Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 5

The unified sub-equation method and its applications to conformable space-time fractional fourth-order pochhammer-chree equation

Zayed EME, Shohib RMA

Mathematics Department, Zagazig University, Egypt

Correspondence: Elsayed ME Zayed, Department of Mathematics, Faculty of Sciences, Zagazig University, Zagazig, Egypt

Received: January 24, 2018 | Published: October 9, 2018

Citation: Zayed EME, Shohib RMA. The unified sub-equation method and its applications to conformable space-time fractional fourth-order pochhammer-chree equation. Phys Astron Int J. 2018;2(5):451-464. DOI: 10.15406/paij.2018.02.00124

Download PDF

Abstrat

In this article, we apply the unified sub-equation method proposed by Lu Bin and Zhang Hong Qing to construct many new Jacobi elliptic function solutions, solitons and other solutions for the conformable space-time fractional fourth-order Pochhammer-Chree equation. This method is direct and more powerful than the projective Riccati equation method. The solitons and other solutions of this equation can be found from the Jacobi elliptic solutions when its modulas m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ or m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIWaaaaa@3CE7@ respectively. Comparing our new results with the well-known results is given.

Keywords: unified sub-equation method, jacobi elliptic function solutions, dark, singular and bright solitons, periodic solutions, the conformable space-time fractional fourth-order pochhammer-chree equation

PACS

02.03.Jr; 04.20.Jb; 05.45.Yv.

Introduction

When the nonlinear partial differential equations (PDEs) are analyzed, one of the most important equation is the construction of the exact solutions of those equations. Searching for the exact solutions of those equations plays an important role in the study of nonlinear physical phenomena. Nonlinear wave phenomena appear in various scientific and engineering fields, such as fluid mechanics, plasma physics, optical fibers, biology, solid state physics, chemical kinematics, chemical physics, geochemistry, thermodynamics, soli mechanics, civil engineering, and non-Newtonian fluids to the natural sciences including population acology, inflectious disease epidemiology, natural networks and so on. Throughout the past few decades, a particular attention has been given to the problem of finding the exact solutions of these nonlinear PDEs. By virtue of these solutions, one may give better insight into the physical aspects of the nonlinear models studies. In recent years, quite a few methods for constructing explicit and solitary wave solutions of the nonlinear PDEs have been presented. A variety of powerful methods, such as the inverse scattering method,1 the Hirota method,2 the Bäcklund transform method,3,4 the Painlevé expansion method,5 the exp-function method,6,7 the sub-ODE method,8-10 the Jacobi elliptic function method,11,12 the sine-cosine function method,13,14 the ( G ' /G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGhbqcfa4aaWbaaSqabeaajugibiaa dEcaaaGaaG4laiaadEeaaOGaayjkaiaawMcaaaaa@3FC0@ -expansion method,15-17 the modified simple equation method,18,19 the Kudryashov method,20,21 the multiple exp–function method,22,23 the homogeneous balance method,24 the auxiliary equation method,25,26 the extended auxiliary equation method,27-29 the soliton ansatz method,30-33 the new mapping method,34,35 the first integral method,36,37 the ( G ' /G,1/G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGhbqcfa4aaWbaaSqabeaajugibiaa dEcaaaGaaG4laiaadEeacaaISaGaaGymaiaai+cacaWGhbaakiaawI cacaGLPaaaaaa@42B6@ -expansion method38,39 and an unified sub-equation method,40 the projective Riccati equation method41,42 and so on. Motivated by the projective Riccati equation method proposed by Conte & Musette43 and developed by Yan,44 we present a new direct algebraic method proposed by Bin L & Hong-Qing Z40 to obtain many new double periodic wave solutions of nonlinear PDEs which cannot be acquired by using the projective Riccati equation method.

The objective of this article is to apply a unified sub-equation method combined with the conformable space-time fractional derivatives40 for finding many new Jacobi elliptic function solutions, solitons and other solutions of the following nonlinear conformable space-time fractional fourth-order Pochhammer-Chree equation:

2α u t 2α 2α t 2α ( 2β u x 2β ) 2β x 2β ( α 1 u+ β 1 u n+1 + γ 1 u 2n+1 )=0,n1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITlmaaCaaajeaibeqaaKqzadGa aGOmaiabeg7aHbaajugibiaadwhaaOqaaKqzGeGaeyOaIyRaamiDaS WaaWbaaKqaGeqabaqcLbmacaaIYaGaeqySdegaaaaajugibiabgkHi TKqbaoaalaaakeaajugibiabgkGi2MqbaoaaCaaaleqajeaibaqcLb macaaIYaGaeqySdegaaaGcbaqcLbsacqGHciITcaWG0bWcdaahaaqc basabeaajugWaiaaikdacqaHXoqyaaaaaKqbaoaabmaakeaajuaGda WcaaGcbaqcLbsacqGHciITlmaaCaaabeqaaKqzadGaaGOmaiabek7a IbaajugibiaadwhaaOqaaKqzGeGaeyOaIyRaamiEaKqbaoaaCaaale qabaqcLbmacaaIYaGaeqOSdigaaaaaaOGaayjkaiaawMcaaKqzGeGa eyOeI0scfa4aaSaaaOqaaKqzGeGaeyOaIyBcfa4aaWbaaSqabKqaGe aajugWaiaaikdacqaHYoGyaaaakeaajugibiabgkGi2kaadIhalmaa CaaajeaibeqaaKqzadGaaGOmaiabek7aIbaaaaqcfa4aaeWaaOqaaK qzGeGaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsa caWG1bGaey4kaSIaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacaWG1bWcdaahaaqcbasabeaajugWaiaad6gacqGHRaWk caaIXaaaaKqzGeGaey4kaSIaeq4SdC2cdaWgaaqcbasaaKqzadGaaG ymaaqcbasabaqcLbsacaWG1bWcdaahaaqcbasabeaajugWaiaaikda caWGUbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaKqzGeGaaGypai aaicdacaaISaGaaGjbVlaaysW7caWGUbGaeyyzImRaaGymaiaaiYca aaa@A068@ (1.1)

Where 0<α,β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaaI8aGaeqySdeMaaGilaiabek7aIjabgsMiJkaa igdaaaa@4134@ and u(x,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3E59@ is a real function, while α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaa @3D56@ , β 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aITWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaa @3D58@ and γ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaa @3D5E@ are arbitrary constants. Equation (1.1) represents a nonlinear model of longitudinal wave propagation of elastic rods.45,46 Here the exponent n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacqGHLjYScaaIXaaaaa@3CC2@ is the power law nonlinearity parameter. When α=β=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaai2dacqaHYoGycaaI9aGaaGymaiaaiYcaaaa@3F8D@ Equation (1.1) has been discussed in42 using the generalized projective Riccati equation method, in47 using the extended ( G ' /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWGhbqcfa4aaWbaaSqabeaajugibiaadEcaaaGa aG4laiaadEeacaaIPaaaaa@3EFA@ -expansion method, in48 using the ( G ' /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWGhbWcdaahaaqabeaajugWaiaadEcaaaqcLbsa caaIVaGaam4raiaaiMcaaaa@3F9A@ -expansion method, in49 using the tanh-coth and the sine-cosine methods, and in50 using the exp-function method.

This article is organized as follows: In Section 2, the description of conformable fractional derivative is given. In Section 3, the description of the unified sub-equation method combined with the conformable space-time fractional derivatives is obtained. In Section 4, we apply this method to the conformable space-time fractional fourth-order Pochhammer-Chree equation (1.1). In Section 5, we present the graphical representations for some solutions of Equation (1.1). In Section 6, conclusions are obtained. To the best of our knowledge. Equation (1.1) has not been previously considered in literature using the method of Section 3.

Description of the conformable fractional derivative

Khalil et al.51 introduced a novel definition of fractional derivative named the conformable fractional derivative, which can rectify the deficiencies of the other definitions.

Definition1: Suppose f:[0,)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaI6aGaaG4waiaaicdacaaISaGaeyOhIuQaaGyk aiabgkziUkaadkfaaaa@423A@ is a function. Then, the conformable fractional derivative of f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgaaaa@3A39@ of order α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ is defined as

T α ( f )( t )= lim τ0 f( t+τ t 1α )f( t ) τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfajuaGdaWgaaqcbasaaKqzadGaeqySdegaleqaaKqb aoaabmaakeaajugibiaadAgaaOGaayjkaiaawMcaaKqbaoaabmaake aajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaawafa keqajeaibaqcLbmacqaHepaDcqGHsgIRcaaIWaaaleqakeaajugibi aacYgacaGGPbGaaiyBaaaajuaGdaWcaaGcbaqcLbsacaWGMbqcfa4a aeWaaOqaaKqzGeGaamiDaiabgUcaRiabes8a0jaadshalmaaCaaaje aibeqaaKqzadGaaGymaiabgkHiTiabeg7aHbaaaOGaayjkaiaawMca aKqzGeGaeyOeI0IaamOzaKqbaoaabmaakeaajugibiaadshaaOGaay jkaiaawMcaaaqaaKqzGeGaeqiXdqhaaiaaiYcaaaa@6828@ (2.1)

For all t>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshacaaI+aGaaGimaaaa@3BC9@ and α(0,1]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaI DbGaaGOlaaaa@40ED@ Several properties of the conformable fractional derivative are given below as in51−53

Thereom 1: Suppose α(0,1], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabgIGiolaaiIcacaaIWaGaaGilaiaaigdacaaI DbGaaGilaaaa@40EB@ and f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgaaaa@3A39@ and g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgaaaa@3A3A@ are α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabgkHiTaaa@3BDA@ differentiable at t>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshacaaI+aGaaGimaiaai6caaaa@3C81@ Then

T α ( af+bg )=a T α ( f )+b T α ( g ),a,bR. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajugibiaadggacaWGMbGaey4kaSIaamOyaiaadEgaaO GaayjkaiaawMcaaKqzGeGaaGypaiaadggacaWGubWcdaWgaaqcbasa aKqzadGaeqySdegajeaibeaajuaGdaqadaGcbaqcLbsacaWGMbaaki aawIcacaGLPaaajugibiabgUcaRiaadkgacaWGubWcdaWgaaqcbasa aKqzadGaeqySdegajeaibeaajuaGdaqadaGcbaqcLbsacaWGNbaaki aawIcacaGLPaaajugibiaaiYcacaaMe8UaaGjbVlabgcGiIiaadgga caaISaGaamOyaiabgIGiolaadkfacaaIUaaaaa@63A4@ (2.2)

T α ( t μ )=μ t μα ,μR. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajugibiaadshajuaGdaahaaWcbeqcbasaaKqzadGaeq iVd0gaaaGccaGLOaGaayzkaaqcLbsacaaI9aGaeqiVd0MaamiDaSWa aWbaaKqaGeqabaqcLbmacqaH8oqBcqGHsislcqaHXoqyaaqcLbsaca aISaGaaGjbVlaaysW7cqGHaiIicqaH8oqBcqGHiiIZcaWGsbGaaGOl aaaa@58B4@ (2.3)

T α ( fg )=f T α ( g )+g T α ( f ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajugibiaadAgacaWGNbaakiaawIcacaGLPaaajugibi aai2dacaWGMbGaamivaKqbaoaaBaaajeaibaqcLbmacqaHXoqyaSqa baqcfa4aaeWaaOqaaKqzGeGaam4zaaGccaGLOaGaayzkaaqcLbsacq GHRaWkcaWGNbGaamivaSWaaSbaaKqaGeaajugWaiabeg7aHbqcbasa baqcfa4aaeWaaOqaaKqzGeGaamOzaaGccaGLOaGaayzkaaqcLbsaca aISaaaaa@57E3@ (2.4)

T α ( f g )=( g T α ( f )f T α ( g ) g 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGMbaakeaajugibiaadE gaaaaakiaawIcacaGLPaaajugibiaai2dajuaGdaqadaGcbaqcfa4a aSaaaOqaaKqzGeGaam4zaiaadsfalmaaBaaajeaibaqcLbmacqaHXo qyaKqaGeqaaKqbaoaabmaakeaajugibiaadAgaaOGaayjkaiaawMca aKqzGeGaeyOeI0IaamOzaiaadsfalmaaBaaajeaibaqcLbmacqaHXo qyaKqaGeqaaKqbaoaabmaakeaajugibiaadEgaaOGaayjkaiaawMca aaqaaKqzGeGaam4zaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaaO GaayjkaiaawMcaaKqzGeGaaGilaaaa@5FE9@ (2.5)

Furthermore, if f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgaaaa@3A39@ is differentiable; then

T α ( f )( t )= t 1α df dt ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajugibiaadAgaaOGaayjkaiaawMcaaKqbaoaabmaake aajugibiaadshaaOGaayjkaiaawMcaaKqzGeGaaGypaiaadshalmaa CaaajeaibeqaaKqzadGaaGymaiabgkHiTiabeg7aHbaajuaGdaWcaa GcbaqcLbsacaWGKbGaamOzaaGcbaqcLbsacaWGKbGaamiDaaaajuaG daqadaGcbaqcLbsacaWG0baakiaawIcacaGLPaaajugibiaai6caaa a@5667@ (2.6)

Thereom 2: Suppose f:[0,)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaI6aGaaG4waiaaicdacaaISaGaeyOhIuQaaGyk aiabgkziUkaadkfaaaa@423A@ is a differentiable function and also α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjabgkHiTaaa@3BDA@ differentiable. Let g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgaaaa@3A3A@ be a function defined in the range of f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgaaaa@3A39@ and also differentiable. Then

T α ( f 0 g )( t )= t 1α g ' ( t ) f ' ( g( t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacqaHXoqyaKqaGeqaaKqb aoaabmaakeaajugibiaadAgajuaGdaahaaqabeaajugWaiaaicdaaa qcLbsacaWGNbaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWG 0baakiaawIcacaGLPaaajugibiaai2dacaWG0bWcdaahaaqcbasabe aajugWaiaaigdacqGHsislcqaHXoqyaaqcLbsacaWGNbqcfa4aaWba aSqabeaajugibiaadEcaaaqcfa4aaeWaaOqaaKqzGeGaamiDaaGcca GLOaGaayzkaaqcLbsacaWGMbqcfa4aaWbaaSqabeaajugibiaadEca aaqcfa4aaeWaaOqaaKqzGeGaam4zaKqbaoaabmaakeaajugibiaads haaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeGaaGOlaaaa@6324@ (2.7)

Description of the unified sub-equation method combined with the conformable space-time fractional derivatives

Consider the following nonlinear PDE:

F(u, α u t α , β u x β , 2α u t 2α , 2β u x 2β ,.....)=0,0<α,β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeacaaIOaGaamyDaiaaiYcajuaGdaWcaaGcbaqcLbsa cqGHciITlmaaCaaajeaibeqaaKqzadGaeqySdegaaKqzGeGaamyDaa GcbaqcLbsacqGHciITcaWG0bqcfa4aaWbaaSqabKqaGeaajugWaiab eg7aHbaaaaqcLbsacaaISaqcfa4aaSaaaOqaaKqzGeGaeyOaIyBcfa 4aaWbaaSqabKqaGeaajugWaiabek7aIbaajugibiaadwhaaOqaaKqz GeGaeyOaIyRaamiEaKqbaoaaCaaaleqajeaibaqcLbmacqaHYoGyaa aaaKqzGeGaaGilaKqbaoaalaaakeaajugibiabgkGi2UWaaWbaaKqa GeqabaqcLbmacaaIYaGaeqySdegaaKqzGeGaamyDaaGcbaqcLbsacq GHciITcaWG0bWcdaahaaqcbasabeaajugWaiaaikdacqaHXoqyaaaa aKqzGeGaaGilaKqbaoaalaaakeaajugibiabgkGi2UWaaWbaaKqaGe qabaqcLbmacaaIYaGaeqOSdigaaKqzGeGaamyDaaGcbaqcLbsacqGH ciITcaWG4bWcdaahaaqcbasabeaajugWaiaaikdacqaHYoGyaaaaaK qzGeGaaGilaiaai6cacaaIUaGaaGOlaiaai6cacaaIUaGaaGykaiaa i2dacaaIWaGaaGilaiaaysW7caaMe8UaaGjbVlaaicdacaaI8aGaeq ySdeMaaGilaiabek7aIjabgsMiJkaaigdaaaa@8EE0@ (3.1)

Where F is a polynomial in u(x,t) and its partial derivatives, in which the highest order derivatives and the nonlinear terms are involved. In the following, we give the main steps of this method:

Step 1: We use the conformable space-time wave transformation:

u(x,t)=u(ξ),ξ= x β β c 1 t α α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2da caWG1bGaaGikaiabe67a4jaaiMcacaaISaGaaGjbVlaaysW7cqaH+o aEcaaI9aqcfa4aaSaaaOqaaKqzGeGaamiEaKqbaoaaCaaaleqajeai baqcLbmacqaHYoGyaaaakeaajugibiabek7aIbaacqGHsislcaWGJb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcfa4aaSaaaOqaaKqz GeGaamiDaSWaaWbaaKqaGeqabaqcLbmacqaHXoqyaaaakeaajugibi abeg7aHbaacaaISaaaaa@5E3E@ (3.2)

Where c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3C9F@ is a constant, to reduce Equation (3.1) to the following ODE:

P(u, u ' , u '' ,.....)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfacaaIOaGaamyDaiaaiYcacaWG1bWcdaahaaqcbasa beaajugWaiaadEcaaaqcLbsacaaISaGaamyDaSWaaWbaaKqaGeqaba qcLbmacaWGNaGaam4jaaaajugibiaaiYcacaaIUaGaaGOlaiaai6ca caaIUaGaaGOlaiaaiMcacaaI9aGaaGimaiaaiYcaaaa@4C93@ (3.3)

Where P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfaaaa@3A23@ is a polynomial in u(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaeqOVdGNaaGykaaaa@3D70@ and its total derivatives, such that ' = d dξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaahaaWcbeqaaKqbaoaaCaaaleqabaqcLbsacaWGNaaaaaaa caaI9aqcfa4aaSaaaOqaaKqzGeGaamizaaGcbaqcLbsacaWGKbGaeq OVdGhaaaaa@419C@ .

Step 2: We assume that Equation (3.3) has the formal solution:

u(ξ)= a 0 + i=1 N f i1 (ξ)[ a i f(ξ)+ b i g(ξ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaeqOVdGNaaGykaiaai2dacaWGHbWcdaWg aaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkjuaGdaaeWb GcbeqcbasaaKqzadGaamyAaiaai2dacaaIXaaajeaibaqcLbmacaWG obaajugibiabggHiLdGaamOzaSWaaWbaaKqaGeqabaqcLbmacaWGPb GaeyOeI0IaaGymaaaajugibiaaiIcacqaH+oaEcaaIPaqcfa4aamWa aOqaaKqzGeGaamyyaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaK qzGeGaamOzaiaaiIcacqaH+oaEcaaIPaGaey4kaSIaamOyaSWaaSba aKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaam4zaiaaiIcacqaH+o aEcaaIPaaakiaawUfacaGLDbaajugibiaaiYcaaaa@6A8C@ (3.4)

Where a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C9C@ , a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaaaaa@3D34@ , b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CD1@ (i=1,.....,N) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWGPbGaaGypaiaaigdacaaISaGaaGOlaiaai6ca caaIUaGaaGOlaiaai6cacaaISaGaamOtaiaaiMcaaaa@42FA@ are constants to be determined later, such that a N 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaWGobaajeaibeaajugi biabgcMi5kaaicdaaaa@3FC5@ or b N 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgalmaaBaaajeaibaqcLbmacaWGobaajeaibeaajugi biabgcMi5kaaicdacaaISaaaaa@407C@ while f(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaeqOVdGNaaGykaaaa@3D61@ and g(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgacaaIOaGaeqOVdGNaaGykaaaa@3D62@ satisfy the auxiliary ODEs:

f ' (ξ)=f(ξ)g(ξ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaCaaajeaibeqaaKqzadGaam4jaaaajugibiaa iIcacqaH+oaEcaaIPaGaaGypaiaadAgacaaIOaGaeqOVdGNaaGykai aadEgacaaIOaGaeqOVdGNaaGykaiaaiYcaaaa@49C5@ (3.5)

g ' (ξ)=q+ g 2 (ξ)+r f 2 (ξ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaCaaajeaibeqaaKqzadGaam4jaaaajugibiaa iIcacqaH+oaEcaaIPaGaaGypaiaadghacqGHRaWkcaWGNbWcdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacaaIOaGaeqOVdGNaaGykaiab gUcaRiaadkhacaWGMbWcdaahaaqcbasabeaajugWaiabgkHiTiaaik daaaqcLbsacaaIOaGaeqOVdGNaaGykaiaaiYcaaaa@5404@ (3.6)

g 2 (ξ)=[ q+ r 2 f 2 (ξ)+c f 2 (ξ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaa iIcacqaH+oaEcaaIPaGaaGypaiabgkHiTKqbaoaadmaakeaajugibi aadghacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGYbaakeaajugibiaa ikdaaaGaamOzaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaaaK qzGeGaaGikaiabe67a4jaaiMcacqGHRaWkcaWGJbGaamOzaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaiabe67a4jaaiMcaaO Gaay5waiaaw2faaKqzGeGaaGjbVlaaysW7aaa@5E8A@ (3.7)

Where q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghaaaa@3A44@ , r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ and c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogaaaa@3A36@ are constants.

Step 3: We determine the positive integer N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohaaaa@3A46@ in (3.4) by using the homogeneous balance between the highest order derivatives and the nonlinear terms in Equation (3.3). More precisely, we define the degree of u(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaeqOVdGNaaGykaaaa@3D70@ as D[ u(ξ) ]=N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaysW7caWGebqcfa4aamWaaOqaaKqzGeGaamyDaiaaiIca cqaH+oaEcaaIPaaakiaawUfacaGLDbaajugibiaai2dacaWGobaaaa@4512@ , which gives rise to the degree of other expressions as follows:

D[ u p 1 (ξ) ( d q 1 u(ξ) d ξ q 1 ) s 1 ]=N P 1 + s 1 ( q 1 +N). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadseajuaGdaWadaGcbaqcLbsacaWG1bWcdaahaaqcbasa beaajugWaiaadchalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaa qcLbsacaaIOaGaeqOVdGNaaGykaKqbaoaabmaakeaajuaGdaWcaaGc baqcLbsacaWGKbqcfa4aaWbaaSqabKqaGeaajugWaiaadghalmaaBa aajeaibaqcLbmacaaIXaaajeaibeaaaaqcLbsacaWG1bGaaGikaiab e67a4jaaiMcaaOqaaKqzGeGaamizaiabe67a4TWaaWbaaKqaGeqaba qcLbmacaWGXbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaaaa aOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaWGZbWcdaWgaa qcbasaaKqzadGaaGymaaqcbasabaaaaaGccaGLBbGaayzxaaqcLbsa caaI9aGaamOtaiaadcfalmaaBaaajeaibaqcLbmacaaIXaaajeaibe aajugibiabgUcaRiaadohalmaaBaaajeaibaqcLbmacaaIXaaajeai beaajugibiaaiIcacaWGXbWcdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacqGHRaWkcaWGobGaaGykaiaai6caaaa@74D3@ (3.8)

From (3.8) we can get the value of N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eaaaa@3A21@ in (3.4). In some nonlinear equations, the balance number N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eaaaa@3A21@ is not a positive integer. In this case, we make the following transformations:

(a) When N= q 1 p 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eacaaI9aqcfa4aaSaaaOqaaKqzGeGaamyCaKqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWGWbWcdaWgaa qcbasaaKqzadGaaGymaaqcbasabaaaaKqzGeGaaGilaaaa@451E@ where q 1 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGXbWcdaWgaaqcbasaaKqzadGaaGym aaqcbasabaaakeaajugibiaadchajuaGdaWgaaqcbasaaKqzadGaaG ymaaWcbeaaaaaaaa@41B0@ is a fraction in the lowest terms, we let

u(ξ)= [ v(ξ) ] q 1 p 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWadaGc baqcLbsacaWG2bGaaGikaiabe67a4jaaiMcaaOGaay5waiaaw2faaS WaaWbaaeqabaWaaSaaaeaajugWaiaadghalmaaBaaabaqcLbmacaaI XaaaleqaaaqaaKqzadGaamiCaSWaaSbaaeaajugWaiaaigdaaSqaba aaaaaajugibiaaiYcaaaa@4F86@ (3.9)

When N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eaaaa@3A21@ is a negative number, we let

u(ξ)= [ v(ξ) ] N , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWadaGc baqcLbsacaWG2bGaaGikaiabe67a4jaaiMcaaOGaay5waiaaw2faaS WaaWbaaKqaGeqabaqcLbmacaWGobaaaKqzGeGaaGilaaaa@491A@ (3.10)

And substitute (3.9) or (3.10) into Equation (3.3) to get a new equation in terms of the function v(ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacaaIOaGaeqOVdGNaaGykaaaa@3D71@ with a positive integer balance number.

Step 4: We substitute (3.4) along with (3.5)-(3.7) into Equation (3.3) and collect all terms of the same order of f i (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaCaaajeaibeqaaKqzadGaamyAaaaajugibiaa iIcacqaH+oaEcaaIPaaaaa@4063@ g j (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaCaaajeaibeqaaKqzadGaamOAaaaajugibiaa iIcacqaH+oaEcaaIPaaaaa@4065@ (i,j=0,1,.....) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWGPbGaaGilaiaadQgacaaI9aGaaGimaiaaiYca caaIXaGaaGilaiaai6cacaaIUaGaaGOlaiaai6cacaaIUaGaaGykaa aa@4486@ and set them to zero, yield a set of algebraic equations which can be solved by using the Maple or Mathematical to find a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggajuaGdaWgaaqcaasaaKqzadGaaGimaaGcbeaaaaa@3CFE@ , a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CD0@ , b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgalmaaBaaajqwaa+FaaKqzadGaamyAaaqcKfaG=hqa aaaa@4057@ , c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogalmaaBaaajqwaa+FaaKqzadGaaGymaaqcKfaG=hqa aaaa@4025@ , q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghaaaa@3A44@ , r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ , c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogaaaa@3A36@ .

