeyypa0Jaaeiiaiaab2gadaWgaaqaaiaabwgaaeqaaiaacMcaaaa@6C5E@  (35)

It results that- at a metastable temperature Te»1K of the gammonic BEC, for example, the mass of the gammonic cluster may be of ~ 800 g -according to eqn. (35), corresponding to a radius of ~8 mm, (comparable with the mass of a hypothetical primordial micro-“black hole, i.e : >10-5 g,16). For an exponential variation of the electron’s quantum volume density, with the mean variation radius: h»0.96 fm (CGT15), the repulsive force Fr(di) of quantum disturbance, produced by “zeroth” vibrations of the electron’s super-dense kernel, corresponding to a quantum temperature Ti, is given by a quantum static pressure and a quanta density rr(di;Ti), according to a equation of static equilibrium with the residual magnetic force, resulting that the cold collapsing of the gammonic BEC is stopped at an interdistance di ~Ti between the gammonic electrons, the initial metastable equilibrium radius de MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyisISlaaa@383A@ a corresponding –at a quantum temperature Teg>Ti specific to the γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacqaHZoWzcqGHsislaaa@393D@ quantum, to a mean value between the values: di =η 0.96 fm and 1.5a =2.11 fm (which are values of un-stable, respective –of stable equilibrium, (CGT,14).

The temperature oscillation around the metastable equilibrium value Te will generate the pearlitisation of the gammonic BEC- according to the model, the formed sub-clusters resulting enough stable at T£Te for the initiation of the cold non-destructive collapsing of the gammonic sub-cluster, according to eqns (34) and (35). The mass of the formed super-heavy particles depends on the pearlitizing temperature.

For example, for the super-heavy astro-particles of 10 17 ÷ 10 20 eV,(~2x( 10 16 ÷ 10 19 )kg), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaaIXaGaaGima8aadaahaaqabeaapeGaaGymaiaaiEdaaaWdaiab gEpa4+qacaaIXaGaaGima8aadaahaaqabeaapeGaaGOmaiaaicdaaa GaamyzaiaadAfacaGGSaWdaiaacIcapeGaaiOFaiaaikdacaWG4bWd aiaacIcapeGaaGymaiaaicdapaWaaWbaaeqabaWdbiabgkHiTiaaig dacaaI2aaaa8aacqGH3daUpeGaaGymaiaaicdapaWaaWbaaeqabaWd biabgkHiTiaaigdacaaI5aaaa8aacaGGPaWdbiaadUgacaWGNbWdai aacMcapeGaaiilaaaa@54E4@  the metastable temperature results of values: 10 5 ÷ 10 6 K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaaIXaGaaGima8aadaahaaqabeaapeGaaGynaaaapaGaey49aG7d biaaigdacaaIWaWdamaaCaaabeqaa8qacaaI2aaaaiaadUeaaaa@3EBE@  –according to eqn. (35), so a gammonic BEC with bigger mass cannot be stable formed at a such temperature. At a transition temperature TBE » 103 K, with the known relation: TBE = 3.312(ħ2/mkB)N2/3 it results as necessary an initial concentration of gammons: N » 1024 , for the transition to a gammonic BEC, which appears as stable at T<<TBE, (when V μ r  =μ·B r  >>  k B T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaaaaa8 qacaWGwbWdamaaBaaabaGaeqiVd0gabeaadaqadaqaa8qacaWGYbaa paGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaeqiVd0Maai4Taiaadk eapaWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaaeiiaiab g6da+iabg6da+iaabccacaWGRbWdamaaBaaabaWdbiaadkeaa8aabe aapeGaamivaaaa@4A7D@ ).

We may suppose –en consequence, a cold forming mechanism for the super-heavy astroparticles of eV, experimentally detected, by a gammonic or mesonic BEC forming and pearlitizing, for example- at the surface of a neutronic star, particularly- of magnetar-type or even in the gravitational field of a black hole with material accretion disk around it, the escaping of the formed astro-particles from the black hole"s field being possible by the matterenergy conversion process which may generate also a pulsatory (temporary) anti-gravitic pseudo-charge of the BH star, according to CGT,2,15 i.e- by the releasing also of the energy of etheronic vortexes (of heavy, “sinergonic” etherons) of the magnetic moments of the degenerate electrons which composes the nucleons, according to CGT, phenomenon which may explain also the large temperature variation around Te necessary for the gammonic BEC pearlitizing and the source of gammons, generated as components of destroyed z0- preons which composes the nucleonic quarks- according to the model.13,14 It is also plausible –according to CGT, that the conversion: matter energy in the field of a BH star with accretion disk, at T1013 K, is generated by partial releasing of mesons and of component z0- preons, which- after the restoring of the initial value of the black hole"s gravitic charge M, may generate, in the next period, new and heavier astro-particles by clusterizing and B-E condensate forming/pearlitizing and the non-destructive collapse of the formed BEC clusters/sub-clusters.

