Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 7 Issue 2

The smallest constant of physics

Shuming Li,1 Lihua Li Huang,2 Shuwei Li,3 Shuyun Li4

1Kansas State Department of Education, USA
2303 Ray St., Pleasanton, USA
3Livermore, USA
4Shijiazhuang, P.R. China

Correspondence: Shuming Li, Kansas State Department of Education, 900 SW Jackson St Suite 351, Topeka, KS 66612, USA, Tel 9132698143

Received: April 16, 2023 | Published: April 26, 2023

Citation: Shuming L, Lihua LH, Shuwei L, et al. The smallest constant of physics. Phys Astron Int J. 2023;7(2):99-102. DOI: 10.15406/paij.2023.07.00291

Download PDF

Abstract

This study suggests that the smallest physical constant exists for the product of space interval, time interval, and energy. The integer times of which correspond to the product of the energy, space interval, and time interval of any particle. Combined with fractal geometry, many parameters that cannot be calculated using current physical theory can be calculated through our new method. As a new theoretical prediction, these new results will be tested by the experiment.

Keywords: fractal, subatomic particle, relativity, quantum mechanics, space, time, energy

Introduction

In 1985, when I taught physics courses, I studied the atom light-emission process. Based on the Classical Harmonic Oscillator Model,1 through mathematical derivation, I found that there is a small constant of the product of energy, space interval, and time interval in this light emission process. The value of this small constant is 1.55×10-40 erg·cm·s. The product of the energy, space interval, and time interval of a particle should be integer times of this small constant. However, when I applied this result to some particles, such as electrons and protons, I obtained inconsistent numbers that are the product of energy, space interval, and time interval smaller than this constant. This means that the value of this constant is too large. Although the calculation based on this constant was no sense, the idea that there should be the smallest constant of the product of energy, space interval, and time interval was deeply rooted in my mind. Later, I realized that the constant was too large because I considered only electromagnetic interaction. If the smallest constant exists for all physical systems, then it must combine all four force interactions: gravitation, electromagnetism, weak nuclear force, and strong nuclear force. Based on current physical theories, it is possible that to unify the four forces in very high energy within extremely small space interval and time interval. The smallest constant should be obtained in this scale.

Calculation of the smallest physical constant

According to general relativity theory,2 a single particle with very large mass m and to squeeze it into a tiny space range could forms a tiny black hole. The Schwarzschild radius should be equal to r=2Gm/c2. At the same time, its Compton wavelength λ=h/mc; if r=λ, we can obtain the

m=  hc 2G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gacqGH9aqpcaGGGcWaaOaaaeaadaWcaaqaaiaadIgacaWGJbaa baGaaGOmaiaadEeaaaaaleqaaaaa@3EB7@   and   λ=  2Gh c 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSjabg2da9iaacckadaGcaaqaamaalaaabaGaaGOmaiaadEea caWGObaabaGaam4yamaaCaaaleqajuaGbaGaaG4maaaaaaaaleqaaa aa@40F1@   (1)

where G is the constant of gravity, h is Plank’s constant, and c is the speed of light. If let E 0 =m c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweapaWaaSbaaKqbagaapeGaaGimaaWcpaqabaGcpeGaeyypa0Ja amyBaiaadogapaWaaWbaaSqabKqbagaapeGaaGOmaaaaaaa@3F0F@ and x 0 =λ/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhapaWaaSbaaKqbagaapeGaaGimaaWcpaqabaGcpeGaeyypa0Ja eq4UdWMaai4laiaaikdaaaa@3EF5@  and τ 0 =  x 0 /c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abes8a0Lqba+aadaWgaaqaa8qacaaIWaaapaqabaGcpeGaeyypa0Ja aeiiaiaadIhapaWaaSbaaKqbagaapeGaaGimaaWcpaqabaGccaGGVa Wdbiaadogaaaa@4186@ , we obtain