Step 5: It is well-known40 that (3.5), (3.6) have the following Jacobi elliptic function solutions:

  1. If q=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUca Riaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqzGeGaaGilaaaa@43DA@ r=2 m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaad2galmaaCaaajeai beqaaKqzadGaaGOmaaaajugibiaaiYcaaaa@412D@ c=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaaGymaiaaiYcaaaa@3D5B@  then
  2. f 1 (ξ)= 1 sn(ξ,m) , g 1 (ξ)= cn(ξ,m)dn(ξ,m) sn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaKqbaoaalaaakeaajugibiaaig daaOqaaKqzGeGaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2ga caaIPaaaaiaaysW7caaISaGaaGjbVlaaysW7caaMe8Uaam4zaSWaaS baaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaGikaiabe67a4jaa iMcacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaam4yaiaad6gaca aIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaamizaiaad6gacaaIOaGa eqOVdGNaaGilaiaad2gacaaIPaaakeaajugibiaadohacaWGUbGaaG ikaiabe67a4jaaiYcacaWGTbGaaGykaaaacaaIUaaaaa@70AA@

  3. If q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=2 m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaaGOmaiaad2galmaaCaaajeaibeqaaKqz adGaaGOmaaaajugibiaaiYcaaaa@4040@ c=( m 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOa GaayzkaaqcLbsacaaISaaaaa@4466@ then
  4. f 2 (ξ)= 1 cn(ξ,m) , g 2 (ξ)= sn(ξ,m)dn(ξ,m) cn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaysW7caWGMbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaadogacaWGUbGaaGikaiabe67a4jaaiYca caWGTbGaaGykaaaacaaMe8UaaGilaiaaysW7caaMe8UaaGjbVlaays W7caWGNbWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaI OaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLbsacaWGZbGaam OBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacaWGKbGaamOBaiaa iIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqaaKqzGeGaam4yaiaad6 gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaaaiaai6cacaaMe8oa aa@7456@

  5. If q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaaGilaaaa@44C8@ r=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaaGOmaaaa@3BC8@ , c=( 1 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi Tiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqzGeGaaGilaaaa@43D7@ then
  6. f 3 (ξ)= 1 dn(ξ,m) , g 3 (ξ)= m 2 sn(ξ,m)cn(ξ,m) dn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgajuaGdaWgaaqcbasaaKqzadGaaG4maaWcbeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaKqbaoaalaaakeaajugibiaaig daaOqaaKqzGeGaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2ga caaIPaaaaiaaiYcacaaMe8UaaGjbVlaaysW7caWGNbWcdaWgaaqcba saaKqzadGaaG4maaqcbasabaqcLbsacaaIOaGaeqOVdGNaaGykaiaa i2dajuaGdaWcaaGcbaqcLbsacaWGTbWcdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyB aiaaiMcacaWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiM caaOqaaKqzGeGaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2ga caaIPaaaaiaai6caaaa@724B@

  7. If q=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUca Riaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqzGeGaaGilaaaa@43DA@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcaaaa@3D6B@ c= m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaamyBaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaaGilaaaa@4062@ then
  8. f 4 (ξ)=sn(ξ,m), g 4 (ξ)= cn(ξ,m)dn(ξ,m) sn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI0aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaiaadohacaWGUbGaaGikaiabe6 7a4jaaiYcacaWGTbGaaGykaiaaysW7caaISaGaaGjbVlaaysW7caWG Nbqcfa4aaSbaaKqaGeaajugWaiaaisdaaSqabaqcLbsacaaIOaGaeq OVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLbsacaWGJbGaamOBaiaa iIcacqaH+oaEcaaISaGaamyBaiaaiMcacaWGKbGaamOBaiaaiIcacq aH+oaEcaaISaGaamyBaiaaiMcaaOqaaKqzGeGaam4Caiaad6gacaaI OaGaeqOVdGNaaGilaiaad2gacaaIPaaaaiaaysW7caaMe8UaaGOlaa aa@6F29@

  9. If q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=( 2+2 m 2 ),c= m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaa aakiaawIcacaGLPaaajugibiaaiYcacaWGJbGaaGypaiaad2galmaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiYcaaaa@4BAC@ then
  10. f 5 (ξ)=cn(ξ,m), g 5 (ξ)= sn(ξ,m)dn(ξ,m) cn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI1aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaiaadogacaWGUbGaaGikaiabe6 7a4jaaiYcacaWGTbGaaGykaiaaiYcacaaMe8UaaGjbVlaaysW7caWG NbWcdaWgaaqcbasaaKqzadGaaGynaaqcbasabaqcLbsacaaIOaGaeq OVdGNaaGykaiaai2dacqGHsisljuaGdaWcaaGcbaqcLbsacaWGZbGa amOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacaWGKbGaamOBai aaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqaaKqzGeGaam4yaiaa d6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaaaiaai6caaaa@6C8A@

  11. If q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaaGilaaaa@44C8@ r=( 22 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGOmaiabgkHi TiaaikdacaWGTbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaki aawIcacaGLPaaajugibiaaiYcaaaa@4531@ c=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaaGymaiaaiYcaaaa@3C6E@ then
  12. f 6 (ξ)=dn(ξ,m), g 6 (ξ)= m 2 sn(ξ,m)cn(ξ,m) dn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI2aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaiaadsgacaWGUbGaaGikaiabe6 7a4jaaiYcacaWGTbGaaGykaiaaiYcacaaMe8UaaGjbVlaadEgalmaa BaaajeaibaqcLbmacaaI2aaajeaibeaajugibiaaiIcacqaH+oaEca aIPaGaaGypaiabgkHiTKqbaoaalaaakeaajugibiaad2galmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaadohacaWGUbGaaGikaiabe6 7a4jaaiYcacaWGTbGaaGykaiaadogacaWGUbGaaGikaiabe67a4jaa iYcacaWGTbGaaGykaaGcbaqcLbsacaWGKbGaamOBaiaaiIcacqaH+o aEcaaISaGaamyBaiaaiMcaaaGaaGOlaaaa@6EC2@

  13. If q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaad2galmaaCaaajqgaa9FabeaajugWaiaaikdaaaaaki aawIcacaGLPaaajugibiaaiYcaaaa@464A@ r=( 2+2 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaa aakiaawIcacaGLPaaajugibiaaiYcaaaa@4585@ c=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaaGymaiaaiYcaaaa@3D5B@ then
  14. f 7 (ξ)= cn(ξ,m) sn(ξ,m) , g 7 (ξ)= dn(ξ,m) sn(ξ,m)cn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI3aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaKqbaoaalaaakeaajugibiaado gacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaGcbaqcLbsa caWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaaGaaG ilaiaaysW7caaMe8UaaGjbVlaadEgajuaGdaWgaaqcbasaaKqzadGa aG4naaWcbeaajugibiaaiIcacqaH+oaEcaaIPaGaaGypaiabgkHiTK qbaoaalaaakeaajugibiaadsgacaWGUbGaaGikaiabe67a4jaaiYca caWGTbGaaGykaaGcbaqcLbsacaWGZbGaamOBaiaaiIcacqaH+oaEca aISaGaamyBaiaaiMcacaWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGa amyBaiaaiMcaaaGaaGOlaaaa@757D@

  15. If q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=( 2 m 2 2 m 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGOmaiaad2ga lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaikdaca WGTbqcfa4aaWbaaSqabKqaGeaajugWaiaaisdaaaaakiaawIcacaGL PaaajugibiaaiYcaaaa@48F5@ c=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaaGymaiaaiYcaaaa@3D5B@ then
  16. f 8 (ξ)= dn(ξ,m) sn(ξ,m) , g 8 (ξ)= cn(ξ,m) sn(ξ,m)dn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI4aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaKqbaoaalaaakeaajugibiaads gacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaGcbaqcLbsa caWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaaGaaG ilaiaaysW7caaMe8Uaam4zaSWaaSbaaKqaGeaajugWaiaaiIdaaKqa GeqaaKqzGeGaaGikaiabe67a4jaaiMcacaaI9aGaeyOeI0scfa4aaS aaaOqaaKqzGeGaam4yaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2ga caaIPaaakeaajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcaca WGTbGaaGykaiaadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGa aGykaaaacaaIUaaaaa@738F@

  17. If q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaaGilaaaa@44C8@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcaaaa@3D6B@ c=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGym aiabgUcaRiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaaGilaaaa@44B9@ then
  18. f 9 (ξ)= sn(ξ,m) cn(ξ,m) , g 9 (ξ)= dn(ξ,m) sn(ξ,m)cn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaI5aaajeaibeaajugi biaaiIcacqaH+oaEcaaIPaGaaGypaKqbaoaalaaakeaajugibiaado hacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaGcbaqcLbsa caWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaaGaaG ilaiaaysW7caaMe8Uaam4zaKqbaoaaBaaajeaibaqcLbmacaaI5aaa leqaaKqzGeGaaGikaiabe67a4jaaiMcacaaI9aqcfa4aaSaaaOqaaK qzGeGaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaa keaajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaG ykaiaadogacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaaa caaIUaaaaa@7307@

  19. If q=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUca Riaad2gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOGaayjkai aawMcaaKqzGeGaaGilaaaa@4468@ r=2 m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaad2galmaaCaaajeai beqaaKqzadGaaGOmaaaajugibiaaiYcaaaa@412D@ c=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaaGymaiaaiYcaaaa@3D5B@ then
  20. f 10 (ξ)= dn(ξ,m) cn(ξ,m) , g 10 (ξ)= ( 1 m 2 )sn(ξ,m) cn(ξ,m)dn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGimaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGKbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaam4yaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPa aaaiaaiYcacaaMe8UaaGjbVlaadEgalmaaBaaajeaibaqcLbmacaaI XaGaaGimaaqcbasabaqcLbsacaaIOaGaeqOVdGNaaGykaiaai2daju aGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTiaad2ga lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawMcaaKqzGe Gaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaakeaa jugibiaadogacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykai aadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaaacaaI Uaaaaa@7B8D@

  21. If q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcaaaa@3D6B@ c=( m 2 m 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamyBaKqbaoaaCa aaleqajeaibaqcLbmacaaI0aaaaaGccaGLOaGaayzkaaqcLbsacaaI Saaaaa@476E@ then
  22. f 11 (ξ)= sn(ξ,m) dn(ξ,m) , g 11 (ξ)= cn(ξ,m) sn(ξ,m)dn(ξ,m) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGymaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPa aaaiaaiYcacaaMe8UaaGjbVlaaysW7caWGNbWcdaWgaaqcbasaaKqz adGaaGymaiaaigdaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMcaca aI9aqcfa4aaSaaaOqaaKqzGeGaam4yaiaad6gacaaIOaGaeqOVdGNa aGilaiaad2gacaaIPaaakeaajugibiaadohacaWGUbGaaGikaiabe6 7a4jaaiYcacaWGTbGaaGykaiaadsgacaWGUbGaaGikaiabe67a4jaa iYcacaWGTbGaaGykaaaacaaIUaaaaa@7597@

  23. If q= 1 2 ( 1+2 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiabgkHiTiaaigdacqGHRa WkcaaIYaGaamyBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGccaGL OaGaayzkaaqcLbsacaaISaaaaa@48CA@ r= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaiaaiYcaaaa@3FF6@ c= 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaI0aaaaiaaiYcaaaa@3FE9@ then
  24. f 12 (ξ)= cn(ξ,m)±1 sn(ξ,m) , g 12 (ξ)=ds(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGOmaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacqGH XcqScaaIXaaakeaajugibiaadohacaWGUbGaaGikaiabe67a4jaaiY cacaWGTbGaaGykaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWa aSbaaKqaGeaajugWaiaaigdacaaIYaaajeaibeaajugibiaaiIcacq aH+oaEcaaIPaGaaGypaiabloHiTjaadsgacaWGZbGaaGikaiabe67a 4jaaiYcacaWGTbGaaGykaiaai6caaaa@6A43@

  25. If q= 1 2 ( m 2 +1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaad2galmaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaigdaaOGaayjk aiaawMcaaKqzGeGaaGilaaaa@489D@ r= 1 2 ( 1 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHsislcaWGTb qcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaa jugibiaaiYcaaaa@47BB@ c= 1 4 ( 1 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaI0aaaaKqbaoaabmaakeaajugibiaaigdacqGHsislcaWGTb qcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakiaawIcacaGLPaaa jugibiaaiYcaaaa@47AE@  then
  26. f 13 (ξ)= dn(ξ,m) msn(ξ,m)±1 , g 13 (ξ)=mcd(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaG4maaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGKbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaamyBaiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaWGTb GaaGykaiabgglaXkaaigdaaaGaaGilaiaaysW7caaMe8Uaam4zaSWa aSbaaKqaGeaajugWaiaaigdacaaIZaaajeaibeaajugibiaaiIcacq aH+oaEcaaIPaGaaGypaiabloHiTjaad2gacaWGJbGaamizaiaaiIca cqaH+oaEcaaISaGaamyBaiaaiMcacaaIUaaaaa@6A8D@

  27. If q= 1 2 ( 1+ m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHRa WkcaWGTbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakiaawIca caGLPaaaaaa@4757@ , r= 1 2 ( m 2 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaad2gajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkaiaa wMcaaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaa@49D4@ , c= 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaI0aaaaiaaiYcaaaa@3EFC@ then
  28. f 14 (ξ)=mcn(ξ,m)+dn(ξ,m), g 14 (ξ)=msn(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgajuaGdaWgaaqcbasaaKqzadGaaGymaiaaisdaaSqa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dacaWGTbGaam4yaiaad6 gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaey4kaSIaamizaiaa d6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaaGjbVlaaiYcaca aMe8UaaGjbVlaadEgalmaaBaaajeaibaqcLbmacaaIXaGaaGinaaqc basabaqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dacqGHsislcaWGTb Gaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaaGOl aaaa@68AD@

  29. If q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHRa WkcaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIcacaGL PaaajugibiaaiYcaaaa@480E@ r= 1 2 ( m 2 1 ) 2 ,c= 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaad2galmaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjk aiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGilai aadogacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaI0aaaaiaaiYcaaaa@5185@  then
  30. f 15 (ξ)= cn(ξ,m)±dn(ξ,m) sn(ξ,m) , g 15 (ξ)=ns(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGynaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacqGH XcqScaWGKbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaO qaaKqzGeGaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaI PaaaaiaaysW7caaISaGaaGjbVlaaysW7caWGNbWcdaWgaaqcbasaaK qzadGaaGymaiaaiwdaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMca caaI9aGaeS4eI0MaamOBaiaadohacaaIOaGaeqOVdGNaaGilaiaad2 gacaaIPaGaaGOlaaaa@7044@

  31. If q=( m 2 6m+1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGOnaiaad2gacq GHRaWkcaaIXaaakiaawIcacaGLPaaajugibiaaiYcaaaa@4708@ r=2,c=4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcacaWGJbGaaGyp aiaaisdacaWGTbaaaa@40CA@ ( m1 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGTbGaeyOeI0IaaGymaaGccaGLOaGa ayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaaaaa@4199@ then
  32. f 16 (ξ)= sn(ξ,m) ms n 2 (ξ,m)1 , g 16 (ξ)=cs(ξ,m)dn(ξ,m)[ ms n 2 (ξ,m)+1 ms n 2 (ξ,m)1 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGOnaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaamyBaiaadohacaWGUbWcdaahaaqcbasabeaajugWaiaaik daaaqcLbsacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaeyOeI0Ia aGymaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWaaSbaaKqaGe aajugWaiaaigdacaaI2aaajeaibeaajugibiaaiIcacqaH+oaEcaaI PaGaaGypaiabgkHiTiaadogacaWGZbGaaGikaiabe67a4jaaiYcaca WGTbGaaGykaiaadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGa aGykaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaWGTbGaam4Cai aad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiIcacqaH +oaEcaaISaGaamyBaiaaiMcacqGHRaWkcaaIXaaakeaajugibiaad2 gacaWGZbGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa aGikaiabe67a4jaaiYcacaWGTbGaaGykaiabgkHiTiaaigdaaaaaki aawUfacaGLDbaajugibiaai6caaaa@90B3@

  33. If q=( m 2 +6m+1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGOnaiaad2gacq GHRaWkcaaIXaaakiaawIcacaGLPaaajugibiaaiYcaaaa@46FD@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcaaaa@3D6B@ c=4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaaGinaiaad2gaaaa@3D9A@ , ( m+1 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGTbGaey4kaSIaaGymaaGccaGLOaGa ayzkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaaaaa@418E@ then
  34. f 17 (ξ)= sn(ξ,m) ms n 2 (ξ,m)+1 , g 17 (ξ)=cs(ξ,m)dn(ξ,m)[ ms n 2 (ξ,m)1 ms n 2 (ξ,m)+1 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaG4naaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaamyBaiaadohacaWGUbWcdaahaaqcbasabeaajugWaiaaik daaaqcLbsacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaey4kaSIa aGymaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWaaSbaaKqaGe aajugWaiaaigdacaaI3aaajeaibeaajugibiaaiIcacqaH+oaEcaaI PaGaaGypaiabgkHiTiaadogacaWGZbGaaGikaiabe67a4jaaiYcaca WGTbGaaGykaiaadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGa aGykaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaWGTbGaam4Cai aad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiIcacqaH +oaEcaaISaGaamyBaiaaiMcacqGHsislcaaIXaaakeaajugibiaad2 gacaWGZbGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa aGikaiabe67a4jaaiYcacaWGTbGaaGykaiabgUcaRiaaigdaaaaaki aawUfacaGLDbaajugibiaai6caaaa@90AA@

  35. If q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHRa WkcaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIcacaGL PaaajugibiaaiYcaaaa@480E@ r= 1 2 ( m 2 1 ),c= 1 4 ( m 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaad2galmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkaiaawMca aKqzGeGaaGilaiaadogacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaa GcbaqcLbsacaaI0aaaaKqbaoaabmaakeaajugibiaad2galmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkai aawMcaaKqzGeGaaGilaaaa@561D@ then
  36. f 18 (ξ)= cn(ξ,m) sn(ξ,m)±1 , g 18 (ξ)=dc(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGioaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPa GaeyySaeRaaGymaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWa aSbaaKqaGeaajugWaiaaigdacaaI4aaajeaibeaajugibiaaiIcacq aH+oaEcaaIPaGaaGypaiabloHiTjaadsgacaWGJbGaaGikaiabe67a 4jaaiYcacaWGTbGaaGykaiaai6caaaa@6A3F@

  37. If q= 1 2 ( 2 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaaikdacqGHsislcaWGTb WcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIcacaGLPaaajugi biaaiYcaaaa@472D@ r= m 4 2 ,c= 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaamyB aKqbaoaaCaaaleqajeaibaqcLbmacaaI0aaaaaGcbaqcLbsacaaIYa aaaiaaiYcacaWGJbGaaGypaiabgkHiTKqbaoaalaaakeaajugibiaa igdaaOqaaKqzGeGaaGinaaaacaaISaaaaa@4999@ then
  38. f 19 (ξ)= dn(ξ,m)±1 sn(ξ,m) , g 19 (ξ)=cs(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIXaGaaGyoaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGKbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacqGH XcqScaaIXaaakeaajugibiaadohacaWGUbGaaGikaiabe67a4jaaiY cacaWGTbGaaGykaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWa aSbaaKqaGeaajugWaiaaigdacaaI5aaajeaibeaajugibiaaiIcacq aH+oaEcaaIPaGaaGypaiabloHiTjaadogacaWGZbGaaGikaiabe67a 4jaaiYcacaWGTbGaaGykaiaai6caaaa@6A51@

  39. If q= 1 2 ( 2 m 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaaIYaaaaKqbaoaabmaakeaajugibiaaikdacaWGTbWcdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaaIXaaakiaawIca caGLPaaajugibiaaiYcaaaa@4877@ r= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaiaaiYcaaaa@3FF6@ c= 1 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaI0aaaaiaaiYcaaaa@3FE9@ then
  40. f 20 (ξ)= sn(ξ,m) 1±cn(ξ,m) , g 20 (ξ)=±ds(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIYaGaaGimaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaaGymaiabgglaXkaadogacaWGUbGaaGikaiabe67a4jaaiY cacaWGTbGaaGykaaaacaaMe8UaaGilaiaaysW7caaMe8Uaam4zaSWa aSbaaKqaGeaajugWaiaaikdacaaIWaaajeaibeaajugibiaaiIcacq aH+oaEcaaIPaGaaGypaiabgglaXkaadsgacaWGZbGaaGikaiabe67a 4jaaiYcacaWGTbGaaGykaiaai6caaaa@6AFC@

  41. If q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHRa WkcaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawIcacaGL PaaajugibiaaiYcaaaa@480E@ r= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIYaaaaiaaiYcaaaa@3FF6@ c= 1 4 ( m 2 1 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaI0aaaaKqbaoaabmaakeaajugibiaad2galmaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjk aiaawMcaaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGilaa aa@4ADD@ then

f 21 (ξ)= sn(ξ,m) cn(ξ,m)±dn(ξ,m) , g 21 (ξ)=±ns(ξ,m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaaIYaGaaGymaaqcbasa baqcLbsacaaIOaGaeqOVdGNaaGykaiaai2dajuaGdaWcaaGcbaqcLb sacaWGZbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcaaOqa aKqzGeGaam4yaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPa GaeyySaeRaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaI PaaaaiaaysW7caaISaGaaGjbVlaaysW7caWGNbWcdaWgaaqcbasaaK qzadGaaGOmaiaaigdaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMca caaI9aGaeyySaeRaamOBaiaadohacaaIOaGaeqOVdGNaaGilaiaad2 gacaaIPaGaaGOlaaaa@70F9@

Where s n ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aiaaiYcaaaa@40BF@ c n ( ξ , m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aaaa@3FF9@ and d n ( ξ , m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aaaa@3FFA@ are Jacobi elliptic sine function, Jacobi elliptic cosine function, Jacobi elliptic function of the third kind respectively, and m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gaaaa@3A40@ denotes the modulus of Jacobi elliptic functions, where 0 m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacqGHKjYOcaWGTbGaeyizImQaaGymaaaa@3F1F@ . It is well-known54−56 that the Jacobi-elliptic functions satisfy the following relations:

c n 2 ( ξ , m ) = 1 s n 2 ( ξ , m ) , d n 2 ( ξ , m ) = 1 m 2 s n 2 ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaWGUbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaaGypaiaaigdacq GHsislcaWGZbGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaiaaiYcacaWGKbGaam OBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGikaiabe67a 4jaaiYcacaWGTbGaaGykaiaai2dacaaIXaGaeyOeI0IaamyBaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaam4Caiaad6galmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaaiIcacqaH+oaEcaaISaGaam yBaiaaiMcacaaISaaaaa@6967@

s n ' ( ξ , m ) = c n ( ξ , m ) d n ( ξ , m ) , c n ' ( ξ , m ) = s n ( ξ , m ) d n ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaysW7caWGZbGaamOBaSWaaWbaaKqaGeqabaqcLbmacaWG NaaaaKqzGeGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaiaai2daca WGJbGaamOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacaWGKbGa amOBaiaaiIcacqaH+oaEcaaISaGaamyBaiaaiMcacaaISaGaam4yai aad6galmaaCaaajeaqbeqaaKqzGdGaam4jaaaajugibiaaiIcacqaH +oaEcaaISaGaamyBaiaaiMcacaaI9aGaeyOeI0Iaam4Caiaad6gaca aIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaamizaiaad6gacaaIOaGa eqOVdGNaaGilaiaad2gacaaIPaGaaGilaaaa@6CA6@

d n ' ( ξ , m ) = m 2 s n ( ξ , m ) c n ( ξ , m ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGUbWcdaahaaqcbasabeaajugWaiaadEcaaaqc LbsacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaaGypaiabgkHiTi aad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadohacaWG UbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaiaadogacaWGUbGaaG ikaiabe67a4jaaiYcacaWGTbGaaGykaiaai6caaaa@564E@

n s ( ξ , m ) = 1 s n ( ξ , m ) , n c ( ξ , m ) = 1 c n ( ξ , m ) , n d ( ξ , m ) = 1 d n ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacaWGZbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadohaca WGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGykaaaacaaISaGaamOB aiaadogacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaGaaGypaKqbao aalaaakeaajugibiaaigdaaOqaaKqzGeGaam4yaiaad6gacaaIOaGa eqOVdGNaaGilaiaad2gacaaIPaaaaiaaiYcacaWGUbGaamizaiaaiI cacqaH+oaEcaaISaGaamyBaiaaiMcacaaI9aqcfa4aaSaaaOqaaKqz GeGaaGymaaGcbaqcLbsacaWGKbGaamOBaiaaiIcacqaH+oaEcaaISa GaamyBaiaaiMcaaaGaaGilaiaaysW7caaMe8UaaGjbVlaaysW7aaa@73BE@

s c ( ξ , m ) = s n ( ξ , m ) c n ( ξ , m ) , s d ( ξ , m ) = s n ( ξ , m ) d n ( ξ , m ) , c s ( ξ , m ) = c n ( ξ , m ) s n ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWGJbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aiaai2dajuaGdaWcaaGcbaqcLbsacaWGZbGaamOBaiaaiIcacqaH+o aEcaaISaGaamyBaiaaiMcaaOqaaKqzGeGaam4yaiaad6gacaaIOaGa eqOVdGNaaGilaiaad2gacaaIPaaaaiaaiYcacaWGZbGaamizaiaaiI cacqaH+oaEcaaISaGaamyBaiaaiMcacaaI9aqcfa4aaSaaaOqaaKqz GeGaam4Caiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaake aajugibiaadsgacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aaaacaaISaGaam4yaiaadohacaaIOaGaeqOVdGNaaGilaiaad2gaca aIPaGaaGypaKqbaoaalaaakeaajugibiaadogacaWGUbGaaGikaiab e67a4jaaiYcacaWGTbGaaGykaaGcbaqcLbsacaWGZbGaamOBaiaaiI cacqaH+oaEcaaISaGaamyBaiaaiMcaaaGaaGilaiaaysW7aaa@8106@

c d ( ξ , m ) = c n ( ξ , m ) d n ( ξ , m ) , d s ( ξ , m ) = d n ( ξ , m ) s n ( ξ , m ) , d c ( ξ , m ) = d n ( ξ , m ) c n ( ξ , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaWGKbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aiaai2dajuaGdaWcaaGcbaqcLbsacaWGJbGaamOBaiaaiIcacqaH+o aEcaaISaGaamyBaiaaiMcaaOqaaKqzGeGaamizaiaad6gacaaIOaGa eqOVdGNaaGilaiaad2gacaaIPaaaaiaaiYcacaWGKbGaam4CaiaaiI cacqaH+oaEcaaISaGaamyBaiaaiMcacaaI9aqcfa4aaSaaaOqaaKqz GeGaamizaiaad6gacaaIOaGaeqOVdGNaaGilaiaad2gacaaIPaaake aajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaWGTbGaaGyk aaaacaaISaGaamizaiaadogacaaIOaGaeqOVdGNaaGilaiaad2gaca aIPaGaaGypaKqbaoaalaaakeaajugibiaadsgacaWGUbGaaGikaiab e67a4jaaiYcacaWGTbGaaGykaaGcbaqcLbsacaWGJbGaamOBaiaaiI cacqaH+oaEcaaISaGaamyBaiaaiMcaaaGaaGilaaaa@7F3D@