In the case of mesons ( m π = 2 z 2 = 8 z 0 272  m e ;  m K 2 z 2 +3 z π = 29  z 0 986  m e CGT ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rs0=Mr0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaabaaa aaaaaapeGaamyBa8aadaWgaaqaaiabec8aWbqabaWdbiabg2da9iaa bccacaaIYaGaamOEa8aadaWgaaqaa8qacaaIYaaapaqabaWdbiabg2 da9iaabccacaaI4aGaamOEa8aadaahaaqabeaapeGaaGimaaaapaGa eyisIS7dbiaaikdacaaI3aGaaGOmaiaabccacaWGTbWdamaaBaaaba Wdbiaadwgaa8aabeaapeGaai4oaiaabccacaWGTbWdamaaBaaabaWd biaadUeaa8aabeaacqGHijYUpeGaaGOmaiaadQhapaWaaSbaaeaape GaaGOmaaWdaeqaa8qacqGHRaWkcaaIZaGaamOEa8aadaWgaaqaaiab ec8aWbqabaWdbiabg2da9iaabccacaaIYaGaaGyoaiaabccacaWG6b WdamaaCaaabeqaa8qacaaIWaaaa8aacqGHijYUpeGaaGyoaiaaiIda caaI2aGaaeiiaiaad2gapaWaaSbaaeaapeGaamyzaaWdaeqaamaabm aabaWdbiaadoeacaWGhbGaamivaaWdaiaawIcacaGLPaaacaGGPaaa aa@681E@  and of z0- preons (~34 me), because the eqn. (33), it results that the formed Bose-Einstein condensate is characterized by the same metastable equilibrium inter-distance (de»a) and the same expression of the meta-stable equilibrium radius, rp, (eqn. (34)) and of the B-E condensate mass, (eqn. (35)), but with mp=mp;mK or mz instead of me. We may suppose also that a gammonic or mesonic BEC formed near the metastable equilibrium temperature Te could collapse by a temperature decreasing, forming ultra-heavy particles identifiable as primordial micro- “black holes” supposed in a hot forming scenario (as products of the “Big Bang”) by Zel’dovich and Novikov in 1966 and studied in 1971 also by Stephen Hawking , which considered a inferior limit of 10−8 kg for the possibility of micro-BH forming,16 considering also their “evaporation” by the emission of Hawking radiation.

The main experimental arguments for the proposed model of astro-particles cold forming are:

  1. The experimental obtaining of a BEC of photons, (a super-photon- in 2010, by a German team17)
  2. The experimental evidencing of a 34me neutral boson, (cold genesis preon- in CGT), by a Hungarian team, but interpreted as quantum of a fifth force, of leptons to quarks binding,18
  3. The almost same size order of the radius of scattering centers determined inside the electron and inside the nucleon, (~10-18 m19–value considered also for quarks,20 but being the radius of a superdense electronic kernel, in CGT ,1,2)
  4. The producing of mesons at interaction of high energy between protons,21 (arguing the existence of differentiated mesonic dense kernels inside the protonic quarks, according to CGT)
  5. The g-quantum splitting into a pair: e+-e- in the electric field of an atomic nucleus; (argument the existence of the repulsive field of the electronic vibrated centroids, which impede the annihilation)
  6. The Cooper pair of electrons forming inside a superconductor; (argument for the er permittivity increasing for: d<1.5a, in connection with eqns. (33) and (32).

Conclusion

By the Galilean relativity and in the frame of a Cold Genesis of Matter and Fields (CGT) which explains the gravitation and the electro-magnetic interaction by an electric charge model of static type, with spherical distribution of field quanta, compatible with the Fatio/LeSage model of gravitation and with the observations regarding the light beam deviation in the sun"s gravitic field, the planetary perihelion precession is explained phenomenologically as consequence of the dynamogene component of the gravitation force- resulted by the use of impulse current density tensor and as consequence of the high density of the sub-quantum medium, given by etheronic winds- in CGT, which generate an interaction of the etheronic winds with the material components of the leptonic, mesonic or baryonic particles in a non-newtonian hydrodynamic regime, imposing the necessity of a corrective factor: fc=f(v/c)v/c to the dynamogene, pseudo- lorentzian part of the total gravitation force. Even if the resulted phenomenological relation for the gravitation force is not more general than the relation of the general relativity (based on the Einsteinian special relativity but considering non-inertial systems), it permits the explaining of the gravitation force generating by avoiding the conclusion of the photon"s null rest –mass, which is in contradiction with the exeperimentally obtaining of a super-photon as Bose –Einstein condensate of photons.17 In the case of electrodynamics, the Lorentz" force results as quantum Magnus force. It is shown that the principle of physics law invariance may be maintained by considering also the d"Alembert paradoxe, without the paradoxical conclusion of the light speed invariance, of the null rest mass of photons/bosons and of the Einsteinian mass increasing with the speed. It results also the possibility to explain the super-heavy astro-particles, experimentally detected, by a model of gammonic or mesonic Bose-Einstein condensate forming and pearlitizing, with the non-destructive collapsing of the formed sub-clusters, in the gravitic field of a neutronic star, particularly- of magnetar type or in the field of a black hole star with material accretion disk, i.e- by the matterenergy conversion process which may generate also a pulsatory (temporary) anti-gravitic pseudo-charge of the BH star but also mesons, z0- preons (34me) and gammons- according to CGT, considered as pairs of electrons with opposed charge, magnetically and axially coupled. Particularly, it results that- by the collapsing of the heavy gammonic or mesonic BEC by the temperature decreasing under the metastable equilibrium temperature Te, could be formed ultra-heavy particles identifiable with the considered primordial micro- black holes in a hot forming scenario.