x 0 =  Gh 2 c 3 =2.86× 10 33 cm τ 0 =  Gh 2 c 5 =9.54× 10 44 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaabaaaaaaa aapeGaamiEa8aadaWgaaqcfayaa8qacaaIWaaal8aabeaak8qacqGH 9aqpcaGGGcWaaOaaaeaadaWcaaqaaiaadEeacaWGObaabaGaaGOmai aadogadaahaaWcbeqcfayaaiaaiodaaaaaaaWcbeaakiabg2da9iaa ikdacaGGUaGaaGioaiaaiAdacqGHxdaTcaaIXaGaaGimamaaCaaale qajuaGbaGaeyOeI0IaaG4maiaaiodaaaGccaWGJbGaamyBaaqaaiab es8a0Lqba+aadaWgaaqaa8qacaaIWaaapaqabaGcpeGaeyypa0Jaai iOamaakaaabaWaaSaaaeaacaWGhbGaamiAaaqaaiaaikdacaWGJbWa aWbaaSqabKqbagaacaaI1aaaaaaaaSqabaGccqGH9aqpcaaI5aGaai OlaiaaiwdacaaI0aGaey41aqRaaGymaiaaicdadaahaaWcbeqcfaya aiabgkHiTiaaisdacaaI0aaaaOGaam4Caaaaaa@64E5@   (2)

E 0 = c 5 h 2G =3.47× 10 16 erg=2.1× 10 19 GeV k 0 = E 0 x 0 τ 0 = G h 3 8 c 3 =9.4868845× 10 60 erg.cm.s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaabaaaaaaa aapeGaamyra8aadaWgaaqcfayaa8qacaaIWaaal8aabeaakiabg2da 98qadaGcaaqaamaalaaabaGaam4yamaaCaaaleqajuaGbaGaaGynaa aakiaadIgaaeaacaaIYaGaam4raaaaaSqabaGccqGH9aqpcaaIZaGa aiOlaiaaisdacaaI3aGaey41aqRaaGymaiaaicdadaahaaWcbeqcfa yaaiaaigdacaaI2aaaaOGaamyzaiaadkhacaWGNbGaeyypa0JaaGOm aiaac6cacaaIXaGaey41aqRaaGymaiaaicdadaahaaWcbeqcfayaai aaigdacaaI5aaaaOGaam4raiaadwgacaWGwbaabaGaam4AaKqba+aa daWgaaqaa8qacaaIWaaapaqabaGaeyypa0JcpeGaamyra8aadaWgaa qcfayaa8qacaaIWaaal8aabeaak8qacaWG4bWdamaaBaaajuaGbaWd biaaicdaaSWdaeqaaOWdbiabes8a0Lqba+aadaWgaaqaa8qacaaIWa aapaqabaGaeyypa0JcpeWaaOaaaeaadaWcaaqaaiaadEeacaWGObWa aWbaaSqabKqbagaacaaIZaaaaaGcbaGaaGioaiaadogadaahaaWcbe qcfayaaiaaiodaaaaaaaWcbeaakiabg2da9iaaiMdacaGGUaGaaGin aiaaiIdacaaI2aGaaGioaiaaiIdacaaI0aGaaGynaiabgEna0kaaig dacaaIWaWaaWbaaSqabKqbagaacqGHsislcaaI2aGaaGimaaaakiaa dwgacaWGYbGaam4zaiaac6cacaWGJbGaamyBaiaac6cacaWGZbaaaa a@8243@   (3)

A new quantum constant ko can be obtained using Eq. (3). We call this the Space-Time Quantum of Action (STQA). Because ko is a very small constant, we can reasonably assume that the product of the space size x, time interval τ, and energy E of all physical systems should be an integer multiple of ko. This is the STQA Hypothesis.

If n is an integer equal to or greater than one, the STQA Hypothesis can be expressed by Eq. (4).