The Jacobi elliptic functions degenerate into hyperbolic functions when m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ as follows:

s n ( ξ ,1 ) t a n h ( ξ ) , c n ( ξ ,1 ) s e c h ( ξ ) , d n ( ξ ,1 ) s e c h ( ξ ) , n s ( ξ ,1 ) c o t h ( ξ ) , d c ( ξ ,1 ) 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaaIXaGaaGyk aiabgkziUkaacshacaGGHbGaaiOBaiaacIgajuaGdaqadaGcbaqcLb sacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaaGilaiaadogacaWGUbGa aGikaiabe67a4jaaiYcacaaIXaGaaGykaiabgkziUkaadohacaWGLb Gaam4yaiaadIgajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaayjkaiaa wMcaaKqzGeGaaGilaiaadsgacaWGUbGaaGikaiabe67a4jaaiYcaca aIXaGaaGykaiabgkziUkaadohacaWGLbGaam4yaiaadIgajuaGdaqa daGcbaqcLbsacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaaGilaiaad6 gacaWGZbGaaGikaiabe67a4jaaiYcacaaIXaGaaGykaiabgkziUkaa cogacaGGVbGaaiiDaiaacIgajuaGdaqadaGcbaqcLbsacqaH+oaEaO GaayjkaiaawMcaaKqzGeGaaGilaiaadsgacaWGJbGaaGikaiabe67a 4jaaiYcacaaIXaGaaGykaiabgkziUkaaigdacaaISaaaaa@8AAA@

d s ( ξ ,1 ) c o s e c h ( ξ ) , s c ( ξ ,1 ) s i n h ( ξ ) , s d ( ξ ,1 ) s i n h ( ξ ) , c s ( ξ ,1 ) c o s e c h ( ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbGaaGikaiabe67a4jaaiYcacaaIXaGaaGyk aiabgkziUkaadogacaWGVbGaam4CaiaadwgacaWGJbGaamiAaKqbao aabmaakeaajugibiabe67a4bGccaGLOaGaayzkaaqcLbsacaaISaGa am4CaiaadogacaaIOaGaeqOVdGNaaGilaiaaigdacaaIPaGaeyOKH4 Qaai4CaiaacMgacaGGUbGaaiiAaKqbaoaabmaakeaajugibiabe67a 4bGccaGLOaGaayzkaaqcLbsacaaISaGaam4CaiaadsgacaaIOaGaeq OVdGNaaGilaiaaigdacaaIPaGaeyOKH4Qaai4CaiaacMgacaGGUbGa aiiAaKqbaoaabmaakeaajugibiabe67a4bGccaGLOaGaayzkaaqcLb sacaaISaGaam4yaiaadohacaaIOaGaeqOVdGNaaGilaiaaigdacaaI PaGaeyOKH4Qaam4yaiaad+gacaWGZbGaamyzaiaadogacaWGObqcfa 4aaeWaaOqaaKqzGeGaeqOVdGhakiaawIcacaGLPaaajugibiaaiYca aaa@849A@

And into trigonometric functions when m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIWaaaaa@3CE7@ as follows:

s n ( ξ ,0 ) s i n ( ξ ) , c n ( ξ ,0 ) c o s ( ξ ) , d n ( ξ ,0 ) 1, n s ( ξ ,0 ) c o s e c ( ξ ) , c s ( ξ ,0 ) c o t ( ξ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWGUbGaaGikaiabe67a4jaaiYcacaaIWaGaaGyk aiabgkziUkaacohacaGGPbGaaiOBaKqbaoaabmaakeaajugibiabe6 7a4bGccaGLOaGaayzkaaqcLbsacaaISaGaam4yaiaad6gacaaIOaGa eqOVdGNaaGilaiaaicdacaaIPaGaeyOKH4Qaai4yaiaac+gacaGGZb qcfa4aaeWaaOqaaKqzGeGaeqOVdGhakiaawIcacaGLPaaajugibiaa iYcacaWGKbGaamOBaiaaiIcacqaH+oaEcaaISaGaaGimaiaaiMcacq GHsgIRcaaIXaGaaGilaiaad6gacaWGZbGaaGikaiabe67a4jaaiYca caaIWaGaaGykaiabgkziUkaadogacaWGVbGaam4CaiaadwgacaWGJb qcfa4aaeWaaOqaaKqzGeGaeqOVdGhakiaawIcacaGLPaaajugibiaa iYcacaWGJbGaam4CaiaaiIcacqaH+oaEcaaISaGaaGimaiaaiMcacq GHsgIRcaGGJbGaai4BaiaacshajuaGdaqadaGcbaqcLbsacqaH+oaE aOGaayjkaiaawMcaaKqzGeGaaGilaaaa@88EC@

d s ( ξ ,0 ) c o s e c ( ξ ) , s c ( ξ ,0 ) t a n ( ξ ) , s d ( ξ ,0 ) s i n ( ξ ) , d c ( ξ ,0 ) s e c ( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaado hacaaIOaGaeqOVdGNaaGilaiaaicdacaaIPaGaeyOKH4Qaam4yaiaa d+gacaWGZbGaamyzaiaadogadaqadaqaaiabe67a4bGaayjkaiaawM caaiaaiYcacaWGZbGaam4yaiaaiIcacqaH+oaEcaaISaGaaGimaiaa iMcacqGHsgIRcaGG0bGaaiyyaiaac6gadaqadaqaaiabe67a4bGaay jkaiaawMcaaiaaiYcacaWGZbGaamizaiaaiIcacqaH+oaEcaaISaGa aGimaiaaiMcacqGHsgIRcaGGZbGaaiyAaiaac6gadaqadaqaaiabe6 7a4bGaayjkaiaawMcaaiaaiYcacaWGKbGaam4yaiaaiIcacqaH+oaE caaISaGaaGimaiaaiMcacqGHsgIRcaGGZbGaaiyzaiaacogadaqada qaaiabe67a4bGaayjkaiaawMcaaaaa@73E1@

Step 6: We substitute the values a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C9C@ , a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaabaqcLbmacaWGPbaaleqaaaaa@3C87@ b i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgalmaaBaaajqgaa9FaaKqzadGaamyAaaqcKbaq=hqa aaaa@3FD5@ and the solutions (1)−(21) given in step 5 into (3.4), to get the exact solutions of Equation (3.1).

Applications

In this section, we apply the method of section 3, to solve Equation (1.1).To this aim, we first use the conformable space-time wave transformation:

u( x,t )=u( ξ ),ξ= x β β c 1 t α α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaiaadwhajuaGdaqadaGcbaqcLb sacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaaGilaiaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlabe67a4jaai2dajuaGdaWcaaGcba qcLbsacaWG4bqcfa4aaWbaaSqabKqaGeaajugWaiabek7aIbaaaOqa aKqzGeGaeqOSdigaaiabgkHiTiaadogalmaaBaaajeaibaqcLbmaca aIXaaajeaibeaajuaGdaWcaaGcbaqcLbsacaWG0bqcfa4aaWbaaSqa bKqaGeaajugWaiabeg7aHbaaaOqaaKqzGeGaeqySdegaaiaaiYcaaa a@68C8@ (4.1)

Where c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaaa@3D03@ is a non zero constant and 0<α,β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaaI8aGaeqySdeMaaGilaiabek7aIjabgsMiJkaa igdaaaa@4134@ , to reduce Equation (1.1) into the following nonlinear ordinary differential equation (ODE):

c 1 2 u '' c 1 2 u '''' ( α 1 u+ β 1 u n+1 + γ 1 u 2n+1 ) '' =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caaIYaaaaKqzGeGaamyDaSWaaWbaaKqaGeqabaqcLbmacaWGNaGaam 4jaaaajugibiabgkHiTiaadogalmaaDaaajeaibaqcLbmacaaIXaaa jeaibaqcLbmacaaIYaaaaKqzGeGaamyDaSWaaWbaaKqaGeqabaqcLb macaWGNaGaam4jaiaadEcacaWGNaaaaKqzGeGaeyOeI0scfa4aaeWa aOqaaKqzGeGaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba qcLbsacaWG1bGaey4kaSIaeqOSdi2cdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaWG1bqcfa4aaWbaaSqabKqaGeaajugWaiaad6 gacqGHRaWkcaaIXaaaaKqzGeGaey4kaSIaeq4SdC2cdaWgaaqcbasa aKqzadGaaGymaaqcbasabaqcLbsacaWG1bWcdaahaaqcbasabeaaju gWaiaaikdacaWGUbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaSWa aWbaaKqaGeqabaqcLbmacaWGNaGaam4jaaaajugibiaai2dacaaIWa GaaGilaiaaysW7aaa@7750@ (4.2)

Integrating Equation (4.2) twice with respect to ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4baa@3B11@ and vanshing the constants of integration, we get

( c 1 2 α 1 )u c 1 2 u '' β 1 u n+1 γ 1 u 2n+1 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGJbWcdaqhaaqcbasaaKqzadGaaGym aaqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiabeg7aHTWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacaWG 1bGaeyOeI0Iaam4yaSWaa0baaKqaGeaajugWaiaaigdaaKqaGeaaju gWaiaaikdaaaqcLbsacaWG1bWcdaahaaqcbasabeaajugWaiaadEca caWGNaaaaKqzGeGaeyOeI0IaeqOSdi2cdaWgaaqcbasaaKqzadGaaG ymaaqcbasabaqcLbsacaWG1bWcdaahaaqcbasabeaajugWaiaad6ga cqGHRaWkcaaIXaaaaKqzGeGaeyOeI0Iaeq4SdC2cdaWgaaqcbasaaK qzadGaaGymaaqcbasabaqcLbsacaWG1bWcdaahaaqcbasabeaajugW aiaaikdacaWGUbGaey4kaSIaaGymaaaajugibiaai2dacaaIWaGaaG ilaaaa@6C21@ (4.3)

Balancing u '' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaCaaajeaibeqaaKqzadGaam4jaiaadEcaaaaa aa@3D25@ with u 2n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaCaaajeaibeqaaKqzadGaaGOmaiaad6gacqGH RaWkcaaIXaaaaaaa@3F19@ , we get N= 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eacaaI9aqcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqc LbsacaWGUbaaaaaa@3E66@ . According to (3.9) we use the transformation:

u( ξ )= v 1 n ( ξ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaayjkaiaa wMcaaKqzGeGaaGypaiaadAhalmaaCaaajeaibeqaaSWaaSaaaKqaGe aajugWaiaaigdaaKqaGeaajugWaiaad6gaaaaaaKqbaoaabmaakeaa jugibiabe67a4bGccaGLOaGaayzkaaqcLbsacaaISaGaaGjbVlaays W7aaa@4EC2@ (4.4)

Where v( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaayjkaiaa wMcaaaaa@3EC6@ is a new function of ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4baa@3B11@ , to reduce Equation (4.3) into the new ODE:

( c 1 2 α 1 ) n 2 v 2 c 1 2 nv v '' c 1 2 ( 1n ) v '2 β 1 n 2 v 3 γ 1 n 2 v 4 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacaWGJbWcdaqhaaqcbasaaKqzadGaaGym aaqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiabeg7aHTWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacaWG UbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWG2bWcdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaWGJbWcdaqhaaqc basaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaad6gaca WG2bGaamODaSWaaWbaaKqaGeqabaqcLbmacaWGNaGaam4jaaaajugi biabgkHiTiaadogalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLb macaaIYaaaaKqbaoaabmaakeaajugibiaaigdacqGHsislcaWGUbaa kiaawIcacaGLPaaajugibiaadAhalmaaCaaajeaibeqaaKqzadGaam 4jaiaaikdaaaqcLbsacqGHsislcqaHYoGylmaaBaaajeaibaqcLbma caaIXaaajeaibeaajugibiaad6galmaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiaadAhalmaaCaaajeaibeqaaKqzadGaaG4maaaajugi biabgkHiTiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOD aSWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGaaGypaiaaicdaca aISaaaaa@884F@ (4.5)

Balancing v v '' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhacaWG2bWcdaahaaqcbasabeaajugWaiaadEcacaWG Naaaaaaa@3E21@ with v 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaCaaajeaibeqaaKqzadGaaGinaaaaaaa@3C8C@ in Equation (4.5), we get N=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eacaaI9aGaaGymaaaa@3BA3@ . According to the form (3.4), Equation (4.5) has the formal solution:

v( ξ )= a 0 + a 1 f( ξ )+ b 1 g( ξ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaayjkaiaa wMcaaKqzGeGaaGypaiaadggalmaaBaaajeaibaqcLbmacaaIWaaaje aibeaajugibiabgUcaRiaadggalmaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiaadAgajuaGdaqadaGcbaqcLbsacqaH+oaEaOGaay jkaiaawMcaaKqzGeGaey4kaSIaamOyaSWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaam4zaKqbaoaabmaakeaajugibiabe67a4b GccaGLOaGaayzkaaqcLbsacaaISaaaaa@5A1F@ (4.6)

Where a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3C9C@ , a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3C9D@ , b 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaaa@3D02@ are constants to be determined, such that a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabgcMi5kaaicdaaaa@3FAD@ or b 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biabgcMi5kaaicdaaaa@4012@ . Substituting (4.6) along with (3.5)−(3.7) into Equation (4.5) and collecting all terms of the same order of f i ( ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaCaaajeaibeqaaKqzadGaamyAaaaajuaGdaqa daGcbaqcLbsacqaH+oaEaOGaayjkaiaawMcaaaaa@4129@ , g j ( ξ ),( i,j=0,1,2,... ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaCaaajeaibeqaaKqzadGaamOAaaaajuaGdaqa daGcbaqcLbsacqaH+oaEaOGaayjkaiaawMcaaKqzGeGaaGilaKqbao aabmaakeaajugibiaadMgacaaISaGaamOAaiaai2dacaaIWaGaaGil aiaaigdacaaISaGaaGOmaiaaiYcacaaIUaGaaGOlaiaai6caaOGaay jkaiaawMcaaaaa@4EFF@ and setting them to zero, we have the following algebraic equations:

{ f 4 (ξ):6 n 2 γ 1 a 1 2 b 1 2 c+ c 1 2 a 1 2 c c 1 2 b 1 2 c 2 +n c 1 2 a 1 2 c n 2 γ 1 a 1 4 n 2 γ 1 b 1 4 c 2 c 1 2 n b 1 2 c 2 =0, f 4 (ξ): c 1 2 r 2 b 1 2 + c 1 2 n r 2 b 1 2 + n 2 γ 1 r 2 b 1 4 =0, f 3 (ξ): n 2 β 1 a 1 3 +3 n 2 β 1 a 1 b 1 2 c+2n c 1 2 a 0 a 1 c+12 n 2 γ 1 a 0 a 1 b 1 2 c4 n 2 γ 1 a 0 a 1 3 =0, f 2 (ξ): c 1 2 a 1 2 q n 2 c 1 2 b 1 2 c+6 n 2 γ 1 a 0 2 b 1 2 c6 n 2 γ 1 a 0 2 a 1 2 + n 2 α 1 b 1 2 c3 n 2 β 1 a 0 a 1 2 + n 2 c 1 2 a 1 2 n 2 α 1 a 1 2 :2 n 2 γ 1 b 1 4 qc+6 n 2 γ 1 a 1 2 b 1 2 q2n c 1 2 b 1 2 qc+3 n 2 β 1 a 0 b 1 2 c=0, f(ξ):3 n 2 β 1 a 1 q b 1 2 4 n 2 γ 1 a 0 3 a 1 +n c 1 2 a 0 q a 1 +2 n 2 c 1 2 a 1 a 0 +12 n 2 γ 1 a 0 a 1 q b 1 2 :3 n 2 β 1 a 0 2 a 1 2 n 2 α 1 a 0 a 1 =0, f 1 (ξ):3 n 2 β 1 a 1 r b 1 2 +12 n 2 γ 1 a 0 a 1 r b 1 2 =0,(4.7) f 0 (ξ):2 c 1 2 r b 1 2 c2 n 2 c 1 2 b 1 2 qn c 1 2 a 1 2 r+2 n 2 α 1 b 1 2 q2 n 2 γ 1 b 1 4 q 2 6n c 1 2 r b 1 2 c+12 n 2 γ 1 a 0 2 b 1 2 q :6 n 2 β 1 a 0 b 1 2 q+6 n 2 γ 1 a 1 2 b 1 2 r2 n 2 γ 1 b 1 4 rc+2 n 2 c 1 2 a 0 2 2 n 2 α 1 a 0 2 2 n 2 β 1 a 0 3 2 n 2 γ 1 a 0 4 + c 1 2 a 1 2 r=0, f 2 (ξ)g(ξ):2n c 1 2 a 0 b 1 c3 n 2 β 1 a 1 2 b 1 + n 2 β 1 b 1 3 c+4 n 2 γ 1 a 0 b 1 3 c12 n 2 γ 1 a 0 a 1 2 b 1 =0, f 2 (ξ)g(ξ):2n c 1 2 a 0 r b 1 + n 2 β 1 r b 1 3 +4 n 2 γ 1 a 0 r b 1 3 =0, f 3 (ξ)g(ξ):2n c 1 2 a 1 b 1 c+2 c 1 2 a 1 b 1 c4 n 2 γ 1 a 1 3 b 1 +4 n 2 γ 1 a 1 b 1 3 c=0, g(ξ):2 n 2 c 1 2 a 0 b 1 + n 2 β 1 b 1 3 q2 n 2 α 1 a 0 b 1 4 n 2 γ 1 a 0 3 b 1 +4 n 2 γ 1 a 0 b 1 3 q3 n 2 β 1 a 0 2 b 1 =0, f(ξ)g(ξ):2 n 2 α 1 a 1 b 1 +2 n 2 c 1 2 a 1 b 1 +4 n 2 γ 1 a 1 b 1 3 q6 n 2 β 1 a 0 a 1 b 1 12 n 2 γ 1 a 0 2 a 1 b 1 +n c 1 2 b 1 a 1 q=0, f 1 (ξ)g(ξ):2n c 1 2 a 1 r b 1 +2 n 2 γ 1 a 1 r b 1 3 c 1 2 a 1 r b 1 =0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsafaqaaeaebaaaaaaaaOqaaKqzGeGaamOz aKqbaoaaCaaaleqajeaibaqcLbmacaaI0aaaaKqzGeGaaGikaiabe6 7a4jaaiMcacaaI6aGaaGOnaiaad6galmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGe qaaKqzGeGaamyyaSWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugW aiaaikdaaaqcLbsacaWGIbWcdaqhaaqcbasaaKqzadGaaGymaaqcba saaKqzadGaaGOmaaaajugibiaadogacqGHRaWkcaWGJbWcdaqhaaqc basaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadggalm aaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGa am4yaiabgkHiTiaadogalmaaDaaajeaibaqcLbmacaaIXaaajeaiba qcLbmacaaIYaaaaKqzGeGaamOyaSWaa0baaKqaGeaajugWaiaaigda aKqaGeaajugWaiaaikdaaaqcLbsacaWGJbWcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqGHRaWkcaWGUbGaam4yaSWaa0baaKqaGeaa jugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacaWGHbWcdaqhaa qcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadoga cqGHsislcaWGUbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacq aHZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaadgga lmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaI0aaaaKqzGe GaeyOeI0IaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eq4SdCwcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaWGIb WcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGinaaaajugi biaadogalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTi aadogalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaa aKqzGeGaamOBaiaadkgalmaaDaaajeaibaqcLbmacaaIXaaajeaiba qcLbmacaaIYaaaaKqzGeGaam4yaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGypaiaaicdacaaISaGaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7aOqa aKqzGeGaamOzaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaI0aaaaK qzGeGaaGikaiabe67a4jaaiMcacaaI6aGaam4yaSWaa0baaKqaGeaa jugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacaWGYbWcdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacaWGIbWcdaqhaaqcbasaaKqz adGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaadogalm aaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGa amOBaiaadkhajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibi aadkgalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaa aKqzGeGaey4kaSIaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaeq4SdCwcfa4aaSbaaKazba4=baqcLbkacaaIXaaaleqaaKqz GeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOyaS Waa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaisdaaaqcLbsa caaI9aGaaGimaiaaiYcacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVdGcbaqcLb sacaWGMbqcfa4aaWbaaSqabeaajugibiaaiodaaaGaaGikaiabe67a 4jaaiMcacaaI6aGaeyOeI0IaamOBaKqbaoaaCaaaleqabaqcLbsaca aIYaaaaiabek7aILqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsa caWGHbqcfa4aa0baaSqaaKqzGeGaaGymaaWcbaqcLbsacaaIZaaaai abgUcaRiaaiodacaWGUbqcfa4aaWbaaSqabeaajugibiaaikdaaaGa eqOSdiwcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaadggaju aGdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaamOyaKqbaoaaDaaa leaajugibiaaigdaaSqaaKqzGeGaaGOmaaaacaWGJbGaey4kaSIaaG Omaiaad6gacaWGJbqcfa4aa0baaSqaaKqzGeGaaGymaaWcbaqcLbsa caaIYaaaaiaadggajuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGe GaamyyaKqbaoaaBaaaleaajugibiaaigdaaSqabaqcLbsacaWGJbGa ey4kaSIaaGymaiaaikdacaWGUbqcfa4aaWbaaSqabeaajugibiaaik daaaGaeq4SdCwcfa4aaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaa dggajuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaamyyaKqbao aaBaaaleaajugibiaaigdaaSqabaqcLbsacaWGIbqcfa4aa0baaSqa aKqzGeGaaGymaaWcbaqcLbsacaaIYaaaaiaadogacqGHsislcaaI0a GaamOBaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabeo7aNLqbaoaa BaaaleaajugibiaaigdaaSqabaqcLbsacaWGHbqcfa4aaSbaaSqaaK qzGeGaaGimaaWcbeaajugibiaadggajuaGdaqhaaWcbaqcLbsacaaI XaaaleaajugibiaaiodaaaGaaGypaiaaicdacaaISaGaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVdGcbaqcLbsacaWGMbWcdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacaaIOaGaeqOVdGNaaGykaiaaiQdacaWGJb WcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugi biaadggalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYa aaaKqzGeGaamyCaiabgkHiTiaad6galmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiaadogalmaaDaaajeaibaqcLbmacaaIXaaajeaiba qcLbmacaaIYaaaaKqzGeGaamOyaSWaa0baaKqaGeaajugWaiaaigda aKqaGeaajugWaiaaikdaaaqcLbsacaWGJbGaey4kaSIaaGOnaiaad6 galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeo7aNTWaaSba aKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyyaSWaa0baaKqaGe aajugWaiaaicdaaKqaGeaajugWaiaaikdaaaqcLbsacaWGIbWcdaqh aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaado gacqGHsislcaaI2aGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacaWGHbWcdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOm aaaajugibiaadggalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLb macaaIYaaaaKqzGeGaey4kaSIaamOBaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacaWGIbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaGOmaaaajugibiaadogacqGHsislcaaIZaGaamOBaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacaWGHbqcfa4aaSbaaKqaGeaajugWai aaicdaaSqabaqcLbsacaWGHbWcdaqhaaqcbasaaKqzadGaaGymaaqc basaaKqzadGaaGOmaaaajugibiabgUcaRiaad6galmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiaaysW7caWGJbWcdaqhaaqcbasaaKqz adGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadggalmaaDaaaje aibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaaGjbVlab gkHiTiaad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaays W7cqaHXoqylmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaa dggalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaK qzGeGaaGjbVlaaysW7caaMe8oakeaajugibiaaiQdacqGHsislcaaI YaGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq4SdC 2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGIbWcdaqh aaqaaKqzadGaaGymaaWcbaqcLbmacaaI0aaaaKqzGeGaamyCaiaado gacqGHRaWkcaaI2aGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacaWGHbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOm aaaajugibiaadkgalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLb macaaIYaaaaKqzGeGaamyCaiabgkHiTiaaikdacaWGUbGaam4yaSWa a0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsaca WGIbWcdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa jugibiaadghacaWGJbGaey4kaSIaaG4maiaad6gajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaajugibiabek7aITWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaamyyaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaamOyaSWaa0baaKqaGeaajugWaiaaigdaaKqa GeaajugWaiaaikdaaaqcLbsacaWGJbGaaGypaiaaicdacaaISaGaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7aOqaaKqz GeGaamOzaiaaiIcacqaH+oaEcaaIPaGaaGOoaiaaysW7caaMe8UaaG 4maiaad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabek7a ITWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyyaKqbao aaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaamyCaiaadkgalmaa DaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaey OeI0IaaGinaiaad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugi biabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaam yyaSWaa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaiodaaaqc LbsacaWGHbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacq GHRaWkcaaMe8UaamOBaiaadogalmaaDaaajeaibaqcLbmacaaIXaaa jeaibaqcLbmacaaIYaaaaKqzGeGaamyyaSWaaSbaaKqaGeaajugWai aaicdaaKqaGeqaaKqzGeGaamyCaiaadggalmaaBaaajeaibaqcLbma caaIXaaajeaibeaajugibiabgUcaRiaaikdacaWGUbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaam4yaKqbaoaaDaaajeaibaqc LbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaamyyaKqbaoaaBa aajeaibaqcLbmacaaIXaaajeaibeaajugibiaadggajuaGdaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkcaaIXaGaaGOmai aad6gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabeo7a NLqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaadggaju aGdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGHbqcfa4a aSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyCaiaadkgaju aGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaI6aGaeyOeI0 IaaG4maiaad6gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biabek7aILqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibi aadggajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOm aaaajugibiaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasaba qcLbsacqGHsislcaaIYaGaamOBaKqbaoaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaje aibeaajugibiaadggajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaa jugibiaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacaaI9aGaaGimaiaaiYcaaOqaaKqzGeGaamOzaKqbaoaaCaaajeai beqaaKqzadGaeyOeI0IaaGymaaaajugibiaaiIcacqaH+oaEcaaIPa GaaGOoaiaaysW7caaIZaGaamOBaKqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugWaiaaigdaaK qaGeqaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaajeai beaajugibiaadkhacaWGIbqcfa4aa0baaKqaGeaajugWaiaaigdaaK qaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIXaGaaGOmaiaad6ga juaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHZoWzjuaGda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGHbqcfa4aaSba aKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaamyyaKqbaoaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiaadkhacaWGIbqcfa4aa0ba aKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacaaI9a GaaGimaiaaiYcacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caqGOaGaaeinaiaab6cacaqG3aGaaeykaiaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8oa keaajugibiaadAgajuaGdaahaaWcbeqcbasaaKqzadGaaGimaaaaju gibiaaiIcacqaH+oaEcaaIPaGaaGOoaiaaysW7caaMe8UaaGOmaiaa dogajuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaa aajugibiaadkhacaWGIbqcfa4aa0baaKqaGeaajugWaiaaigdaaKqa GeaajugWaiaaikdaaaqcLbsacaWGJbGaeyOeI0IaaGOmaiaad6gaju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaadogajuaGdaqh aaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadk gajuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa jugibiaadghacqGHsislcaWGUbGaam4yaKqbaoaaDaaajeaibaqcLb macaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaamyyaKqbaoaaDaaa jeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaamOCai abgUcaRiaaikdacaWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGaamOyaKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caaIYaaaaKqzGeGaamyCaiabgkHiTiaaikdacaWGUbqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaeq4SdCwcfa4aaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaamOyaKqbaoaaDaaajeaibaqcLb macaaIXaaajeaibaqcLbmacaaI0aaaaKqzGeGaamyCaKqbaoaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaiAdacaWGUbGaam 4yaKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaa aKqzGeGaamOCaiaadkgajuaGdaqhaaqcbasaaKqzadGaaGymaaqcba saaKqzadGaaGOmaaaajugibiaadogacqGHRaWkcaaIXaGaaGOmaiaa d6gajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHZoWzju aGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGHbqcfa4a a0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaikdaaaqcLbsaca WGIbqcfa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikda aaqcLbsacaWGXbGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7aOqaaKqzGeGaaGOoaiaaiAdacaWGUbqcfa4aaWbaaKqaGeqa baqcLbmacaaIYaaaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugWai aaigdaaKqaGeqaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaI WaaajeaibeaajugibiaadkgajuaGdaqhaaqcbasaaKqzadGaaGymaa qcbasaaKqzadGaaGOmaaaajugibiaadghacqGHRaWkcaaI2aGaamOB aKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeq4SdCwcfa 4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyyaKqbaoaa DaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaam OyaKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaa aKqzGeGaamOCaiabgkHiTiaaikdacaWGUbqcfa4aaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaamOyaKqbaoaaDaaajeaibaqcLbmacaaIXa aajeaibaqcLbmacaaI0aaaaKqzGeGaamOCaiaadogacqGHRaWkcaaI YaGaamOBaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaado gajuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa jugibiaadggajuaGdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzad GaaGOmaaaajugibiabgkHiTiaaikdacaWGUbqcfa4aaWbaaKqaGeqa baqcLbmacaaIYaaaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWai aaigdaaKqaGeqaaKqzGeGaamyyaKqbaoaaDaaajeaibaqcLbmacaaI WaaajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGOmaiaad6gaju aGdaahaaqcbauabKqaGeaajugWaiaaikdaaaqcLbsacqaHYoGyjuaG daWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaadggajuaGdaqhaa qcbasaaKqzadGaaGimaaqcbasaaKqzadGaaG4maaaajugibiabgkHi TiaaikdacaWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe Gaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGa amyyaKqbaoaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaI0a aaaKqzGeGaey4kaSIaam4yaKqbaoaaDaaajeaibaqcLbmacaaIXaaa jeaibaqcLbmacaaIYaaaaKqzGeGaamyyaKqbaoaaDaaajeaibaqcLb macaaIXaaajeaibaqcLbmacaaIYaaaaKqzGeGaamOCaiaai2dacaaI WaGaaGilaaGcbaqcLbsacaWGMbqcfa4aaWbaaKqaGeqabaqcLbmaca aIYaaaaKqzGeGaaGikaiabe67a4jaaiMcacaWGNbGaaGikaiabe67a 4jaaiMcacaaI6aGaaGOmaiaad6gacaWGJbqcfa4aa0baaKqaGeaaju gWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacaWGHbqcfa4aaSba aKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaamOyaKqbaoaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiaadogacqGHsislcaaIZaGa amOBaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabek7aIL qbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaadggajuaG daqhaaqcbauaaKqzGdGaaGymaaqcbauaaKqzGdGaaGOmaaaajugibi aadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH RaWkcaWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq OSdiwcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamOy aKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIZaaaaK qzGeGaam4yaiabgUcaRiaaisdacaWGUbqcfa4aaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiaadkgajuaGdaqhaaqcbasaaKqzadGaaGymaaqcba saaKqzadGaaG4maaaajugibiaadogacqGHsislcaaIXaGaaGOmaiaa d6gajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHZoWzju aGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaadggajuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugibiaadggajuaGdaqhaaqcba saaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadkgajuaG daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI9aGaaGimai aaiYcacaaMe8oakeaajugibiaadAgajuaGdaahaaqcbasabeaajugW aiabgkHiTiaaikdaaaqcLbsacaaIOaGaeqOVdGNaaGykaiaadEgaca aIOaGaeqOVdGNaaGykaiaaiQdacaaMe8UaaGOmaiaad6gacaWGJbqc fa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLb sacaWGHbqcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGa amOCaiaadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacqGHRaWkcaWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaeqOSdiwcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGe GaamOCaiaadkgajuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaG4maaaajugibiabgUcaRiaaisdacaWGUbqcfa4aaWbaaKqaGe qabaqcLbmacaaIYaaaaKqzGeGaeq4SdCwcfa4aaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmaca aIWaaajeaibeaajugibiaadkhacaWGIbqcfa4aa0baaKqaGeaajugW aiaaigdaaKqaGeaajugWaiaaiodaaaqcLbsacaaI9aGaaGimaiaaiY cacaaMe8oakeaajugibiaaysW7caWGMbqcfa4aaWbaaSqabKqaGeaa jugWaiaaiodaaaqcLbsacaaIOaGaeqOVdGNaaGykaiaadEgacaaIOa GaeqOVdGNaaGykaiaaiQdacaaMe8UaaGOmaiaad6gacaWGJbqcfa4a a0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsaca WGHbqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamOy aKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaam4yaiabgU caRiaaikdacaWGJbqcfa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaa jugWaiaaikdaaaqcLbsacaWGHbqcfa4aaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaamOyaKqbaoaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiaadogacqGHsislcaaI0aGaamOBaKqbaoaaCaaaje aibeqaaKqzadGaaGOmaaaajugibiabeo7aNLqbaoaaBaaajeaibaqc LbmacaaIXaaajeaibeaajugibiaadggajuaGdaqhaaqcbasaaKqzad GaaGymaaqcbasaaKqzadGaaG4maaaajugibiaadkgajuaGdaWgaaqc basaaKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcaaI0aGaamOBaK qbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeo7aNLqbaoaa BaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaadggajuaGdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGIbqcfa4aa0baaKqa GeaajugWaiaaigdaaKqaGeaajugWaiaaiodaaaqcLbsacaWGJbGaaG ypaiaaicdacaaISaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8oakeaajugibiaaysW7caWGNbGaaGikaiabe67a4jaaiMcacaaI 6aGaaGjbVlaaysW7caaIYaGaamOBaKqbaoaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaadogajuaGdaqhaaqcbasaaKqzadGaaGymaaqc basaaKqzadGaaGOmaaaajugibiaadggajuaGdaWgaaqcKfaG=haaju gOaiaaicdaaKazba4=beaajugibiaadkgajuaGdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacqGHRaWkcaWGUbqcfa4aaWbaaKqaaf qabaqcLboacaaIYaaaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaamOyaKqbaoaaDaaajeaibaqcLbmaca aIXaaajeaibaqcLbmacaaIZaaaaKqzGeGaamyCaiabgkHiTiaaikda caWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaWGHbqcfa4a aSbaaKqaafaajug4aiaaicdaaKqaafqaaKqzGeGaamOyaKqbaoaaBa aajeaibaqcLbmacaaIXaaajeaibeaajugibiabgkHiTiaaisdacaWG Ubqcfa4aaWbaaKqaafqajeaibaqcLbmacaaIYaaaaKqzGeGaeq4SdC wcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyyaKqb aoaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIZaaaaKqzGe GaamOyaKqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiab gUcaRiaaisdacaWGUbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsa caWGHbqcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaam OyaKqbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIZaaa aKqzGeGaamyCaiabgkHiTiaaiodacaWGUbqcfa4aaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaamyyaKqbaoaaDaaajeaibaqcLbmacaaIWa aajeaibaqcLbmacaaIYaaaaKqzGeGaamOyaKqbaoaaBaaajeaibaqc LbmacaaIXaaajeaibeaajugibiaai2dacaaIWaGaaGilaiaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8oakeaajugibiaadAgacaaIOaGaeqOVdG NaaGykaiaadEgacaaIOaGaeqOVdGNaaGykaiaaiQdacqGHsislcaaI YaGaamOBaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabeg 7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaadgga juaGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGIbqcfa 4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaaGOm aiaad6gajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGJb qcfa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqc LbsacaWGHbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsaca WGIbqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4k aSIaaGinaiaad6gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabeo7aNLqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaadggajuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsaca WGIbqcfa4aa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaioda aaqcLbsacaWGXbGaeyOeI0IaaGOnaiaad6gajuaGdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacqaHYoGyjuaGdaWgaaqcbasaaKqzadGa aGymaaqcbasabaqcLbsacaWGHbqcfa4aaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiaadkgajuaGdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacqGHsislcaaIXaGaaGOmaiaad6gajuaGdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacqaHZoWzjuaGdaWgaaqcbasaaKqzad GaaGymaaqcbasabaqcLbsacaWGHbqcfa4aa0baaKqaGeaajugWaiaa icdaaKqaGeaajugWaiaaikdaaaqcLbsacaWGHbqcfa4aaSbaaKqaGe aajugWaiaaigdaaKqaafqaaKqzGeGaamOyaKqbaoaaBaaajeaibaqc LbmacaaIXaaajeaibeaajugibiabgUcaRiaad6gacaWGJbqcfa4aa0 baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacaWG Ibqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaamyyaK qbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaamyCaiaai2da caaIWaGaaGilaiaaysW7aOqaaKqzGeGaamOzaKqbaoaaCaaajeaibe qaaKqzadGaeyOeI0IaaGymaaaajugibiaaiIcacqaH+oaEcaaIPaGa am4zaiaaiIcacqaH+oaEcaaIPaGaaGOoaiaaikdacaWGUbGaam4yaK qbaoaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaKqz GeGaamyyaKqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibi aadkhacaWGIbqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqz GeGaey4kaSIaaGOmaiaad6gajuaGdaahaaqcbasabeaajugWaiaaik daaaqcLbsacqaHZoWzjuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaWGHbqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGaamOCaiaadkgajuaGdaqhaaqcbasaaKqzadGaaGymaaqcbasa aKqzadGaaG4maaaajugibiabgkHiTiaadogajuaGdaqhaaqcbasaaK qzadGaaGymaaqcbasaaKqzadGaaGOmaaaajugibiaadggajuaGdaWg aaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaWGYbGaamOyaKqbao aaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaai2dacaaIWaGa aGilaiaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaa ysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaG jbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjb VlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7 caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8Ua aGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVdaaaOGaay 5Eaiaaw2haaaaa@FE33@