Acknowledgments

None.

Conflict of interest

The author declares there is no conflict of interest.

References

  1. M Arghirescu. The Cold Genesis of Matter and Fields. 1st edn. Science PG, 2015.
  2. M Arghirescu. A Quasi-Unitary Pre-Quantum theory of Particles and Fields and some Theoretical Implications. IJHEP. 2015. p. 80–103.
  3. EM Kelly. Vacuum electromagnetic derived from the properties of an ideal fluid. Nuovo Cimento. 1956;11:32B.
  4. Georges L Lesage. Lucrece newtonien’, Memoires de l’Academie royale des sciences et belles lettres de Berlin. Berlin. 1784. p. 1–28.
  5. M Agop, C Gh Buzea, B Ciobanu. On Gravitational Shielding in Electromagnetic Fields. arXiv: physics. 1999.
  6. RP Lano. Gravitational Meissner Effect. arXiv: hep-th/9603077. Phys Rev D. 1996.
  7. NI Pallas, L Sofonea. Proceedings of the international congress of mathematicians. Book of International Congres of Mathematicians. Helsinki. 1978.
  8. M Fedi. Physical vacuum as a dilatant fluid yields exact solutions to Pioneer anomaly and Mercury’s perihelion precession. Can J Phys. 2019;97(4):417–420.
  9. M Arghirescu. A Revised Model of Photon Resulted by an Etherono-Quantonic Theory of Fields. Open Access Library Journal. 2015;2:e1920.
  10. Saint-Venant A. Mémoire sur la théorie de la résistance des fluides. Solution du paradoxe proposé à ce sujet par d'Alembert aux géomètres. Comparaison de la théorie aux expériences. Comptes Rendus des Séances de l'Académie des Sciences. 1947;24:243–246.
  11. M Arghirescu. Observations Concerning the Mass Variation in a Galilean - Type Relativity. IJHEP. 2018;5(1):44–54.
  12. LJ Watson, DJ Mortlock, AH Jaffe. A Bayesian analysis of the 27 highest energy cosmic rays detected by the Pierre Auger Observatory. Mon Not R Astron Soc. 2011;418:206–213.
  13. Hand E. Cosmic-ray theory unravels. Nature. 2010;463(7284):1011.
  14. M Arghirescu. The Cold Genesis- A New Scenario of Particles Forming. PAIJ. 2017;1(5):1–5.
  15. M Arghirescu, A model of particles cold forming as collapsed Bose–Einstein condensate of gammons. PAIJ. 2018;2(4):260–267.
  16. M Arghirescu, L Spiridon. The Antigravitation- fiction or reality? PAIJ. 2019;3(1):19–24 .
  17. S Hawking. Gravitationally collapsed objects of very low mass. Mon Not R Astron Soc. 1971;152(1):75–78.
  18. D Dung, C Kurtscheid, Tobias Damm, et al. Variable potentials for thermalized light and coupled condensates. Nature Photonics. 2017;11:565–569. 
  19. AJ Krasznahorkay, M Csatlós, L Csige, et al. Observation of Anomalous Internal Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson. Phys Rev Lett. 2016.
  20. RD Chipman, LD Jennings. Precision pins down the electron’s magnetism. Phys Rev. 1995;132:1–3. 
  21. ZEUS Collaboration. Limits on the effective quark radius from inclusive e-p scattering at HERA. Physics Letters B. 2016;757:468–472.
  22. MT Ghoneim, AFH Sawy, MT Hussein. Particle production in proton-proton collisions. 2015;arXiv: 1505.06287v1.
Creative Commons Attribution License

©2019 Arghirescu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.