Exτ=n k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWG4bGaeqiXdqNaeyypa0JaamOBaiaadUgajuaGpaWaaSba aeaapeGaaGimaaWdaeqaaaaa@401F@   (4)

where E, x, and τ  represent the proper energy, space interval, and time interval of a particle, respectively, and n ≥1.

Based on Eq. (4), the energy, space interval, and time interval of each particle are all functions of n. Therefore, we have the following equations:

E= E 0 f(n),    x= x 0 g(n),    τ= τ 0 h(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbGaeyypa0 JaamyramaaBaaajuaGbaGaaGimaaWcbeaakiaadAgacaGGOaGaamOB aiaacMcacaGGSaaeaaaaaaaaa8qacaGGGcGaaiiOaiaacckacaGGGc GaamiEaiabg2da9iaadIhadaWgaaqcfayaaiaaicdaaSqabaGccaWG NbGaaiikaiaad6gacaGGPaGaaiilaiaacckacaGGGcGaaiiOaiaacc kacqaHepaDcqGH9aqpcqaHepaDdaWgaaqcfayaaiaaicdaaSqabaGc caWGObGaaiikaiaad6gacaGGPaaaaa@5ADF@   (5)

Exτ= k 0 n     f(n)g(n)h(n)=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWG4bGaeqiXdqNaeyypa0Jaam4AamaaBaaajuaGbaGaaGim aaWcbeaakiaad6gacaGGGcGaaiiOaiabgkziUkaacckacaGGGcGaai iOaiaadAgacaGGOaGaamOBaiaacMcacaWGNbGaaiikaiaad6gacaGG PaGaamiAaiaacIcacaWGUbGaaiykaiabg2da9iaad6gaaaa@5348@   (6)

where n is the number of STQAs within a particle and n is a positive integer. According to the nature of positive numbers, n1, n2 and n are all positive integers.

n= n 1 n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaGaamOBaiaad2 dacaWGUbqcfa4aaSbaaeaacaqGXaaabeaakiaad6gajuaGdaWgaaqa aiaabkdaaeqaaaaaaa@3E60@

and

f( n 1 )g( n 1 )h( n 1 )= n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaGaamOzamaabm aabaGaamOBaKqbaoaaBaaabaGaaeymaaqabaaakiaawIcacaGLPaaa caWGNbWaaeWaaeaacaWGUbqcfa4aaSbaaeaacaqGXaaabeaaaOGaay jkaiaawMcaaiaadIgadaqadaqaaiaad6gadaWgaaqcfayaaiaabgda aSqabaaakiaawIcacaGLPaaacaWG9aGaamOBaKqbaoaaBaaabaGaae ymaaqabaaaaaa@4996@

So

n 1 n 2 =f( n 1 )g( n 1 )h( n 1 )f( n 2 )g( n 2 )h( n 2 )=( n 1 n 2 )=n=f( n )g( n )h( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbqcfa4aaS baaeaacaqGXaaabeaakiaad6gadaWgaaqcfayaaiaabkdaaSqabaGc caWG9aGaamOzamaabmaabaGaamOBaKqbaoaaBaaabaGaaeymaaqaba aakiaawIcacaGLPaaacaWGNbWaaeWaaeaacaWGUbqcfa4aaSbaaeaa caqGXaaabeaaaOGaayjkaiaawMcaaiaadIgadaqadaqaaiaad6gaju aGdaWgaaqaaiaabgdaaeqaaaGccaGLOaGaayzkaaGaamOzamaabmaa baGaamOBamaaBaaajuaGbaGaaeOmaaWcbeaaaOGaayjkaiaawMcaai aadEgadaqadaqaaiaad6gadaWgaaqcfayaaiaabkdaaSqabaaakiaa wIcacaGLPaaacaWGObWaaeWaaeaacaWGUbWaaSbaaKqbagaacaqGYa aaleqaaaGccaGLOaGaayzkaaGaamypamaabmaabaGaamOBaKqbaoaa BaaabaGaaeymaaqabaGccaWGUbWaaSbaaKqbagaacaqGYaaaleqaaa GccaGLOaGaayzkaaGaamypaiaad6gacaWG9aGaamOzamaabmaabaGa amOBaaGaayjkaiaawMcaaiaadEgadaqadaqaaiaad6gaaiaawIcaca GLPaaacaWGObWaaeWaaeaacaWGUbaacaGLOaGaayzkaaaaaa@6E69@