According to Step5 of Section 3, we have the following results:

Result 1: If we substitute q=( 1+ m 2 ),r=2 m 2 ,c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUca Riaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqzGeGaaGilaiaadkhacaaI9aGaeyOeI0IaaGOmaiaad2galmaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiYcacaWGJbGaaGypai abgkHiTiaaigdaaaa@4F10@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, a 1 =0, b 1 = 2 α 1 γ 1 (1+2 m 2 ) , c 1 = α 1 (1+2 m 2 ) , α 1 <0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaaMe8UaamyBaiaai2dacaWGTbGaaGil aiaad6gacaaI9aGaaGymaiaaiYcacqaHYoGylmaaBaaajqwaa+FaaK qzadGaaGymaaqcKfaG=hqaaKqzGeGaaGypaiaaicdacaaISaGaamyy aSWaaSbaaKazba4=baqcLbmacaaIWaaajqwaa+FabaqcLbsacaaI9a GaaGimaiaaiYcacaWGHbWcdaWgaaqcKfaG=haajugWaiaaigdaaKqa GeqaaKqzGeGaaGypaiaaicdacaaISaGaamOyaSWaaSbaaKazba4=ba qcLbmacaaIXaaajqwaa+FabaqcLbsacaaI9aqcfa4aaOaaaOqaaKqb aoaalaaakeaajugibiaaikdacqaHXoqylmaaBaaajqwaa+FaaKqzad GaaGymaaqcKfaG=hqaaaGcbaqcLbsacqaHZoWzjuaGdaWgaaqcKfaG =haajugWaiaaigdaaKqaGeqaaKqzGeGaaGikaiaaigdacqGHRaWkca aIYaGaamyBaKqbaoaaCaaajeaibeqcKfaG=haajugWaiaaikdaaaqc LbsacaaIPaaaaaWcbeaajugibiaaiYcacaWGJbWcdaWgaaqcKfaG=h aajugWaiaaigdaaKazba4=beaajugibiaai2dajuaGdaGcaaGcbaqc fa4aaSaaaOqaaKqzGeGaeyOeI0IaeqySde2cdaWgaaqcKfaG=haaju gWaiaaigdaaKazba4=beaaaOqaaKqzGeGaaGikaiaaigdacqGHRaWk caaIYaGaamyBaKqbaoaaCaaajeaibeqcKfaG=haajugWaiaaikdaaa qcLbsacaaIPaaaaaWcbeaajugibiaaiYcacqaHXoqylmaaBaaajqwa a+FaaKqzadGaaGymaaqcKfaG=hqaaKqzGeGaaGipaiaaicdacaaISa Gaeq4SdC2cdaWgaaqcKfaG=haajugWaiaaigdaaKazba4=beaajugi biaaiYdacaaIWaGaaGjbVdGccaGL7bGaayzFaaqcLbsacaaMe8oaaa@BB16@ (4.8)

or

{ m=m,n=2, α 1 = 15 64 β 1 2 ( m 2 1 ) γ 1 m 2 , a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8m γ 1 , b 1 =0, c 1 = β 1 4m 3 γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaWGTbGaaGypaiaad2gacaaISaGaamOB aiaai2dacaaIYaGaaGilaiabeg7aHTWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaaGypaKqbaoaalaaakeaajugibiaaigdacaaI 1aaakeaajugibiaaiAdacaaI0aaaaKqbaoaalaaakeaajugibiabek 7aITWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqc fa4aaeWaaOqaaKqzGeGaamyBaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaaabaqcLbsacqaH ZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaad2galm aaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacaaISaGaamyyaSWa aSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaaGypaKqbaoaala aakeaajugibiabgkHiTiaaiodacqaHYoGylmaaBaaajeaibaqcLbma caaIXaaajeaibeaaaOqaaKqzGeGaaGioaiabeo7aNTWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaaaajugibiaaiYcacaWGHbWcdaWgaaqc basaaKqzadGaaGymaaqcbasabaqcLbsacaaI9aqcfa4aaSaaaOqaaK qzGeGaaG4maiabek7aILqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aaGcbaqcLbsacaaI4aGaamyBaiabeo7aNTWaaSbaaKqaGeaajugWai aaigdaaKqaGeqaaaaajugibiaaiYcacaWGIbWcdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcLbsacaaI9aGaaGimaiaaiYcacaWGJbWcda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aakeaajugibiaaisdacaWGTbaaaKqbaoaakaaakeaajuaGdaWcaaGc baqcLbsacqGHsislcaaIZaaakeaajugibiabeo7aNTWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaaaaaSqabaqcLbsacaaISaGaeq4SdC2c daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI8aGaaGimaa GccaGL7bGaayzFaaaaaa@AC9A@ (4.9)

Substituting (4.8) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= 2 α 1 γ 1 (1+2 m 2 ) ( cn( ξ,m )dn( ξ,m ) sn( ξ,m ) ), α 1 <0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaiabgkHiTKqbaoaakaaakeaaju aGdaWcaaGcbaqcLbsacaaIYaGaeqySdewcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaaakeaajugibiabeo7aNTWaaSbaaKqaGeaajugWai aaigdaaKqaGeqaaKqzGeGaaGikaiaaigdacqGHRaWkcaaIYaGaamyB aSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGykaaaaaSqaba qcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadogacaWGUbqcfa4a aeWaaOqaaKqzGeGaeqOVdGNaaGilaiaad2gaaOGaayjkaiaawMcaaK qzGeGaamizaiaad6gajuaGdaqadaGcbaqcLbsacqaH+oaEcaaISaGa amyBaaGccaGLOaGaayzkaaaabaqcLbsacaWGZbGaamOBaKqbaoaabm aakeaajugibiabe67a4jaaiYcacaWGTbaakiaawIcacaGLPaaaaaaa caGLOaGaayzkaaqcLbsacaaISaGaaGjbVlabeg7aHTWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaKqzGeGaaGipaiaaicdacaaISaGaeq4S dCwcfa4aaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaGipai aaicdaaaa@8283@ (4.10)

Where ξ= x β β ( α 1 (1+2 m 2 ) ) t α α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqz GeGaeyOeI0IaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aakeaajugibiaaiIcacaaIXaGaey4kaSIaaGOmaiaad2galmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiaaiMcaaaaaleqaaaGccaGLOa Gaayzkaaqcfa4aaSaaaOqaaKqzGeGaamiDaKqbaoaaCaaaleqajeai baqcLbmacqaHXoqyaaaakeaajugibiabeg7aHbaaaaa@5E24@ . If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIWaaaaa@3CE7@ , then we have the periodic solution:

u( x,t )= 2 α 1 γ 1 [ cot( x β β α 1 t α α ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaiabgkHiTKqbaoaakaaakeaaju aGdaWcaaGcbaqcLbsacaaIYaGaeqySde2cdaWgaaqcbasaaKqzadGa aGymaaqcbasabaaakeaajugibiabeo7aNTWaaSbaaKqaGeaajugWai aaigdaaKqaGeqaaaaaaSqabaqcfa4aamWaaOqaaKqzGeGaai4yaiaa c+gacaGG0bGaaGikaKqbaoaalaaakeaajugibiaadIhajuaGdaahaa WcbeqcbasaaKqzadGaeqOSdigaaaGcbaqcLbsacqaHYoGyaaGaeyOe I0scfa4aaOaaaOqaaKqzGeGaeyOeI0IaeqySde2cdaWgaaqcbasaaK qzadGaaGymaaqcbasabaaaleqaaKqbaoaalaaakeaajugibiaadsha lmaaCaaajeaibeqaaKqzadGaeqySdegaaaGcbaqcLbsacqaHXoqyaa GaaGykaaGccaGLBbGaayzxaaqcLbsacaaISaaaaa@6CB9@ (4.11)

while if m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ , then we have the solitary wave solution:

u(x,t)= 2 α 1 3 γ 1 [ coth( x β β α 1 3 t α α )tanh( x β β α 1 3 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2da cqGHsisljuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOmaiabeg 7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcLbsacaaI ZaGaeq4SdCwcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaaaaqaba qcfa4aamWaaOqaaKqzGeGaai4yaiaac+gacaGG0bGaaiiAaiaaiIca juaGdaWcaaGcbaqcLbsacaWG4bqcfa4aaWbaaSqabKqaGeaajugWai abek7aIbaaaOqaaKqzGeGaeqOSdigaaiabgkHiTKqbaoaakaaakeaa juaGdaWcaaGcbaqcLbsacqGHsislcqaHXoqylmaaBaaajeaibaqcLb macaaIXaaajeaibeaaaOqaaKqzGeGaaG4maaaaaSqabaqcfa4aaSaa aOqaaKqzGeGaamiDaKqbaoaaCaaaleqajeaibaqcLbmacqaHXoqyaa aakeaajugibiabeg7aHbaacaaIPaGaeyOeI0IaaiiDaiaacggacaGG UbGaaiiAaiaaiIcajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4aaWbaaS qabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaaiabgkHi TKqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacqGHsislcqaHXoqyju aGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaaG4maaaa aSqabaqcfa4aaSaaaOqaaKqzGeGaamiDaSWaaWbaaKqaGeqabaqcLb macqaHXoqyaaaakeaajugibiabeg7aHbaacaaIPaaakiaawUfacaGL Dbaajugibiaai6caaaa@8EA6@ (4.12)

Substituting (4.9) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 ( 1 1 msn( ξ,m ) ) } 1 2 , γ 1 <0, β 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaacmaakeaajuaGdaWcaa GcbaqcLbsacqGHsislcaaIZaGaeqOSdi2cdaWgaaqcbasaaKqzadGa aGymaaqcbasabaaakeaajugibiaaiIdacqaHZoWzlmaaBaaajeaiba qcLbmacaaIXaaajeaibeaaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiab gkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamyBaiaado hacaWGUbqcfa4aaeWaaOqaaKqzGeGaeqOVdGNaaGilaiaad2gaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaaaiaawUhacaGL9baalmaaCa aajeaibeqaaSWaaSaaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaa ikdaaaaaaKqzGeGaaGilaiaaysW7caaMe8UaaGjbVlabeo7aNTWaaS baaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaGipaiaaicdacaaI SaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsaca aI+aGaaGimaaaa@777D@ (4.13)

where ξ= x β β ( β 1 4m 3 γ 1 ) t α α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqaHYoGylmaa BaaajeaibaqcLbmacaaIXaaajeaibeaaaOqaaKqzGeGaaGinaiaad2 gaaaqcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabgkHiTiaaioda aOqaaKqzGeGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aaaaWcbeaaaOGaayjkaiaawMcaaKqbaoaalaaakeaajugibiaadsha lmaaCaaajeaibeqaaKqzadGaeqySdegaaaGcbaqcLbsacqaHXoqyaa aaaa@5E65@ . If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ , then we have the singular soliton solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1coth( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaacmaakeaajuaGdaWcaa GcbaqcLbsacqGHsislcaaIZaGaeqOSdi2cdaWgaaqcbasaaKqzadGa aGymaaqcbasabaaakeaajugibiaaiIdacqaHZoWzjuaGdaWgaaqcba saaKqzadGaaGymaaWcbeaaaaqcfa4aamWaaOqaaKqzGeGaaGymaiab gkHiTiaacogacaGGVbGaaiiDaiaacIgajuaGdaqadaGcbaqcfa4aaS aaaOqaaKqzGeGaamiEaKqbaoaaCaaaleqajeaibaqcLbmacqaHYoGy aaaakeaajugibiabek7aIbaacqGHsisljuaGdaWcaaGcbaqcLbsacq aHYoGyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGa aGinaaaajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaG 4maaGcbaqcLbsacqaHZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeai beaaaaaaleqaaKqbaoaalaaakeaajugibiaadshajuaGdaahaaWcbe qcbasaaKqzadGaeqySdegaaaGcbaqcLbsacqaHXoqyaaaakiaawIca caGLPaaaaiaawUfacaGLDbaaaiaawUhacaGL9baalmaaCaaajeaibe qaaSWaaSaaaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaaa aKqzGeGaaiOlaaaa@816D@ (4.14)

Result 2: If we substitute q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=2 m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaaGOmaiaad2galmaaCaaajeaibeqaaKqz adGaaGOmaaaajugibiaaiYcaaaa@4040@ c=( m 2 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOa Gaayzkaaaaaa@4321@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8 γ 1 , c 1 = β 1 4 3 γ 1 ( m 2 1 ) , α 1 = 3 β 1 2 ( 4 m 2 1 ) 64 γ 1 ( m 2 1 ) , b 1 =0, γ 1 ( m 2 1 )>0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaWGTbGaaGypaiaad2gacaaISaGaamOB aiaai2dacaaIYaGaaGilaiaadggalmaaBaaajeaibaqcLbmacaaIWa aajeaibeaajugibiaai2dajuaGdaWcaaGcbaqcLbsacqGHsislcaaI ZaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakeaaju gibiaaiIdacqaHZoWzjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaa aaqcLbsacaaISaGaamyyaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGe qaaKqzGeGaaGypaKqbaoaalaaakeaajugibiaaiodacqaHYoGyjuaG daWgaaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaaGioaiabeo 7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaajugibiaaiYca caWGJbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI9a qcfa4aaSaaaOqaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGeaajugWaiaa igdaaSqabaaakeaajugibiaaisdaaaqcfa4aaOaaaOqaaKqbaoaala aakeaajugibiaaiodaaOqaaKqzGeGaeq4SdC2cdaWgaaqcbasaaKqz adGaaGymaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaamyBaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGa ayzkaaaaaaWcbeaajugibiaaiYcacqaHXoqyjuaGdaWgaaqcbasaaK qzadGaaGymaaWcbeaajugibiaai2dajuaGdaWcaaGcbaqcLbsacaaI ZaGaeqOSdi2cdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaG OmaaaajuaGdaqadaGcbaqcLbsacaaI0aGaamyBaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaa aabaqcLbsacaaI2aGaaGinaiabeo7aNTWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqbaoaabmaakeaajugibiaad2galmaaCaaajeaibe qaaKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkaiaawMca aaaajugibiaaiYcacaWGIbWcdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacaaI9aGaaGimaiaaiYcacqaHZoWzlmaaBaaajeaibaqc LbmacaaIXaaajeaibeaajuaGdaqadaGcbaqcLbsacaWGTbWcdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaaIXaaakiaawIca caGLPaaajugibiaai6dacaaIWaGaaGilaaGccaGL7bGaayzFaaqcLb sacaaMe8UaaGjbVdaa@C231@ (4.15)

Substituting (4.15) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 ( 1 1 cn( ξ,m ) ) } 1 2 , γ 1 β 1 <0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaacmaakeaajuaGdaWcaa GcbaqcLbsacqGHsislcaaIZaGaeqOSdi2cdaWgaaqcbasaaKqzadGa aGymaaqcbasabaaakeaajugibiaaiIdacqaHZoWzlmaaBaaajeaiba qcLbmacaaIXaaajeaibeaaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiab gkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaam4yaiaad6 gajuaGdaqadaGcbaqcLbsacqaH+oaEcaaISaGaamyBaaGccaGLOaGa ayzkaaaaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaSWaaWbaaKqaGe qabaWcdaWcaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGOmaaaa aaqcLbsacaaISaGaaGjbVlabeo7aNTWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqc basabaqcLbsacaaI8aGaaGimaiaaiYcacaaMe8oaaa@736C@ (4.16)

where ξ= x β β ( β 1 4 3 γ 1 ( m 2 1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqaHYoGyjuaG daWgaaqcbasaaKqzadGaaGymaaWcbeaaaOqaaKqzGeGaaGinaaaaju aGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaG4maaGcbaqcLbsacqaH ZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajuaGdaqadaGcba qcLbsacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGH sislcaaIXaaakiaawIcacaGLPaaaaaaaleqaaaGccaGLOaGaayzkaa qcfa4aaSaaaOqaaKqzGeGaamiDaSWaaWbaaKqaGeqabaqcLbmacqaH Xoqyaaaakeaajugibiabeg7aHbaacaaIUaaaaa@65C6@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIWaaaaa@3CE7@ , then we have the periodic solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1sec( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 , β 1 γ 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaacmaakeaajuaGdaWcaa GcbaqcLbsacqGHsislcaaIZaGaeqOSdiwcfa4aaSbaaKqaGeaajugW aiaaigdaaSqabaaakeaajugibiaaiIdacqaHZoWzlmaaBaaajeaiba qcLbmacaaIXaaajeaibeaaaaqcfa4aamWaaOqaaKqzGeGaaGymaiab gkHiTiaacohacaGGLbGaai4yaKqbaoaabmaakeaajuaGdaWcaaGcba qcLbsacaWG4bWcdaahaaqcbasabeaajugWaiabek7aIbaaaOqaaKqz GeGaeqOSdigaaiabgkHiTKqbaoaalaaakeaajugibiabek7aILqbao aaBaaaleaajugibiaaigdaaSqabaaakeaajugibiaaisdaaaqcfa4a aOaaaOqaaKqbaoaalaaakeaajugibiabgkHiTiaaiodaaOqaaKqzGe Gaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaaWcbeaa juaGdaWcaaGcbaqcLbsacaWG0bWcdaahaaqcbasabeaajugWaiabeg 7aHbaaaOqaaKqzGeGaeqySdegaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaaacaGL7bGaayzFaaWcdaahaaqcbasabeaalmaalaaajeaiba qcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaaaajugibiaaiYcacaaM e8UaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacq aHZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYda caaIWaGaaGOlaaaa@8B9D@ (4.17)

Result 3: If we substitute q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaaGilaaaa@44C8@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaaGOmaiaaiYcaaaa@3C7E@ c=( 1 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi Tiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaaaa@4292@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, a 1 =0, b 1 = 2 α 1 γ 1 ( 2 m 2 5 ) , c 1 = α 1 ( 2 m 2 5 ) , α 1 >0, γ 1 <0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaaMe8UaamyBaiaai2dacaWGTbGaaGil aiaad6gacaaI9aGaaGymaiaaiYcacqaHYoGyjuaGdaWgaaqcbasaaK qzadGaaGymaaWcbeaajugibiaai2dacaaIWaGaaGilaiaadggalmaa BaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaai2dacaaIWaGaaG ilaiaadggalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaa i2dacaaIWaGaaGilaiaadkgalmaaBaaajeaibaqcLbmacaaIXaaaje aibeaajugibiaai2dajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGa aGOmaiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcba qcLbsacqaHZoWzjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajuaG daqadaGcbaqcLbsacaaIYaGaamyBaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaKqzGeGaeyOeI0IaaGynaaGccaGLOaGaayzkaaaaaaWcbeaa jugibiaaiYcacaWGJbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasaba qcLbsacaaI9aqcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabgkHi Tiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqcfa 4aaeWaaOqaaKqzGeGaaGOmaiaad2galmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabgkHiTiaaiwdaaOGaayjkaiaawMcaaaaaaSqaba qcLbsacaaISaGaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaaI+aGaaGimaiaaiYcacqaHZoWzlmaaBaaajeaibaqcLb macaaIXaaajeaibeaajugibiaaiYdacaaIWaGaaGilaaGccaGL7bGa ayzFaaqcLbsacaaMe8UaaGjbVdaa@998B@ (4.18)

Substituting (4.18) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= m 2 2 α 1 γ 1 ( 2 m 2 5 ) ( sn( ξ,m )cn( ξ,m ) dn( ξ,m ) ), α 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaiaad2galmaaCaaajeaibeqaaK qzadGaaGOmaaaajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaaGOm aiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcLb sacqaHZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajuaGdaqa daGcbaqcLbsacaaIYaGaamyBaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaeyOeI0IaaGynaaGccaGLOaGaayzkaaaaaaWcbeaajuaG daqadaGcbaqcfa4aaSaaaOqaaKqzGeGaam4Caiaad6gajuaGdaqada GcbaqcLbsacqaH+oaEcaaISaGaamyBaaGccaGLOaGaayzkaaqcLbsa caWGJbGaamOBaKqbaoaabmaakeaajugibiabe67a4jaaiYcacaWGTb aakiaawIcacaGLPaaaaeaajugibiaadsgacaWGUbqcfa4aaeWaaOqa aKqzGeGaeqOVdGNaaGilaiaad2gaaOGaayjkaiaawMcaaaaaaiaawI cacaGLPaaajugibiaaiYcacaaMe8UaeqySdewcfa4aaSbaaKqaGeaa jugWaiaaigdaaSqabaqcLbsacaaI+aGaaGimaiaaiYcacqaHZoWzlm aaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYdacaaIWaaa aa@851D@ (4.19)

where ξ= x β β ( α 1 ( 2 m 2 5 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqz GeGaeyOeI0IaeqySde2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aakeaajuaGdaqadaGcbaqcLbsacaaIYaGaamyBaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGynaaGccaGLOaGaayzkaa aaaaWcbeaaaOGaayjkaiaawMcaaKqbaoaalaaakeaajugibiaadsha juaGdaahaaWcbeqcbasaaKqzadGaeqySdegaaaGcbaqcLbsacqaHXo qyaaGaaGOlaaaa@5FB1@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ , then we have the dark soliton solution:

u( x,t )= 2 α 1 3 γ 1 [ tanh( x β β α 1 3 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaakaaakeaajuaGdaWcaa GcbaqcLbsacqGHsislcaaIYaGaeqySde2cdaWgaaqcKfaG=haajugW aiaaigdaaKqaGeqaaaGcbaqcLbsacaaIZaGaeq4SdC2cdaWgaaqcKf aG=haajugWaiaaigdaaKazba4=beaaaaaaleqaaKqbaoaadmaakeaa jugibiaacshacaGGHbGaaiOBaiaacIgajuaGdaqadaGcbaqcfa4aaS aaaOqaaKqzGeGaamiEaSWaaWbaaKqaGeqajqwaa+FaaKqzadGaeqOS digaaaGcbaqcLbsacqaHYoGyaaGaeyOeI0scfa4aaOaaaOqaaKqbao aalaaakeaajugibiabeg7aHTWaaSbaaKazba4=baqcLbmacaaIXaaa jeaibeaaaOqaaKqzGeGaaG4maaaaaSqabaqcfa4aaSaaaOqaaKqzGe GaamiDaSWaaWbaaKazba4=beqaaKqzadGaeqySdegaaaGcbaqcLbsa cqaHXoqyaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaajugibiaai6 caaaa@7A5C@ (4.20)

Result 4: If we substitute q=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUca Riaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaayjkaiaawM caaKqzGeGaaGilaaaa@43DA@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaeyOeI0IaaGOmaiaaiYcaaaa@3D6B@ c= m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI9aGaeyOeI0IaamyBaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaaaa@3F1D@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, a 0 = 3 β 1 8 γ 1 , b 1 =0, a 1 = 3 β 1 8 γ 1 ,α= 15 64 β 1 2 ( m 2 1 ) γ 1 m 2 , c 1 = β 1 4m 3 γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaWGTbGaaGypaiaad2gacaaISaGaamOB aiaai2dacaaIYaGaaGilaiaadggajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaajugibiaai2dajuaGdaWcaaGcbaqcLbsacqGHsislcaaI ZaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaakeaaju gibiaaiIdacqaHZoWzjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaa aaqcLbsacaaISaGaamOyaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGe qaaKqzGeGaaGypaiaaicdacaaISaGaamyyaKqbaoaaBaaajeaibaqc LbmacaaIXaaaleqaaKqzGeGaaGypaKqbaoaalaaakeaajugibiabgk HiTiaaiodacqaHYoGyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaa aOqaaKqzGeGaaGioaiabeo7aNLqbaoaaBaaajeaibaqcLbmacaaIXa aaleqaaaaajugibiaaiYcacqaHXoqycaaI9aqcfa4aaSaaaOqaaKqz GeGaaGymaiaaiwdaaOqaaKqzGeGaaGOnaiaaisdaaaqcfa4aaSaaaO qaaKqzGeGaeqOSdi2cdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaGOmaaaajuaGdaqadaGcbaqcLbsacaWGTbqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaqcLbsacqGHsislcaaIXaaakiaawIcacaGL Paaaaeaajugibiabeo7aNLqbaoaaBaaajeaibaqcLbmacaaIXaaale qaaKqzGeGaamyBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugi biaaiYcacaWGJbWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacaaI9aqcfa4aaSaaaOqaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqz adGaaGymaaqcbasabaaakeaajugibiaaisdacaWGTbaaaKqbaoaaka aakeaajuaGdaWcaaGcbaqcLbsacqGHsislcaaIZaaakeaajugibiab eo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaaaaSqabaqcLb sacaaISaGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsacaaI8aGaaGimaiaaysW7aOGaay5Eaiaaw2haaKqzGeGaaGjbVd aa@AFC8@ (4.21)

Substituting (4.21) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u(x,t)= { 3 β 1 8 γ 1 ( 1+sn( ξ,m ) ) } 1 2 , γ 1 <0, β 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2da juaGdaGadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaG4maiabek 7aITWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcLbsacaaI 4aGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaKqbao aabmaakeaajugibiaaigdacqGHRaWkcaWGZbGaamOBaKqbaoaabmaa keaajugibiabe67a4jaaiYcacaWGTbaakiaawIcacaGLPaaaaiaawI cacaGLPaaaaiaawUhacaGL9baajuaGdaahaaWcbeqcbasaaSWaaSaa aKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaaaaKqzGeGaaG ilaiaaysW7cqaHZoWzjuaGdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaaI8aGaaGimaiaaiYcacqaHYoGyjuaGdaWgaaqcbasaaK qzadGaaGymaaqcbasabaqcLbsacaaI+aGaaGimaaaa@708B@ (4.22)

where ξ= x β β ( β 1 4m 3 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqaHYoGylmaa BaaajeaibaqcLbmacaaIXaaajeaibeaaaOqaaKqzGeGaaGinaiaad2 gaaaqcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabgkHiTiaaioda aOqaaKqzGeGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aaaaWcbeaaaOGaayjkaiaawMcaaKqbaoaalaaakeaajugibiaadsha lmaaCaaajeaibeqaaKqzadGaeqySdegaaaGcbaqcLbsacqaHXoqyaa GaaGOlaaaa@5F1D@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ , then we have the dark soliton solution:

u(x,t)= { 3 β 1 8 γ 1 [ 1+tanh( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2da juaGdaGadaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaG4maiabek 7aITWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcLbsacaaI 4aGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaaaaKqbao aadmaakeaajugibiaaigdacqGHRaWkcaGG0bGaaiyyaiaac6gacaGG Obqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadIhajuaGdaahaa WcbeqcbasaaKqzadGaeqOSdigaaaGcbaqcLbsacqaHYoGyaaGaeyOe I0scfa4aaSaaaOqaaKqzGeGaeqOSdi2cdaWgaaqcbasaaKqzadGaaG ymaaqcbasabaaakeaajugibiaaisdaaaqcfa4aaOaaaOqaaKqbaoaa laaakeaajugibiabgkHiTiaaiodaaOqaaKqzGeGaeq4SdC2cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaaaaaWcbeaajuaGdaWcaaGcbaqc LbsacaWG0bWcdaahaaqcbasabeaajugWaiabeg7aHbaaaOqaaKqzGe GaeqySdegaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGL7bGa ayzFaaWcdaahaaqcbasabeaalmaalaaajeaibaqcLbmacaaIXaaaje aibaqcLbmacaaIYaaaaaaajugibiaai6cacaaMe8oaaa@7FB8@ (4.23)

Result 5: If we substitute q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHi TiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakiaawI cacaGLPaaajugibiaaiYcaaaa@44A1@ r=( 2+2 m 2 ),c= m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aqcfa4aaeWaaOqaaKqzGeGaeyOeI0IaaGOm aiabgUcaRiaaikdacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaa aakiaawIcacaGLPaaajugibiaaiYcacaWGJbGaaGypaiaad2galmaa CaaajeaibeqaaKqzadGaaGOmaaaaaaa@4A67@ into the algebraic equations (4.7) and use the Maple, we have

{ n=1, a 0 = β 1 3 γ 1 , a 1 =0, b 1 = β 1 3 γ 1 2 m 2 1 , c 1 = β 1 3 1 2 γ 1 ( 2 m 2 1 ) , α 1 = β 1 2 ( 8 m 2 5 ) 18 γ 1 ( 2 m 2 1 ) , γ 1 ( 2 m 2 1 )<0. } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaGadaGcbaqcLbsacaWGUbGaaGypaiaaigdacaaISaGaamyy aKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaaGypaKqbao aalaaakeaajugibiabgkHiTiabek7aITWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaaGcbaqcLbsacaaIZaGaeq4SdC2cdaWgaaqcbasaaK qzadGaaGymaaqcbasabaaaaKqzGeGaaGilaiaadggalmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiaai2dacaaIWaGaaGilaiaadk galmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaai2dajuaG daWcaaGcbaqcLbsacqGHsislcqaHYoGyjuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaaaOqaaKqzGeGaaG4maiabeo7aNTWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqbaoaakaaakeaajugibiaaikdacaWGTb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaaIXaaa leqaaaaajugibiaaiYcacaWGJbWcdaWgaaqcbasaaKqzadGaaGymaa qcbasabaqcLbsacaaI9aqcfa4aaSaaaOqaaKqzGeGaeqOSdiwcfa4a aSbaaKqaGeaajugWaiaaigdaaSqabaaakeaajugibiaaiodaaaqcfa 4aaOaaaOqaaKqbaoaalaaakeaajugibiabgkHiTiaaigdaaOqaaKqz GeGaaGOmaiabeo7aNLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaK qbaoaabmaakeaajugibiaaikdacaWGTbWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaaaaaale qaaKqzGeGaaGilaiabeg7aHTWaaSbaaKqaGeaajugWaiaaigdaaKqa GeqaaKqzGeGaaGypaKqbaoaalaaakeaajugibiabek7aITWaa0baaK qaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcfa4aaeWaaOqa aKqzGeGaaGioaiaad2galmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiabgkHiTiaaiwdaaOGaayjkaiaawMcaaaqaaKqzGeGaaGymaiaa iIdacqaHZoWzlmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajuaGda qadaGcbaqcLbsacaaIYaGaamyBaKqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaKqzGeGaeyOeI0IaaGymaaGccaGLOaGaayzkaaaaaKqzGe GaaGilaiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqb aoaabmaakeaajugibiaaikdacaWGTbWcdaahaaqcbasabeaajugWai aaikdaaaqcLbsacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaa iYdacaaIWaGaaGOlaaGccaGL7bGaayzFaaaaaa@C5A9@ (4.24)

Substituting (4.24) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= β 1 3 γ 1 [ 1 1 2 m 2 1 ( sn( ξ,m )dn( ξ,m ) cn( ξ,m ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaalaaakeaajugibiabgk HiTiabek7aILqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqc LbsacaaIZaGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aaaKqbaoaadmaakeaajugibiaaigdacqGHsisljuaGdaWcaaGcbaqc LbsacaaIXaaakeaajuaGdaGcaaGcbaqcLbsacaaIYaGaamyBaKqbao aaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGymaaWc beaaaaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadohacaWGUb qcfa4aaeWaaOqaaKqzGeGaeqOVdGNaaGilaiaad2gaaOGaayjkaiaa wMcaaKqzGeGaamizaiaad6gajuaGdaqadaGcbaqcLbsacqaH+oaEca aISaGaamyBaaGccaGLOaGaayzkaaaabaqcLbsacaWGJbGaamOBaKqb aoaabmaakeaajugibiabe67a4jaaiYcacaWGTbaakiaawIcacaGLPa aaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@7836@ (4.25)

where ξ= x β β ( β 1 3 1 2 γ 1 ( 2 m 2 1 ) ) t α α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jaai2dajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4a aWbaaSqabKqaGeaajugWaiabek7aIbaaaOqaaKqzGeGaeqOSdigaai abgkHiTKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqaHYoGylmaa BaaajeaibaqcLbmacaaIXaaajeaibeaaaOqaaKqzGeGaaG4maaaaju aGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaeyOeI0IaaGymaaGcbaqc LbsacaaIYaGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba qcfa4aaeWaaOqaaKqzGeGaaGOmaiaad2gajuaGdaahaaWcbeqcbasa aKqzadGaaGOmaaaajugibiabgkHiTiaaigdaaOGaayjkaiaawMcaaa aaaSqabaaakiaawIcacaGLPaaajuaGdaWcaaGcbaqcLbsacaWG0bWc daahaaqcbasabeaajugWaiabeg7aHbaaaOqaaKqzGeGaeqySdegaai aaiYcaaaa@6850@ γ 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqz GeGaaGOpaiaaicdaaaa@3F6F@ or γ 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqz GeGaaGipaiaaicdacaaIUaaaaa@4025@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad2gacqGHsgIRcaaIXaaaaa@3CE8@ , then we have the dark soliton solution:

u( x,t )= β 1 3 γ 1 [ 1tanh( x β β β 1 3 1 2 γ 1 t α α ) ]. γ 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhajuaGdaqadaGcbaqcLbsacaWG4bGaaGilaiaadsha aOGaayjkaiaawMcaaKqzGeGaaGypaKqbaoaalaaakeaajugibiabgk HiTiabek7aITWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqc LbsacaaIZaGaeq4SdC2cdaWgaaqcbasaaKqzadGaaGymaaqcbasaba aaaKqbaoaadmaakeaajugibiaaigdacqGHsislcaGG0bGaaiyyaiaa c6gacaGGObqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadIhaju aGdaahaaWcbeqcbasaaKqzadGaeqOSdigaaaGcbaqcLbsacqaHYoGy aaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeqOSdiwcfa4aaSbaaKqaGe aajugWaiaaigdaaSqabaaakeaajugibiaaiodaaaqcfa4aaOaaaOqa aKqbaoaalaaakeaajugibiabgkHiTiaaigdaaOqaaKqzGeGaaGOmai abeo7aNLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaaaaeqaaKqb aoaalaaakeaajugibiaadshalmaaCaaajeaibeqaaKqzadGaeqySde gaaaGcbaqcLbsacqaHXoqyaaaakiaawIcacaGLPaaaaiaawUfacaGL Dbaajugibiaai6cacaaMe8UaaGjbVlabeo7aNTWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaaGipaiaaicdacaaIUaaaaa@835D@ (4.26)

Result 6: If we substitute q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiabgkHiTiaaikdacqGHRaWkcaWGTbWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaISaaaaa@3F97@ r=( 22 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dadaqadaqaaiaaikdacqGHsislcaaIYaGaamyBamaaCaaabeqc fasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGilaaaa@3F72@ c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dacaaIXaaaaa@38EE@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, α 1 = 3 64 β 1 2 ( m 2 +8 ) γ 1 , a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8 γ 1 , b 1 =0, c 1 = β 1 4 3 γ 1 , γ 1 >0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIYaGaaGil aiabeg7aHnaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaalaaaba GaaG4maaqaaiaaiAdacaaI0aaaamaalaaabaGaeqOSdi2aa0baaKqb GeaacaaIXaaabaGaaGOmaaaajuaGdaqadaqaaiaad2gadaahaaqabK qbGeaacaaIYaaaaKqbakabgUcaRiaaiIdaaiaawIcacaGLPaaaaeaa cqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaaaaacaaISaGaamyyam aaBaaajuaibaGaaGimaaqcfayabaGaaGypamaalaaabaGaeyOeI0Ia aG4maiabek7aInaaBaaajuaibaGaaGymaaqcfayabaaabaGaaGioai abeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaiaaiYcacaWGHbWa aSbaaKqbGeaacaaIXaaajuaGbeaacaaI9aWaaSaaaeaacqGHsislca aIZaGaeqOSdi2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaI4aGa eq4SdC2aaSbaaKqbGeaacaaIXaaajuaGbeaaaaGaaGilaiaadkgada WgaaqcfasaaiaaigdaaKqbagqaaiaai2dacaaIWaGaaGilaiaadoga daWgaaqcfasaaiaaigdaaKqbagqaaiaai2dadaWcaaqaaiabek7aIn aaBaaajuaibaGaaGymaaqcfayabaaabaGaaGinaaaadaGcaaqaamaa laaabaGaaG4maaqaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayaba aaaaqabaGaaGilaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaGa aGOpaiaaicdacaaMe8oacaGL7bGaayzFaaGaaGjbVdaa@85CD@ (4.27)

Substituting (4.27) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 ( 1+dn( ξ,m ) ) } 1 2 , γ 1 >0, β 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa cmaabaWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaWaaeWaaeaacaaIXaGaey4kaSIaamizaiaad6gadaqada qaaiabe67a4jaaiYcacaWGTbaacaGLOaGaayzkaaaacaGLOaGaayzk aaaacaGL7bGaayzFaaWaaWbaaeqajuaibaqcfa4aaSaaaKqbGeaaca aIXaaabaGaaGOmaaaaaaqcfaOaaGilaiaaysW7caaMe8UaaGjbVlaa ysW7cqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaaiaai6dacaaIWa GaaGilaiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGipaiaa icdacaaIUaaaaa@6688@ (4.28)

where ξ= x β β ( β 1 4 3 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaWcaaqaaiabek7aInaaBa aajuaibaGaaGymaaqcfayabaaabaGaaGinaaaadaGcaaqaamaalaaa baGaaG4maaqaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaa qabaaacaGLOaGaayzkaaWaaSaaaeaacaWG0bWaaWbaaeqajuaibaGa eqySdegaaaqcfayaaiabeg7aHbaacaaIUaaaaa@4EB1@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaigdaaaa@3A1E@ , then we have the bright soliton solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1+sech( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa cmaabaWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaWaamWaaeaacaaIXaGaey4kaSIaam4CaiaadwgacaWGJb GaamiAamaabmaabaWaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaeqOS digaaaqcfayaaiabek7aIbaacqGHsisldaWcaaqaaiabek7aInaaBa aajuaibaGaaGymaaqcfayabaaabaGaaGinaaaadaGcaaqaamaalaaa baGaaG4maaqaaiabeo7aNnaaBaaabaGaaGymaaqabaaaaaqabaWaaS aaaeaacaWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7a HbaaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUhacaGL9baada ahaaqabKqbGeaajuaGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaaaa juaGcaaIUaGaaGjbVlaaysW7caaMe8UaaGjbVdaa@6D21@ (4.29)

Result 7: If we substitute q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiabgkHiTiaaikdacqGHRaWkcaWGTbWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaISaaaaa@3F97@ r=( 2+2 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dadaqadaqaaiabgkHiTiaaikdacqGHRaWkcaaIYaGaamyBamaa CaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGilaaaa@4054@ c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dacqGHsislcaaIXaaaaa@39DB@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, b 1 = 3 β 1 8 m 2 γ 1 ( 1+ 1 m 2 ), a 0 = 3 β 1 8 γ 1 , c 1 = β 1 4 m 2 3 γ 1 ( m 2 2+2 1 m 2 ) , α 1 = 3 β 1 2 16 m 4 γ 1 ( ( m 2 2+2 1 m 2 )( m 4 3 m 2 +4+( m 2 4 ) 1 m 2 ) ( 1+ 1 m 2 ) 2 ), a 1 =0,( m 2 2+2 1 m 2 ) γ 1 >0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aafaqabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI 9aGaaGOmaiaaiYcacaWGIbWaaSbaaKqbGeaacaaIXaaajuaGbeaaca aI9aWaaSaaaeaacaaIZaGaeqOSdi2aaSbaaKqbGeaacaaIXaaajuaG beaaaeaacaaI4aGaamyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaeq 4SdC2aaSbaaKqbGeaacaaIXaaajuaGbeaaaaWaaeWaaeaacqGHsisl caaIXaGaey4kaSYaaOaaaeaacaaIXaGaeyOeI0IaamyBamaaCaaabe qcfasaaiaaikdaaaaajuaGbeaaaiaawIcacaGLPaaacaaISaGaamyy amaaBaaajuaibaGaaGimaaqcfayabaGaaGypamaalaaabaGaeyOeI0 IaaG4maiabek7aInaaBaaajuaibaGaaGymaaqcfayabaaabaGaaGio aiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaiaaiYcacaWGJb WaaSbaaKqbGeaacaaIXaaajuaGbeaacaaI9aWaaSaaaeaacqaHYoGy daWgaaqcfasaaiaaigdaaKqbagqaaaqaaiaaisdacaWGTbWaaWbaae qajuaibaGaaGOmaaaaaaqcfa4aaOaaaeaadaWcaaqaaiaaiodaaeaa cqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaaaaadaqadaqaaiaad2 gadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTiaaikdacqGHRaWk caaIYaWaaOaaaeaacaaIXaGaeyOeI0IaamyBamaaCaaabeqcfasaai aaikdaaaaajuaGbeaaaiaawIcacaGLPaaaaeqaaiaaysW7caaISaaa baGaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaacaaI9aWaaSaaae aacaaIZaGaeqOSdi2aa0baaKqbGeaacaaIXaaabaGaaGOmaaaaaKqb agaacaaIXaGaaGOnaiaad2gadaahaaqabKqbGeaacaaI0aaaaKqbak abeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaamaabmaabaWaaSaa aeaadaqadaqaaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgk HiTiaaikdacqGHRaWkcaaIYaWaaOaaaeaacaaIXaGaeyOeI0IaamyB amaaCaaabeqcfasaaiaaikdaaaaajuaGbeaaaiaawIcacaGLPaaada qadaqaaiabgkHiTiaad2gadaahaaqabKqbGeaacaaI0aaaaKqbakab gkHiTiaaiodacaWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHRa WkcaaI0aGaey4kaSYaaeWaaeaacaWGTbWaaWbaaeqajuaibaGaaGOm aaaajuaGcqGHsislcaaI0aaacaGLOaGaayzkaaWaaOaaaeaacaaIXa GaeyOeI0IaamyBamaaCaaabeqcfasaaiaaikdaaaaajuaGbeaaaiaa wIcacaGLPaaaaeaadaqadaqaaiabgkHiTiaaigdacqGHRaWkdaGcaa qaaiaaigdacqGHsislcaWGTbWaaWbaaeqajuaibaGaaGOmaaaaaKqb agqaaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaaaaaqcfa OaayjkaiaawMcaaiaaiYcacaaMe8UaamyyamaaBaaajuaibaGaaGym aaqcfayabaGaaGypaiaaicdacaaISaWaaeWaaeaacaWGTbWaaWbaae qajuaibaGaaGOmaaaajuaGcqGHsislcaaIYaGaey4kaSIaaGOmamaa kaaabaGaaGymaiabgkHiTiaad2gadaahaaqabKqbGeaacaaIYaaaaa qcfayabaaacaGLOaGaayzkaaGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaacaaI+aGaaGimaiaaiYcaaaaacaGL7bGaayzFaaGaaGjbVl aaysW7caaMe8UaaGjbVlaaysW7aaa@DBBF@ (4.30)

Substituting (4.30) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1+( 1+ 1 m 2 m 2 )( dn( ξ,m ) sn( ξ,m )cn( ξ,m ) ) ] } 1 2 , γ 1 β 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa cmaabaWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaWaamWaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaai abgkHiTiaaigdacqGHRaWkdaGcaaqaaiaaigdacqGHsislcaWGTbWa aWbaaeqajuaibaGaaGOmaaaaaKqbagqaaaqaaiaad2gadaahaaqabK qbGeaacaaIYaaaaaaaaKqbakaawIcacaGLPaaadaqadaqaamaalaaa baGaamizaiaad6gadaqadaqaaiabe67a4jaaiYcacaWGTbaacaGLOa GaayzkaaaabaGaam4Caiaad6gadaqadaqaaiabe67a4jaaiYcacaWG TbaacaGLOaGaayzkaaGaam4yaiaad6gadaqadaqaaiabe67a4jaaiY cacaWGTbaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaGaay5waiaa w2faaaGaay5Eaiaaw2haamaaCaaabeqcfasaaKqbaoaalaaajuaiba GaaGymaaqaaiaaikdaaaaaaKqbakaaiYcacaaMe8Uaeq4SdC2aaSba aKqbGeaacaaIXaaajuaGbeaacqaHYoGydaWgaaqcfasaaiaaigdaaK qbagqaaiaaiYdacaaIWaGaaGOlaaaa@7A4C@ (4.31)

where ξ= x β β ( β 1 4 m 2 3 γ 1 ( m 2 2+2 1 m 2 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaWcaaqaaiabek7aInaaBa aajuaibaGaaGymaaqcfayabaaabaGaaGinaiaad2gadaahaaqabKqb GeaacaaIYaaaaaaajuaGdaGcaaqaamaalaaabaGaaG4maaqaaiabeo 7aNnaaBaaajuaibaGaaGymaaqcfayabaaaamaabmaabaGaamyBamaa CaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGOmaiabgUcaRiaaik dadaGcaaqaaiaaigdacqGHsislcaWGTbWaaWbaaeqajuaibaGaaGOm aaaaaKqbagqaaaGaayjkaiaawMcaaaqabaaacaGLOaGaayzkaaWaaS aaaeaacaWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7a HbaacaaIUaaaaa@5CDD@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaigdaaaa@3A1E@ , then we have the same solitary wave solution (4.14).

Result 8. If we substitute q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiaaigdacqGHsislcaaIYaGaamyBamaaCaaabeqc fasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGilaaaa@3F70@ r=( 2 m 2 2 m 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dadaqadaqaaiaaikdacaWGTbWaaWbaaeqajuaibaGaaGOmaaaa juaGcqGHsislcaaIYaGaamyBamaaCaaabeqcfasaaiaaisdaaaaaju aGcaGLOaGaayzkaaGaaGilaaaa@4200@ c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dacqGHsislcaaIXaaaaa@39DB@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, b 1 =0, a 1 = α 1 γ 1 ( m 2 1 ) , c 1 = α 1 2( m 2 1 ) , α 1 ( m 2 1 )<0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGil aiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaicdaca aISaGaamyyamaaBaaajuaibaGaaGimaaqcfayabaGaaGypaiaaicda caaISaGaamOyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaic dacaaISaGaamyyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaa kaaabaWaaSaaaeaacqaHXoqylmaaBaaajuaibaqcLbmacaaIXaaaju aGbeaaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaamaabmaa baGaamyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGymaa GaayjkaiaawMcaaaaaaeqaaiaaiYcacaWGJbWaaSbaaKqbGeaacaaI XaaajuaGbeaacaaI9aWaaOaaaeaadaWcaaqaaiabgkHiTiabeg7aHn aaBaaajuaibaGaaGymaaqcfayabaaabaGaaGOmamaabmaabaGaamyB amaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGymaaGaayjkai aawMcaaaaaaeqaaiaaiYcacqaHXoqydaWgaaqcfasaaiaaigdaaKqb agqaamaabmaabaGaamyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaey OeI0IaaGymaaGaayjkaiaawMcaaiaaiYdacaaIWaGaaGilaiabeo7a NnaaBaaajuaibaGaaGymaaqcfayabaGaaGipaiaaicdaaiaawUhaca GL9baaaaa@7E45@ (4.32)

Substituting (4.32) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= α 1 γ 1 ( m 2 1 ) ( dn( ξ,m ) sn( ξ,m ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaa qaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWG TbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislcaaIXaaacaGLOa GaayzkaaaaaaqabaWaaeWaaeaadaWcaaqaaiaadsgacaWGUbWaaeWa aeaacqaH+oaEcaaISaGaamyBaaGaayjkaiaawMcaaaqaaiaadohaca WGUbWaaeWaaeaacqaH+oaEcaaISaGaamyBaaGaayjkaiaawMcaaaaa aiaawIcacaGLPaaacaaISaGaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8oaaa@6219@ (4.33)

where ξ= x β β ( α 1 2( m 2 1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaGcaaqaamaalaaabaGaey OeI0IaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaIYaWa aeWaaeaacaWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislca aIXaaacaGLOaGaayzkaaaaaaqabaaacaGLOaGaayzkaaWaaSaaaeaa caWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaaca aIUaaaaa@514B@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaicdaaaa@3A1D@ , then we have the periodic solution:

u( x,t )= α 1 γ 1 [ cosec( x β β α 1 2 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqGHsislcqaHXoqydaWgaaqcfasaaiaaigdaaK qbagqaaaqaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaaqa baWaamWaaeaacaWGJbGaam4BaiaadohacaWGLbGaam4yaiaaiIcada WcaaqaaiaadIhadaahaaqabKqbGeaacqaHYoGyaaaajuaGbaGaeqOS digaaiabgkHiTmaakaaabaWaaSaaaeaacqaHXoqydaWgaaqcfasaai aaigdaaKqbagqaaaqaaiaaikdaaaaabeaadaWcaaqaaiaadshadaah aaqabKqbGeaacqaHXoqyaaaajuaGbaGaeqySdegaaiaaiMcaaiaawU facaGLDbaacaaIUaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVdaa@66DF@ (4.34)

Result 9: If we substitute q=( 2+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiabgkHiTiaaikdacqGHRaWkcaWGTbWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaacaaISaaaaa@3F97@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacqGHsislcaaIYaGaaGilaaaa@3AA1@ c=( 1+ m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dadaqadaqaaiabgkHiTiaaigdacqGHRaWkcaWGTbWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaaa@3ED2@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, a 1 =0, b 1 = 2 α 1 γ 1 ( 2 m 2 5 ) , c 1 = α 1 (2 m 2 5) , α 1 >0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGil aiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaicdaca aISaGaamyyamaaBaaajuaibaGaaGimaaqcfayabaGaaGypaiaaicda caaISaGaamyyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaic dacaaISaGaamOyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaa kaaabaWaaSaaaeaacaaIYaGaeqySde2aaSbaaKqbGeaacaaIXaaaju aGbeaaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaamaabmaa baGaaGOmaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTi aaiwdaaiaawIcacaGLPaaaaaaabeaacaaISaGaam4yamaaBaaajuai baGaaGymaaqcfayabaGaaGypamaakaaabaWaaSaaaeaacqGHsislcq aHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaaqaaiaaiIcacaaIYaGa amyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGynaiaaiM caaaaabeaacaaISaGaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaa caaI+aGaaGimaiaaiYcacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbag qaaiaaiYdacaaIWaaacaGL7bGaayzFaaaaaa@78AD@ (4.35)

Substituting (4.35) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= 2 α 1 γ 1 ( 2 m 2 5 ) ( dn( ξ,m ) sn( ξ,m )cn( ξ,m ) ), α 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacaaIYaGaeqySde2aaSbaaKqbGeaacaaIXaaaju aGbeaaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaamaabmaa baGaaGOmaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTi aaiwdaaiaawIcacaGLPaaaaaaabeaadaqadaqaamaalaaabaGaamiz aiaad6gadaqadaqaaiabe67a4jaaiYcacaWGTbaacaGLOaGaayzkaa aabaGaam4Caiaad6gadaqadaqaaiabe67a4jaaiYcacaWGTbaacaGL OaGaayzkaaGaam4yaiaad6gadaqadaqaaiabe67a4jaaiYcacaWGTb aacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaiaaiYcacaaMe8UaaGjb VlaaysW7cqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaiaai6daca aIWaGaaGilaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaGaaGip aiaaicdaaaa@6FEB@ (4.36)

where ξ= x β β ( α 1 (2 m 2 5) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaGcaaqaamaalaaabaGaey OeI0IaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaIOaGa aGOmaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTiaaiw dacaaIPaaaaaqabaaacaGLOaGaayzkaaWaaSaaaeaacaWG0bWaaWba aeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaacaaIUaaaaa@512B@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaigdaaaa@3A1E@ , then we have the singular soliton solution:

u( x,t )= 2 α 1 3 γ 1 [ coth( x β β α 1 3 t α α ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqGHsislcaaIYaGaeqySde2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaIZaGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaaabeaadaWadaqaaiaacogacaGGVbGaaiiDaiaacIgaca aIOaWaaSaaaeaacaWG4bWaaWbaaeqajuaibaGaeqOSdigaaaqcfaya aiabek7aIbaacqGHsisldaGcaaqaamaalaaabaGaeqySde2aaSbaaK qbGeaacaaIXaaajuaGbeaaaeaacaaIZaaaaaqabaWaaSaaaeaacaWG 0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaacaaIPa aacaGLBbGaayzxaaGaaGilaiaaysW7caaMe8UaaGjbVlaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7aaa@6C16@ (4.37)

while if m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaicdaaaa@3A1D@ , then we have the periodic solution:

u( x,t )= 2 α 1 5 γ 1 [ cosec( x β β α 1 5 t α α )sec( x β β α 1 5 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqGHsislcaaIYaGaeqySde2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI1aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaaabeaadaWadaqaaiaadogacaWGVbGaam4Caiaadwgaca WGJbGaaGikamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaa aKqbagaacqaHYoGyaaGaeyOeI0YaaOaaaeaadaWcaaqaaiabeg7aHn aaBaaajuaibaGaaGymaaqcfayabaaabaGaaGynaaaaaeqaamaalaaa baGaamiDamaaCaaabeqcfasaaiabeg7aHbaaaKqbagaacqaHXoqyaa GaaGykaiaacohacaGGLbGaai4yaiaaiIcadaWcaaqaaiaadIhadaah aaqabKqbGeaacqaHYoGyaaaajuaGbaGaeqOSdigaaiabgkHiTmaaka aabaWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaaqa aiaaiwdaaaaabeaadaWcaaqaaiaadshadaahaaqabKazfa4=baGaeq ySdegaaaqcfayaaiabeg7aHbaacaaIPaaacaGLBbGaayzxaaGaaGOl aiaaysW7caaMe8oaaa@75E0@ (4.38)

Result 10: If we substitute q=( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiaaigdacqGHRaWkcaWGTbWaaWbaaeqajuaibaGa aGOmaaaaaKqbakaawIcacaGLPaaacaaISaaaaa@3EA9@ r=2 m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacqGHsislcaaIYaGaamyBamaaCaaabeqcfasaaiaaikdaaaqc faOaaGilaaaa@3D2D@ c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dacqGHsislcaaIXaaaaa@39DB@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, α 1 = 3 β 1 2 64 γ 1 ( m 2 1 ), a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8 γ 1 , b 1 =0, c 1 = β 1 4 3 γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIYaGaaGil aiabeg7aHnaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaalaaaba GaeyOeI0IaaG4maiabek7aInaaDaaajuaibaGaaGymaaqaaiaaikda aaaajuaGbaGaaGOnaiaaisdacqaHZoWzdaWgaaqcfasaaiaaigdaaK qbagqaaaaadaqadaqaaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqb akabgkHiTiaaigdaaiaawIcacaGLPaaacaaISaGaamyyamaaBaaaju aibaGaaGimaaqcfayabaGaaGypamaalaaabaGaeyOeI0IaaG4maiab ek7aInaaBaaajuaibaGaaGymaaqcfayabaaabaGaaGioaiabeo7aNn aaBaaajuaibaGaaGymaaqcfayabaaaaiaaiYcacaWGHbWaaSbaaKqb GeaacaaIXaaajuaGbeaacaaI9aWaaSaaaeaacqGHsislcaaIZaGaeq OSdi2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2a aSbaaKqbGeaacaaIXaaajuaGbeaaaaGaaGilaiaadkgadaWgaaqcfa saaiaaigdaaKqbagqaaiaai2dacaaIWaGaaGilaiaadogadaWgaaqc fasaaiaaigdaaKqbagqaaiaai2dadaWcaaqaaiabek7aInaaBaaaju aibaGaaGymaaqcfayabaaabaGaaGinaaaadaGcaaqaamaalaaabaGa eyOeI0IaaG4maaqaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayaba aaaaqabaGaaGilaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaGa aGipaiaaicdaaiaawUhacaGL9baaaaa@847F@ (4.39)

Substituting (4.39) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1+ dn( ξ,m ) cn( ξ,m ) ] } 1 2 , β 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa cmaabaWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaWaamWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGKbGaam OBamaabmaabaGaeqOVdGNaaGilaiaad2gaaiaawIcacaGLPaaaaeaa caWGJbGaamOBamaabmaabaGaeqOVdGNaaGilaiaad2gaaiaawIcaca GLPaaaaaaacaGLBbGaayzxaaaacaGL7bGaayzFaaWaaWbaaeqajuai baqcfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaaaaaaqcfaOaaGilai aaysW7caaMe8UaaGjbVlaaysW7cqaHYoGydaWgaaqcfasaaiaaigda aKqbagqaaiaai6dacaaIWaGaaGilaiabeo7aNnaaBaaajuaibaGaaG ymaaqcfayabaGaaGipaiaaicdaaaa@6D18@ (4.40)

where ξ= x β β ( β 1 4 3 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaWcaaqaaiabek7aInaaBa aajuaibaGaaGymaaqcfayabaaabaGaaGinaaaadaGcaaqaamaalaaa baGaeyOeI0IaaG4maaqaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfa yabaaaaaqabaaacaGLOaGaayzkaaWaaSaaaeaacaWG0bWaaWbaaeqa juaibaGaeqySdegaaaqcfayaaiabeg7aHbaacaaIUaaaaa@4F9E@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaicdaaaa@3A1D@ , then we have the periodic solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1+sec( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa cmaabaWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaI4aGaeq4SdC2aaSbaaKqbGeaacaaIXaaa juaGbeaaaaWaamWaaeaacaaIXaGaey4kaSIaai4CaiaacwgacaGGJb GaaGikamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaSaaaeaacqaHYoGydaWgaaqcfasaai aaigdaaKqbagqaaaqaaiaaisdaaaWaaOaaaeaadaWcaaqaaiabgkHi TiaaiodaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqaaaaaae qaamaalaaabaGaamiDamaaCaaabeqcfasaaiabeg7aHbaaaKqbagaa cqaHXoqyaaGaaGykaaGaay5waiaaw2faaaGaay5Eaiaaw2haamaaCa aabeqcfasaaKqbaoaalaaajuaibaGaaGymaaqaaiaaikdaaaaaaKqb akaai6cacaaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8 UaaGjbVlaaysW7caaMe8UaaGjbVdaa@7891@ (4.41)

Result 11: If we substitute q=( 12 m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaqadaqaaiaaigdacqGHsislcaaIYaGaamyBamaaCaaabeqc fasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGilaaaa@3F70@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dacqGHsislcaaIYaGaaGilaaaa@3AA1@ c=( m 2 m 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai aai2dadaqadaqaaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakab gkHiTiaad2gadaahaaqabKqbGeaacaaI0aaaaaqcfaOaayjkaiaawM caaaaa@3FC3@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, a 1 =0, b 1 = 2 α 1 γ 1 ( 4 m 2 1 ) , c 1 = α 1 ( 4 m 2 1 ) ,( 4 m 2 1 ) α 1 >0, γ 1 <0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGil aiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaicdaca aISaGaamyyamaaBaaajuaibaGaaGimaaqcfayabaGaaGypaiaaicda caaISaGaamyyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaic dacaaISaGaamOyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaa kaaabaWaaSaaaeaacqGHsislcaaIYaGaeqySde2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqa amaabmaabaGaaGinaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbak abgkHiTiaaigdaaiaawIcacaGLPaaaaaaabeaacaaISaGaam4yamaa BaaajuaibaGaaGymaaqcfayabaGaaGypamaakaaabaWaaSaaaeaacq aHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaaqaamaabmaabaGaaGin aiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTiaaigdaai aawIcacaGLPaaaaaaabeaacaaISaWaaeWaaeaacaaI0aGaamyBamaa CaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawM caaiabeg7aHnaaBaaajuaibaGaaGymaaqcfayabaGaaGOpaiaaicda caaISaGaeq4SdC2aaSbaaKqbGeaacaaIXaaajuaGbeaacaaI8aGaaG imaiaaiYcaaiaawUhacaGL9baaaaa@7FFE@ (4.42)

Substituting (4.42) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= 2 α 1 γ 1 ( 4 m 2 1 ) [ cn( ξ,m ) sn( ξ,m )dn( ξ,m ) ],ξ= x β β ( α 1 ( 4 m 2 1 ) ) t α α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqGHsislcaaIYaGaeqySde2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacqaHZoWzdaWgaaqcfasaaiaaigdaaKqbagqa amaabmaabaGaaGinaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbak abgkHiTiaaigdaaiaawIcacaGLPaaaaaaabeaadaWadaqaamaalaaa baGaam4yaiaad6gadaqadaqaaiabe67a4jaaiYcacaWGTbaacaGLOa GaayzkaaaabaGaam4Caiaad6gadaqadaqaaiabe67a4jaaiYcacaWG TbaacaGLOaGaayzkaaGaamizaiaad6gadaqadaqaaiabe67a4jaaiY cacaWGTbaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiaaiYcacaaM e8UaeqOVdGNaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek 7aIbaaaKqbagaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaGcaaqaamaa laaabaGaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaadaqada qaaiaaisdacaWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsisl caaIXaaacaGLOaGaayzkaaaaaaqabaaacaGLOaGaayzkaaWaaSaaae aacaWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaa caaISaGaaGjbVlaaysW7aaa@80EB@ (4.43)

If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaicdaaaa@3A1D@ , then we have the same periodic solution (4.11), while if m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaigdaaaa@3A1E@ , then we have the same singular soliton solution (4.37).

Result 12: If we substitute q= 1 2 ( 1+2 m 2 ),r= 1 2 ,c= 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaeyOeI0Ia aGymaiabgUcaRiaaikdacaWGTbWaaWbaaeqajuaibaGaaGOmaaaaaK qbakaawIcacaGLPaaacaaISaGaamOCaiaai2dadaWcaaqaaiabgkHi TiaaigdaaeaacaaIYaaaaiaaiYcacaWGJbGaaGypamaalaaabaGaey OeI0IaaGymaaqaaiaaisdaaaaaaa@4AE6@ into the algebraic equations (4.7) and use the Maple, we have:

{ m=m,n=1, a 0 =0, a 1 =0, β 1 =0, b 1 = α 1 γ 1 ( m 2 1 ) , c 1 = α 1 2( m 2 1 ) , α 1 ( m 2 1 )<0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGil aiaadggadaWgaaqcfasaaiaaicdaaKqbagqaaiaai2dacaaIWaGaaG ilaiaadggadaWgaaqcfasaaiaaigdaaKqbagqaaiaai2dacaaIWaGa aGilaiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaic dacaaISaGaamOyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaa kaaabaWaaSaaaeaacqaHXoqydaWgaaqaaiaaigdaaeqaaaqaaiabeo 7aNnaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWGTbWaaWba aeqajuaibaGaaGOmaaaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaa aaaaqabaGaaGilaiaadogadaWgaaqcfasaaiaaigdaaKqbagqaaiaa i2dadaGcaaqaamaalaaabaGaeyOeI0IaeqySde2aaSbaaKqbGeaaca aIXaaajuaGbeaaaeaacaaIYaWaaeWaaeaacaWGTbWaaWbaaeqajuai baGaaGOmaaaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaaaaaqaba GaaGilaiabeg7aHnaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaa caWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislcaaIXaaaca GLOaGaayzkaaGaaGipaiaaicdacaaISaGaeq4SdC2aaSbaaKqbGeaa caaIXaaajuaGbeaacaaI8aGaaGimaaGaay5Eaiaaw2haaaaa@7C50@ (4.44)

Substituting (4.44) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )=[ α 1 γ 1 ( m 2 1 ) ds( ξ,m ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypaiab loHiTnaadmaabaWaaOaaaeaadaWcaaqaaiabeg7aHnaaBaaajuaiba GaaGymaaqcfayabaaabaGaeq4SdC2aaSbaaKqbGeaacaaIXaaajuaG beaadaqadaqaaiaad2gadaahaaqabKqbGeaacaaIYaaaaKqbakabgk HiTiaaigdaaiaawIcacaGLPaaaaaaabeaacaWGKbGaam4Camaabmaa baGaeqOVdGNaaGilaiaad2gaaiaawIcacaGLPaaaaiaawUfacaGLDb aacaaISaGaaGjbVlaaysW7caaMe8oaaa@5824@ (3.45)

where ξ= x β β ( α 1 2( m 2 1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaGcaaqaamaalaaabaGaey OeI0IaeqySde2aaSbaaKqbGeaacaaIXaaajuaGbeaaaeaacaaIYaWa aeWaaeaacaWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislca aIXaaacaGLOaGaayzkaaaaaaqabaaacaGLOaGaayzkaaWaaSaaaeaa caWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaaca aIUaaaaa@514B@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaicdaaaa@3A1D@ , then we have the same periodic solution (4.34).

Result 13: If we substitute q= 1 2 ( m 2 +1 ),r= 1 2 ( 1 m 2 ),c= 1 4 ( 1 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaamaabmaabaGa amyBamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaSIaaGymaaGaay jkaiaawMcaaiaaiYcacaWGYbGaaGypamaalaaabaGaaGymaaqaaiaa ikdaaaWaaeWaaeaacaaIXaGaeyOeI0IaamyBamaaCaaabeqcfasaai aaikdaaaaajuaGcaGLOaGaayzkaaGaaGilaiaadogacaaI9aWaaSaa aeaacaaIXaaabaGaaGinaaaadaqadaqaaiaaigdacqGHsislcaWGTb WaaWbaaeqajuaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaaa@53CA@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, a 0 =0, b 1 =0, β 1 =0, a 1 = α 1 γ 1 , c 1 = 2 α 1 ( m 2 1 ) , α 1 ( m 2 1 )<0, γ 1 α 1 >0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGil aiaadggadaWgaaqcfasaaiaaicdaaKqbagqaaiaai2dacaaIWaGaaG ilaiaadkgadaWgaaqcfasaaiaaigdaaKqbagqaaiaai2dacaaIWaGa aGilaiabek7aInaaBaaajuaibaGaaGymaaqcfayabaGaaGypaiaaic dacaaISaGaamyyamaaBaaajuaibaGaaGymaaqcfayabaGaaGypamaa kaaabaWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaa qaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaaqabaGaaGil aiaadogadaWgaaqcfasaaiaaigdaaKqbagqaaiaai2dadaGcaaqaam aalaaabaGaeyOeI0IaaGOmaiabeg7aHnaaBaaajuaibaGaaGymaaqc fayabaaabaWaaeWaaeaacaWGTbWaaWbaaeqajuaibaGaaGOmaaaaju aGcqGHsislcaaIXaaacaGLOaGaayzkaaaaaaqabaGaaGilaiabeg7a HnaaBaaajuaibaGaaGymaaqcfayabaWaaeWaaeaacaWGTbWaaWbaae qajuaibaGaaGOmaaaajuaGcqGHsislcaaIXaaacaGLOaGaayzkaaGa aGipaiaaicdacaaISaGaeq4SdC2aaSbaaKqbGeaacaaIXaaajuaGbe aacqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaiaai6dacaaIWaaa caGL7bGaayzFaaaaaa@7A88@ (4.46)

Substituting (4.46) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= α 1 γ 1 [ dn( ξ,m ) msn( ξ,m )±1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aabmaabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaa kaaabaWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaaigdaaKqbagqaaa qaaiabeo7aNnaaBaaajuaibaGaaGymaaqcfayabaaaaaqabaWaamWa aeaadaWcaaqaaiaadsgacaWGUbWaaeWaaeaacqaH+oaEcaaISaGaam yBaaGaayjkaiaawMcaaaqaaiaad2gacaWGZbGaamOBamaabmaabaGa eqOVdGNaaGilaiaad2gaaiaawIcacaGLPaaacqGHXcqScaaIXaaaaa Gaay5waiaaw2faaiaaiYcaaaa@5712@ (4.47)

where ξ= x β β ( 2 α 1 ( m 2 1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOVdG NaaGypamaalaaabaGaamiEamaaCaaabeqcfasaaiabek7aIbaaaKqb agaacqaHYoGyaaGaeyOeI0YaaeWaaeaadaGcaaqaamaalaaabaGaey OeI0IaaGOmaiabeg7aHnaaBaaajuaibaGaaGymaaqcfayabaaabaWa aeWaaeaacaWGTbWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislca aIXaaacaGLOaGaayzkaaaaaaqabaaacaGLOaGaayzkaaWaaSaaaeaa caWG0bWaaWbaaeqajuaibaGaeqySdegaaaqcfayaaiabeg7aHbaaca aIUaaaaa@514B@

Result 14: If we substitute q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aai2dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaamaabmaabaGa aGymaiabgUcaRiaad2gadaahaaqabKqbGeaacaaIYaaaaaqcfaOaay jkaiaawMcaaiaaiYcaaaa@411D@ r= 1 2 ( m 2 1 ) 2 ,c= 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyBamaa CaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0IaaGymaaGaayjkaiaawM caamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGilaiaadogacaaI9aWa aSaaaeaacaaIXaaabaGaaGinaaaaaaa@450E@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1,α= β 1 2 ( 1+2 m 2 ) 9 γ 1 ( m 2 +1 ) , a 0 = β 1 3 γ 1 , a 1 =0, b 1 = β 1 3 γ 1 2 ( m 2 +1 ) , c 1 = β 1 3 1 γ 1 ( m 2 +1 ) , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI9aGa aGymaiaaiYcacqaHXoqycaaI9aWaaSaaaeaacqaHYoGydaqhaaWcba GaaGymaaqaaiaaikdaaaGcdaqadaqaaiaaigdacqGHRaWkcaaIYaGa amyBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaiM dacqaHZoWzdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaad2gadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaai aaiYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaalaaabaGa eyOeI0IaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4maiabeo 7aNnaaBaaaleaacaaIXaaabeaaaaGccaaISaGaamyyamaaBaaaleaa caaIXaaabeaakiaai2dacaaIWaGaaGilaiaadkgadaWgaaWcbaGaaG ymaaqabaGccaaI9aWaaSaaaeaacqGHsislcqaHYoGydaWgaaWcbaGa aGymaaqabaaakeaacaaIZaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaa aakmaakaaabaWaaSaaaeaacaaIYaaabaWaaeWaaeaacaWGTbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaS qabaaakeaacaaISaGaam4yamaaBaaaleaacaaIXaaabeaakiaai2da daWcaaqaaiabek7aInaaBaaaleaacaaIXaaabeaaaOqaaiaaiodaaa WaaOaaaeaadaWcaaqaaiabgkHiTiaaigdaaeaacqaHZoWzdaWgaaWc baGaaGymaaqabaGcdaqadaqaaiaad2gadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaaWcbeaakiaaiYcacqaH ZoWzdaWgaaWcbaGaaGymaaqabaGccaaI8aGaaGimaaaaaiaawUhaca GL9baaaaa@87AF@ (4.48)

Substituting (4.48) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u(x,t)= β 1 3 γ 1 [ 1m 2 ( m 2 +1) sn(ξ,m) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaGGOaGaam iEaiaacYcacaWG0bGaaiykaiabg2da9maalaaabaGaeyOeI0IaeqOS di2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4maiabeo7aNnaaBaaale aacaaIXaaabeaaaaGcdaWadaqaaiaaigdacqGHsislcaWGTbWaaOaa aeaadaWcaaqaaiaaikdaaeaacaGGOaGaaiyBamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaigdacaGGPaaaaaWcbeaakiaadohacaWGUbGa aiikaiabe67a4jaacYcacaGGTbGaaiykaaGaay5waiaaw2faaiaacY caaaa@5582@ (4.49)

where ξ= x β β ( β 1 3 1 γ 1 ( m 2 +1) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qi=NMi=hEeeu0xXdbba9frFj0=OqFfea0d Xdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4jabg2da9m aalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOSdiga aiabgkHiTmaabmaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGymaa qabaaakeaacaaIZaaaamaakaaabaWaaSaaaeaacqGHsislcaaIXaaa baGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGaaiikaiaac2gadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaiykaaaaaSqabaaakiaa wIcacaGLPaaadaWcaaqaaiaadshadaahaaWcbeqaaiabeg7aHbaaaO qaaiabeg7aHbaacaGGUaaaaa@5293@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai abgkziUkaaigdaaaa@3A1E@ , then we have the same dark soliton solution (4.26).

Result 15: If we substitute q= 1 2 ( 1+ m 2 ),r= 1 2 ( m 2 1 ) 2 ,c= 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaamaabmaabaGaaGym aiabgUcaRiaad2gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaaISaGaamOCaiaai2dadaWcaaqaaiabgkHiTiaaigdaaeaacaaI YaaaamaabmaabaGaamyBamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaaISaGa am4yaiaai2dadaWcaaqaaiabgkHiTiaaigdaaeaacaaI0aaaaaaa@507E@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, α 1 = 3 β 1 2 ( m 2 1 ) 64 γ 1 , a 0 = 3 β 1 8 γ 1 , a 1 =0, b 1 = 3 β 1 8 γ 1 , c 1 = β 1 4 3 γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIYaGaaGilaiab eg7aHnaaBaaaleaacaaIXaaabeaakiaai2dadaWcaaqaaiabgkHiTi aaiodacqaHYoGydaqhaaWcbaGaaGymaaqaaiaaikdaaaGcdaqadaqa aiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaacaGLOa GaayzkaaaabaGaaGOnaiaaisdacqaHZoWzdaWgaaWcbaGaaGymaaqa baaaaOGaaGilaiaadggadaWgaaWcbaGaaGimaaqabaGccaaI9aWaaS aaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGc baGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGccaaISaGaam yyamaaBaaaleaacaaIXaaabeaakiaai2dacaaIWaGaaGilaiaadkga daWgaaWcbaGaaGymaaqabaGccaaI9aWaaSaaaeaacqGHsislcaaIZa GaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGioaiabeo7aNnaa BaaaleaacaaIXaaabeaaaaGccaaISaGaam4yamaaBaaaleaacaaIXa aabeaakiaai2dadaWcaaqaaiabek7aInaaBaaaleaacaaIXaaabeaa aOqaaiaaisdaaaWaaOaaaeaadaWcaaqaaiabgkHiTiaaiodaaeaacq aHZoWzdaWgaaWcbaGaaGymaaqabaaaaaqabaGccaaISaGaeq4SdC2a aSbaaSqaaiaaigdaaeqaaOGaaGipaiaaicdaaiaawUhacaGL9baaaa a@7BA8@ (4.50)

Substituting (4.50) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1ns( ξ,m ) ] } 1 2 , β 1 >0, γ 1 <0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqWItisBcaWGUbGaam4CamaabmaabaGaeqOVdGNaaG ilaiaad2gaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUhacaGL 9baadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaOGaaG ilaiaaysW7cqaHYoGydaWgaaWcbaGaaGymaaqabaGccaaI+aGaaGim aiaaiYcacqaHZoWzdaWgaaWcbaGaaGymaaqabaGccaaI8aGaaGimai aai6caaaa@5F9D@ (4.51)

where ξ= x β β ( β 1 4 3 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEcaaI9aGcdaWcaaqaaKqzGeGaamiEaOWaaWbaaSqabKqaGeaajugW aiabek7aIbaaaOqaaKqzGeGaeqOSdigaaiabgkHiTOWaaeWaaeaada WcaaqaaKqzGeGaeqOSdiMcdaWgaaqcbasaaKqzadGaaGymaaWcbeaa aOqaaKqzGeGaaGinaaaakmaakaaabaWaaSaaaeaajugibiabgkHiTi aaiodaaOqaaKqzGeGaeq4SdCMcdaWgaaqcbasaaKqzadGaaGymaaWc beaaaaaabeaaaOGaayjkaiaawMcaamaalaaabaqcLbsacaWG0bWcda ahaaqcbasabeaajugWaiabeg7aHbaaaOqaaKqzGeGaeqySdegaaiaa i6caaaa@58A1@ If m1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaeyOKH4QaaGymaiaaiYcaaaa@3C55@ then we have the singular soliton solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1coth( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqWItisBcaGGJbGaai4BaiaacshacaGGObWaaeWaae aadaWcaaqaaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiabek7a IbaacqGHsisldaWcaaqaaiabek7aInaaBaaaleaacaaIXaaabeaaaO qaaiaaisdaaaWaaOaaaeaadaWcaaqaaiabgkHiTiaaiodaaeaacqaH ZoWzdaWgaaWcbaGaaGymaaqabaaaaaqabaGccaaMe8+aaSaaaeaaca WG0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaHXoqyaaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaaacaGL7bGaayzFaaWaaWbaaSqabeaada WcaaqaaiaaigdaaeaacaaIYaaaaaaakiaaiYcaaaa@661E@ (4.52)

while if m0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPi=BMipgYlb91rFfpec8Eeeu0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaK qzGeGaamyBaiabgkziUkaaicdacaaISaaaaa@3F6A@ then we have the periodic solutions.

u( x,t )= { 3 β 1 8 γ 1 [ 1cosec( x β β β 1 4 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqWItisBcaWGJbGaam4BaiaadohacaWGLbGaam4yai aaiIcadaWcaaqaaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiab ek7aIbaacqGHsisldaWcaaqaaiabek7aInaaBaaaleaacaaIXaaabe aaaOqaaiaaisdaaaWaaOaaaeaadaWcaaqaaiabgkHiTiaaiodaaeaa cqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaaqabaGccaaMe8+aaSaaae aacaWG0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaHXoqyaaGaaGyk aaGaay5waiaaw2faaaGaay5Eaiaaw2haamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaaGOmaaaaaaGccaaIUaaaaa@66E4@ (4.53)

Result 16: If we substitute q=( m 2 6m+1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaqadaqaaiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI 2aGaamyBaiabgUcaRiaaigdaaiaawIcacaGLPaaacaaISaaaaa@4193@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacqGHsislcaaIYaGaaGilaaaa@3B93@ c=4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacaaI0aGaamyBaaaa@3AD5@ ( m1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGTbGaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaa@3C82@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, β 1 =0, a 0 =0, a 1 =0, b 1 = 2 α 1 γ 1 ( 2 m 2 12m+1 ) , c 1 = α 1 ( 2 m 2 12m+1 ) , α 1 ( 2 m 2 12m+1 )<0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI9aGa aGymaiaaiYcacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaaI9aGaaG imaiaaiYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGypaiaaicda caaISaGaamyyamaaBaaaleaacaaIXaaabeaakiaai2dacaaIWaGaaG ilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaOaaaeaadaWc aaqaaiaaikdacqaHXoqydaWgaaWcbaGaaGymaaqabaaakeaacqaHZo WzdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaikdacaWGTbWaaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiaaikdacaWGTbGaey4kaS IaaGymaaGaayjkaiaawMcaaaaaaSqabaaakeaacaaISaGaam4yamaa BaaaleaacaaIXaaabeaakiaai2dadaGcaaqaamaalaaabaGaeyOeI0 IaeqySde2aaSbaaSqaaiaaigdaaeqaaaGcbaWaaeWaaeaacaaIYaGa amyBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaaIYaGaam yBaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaleqaaOGaaGilaiab eg7aHnaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGOmaiaad2gada ahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGOmaiaad2gacqGH RaWkcaaIXaaacaGLOaGaayzkaaGaaGipaiaaicdacaaISaGaeq4SdC 2aaSbaaSqaaiaaigdaaeqaaOGaaGipaiaaicdaaaaacaGL7bGaayzF aaaaaa@81CF@ (4.54)

Substituting (4.54) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= 2 α 1 γ 1 ( 2 m 2 12m+1 ) [ cs( ξ,m )dn( ξ,m )( ms n 2 ( ξ,m )+1 ms n 2 ( ξ,m )1 ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaakaaa baWaaSaaaeaacaaIYaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaGcba Gaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIYaGaamyB amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaaIYaGaamyBai abgUcaRiaaigdaaiaawIcacaGLPaaaaaaaleqaaOWaamWaaeaacaWG JbGaam4CamaabmaabaGaeqOVdGNaaGilaiaad2gaaiaawIcacaGLPa aacaWGKbGaamOBamaabmaabaGaeqOVdGNaaGilaiaad2gaaiaawIca caGLPaaadaqadaqaamaalaaabaGaamyBaiaadohacaWGUbWaaWbaaS qabeaacaaIYaaaaOWaaeWaaeaacqaH+oaEcaaISaGaamyBaaGaayjk aiaawMcaaiabgUcaRiaaigdaaeaacaWGTbGaam4Caiaad6gadaahaa WcbeqaaiaaikdaaaGcdaqadaqaaiabe67a4jaaiYcacaWGTbaacaGL OaGaayzkaaGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaaiaawUfaca GLDbaacaaISaaaaa@7354@ (4.55)

wher ξ= x β β ( α 1 ( 2 m 2 12m+1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaOaaaeaadaWcaaqaaiabgkHiTiabeg 7aHnaaBaaaleaacaaIXaaabeaaaOqaamaabmaabaGaaGOmaiaad2ga daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGOmaiaad2gacq GHRaWkcaaIXaaacaGLOaGaayzkaaaaaaWcbeaaaOGaayjkaiaawMca amaalaaabaGaamiDamaaCaaaleqabaGaeqySdegaaaGcbaGaeqySde gaaiaai6caaaa@5301@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaicdaaaa@3B0F@ , then we have the same periodic solution (4.11), while if m1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPi=BMipgYlb91rFfpec8Eeeu0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaK qzGeGaamyBaiabgkziUkaaigdacaaISaaaaa@3F6B@ then we have the solitary wave solutions:

u( x,t )= 2 α 1 9 γ 1 [ coth( x β β α 1 3 t α α )+tanh( x β β α 1 3 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypaiabgkHi TmaakaaabaWaaSaaaeaacqGHsislcaaIYaGaeqySde2aaSbaaSqaai aaigdaaeqaaaGcbaGaaGyoaiabeo7aNnaaBaaaleaacaaIXaaabeaa aaaabeaakmaadmaabaGaai4yaiaac+gacaGG0bGaaiiAamaabmaaba WaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacqaHYoGy aaGaeyOeI0YaaSaaaeaadaGcaaqaaiabeg7aHnaaBaaaleaacaaIXa aabeaaaeqaaaGcbaGaaG4maaaadaWcaaqaaiaadshadaahaaWcbeqa aiabeg7aHbaaaOqaaiabeg7aHbaaaiaawIcacaGLPaaacqGHRaWkca GG0bGaaiyyaiaac6gacaGGObWaaeWaaeaadaWcaaqaaiaadIhadaah aaWcbeqaaiabek7aIbaaaOqaaiabek7aIbaacqGHsisldaWcaaqaam aakaaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaqabaaakeaacaaI ZaaaamaalaaabaGaamiDamaaCaaaleqabaGaeqySdegaaaGcbaGaeq ySdegaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaai6caaaa@6EE0@ (4.56)

Result 17: If we substitute q=( m 2 +6m+1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaqadaqaaiaad2gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 2aGaamyBaiabgUcaRiaaigdaaiaawIcacaGLPaaacaaISaaaaa@4188@ r=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacqGHsislcaaIYaGaaGilaaaa@3B93@ c=4m ( m+1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacqGHsislcaaI0aGaamyBamaabmaabaGaamyBaiabgUcaRiaaigda aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@40C3@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8 γ 1 ( m+1 ), b 1 =0, α 1 = 3 β 1 2 ( m 2 18m+5 ) 256m γ 1 , c 1 = β 1 8 3 m γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI9aGa aGOmaiaaiYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaala aabaGaeyOeI0IaaG4maiabek7aInaaBaaaleaacaaIXaaabeaaaOqa aiaaiIdacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaOGaaGilaiaadg gadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaSaaaeaacqGHsislcaaI ZaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGioaiabeo7aNn aaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiaad2gacqGHRaWkcaaI XaaacaGLOaGaayzkaaGaaGilaiaadkgadaWgaaWcbaGaaGymaaqaba GccaaI9aGaaGimaiaaiYcacqaHXoqydaWgaaWcbaGaaGymaaqabaGc caaI9aWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aa0baaSqaaiaaig daaeaacaaIYaaaaOWaaeWaaeaacaWGTbWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaaGymaiaaiIdacaWGTbGaey4kaSIaaGynaaGaayjkai aawMcaaaqaaiaaikdacaaI1aGaaGOnaiaad2gacqaHZoWzdaWgaaWc baGaaGymaaqabaaaaaGcbaGaaGilaiaadogadaWgaaWcbaGaaGymaa qabaGccaaI9aWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaa keaacaaI4aaaamaakaaabaWaaSaaaeaacqGHsislcaaIZaaabaGaam yBaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaaabeaakiaaiYcacqaH ZoWzdaWgaaWcbaGaaGymaaqabaGccaaI8aGaaGimaaaaaiaawUhaca GL9baaaaa@85C7@ (4.57)

Substituting (4.57) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1+ ( m+1 )sn( ξ,m ) ms n 2 ( ξ,m )+1 ] } 1 2 , β 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqGHRaWkdaWcaaqaamaabmaabaGaamyBaiabgUcaRi aaigdaaiaawIcacaGLPaaacaWGZbGaamOBamaabmaabaGaeqOVdGNa aGilaiaad2gaaiaawIcacaGLPaaaaeaacaWGTbGaam4Caiaad6gada ahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabe67a4jaaiYcacaWGTbaa caGLOaGaayzkaaGaey4kaSIaaGymaaaaaiaawUfacaGLDbaaaiaawU hacaGL9baadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaa aOGaaGilaiaaysW7caaMe8UaaGjbVlabek7aInaaBaaaleaacaaIXa aabeaakiaai6dacaaIWaGaaGilaiabeo7aNnaaBaaaleaacaaIXaaa beaakiaaiYdacaaIWaaaaa@7037@ (4.58)

where ξ= x β β ( β 1 8 3 m γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaaakeaacaaI4aaaamaakaaabaWaaSaaaeaacqGHsislcaaI ZaaabaGaamyBaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaaabeaaaO GaayjkaiaawMcaamaalaaabaGaamiDamaaCaaaleqabaGaeqySdega aaGcbaGaeqySdegaaiaai6caaaa@4EEA@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaigdaaaa@3B10@ , then we have the solitary wave solution:

u( x,t )= { 3 β 1 8 γ 1 [ 1+ 2tanh( x β β β 1 8 3 γ 1 t α α ) 1+ tanh 2 ( x β β β 1 8 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqGHRaWkdaWcaaqaaiaaikdacaGG0bGaaiyyaiaac6 gacaGGObWaaeWaaeaadaWcaaqaaiaadIhadaahaaWcbeqaaiabek7a IbaaaOqaaiabek7aIbaacqGHsisldaWcaaqaaiabek7aInaaBaaale aacaaIXaaabeaaaOqaaiaaiIdaaaWaaOaaaeaadaWcaaqaaiabgkHi TiaaiodaaeaacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaaqabaGcca aMe8+aaSaaaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaH XoqyaaaacaGLOaGaayzkaaaabaGaaGymaiabgUcaRmaavacabeWcbe qaaiaaikdaaOqaaiaacshacaGGHbGaaiOBaiaacIgaaaWaaeWaaeaa daWcaaqaaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiabek7aIb aacqGHsisldaWcaaqaaiabek7aInaaBaaaleaacaaIXaaabeaaaOqa aiaaiIdaaaWaaOaaaeaadaWcaaqaaiabgkHiTiaaiodaaeaacqaHZo WzdaWgaaWcbaGaaGymaaqabaaaaaqabaGccaaMe8+aaSaaaeaacaWG 0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaHXoqyaaaacaGLOaGaay zkaaaaaaGaay5waiaaw2faaaGaay5Eaiaaw2haamaaCaaaleqabaWa aSaaaeaacaaIXaaabaGaaGOmaaaaaaGccaaIUaaaaa@81D0@ (4.59)

Result 18: If we substitute q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaamaabmaabaGaaGym aiabgUcaRiaad2gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaaISaaaaa@4168@ r= 1 2 ( m 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyBamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaaISa aaaa@4087@ c= 1 4 ( m 2 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dadaWcaaqaaiaaigdaaeaacaaI0aaaamaabmaabaGaamyBamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@3FC4@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, a 0 = 3 β 1 8 γ 1 , b 1 = 3 β 1 8 γ 1 , a 1 =0, α 1 = 3 β 1 2 ( m 2 1 ) 64 γ 1 , c 1 = β 1 4 3 γ 1 , γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIYaGaaGilaiaa dggadaWgaaWcbaGaaGimaaqabaGccaaI9aWaaSaaaeaacqGHsislca aIZaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGioaiabeo7a NnaaBaaaleaacaaIXaaabeaaaaGccaaISaGaamOyamaaBaaaleaaca aIXaaabeaakiaai2dadaWcaaqaaiabgkHiTiaaiodacqaHYoGydaWg aaWcbaGaaGymaaqabaaakeaacaaI4aGaeq4SdC2cdaWgaaqaaKqzad GaaGymaaWcbeaaaaGccaaISaGaamyyamaaBaaaleaacaaIXaaabeaa kiaai2dacaaIWaGaaGilaiabeg7aHnaaBaaaleaacaaIXaaabeaaki aai2dadaWcaaqaaiabgkHiTiaaiodacqaHYoGydaqhaaWcbaGaaGym aaqaaiaaikdaaaGcdaqadaqaaiaad2gadaahaaWcbeqaaiaaikdaaa GccqGHsislcaaIXaaacaGLOaGaayzkaaaabaGaaGOnaiaaisdacqaH ZoWzdaWgaaWcbaGaaGymaaqabaaaaOGaaGilaiaadogadaWgaaWcba GaaGymaaqabaGccaaI9aWaaSaaaeaacqaHYoGydaWgaaWcbaGaaGym aaqabaaakeaacaaI0aaaamaakaaabaWaaSaaaeaacqGHsislcaaIZa aabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaaaaeqaaOGaaGilaiab eo7aNnaaBaaaleaacaaIXaaabeaakiaaiYdacaaIWaaacaGL7bGaay zFaaaaaa@7CE1@ (4.60)

Substituting (4.60) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1dc( ξ,m ) ] } 1 2 , β 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqWItisBcaWGKbGaam4yamaabmaabaGaeqOVdGNaaG ilaiaad2gaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawUhacaGL 9baadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaOGaaG ilaiaaysW7caaMe8UaaGjbVlabek7aInaaBaaaleaacaaIXaaabeaa kiaai6dacaaIWaGaaGilaiabeo7aNnaaBaaaleaacaaIXaaabeaaki aaiYdacaaIWaaaaa@61E5@ (4.61)

where ξ= x β β ( β 1 4 3 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaaakeaacaaI0aaaamaakaaabaWaaSaaaeaacqGHsislcaaI ZaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaaaaeqaaaGccaGLOa GaayzkaaWaaSaaaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaaaakeaa cqaHXoqyaaGaaGOlaaaa@4DF4@ If m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaicdaaaa@3B0F@ , then we have the same periodic solutions (4.17) and (4.41) respectively.

Result 19: If we substitute q= 1 2 ( 2 m 2 ),r= 1 2 m 4 ,c= 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaGOmaiabgkHi Tiaad2gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISa GaamOCaiaai2dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaaiaa d2gadaahaaWcbeqaaiaaisdaaaGccaaISaGaam4yaiaai2dadaWcaa qaaiabgkHiTiaaigdaaeaacaaI0aaaaaaa@4B7B@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=2, a 0 = 3 β 1 8 γ 1 , a 1 = 3 β 1 8 γ 1 m 2 ( 1+ 1 m 2 ), c 1 = β 1 2 m 2 3 m 2 +6 1 m 2 6 γ 1 α 1 = 3 β 1 2 16 γ 1 m 4 ( ( ( 10 m 2 ) 1 m 2 + m 4 +6 m 2 10 )( m 2 2+2 1 m 2 ) ( 1+ 1 m 2 ) 2 ), b 1 =0,( 3 m 2 +6 1 m 2 6 ) γ 1 >0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI9aGa aGOmaiaaiYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaala aabaGaeyOeI0IaaG4maiabek7aInaaBaaaleaacaaIXaaabeaaaOqa aiaaiIdacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaOGaaGilaiaadg gadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaSaaaeaacaaIZaGaeqOS di2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGioaiabeo7aNnaaBaaale aacaaIXaaabeaakiaad2gadaahaaWcbeqaaiaaikdaaaaaaOWaaeWa aeaacqGHsislcaaIXaGaey4kaSYaaOaaaeaacaaIXaGaeyOeI0Iaam yBamaaCaaaleqabaGaaGOmaaaaaeqaaaGccaGLOaGaayzkaaGaaGil aiaadogadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaSaaaeaacqaHYo GydaWgaaWcbaGaaGymaaqabaaakeaacaaIYaGaamyBamaaCaaaleqa baGaaGOmaaaaaaGcdaGcaaqaamaalaaabaGaaG4maiaad2gadaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaI2aWaaOaaaeaacaaIXaGaeyOe I0IaamyBamaaCaaaleqabaGaaGOmaaaaaeqaaOGaeyOeI0IaaGOnaa qaaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaaabeaakiaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaays W7caaMe8UaaGjbVlaaysW7caaMe8oabaGaeqySde2aaSbaaSqaaiaa igdaaeqaaOGaaGypamaalaaabaGaeyOeI0IaaG4maiabek7aInaaDa aaleaacaaIXaaabaGaaGOmaaaaaOqaaiaaigdacaaI2aGaeq4SdC2a aSbaaSqaaiaaigdaaeqaaOGaamyBamaaCaaaleqabaGaaGinaaaaaa GcdaqadaqaamaalaaabaWaaeWaaeaadaqadaqaaiaaigdacaaIWaGa eyOeI0IaamyBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaam aakaaabaGaaGymaiabgkHiTiaad2gadaahaaWcbeqaaiaaikdaaaaa beaakiabgUcaRiaad2gadaahaaWcbeqaaiaaisdaaaGccqGHRaWkca aI2aGaamyBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaaI WaaacaGLOaGaayzkaaWaaeWaaeaacaWGTbWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaGOmaiabgUcaRiaaikdadaGcaaqaaiaaigdacqGH sislcaWGTbWaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcacaGLPa aaaeaadaqadaqaaiabgkHiTiaaigdacqGHRaWkdaGcaaqaaiaaigda cqGHsislcaWGTbWaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaGil aiaadkgadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGimaiaaiYcada qadaqaaiaaiodacaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOnamaakaaabaGaaGymaiabgkHiTiaad2gadaahaaWcbeqaaiaaik daaaaabeaakiabgkHiTiaaiAdaaiaawIcacaGLPaaacqaHZoWzdaWg aaWcbaGaaGymaaqabaGccaaI+aGaaGimaiaaiYcacaaMe8UaaGjbVl aaysW7caaMe8UaaGjbVdaaaiaawUhacaGL9baacaaMe8oaaa@DD45@ (4.62)

Substituting (4.62) into (4.4), (4.6),we have the Jacobi elliptic solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1( 1+ 1 m 2 m 2 )( dn( ξ,m )±1 sn( ξ,m ) ) ] } 1 2 , β 1 γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaeyOeI0IaaGymai abgUcaRmaakaaabaGaaGymaiabgkHiTiaad2gadaahaaWcbeqaaiaa ikdaaaaabeaaaOqaaiaad2gadaahaaWcbeqaaiaaikdaaaaaaaGcca GLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaadsgacaWGUbWaaeWaaeaa cqaH+oaEcaaISaGaamyBaaGaayjkaiaawMcaaiabgglaXkaaigdaae aacaWGZbGaamOBamaabmaabaGaeqOVdGNaaGilaiaad2gaaiaawIca caGLPaaaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaacaGL7bGaay zFaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaakiaa iYcacqaHYoGydaWgaaWcbaGaaGymaaqabaGccqaHZoWzdaWgaaWcba GaaGymaaqabaGccaaI8aGaaGimaaaa@6F91@ (4.63)

where ξ= x β β ( β 1 2 m 2 3 m 2 +6 1 m 2 6 γ 1 ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaaakeaacaaIYaGaamyBamaaCaaaleqabaGaaGOmaaaaaaGc daGcaaqaamaalaaabaGaaG4maiaad2gadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaI2aWaaOaaaeaacaaIXaGaeyOeI0IaamyBamaaCaaa leqabaGaaGOmaaaaaeqaaOGaeyOeI0IaaGOnaaqaaiabeo7aNnaaBa aaleaacaaIXaaabeaaaaaabeaaaOGaayjkaiaawMcaamaalaaabaGa amiDamaaCaaaleqabaGaeqySdegaaaGcbaGaeqySdegaaiaai6caaa a@57BB@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaigdaaaa@3B10@ , then we have the solitary wave solutions:

u( x,t )= { 3 β 1 8 γ 1 [ 1+cosech( x β β β 1 2 3 γ 1 t α α )±coth( x β β β 1 2 3 γ 1 t α α ) ] } 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaacmaa baWaaSaaaeaacqGHsislcaaIZaGaeqOSdi2aaSbaaSqaaiaaigdaae qaaaGcbaGaaGioaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWa daqaaiaaigdacqGHRaWkcaWGJbGaam4BaiaadohacaWGLbGaam4yai aadIgadaqadaqaamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdiga aaGcbaGaeqOSdigaaiabgkHiTmaalaaabaGaeqOSdi2aaSbaaSqaai aaigdaaeqaaaGcbaGaaGOmaaaadaGcaaqaamaalaaabaGaeyOeI0Ia aG4maaqaaiabeo7aNnaaBaaaleaacaaIXaaabeaaaaaabeaakmaala aabaGaamiDamaaCaaaleqabaGaeqySdegaaaGcbaGaeqySdegaaaGa ayjkaiaawMcaaiabgglaXkaacogacaGGVbGaaiiDaiaacIgadaqada qaamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaalaaabaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaa GcbaGaaGOmaaaadaGcaaqaamaalaaabaGaeyOeI0IaaG4maaqaaiab eo7aNnaaBaaaleaacaaIXaaabeaaaaaabeaakmaalaaabaGaamiDam aaCaaaleqabaGaeqySdegaaaGcbaGaeqySdegaaaGaayjkaiaawMca aaGaay5waiaaw2faaaGaay5Eaiaaw2haamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaaGOmaaaaaaGccaqGUaaaaa@7EF4@ (4.64)

Result 20: If we substitute q= 1 2 ( 2 m 2 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dadaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaGOmaiaad2ga daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaa GaaGilaaaa@4142@ r= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaaiaaiYcaaaa@3C5E@ c= 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaI0aaaaaaa@3B9B@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, a 0 =0, b 1 =0, β 1 =0, a 1 = α 1 γ 1 ( 2 m 2 +1 ) , c 1 = 2 α 1 ( 2 m 2 +1 ) , α 1 >0, γ 1 <0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WGTbGaaGypaiaad2gacaaISaGaamOBaiaai2dacaaIXaGaaGilaiaa dggadaWgaaWcbaGaaGimaaqabaGccaaI9aGaaGimaiaaiYcacaWGIb WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaicdacaaISaGaeqOSdi2a aSbaaSqaaiaaigdaaeqaaOGaaGypaiaaicdacaaISaGaamyyamaaBa aaleaacaaIXaaabeaakiaai2dadaGcaaqaamaalaaabaGaeyOeI0Ia eqySde2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeq4SdC2aaSbaaSqaai aaigdaaeqaaOWaaeWaaeaacaaIYaGaamyBamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaleqaaOGaaGilai aadogadaWgaaWcbaGaaGymaaqabaGccaaI9aWaaOaaaeaadaWcaaqa aiaaikdacqaHXoqydaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaai aaikdacaWGTbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGa ayjkaiaawMcaaaaaaSqabaGccaaISaGaeqySde2aaSbaaSqaaiaaig daaeqaaOGaaGOpaiaaicdacaaISaGaeq4SdC2aaSbaaSqaaiaaigda aeqaaOGaaGipaiaaicdacaaMe8oacaGL7bGaayzFaaGaaGjbVdaa@7515@ (4.65)

Substituting (4.65) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= α 1 γ 1 ( 2 m 2 +1 ) ( sn( ξ,m ) 1±cn( ξ,m ) ), α 1 >0, γ 1 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaakaaa baWaaSaaaeaacqGHsislcqaHXoqydaWgaaWcbaGaaGymaaqabaaake aacqaHZoWzdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaikdacaWG TbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawM caaaaaaSqabaGcdaqadaqaamaalaaabaGaam4Caiaad6gadaqadaqa aiabe67a4jaaiYcacaWGTbaacaGLOaGaayzkaaaabaGaaGymaiabgg laXkaadogacaWGUbWaaeWaaeaacqaH+oaEcaaISaGaamyBaaGaayjk aiaawMcaaaaaaiaawIcacaGLPaaacaaISaGaaGjbVlabeg7aHnaaBa aaleaacaaIXaaabeaakiaai6dacaaIWaGaaGilaiabeo7aNnaaBaaa leaacaaIXaaabeaakiaaiYdacaaIWaaaaa@6690@ (4.66)

where ξ= x β β ( 2 α 1 ( 2 m 2 +1 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaOaaaeaadaWcaaqaaiaaikdacqaHXo qydaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaaiaaikdacaWGTbWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaa aaaSqabaaakiaawIcacaGLPaaadaWcaaqaaiaadshadaahaaWcbeqa aiabeg7aHbaaaOqaaiabeg7aHbaacaaIUaaaaa@4F7A@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaigdaaaa@3B10@ , then we have the solitary wave solution:

u( x,t )= α 1 3 γ 1 [ tanh( x β β 2 α 1 3 t α α ) 1±sech( x β β 2 α 1 3 t α α )) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaakaaa baWaaSaaaeaacqGHsislcqaHXoqydaWgaaWcbaGaaGymaaqabaaake aacaaIZaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaaaaeqaaOWaamWa aeaadaWcaaqaaiaacshacaGGHbGaaiOBaiaacIgacaaIOaWaaSaaae aacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacqaHYoGyaaGaeyOe I0YaaOaaaeaadaWcaaqaaiaaikdacqaHXoqydaWgaaWcbaGaaGymaa qabaaakeaacaaIZaaaaaWcbeaakmaalaaabaGaamiDamaaCaaaleqa baGaeqySdegaaaGcbaGaeqySdegaaiaaiMcaaeaacaaIXaGaeyySae Raam4CaiaadwgacaWGJbGaamiAaiaaiIcadaWcaaqaaiaadIhadaah aaWcbeqaaiabek7aIbaaaOqaaiabek7aIbaacqGHsisldaGcaaqaam aalaaabaGaaGOmaiabeg7aHnaaBaaaleaacaaIXaaabeaaaOqaaiaa iodaaaaaleqaaOWaaSaaaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaa aakeaacqaHXoqyaaGaaGykaiaaiMcaaaaacaGLBbGaayzxaaGaaGil aaaa@710C@ (4.67)

while if m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPi=BMipgYlb91rFfpec8Eeeu0xXdbb a9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXd bPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaabauaaaOqaaK qzGeGaamyBaiabgkziUkaaicdaaaa@3EB4@ , then we have the periodic solution:

u( x,t )= α 1 γ 1 [ tan( x β β 2 α 1 t α α ) sec( x β β 2 α 1 t α α )±1 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaakaaa baWaaSaaaeaacqGHsislcqaHXoqydaWgaaWcbaGaaGymaaqabaaake aacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaaqabaGcdaWadaqaamaa laaabaGaaiiDaiaacggacaGGUbGaaGikamaalaaabaGaamiEamaaCa aaleqabaGaeqOSdigaaaGcbaGaeqOSdigaaiabgkHiTmaakaaabaGa aGOmaiabeg7aHnaaBaaaleaacaaIXaaabeaaaeqaaOWaaSaaaeaaca WG0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaHXoqyaaGaaGykaaqa aiaacohacaGGLbGaai4yaiaaiIcadaWcaaqaaiaadIhadaahaaWcbe qaaiabek7aIbaaaOqaaiabek7aIbaacqGHsisldaGcaaqaaiaaikda cqaHXoqydaWgaaWcbaGaaGymaaqabaaabeaakmaalaaabaGaamiDam aaCaaaleqabaGaeqySdegaaaGcbaGaeqySdegaaiaaiMcacqGHXcqS caaIXaaaaaGaay5waiaaw2faaiaai6caaaa@6BFE@ (4.68)

Result 21: If we substitute q= 1 2 ( 1+ m 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaaGym aiabgUcaRiaad2gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaaISaaaaa@4168@ r= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaaaaiaaiYcaaaa@3C5E@ c= 1 4 ( m 2 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dadaWcaaqaaiabgkHiTiaaigdaaeaacaaI0aaaamaabmaabaGaamyB amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaaaa@419A@ into the algebraic equations (4.7) and use the Maple, we have

{ m=m,n=1, a 0 = β 1 3 γ 1 , a 1 =0, b 1 = β 1 3 γ 1 2 ( 1+ m 2 ) , c 1 = β 1 3 1 γ 1 ( 1+ m 2 ) , α 1 = β 1 2 ( 1+2 m 2 ) 9 γ 1 ( 1+ m 2 ) , γ 1 <0, } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaafa qabeGabaaabaGaamyBaiaai2dacaWGTbGaaGilaiaad6gacaaI9aGa aGymaiaaiYcacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaala aabaGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4m aiabeo7aNnaaBaaaleaacaaIXaaabeaaaaGccaaISaGaamyyamaaBa aaleaacaaIXaaabeaakiaai2dacaaIWaGaaGilaiaadkgadaWgaaWc baGaaGymaaqabaGccaaI9aWaaSaaaeaacqGHsislcqaHYoGydaWgaa WcbaGaaGymaaqabaaakeaacaaIZaGaeq4SdC2aaSbaaSqaaiaaigda aeqaaaaakmaakaaabaWaaSaaaeaacaaIYaaabaWaaeWaaeaacaaIXa Gaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaaaaSqabaGccaaISaGaam4yamaaBaaaleaacaaIXaaabeaakiaai2 dadaWcaaqaaiabek7aInaaBaaaleaacaaIXaaabeaaaOqaaiaaioda aaWaaOaaaeaadaWcaaqaaiabgkHiTiaaigdaaeaacqaHZoWzdaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaaigdacqGHRaWkcaWGTbWaaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaaaWcbeaaaOqaaiaaiY cacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaaI9aWaaSaaaeaacqaH YoGydaqhaaWcbaGaaGymaaqaaiaaikdaaaGcdaqadaqaaiaaigdacq GHRaWkcaaIYaGaamyBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaa wMcaaaqaaiaaiMdacqaHZoWzdaWgaaWcbaGaaGymaaqabaGcdaqada qaaiaaigdacqGHRaWkcaWGTbWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaaaaiaaiYcacqaHZoWzdaWgaaWcbaGaaGymaaqabaGcca aI8aGaaGimaiaaiYcaaaaacaGL7bGaayzFaaaaaa@8956@ (4.69)

Substituting (4.69) into (4.4), (4.6), we have the Jacobi elliptic solutions:

u( x,t )= β 1 3 γ 1 [ 1± 2 ( 1+ m 2 ) ns( ξ,m ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaalaaa baGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4mai abeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWadaqaaiaaigdacqGH XcqSdaGcaaqaamaalaaabaGaaGOmaaqaamaabmaabaGaaGymaiabgU caRiaad2gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaaa leqaaOGaamOBaiaadohadaqadaqaaiabe67a4jaaiYcacaWGTbaaca GLOaGaayzkaaaacaGLBbGaayzxaaGaaGilaaaa@567C@ (4.70)

where ξ= x β β ( β 1 3 1 γ 1 ( 1+ m 2 ) ) t α α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ypamaalaaabaGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeqOS digaaiabgkHiTmaabmaabaWaaSaaaeaacqaHYoGydaWgaaWcbaGaaG ymaaqabaaakeaacaaIZaaaamaakaaabaWaaSaaaeaacqGHsislcaaI XaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaaIXa Gaey4kaSIaamyBamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaaaaSqabaaakiaawIcacaGLPaaadaWcaaqaaiaadshadaahaaWcbe qaaiabeg7aHbaaaOqaaiabeg7aHbaacaaIUaaaaa@5311@ If m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaigdaaaa@3B10@ , then we have the singular soliton solution:

u( x,t )= β 1 3 γ 1 [ 1±coth( x β β β 1 3 1 2 γ 1 t α α ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaalaaa baGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4mai abeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWadaqaaiaaigdacqGH XcqScaGGJbGaai4BaiaacshacaGGObWaaeWaaeaadaWcaaqaaiaadI hadaahaaWcbeqaaiabek7aIbaaaOqaaiabek7aIbaacqGHsisldaWc aaqaaiabek7aInaaBaaaleaacaaIXaaabeaaaOqaaiaaiodaaaWaaO aaaeaadaWcaaqaaiabgkHiTiaaigdaaeaacaaIYaGaeq4SdC2aaSba aSqaaiaaigdaaeqaaaaaaeqaaOWaaSaaaeaacaWG0bWaaWbaaSqabe aacqaHXoqyaaaakeaacqaHXoqyaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaaGilaaaa@6154@ (4.71)

while if m0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkaaicdaaaa@3B0F@ , then we have the periodic solution:

u( x,t )= β 1 3 γ 1 [ 1± 2 cosec( x β β β 1 3 1 γ 1 t α α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbiqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyDamaabm aabaGaamiEaiaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaalaaa baGaeyOeI0IaeqOSdi2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaG4mai abeo7aNnaaBaaaleaacaaIXaaabeaaaaGcdaWadaqaaiaaigdacqGH XcqSdaGcaaqaaiaaikdaaSqabaGccaWGJbGaam4BaiaadohacaWGLb Gaam4yamaabmaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHYoGy aaaakeaacqaHYoGyaaGaeyOeI0YaaSaaaeaacqaHYoGydaWgaaWcba GaaGymaaqabaaakeaacaaIZaaaamaakaaabaWaaSaaaeaacqGHsisl caaIXaaabaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaaaaeqaaOWaaS aaaeaacaWG0bWaaWbaaSqabeaacqaHXoqyaaaakeaacqaHXoqyaaaa caGLOaGaayzkaaaacaGLBbGaayzxaaGaaGOlaaaa@6263@ (4.72)

The graphical representations of some solutions

In this section, we present some graphs of the solitons and other solutions of Eq.(1.1). Let us now examine Figures (1 - 12) as it illustrates some of our solutions obtained in this article. To this aim, we select some special values of the parameters obtained for example, in some of the solutions of (4.10), (4.12), (4.22), (4.23), (4.28), (4.37), (4.41), (4.56), (4.58), (4.64), (4.67) and (4.72) of the conformable space-time fractional fourth-order Pochhammer-Chree equation (1.1). For more convenience the graphical representations of these solutions are shown in the following figures.

From the above Figures, one can see that the obtained solutions possess the Jacobi elliptic solutions, the conformable fractional solitary wave solution, the Jacobi elliptic conformable fractional solution and the solitary wave solutions . Also, these Figures expressing the behaviour of these solutions which give some perspective readers how the behaviour solutions are produced.

Conclusion

We have derived many Jacobi elliptic function solutions, the solitary wave solutions, singular solitary wave solutions and the trigonometric function solutions of the conformable space-time fractional fourth-order Pochhammer-Chree equation (1.1) using the unified sub-equation method combined with the conformable space-time fractional derivatives described in Sec. 3. On comparing our results in this article with that obtained in42–50 using different methods, we conclude that the Jacobi elliptic solutions obtained in our article are new, while some solitary wave solutions, singular solitary wave solutions and the trigonometric function solutions obtained in our article are equivalent to that obtained in42–50. From these discussions, we conclude that the proposed method of Sec.3, is direct, concise and effective powerful mathematical tools for obtaining the exact solutions of other nonlinear evolution equations. Finally, our results in this article have been checked using the Maple by putting them back into the original equation (1.1).57

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Ablowitz MJ, Clarkson PA, Solitons, nonlinear evolution equation and inverse scattering. New York: Cambridge University press; 1991.
  2. Hirota R. Exact solutions of KdV equation for multiple collisions of solitons. Phys Rev Lett. 1971;27(18):1192–1194.
  3. Miura MR. Bäcklund transformation. Berlin: Springer; 1978.
  4. Lu B. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys Rev Lett. 2012;376(28–29):2045–2048.
  5. Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations. J Math Phys. 1983;24:522–526.
  6. He JH, Wu X H. Exp–function method for nonlinear wave equations. Chaos Solitons Fract. 2006;30(3)700–708.
  7. EL–Wakil SA, Madkour MA, Abdou MA. Application of exp–function method for nonlinear evolution equations with variable coefficients. Phys Lett A. 2007;369(2):62–69.
  8. Wang M, Li X, Zhang J. Sub–ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation. Phys Lett A. 2007;363(2):96–101.
  9. Zhang S, Wang W, Tang JL. The improved sub–ODE method for a generalized KdV–mKdV equation with nonlinear terms of any order. Phys Lett A. 2008; 372(21):3808–3813.
  10. Lu D, Liu C. A sub–ODE method for generalized Gardner and BBM equation with nonlinear terms of any order. Applied Mathematics and Computation. 2010;217(4):1404–1407.
  11. Liu S, Fu Z, Liu S, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys Lett A. 2001;289(2):69–74.
  12. Lu D, QShi Q. New Jacobi elliptic functions solutions for the combined KdV–mKdV equation. Int J Nonlinear Sci. 2010;10(3):320–325.
  13. Wazwaz AM. The tanh and the sine–cosine methods for a reliable treatment of the modified equal width equation and its variants. Commu Nonlinear Sci Nurner Simul. 2006;11(2):148–160.
  14. Wazwaz AM. The tanh and the sine–cosine methods for solving the KP–MEW equation. Int J Comput Math. 2005;82(2):235–246.
  15. Xu GQ. New types of exact solutions for the fourth–order dispersive cubic–quintic nonlinear Schrödinger equation. Applied Math Comput. 2011;217(12):5967–5971.
  16. Wang M, Li X, Zhang J. The ( G ' /G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaeaaca WGhbWaaWbaaeqabaGaam4jaaaacaaIVaGaam4raaGaayjkaiaawMca aaaa@3B62@ –expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A. 2008;372:(4):417.
  17. Zayed EME, Gepreel KA. The modified ( G ' /G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaeaaca WGhbWaaWbaaeqabaGaam4jaaaacaaIVaGaam4raaGaayjkaiaawMca aaaa@3B62@ – expansion method and its applications to construct exact solutions for nonlinear PDEs. Wseas transactions on mathematics. 2011;8 (10):270–278.
  18. Zayed EME. A note on the modified simple equation method applied to Sharma–Tasso–Olver equation. Appl Math Comput. 2011;218(7):3962–3964.
  19. Zayed EME. Abdul–Ghani Al–Nowehy, The modified simple equation method, the exp–function method and the method of soliton ansatz for solving the long–short wave resonance equations. Z Naturforsch. 2016;71A (2):103–112.
  20. Zayed EME, Al–Nowehy AG. Exact solutions of the Biswas–Milovic equation, the ZK(m,n,k) equation and the K(m,n) equation using the generalized Kudryashov method. Open phys. 2016;14(1):129–139.
  21. Zayed EME. Moatimid GM, Al–Nowehy AG. The generalized Kudryashov method and its applications for solving nonlinear PDEs in mathematical physics. Scientific J Math Res. 2015;5:19–39.
  22. Ma WX, Huang T, Zhang Y. A multiple exp–function method for nonlinear differential equations and its application. Phys Script. 2010;82(6):065003.
  23. Zayed EME, Al–Nowehy AG. The multiple exp–function method and the linear superposition principle for solving the (2+1)–Dimensional Calogero–Bogoyavlenskii–Schiff equation. Z Naturforsch. 2015;70A(9):775–779.
  24. Zayed EME, Arnous AH. DNA dynamics studied using the homogeneous balance method. Chin Phys Lett. 2012;29(1):080203–080205.
  25. Sirendaoreji S. A new auxiliary equation and exact travelling wave solutions of nonlinear equations. Phys Lett A. 2006;356(2):(2006):124–130.
  26. Sirendaoreji S. Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys Lett A. 2007;363(5):440–447.
  27. Xu G. Extended auxiliary equation method and its applications to three generalized NLS equations. Abst Appl Anal. 2014:7.
  28. Zayed EME, Alurrfi KAE. Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger–type equations. Appl Math Comput. 2016;289(1):111–131.
  29. Zayed EME, Alurrfi KAE. New extended auxiliary equation method and its applications to nonlinear Schrödinger–type equations. Optik. 2016;127(20):9131–9151.
  30. Biswas A, Milovic D, Edwards M. Mathematical Theory of Dispersion–Managed Optical Solutions. USA: Springer–Verlag; 2010.
  31. Sarma AK, Saha M, ABiswas A. Optical solutions with power law nonlinearity and Hamlitonian perturbations : an exact solution. Journal of Infrared Millimeter and Terahertz Waves. 2010;31(9):1048–1056.
  32. Zhou Q, Zhu Q, Savescu M, et al. Optical solutions with nonlinear dispersion in parabolic law medium. Proc Romanian Acad Ser A. 2013;16(2):195–202.
  33. Cevikela AC, Aksoy E, Günerb O, et al. Dark–bright soliton solutions for some evolution equations. Int J Nonlinear Sci. 2013;16(3):195–202.
  34. Zeng X, X. Yong X. A new mapping method and its applications to nonlinear partial differential eqations. Phys Lett A. 2008;372(4):6602– 6607.
  35. Zayed E M E, Al-Nowehy A G. Solitons and other exact solutions for a class of nonlinear Schrödinger-type equations. Optik. 2017;130:1295-1311.
  36. El–Shiekh RM, Al–Nowehy AG. Integral methods to solve the variable coefficient NLSE. Z Naturforsch. 2013;68a:225–260.
  37. Moatimid GM, El–Shiekh RM, Al–Nowehy AG. New exact solutions for the variables coefficients two–dimensional Burger equations without restrictions on the variable coefficient. Nonlinear Sci Lett A. 2013;4(1):1–7.
  38. Li LX, Li QE, Wang LM. The ( G' G , 1 G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaeaada WcaaqaaiaadEeacaWGNaaabaGaam4raaaacaaISaWaaSaaaeaacaaI XaaabaGaam4raaaaaiaawIcacaGLPaaaaaa@3CE4@  – expansion method and its applications to traveling wave solutions of the Zakharov equations. Appl Math J Chin Univ. 2010;25(4):454–462.
  39. Zayed EME, Alurrfi KAE. The ( G' G , 1 G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaeaada WcaaqaaiaadEeacaWGNaaabaGaam4raaaacaaISaWaaSaaaeaacaaI XaaabaGaam4raaaaaiaawIcacaGLPaaaaaa@3CE4@  – expansion method and its applications for solving two higher order nonlinear evolution equations. Math Prob Eng. 2014:521712.
  40. Bin L, Hong–Qing Z. A new variable coefficient algebraic method and non–traveling wave solutions of nonlinear equations. Chin Phys. 2008;B17:3974–3984.
  41. Li B, Chen Y. Nonlinear partial differential equations solved by projective Riccati equations ansatz. Z Naturforsh. 2003;58(10):511–519.
  42. Zayed EME, Alurrfi KAE. The generalized projective Riccati equations method for solving nonlinear evolution equations in mathematical physics. Abstract and Appl Anal. 2014;259190.
  43. Conte R, Musettle M. Link between solitar waves and projective Riccati equations. J Phys A Math & Gene. 1992;25(1)5609–5623.
  44. Yan ZY. Generalized method and its applications in the higher–order nonlinear Schrodinger equation in nonlinear optical fibers. Chaos solitons Fractals. 2003;16(5):759–766.
  45. Chree C. Longitudinal vibrations of a circular bar. Quarterly Journal of Mathematics. 1886;21:287.
  46. Zhang WL. Solitary wave solutions and kink wave solutions for a generalized PC equation. Acta Math Appl Sinica. 2005;21(2005):125–134.
  47. Zuo JM. Application of the extended ( G ' /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikaiaadE eadaahaaqabeaacaWGNaaaaiaai+cacaWGhbGaaGykaaaa@3B3E@ – expansion method to solve the Pochhammer–Chree equations. Appl Math Comput. 2010;217(1)376–383.
  48. Zayed EME. Equivalence of the ( G ' /G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MnY=wiVC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikaiaadE eadaahaaqabeaacaWGNaaaaiaai+cacaWGhbGaaGykaaaa@3B3E@ – expansion method and the tanh–coth function method. AIP Conference Proceedings. 2010;1281(1):2225–2228.
  49. Wazwaz AM. The tanh–coth and the sine–cosine methods for kinks solutions and periodic solutions for the Pochhammer–Chree equations. Appl Math Comput. 2008;195(1):24–33.
  50. Parand K, Rad J. Some solitary wave solutions of generalized Pochhammer–Chree equation via Exp function method, World Academy of science. Engineering and Technology. 2010;43:423.
  51. Khalil R, Al–Horani M, Yousef A. A new definition of fractional derivative. J Comput Appl Math. 2014;264(1):65–70.
  52. Abdeljawad T. On conformable fractional calculus. J Comput Appl Math. 2015;279(1):57–66.
  53. Eslami M, Rezazadeh H. The first integral method for Wu–Zhang system with conformable time– fractional derivative. Calcolo. 2006;53(3):475–485.
  54. Chandrasekharon K. Elliptic function. Germany: Springer; 1978.
  55. Patrick DV. Elliptic function and Elliptic curves. New York: Cambridge University Press; 1973.
  56. Zayed EME, Amer YA, Shohib RMA. The Jacobi elliptic function expansion method and its applications for solving the higher– order dispersive nonlinear Schrodinger equation. Sci J Math Res. 2014;4:53–72.
Creative Commons Attribution License

©2018 Zayed, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.