Therefore, f(n), g(n), and h(n) should have the same function form. They must satisfy the following relationship.

f( n 1 n 2 )=f( n 1 )f( n 2 ),g( n 1 n 2 )=g( n 1 )g( n 2 ),h( n 1 n 2 )=h( n 1 )h( n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaGaamOzamaabm aabaGaamOBaKqbaoaaBaaabaGaaeymaaqabaGccaWGUbWaaSbaaKqb agaacaqGYaaaleqaaaGccaGLOaGaayzkaaGaamypaiaadAgadaqada qaaiaad6gajuaGdaWgaaqaaiaabgdaaeqaaaGccaGLOaGaayzkaaGa amOzamaabmaabaGaamOBamaaBaaajuaGbaGaaeOmaaWcbeaaaOGaay jkaiaawMcaaiaadYcacaWGNbWaaeWaaeaacaWGUbqcfa4aaSbaaeaa caqGXaaabeaakiaad6gadaWgaaqcfayaaiaabkdaaSqabaaakiaawI cacaGLPaaacaWG9aGaam4zamaabmaabaGaamOBaKqbaoaaBaaabaGa aeymaaqabaaakiaawIcacaGLPaaacaWGNbWaaeWaaeaacaWGUbWaaS baaKqbagaacaqGYaaaleqaaaGccaGLOaGaayzkaaGaamilaiaadIga daqadaqaaiaad6gajuaGdaWgaaqaaiaabgdaaeqaaOGaamOBamaaBa aajuaGbaGaaeOmaaWcbeaaaOGaayjkaiaawMcaaiaad2dacaWGObWa aeWaaeaacaWGUbqcfa4aaSbaaeaacaqGXaaabeaaaOGaayjkaiaawM caaiaadIgadaqadaqaaiaad6gadaWgaaqcfayaaiaabkdaaSqabaaa kiaawIcacaGLPaaaaaaa@6E81@

According to the nature of the fundamental elementary function,3 f(n), g(n), and h(n) have only the form of the power function. We have

f( n )= n a ,g( n )= n b ,h( n )= n d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaeWaae aacaWGUbaacaGLOaGaayzkaaGaamypaiaad6gadaahaaWcbeqcfaya aiaadggaaaGccaWGSaGaam4zamaabmaabaGaamOBaaGaayjkaiaawM caaiaad2dacaWGUbWaaWbaaSqabKqbagaacaWGIbaaaOGaamilaiaa dIgadaqadaqaaiaad6gaaiaawIcacaGLPaaacaWG9aGaamOBamaaCa aaleqajuaGbaGaamizaaaaaaa@4DA7@

where a, b, and d must meet.

a+b+d=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbGaam4kai aadkgacaWGRaGaamizaiaad2dacaqGXaaaaa@3D7F@

Thus, we can get the conclusion as follows:

E= E 0 n a ,    x= x 0 n b ,      τ= τ 0 n d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacqGH9aqppaGaamyramaaBaaajuaGbaGaaGimaaWcbeaakiaa d6gadaahaaWcbeqcfayaaiaadggaaaGccaGGSaWdbiaacckacaGGGc GaaiiOaiaacckacaWG4bGaeyypa0JaamiEamaaBaaajuaGbaGaaGim aaWcbeaakiaad6gadaahaaWcbeqcfayaaiaadkgaaaGccaGGSaGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaeqiXdqNaeyypa0Ja eqiXdq3aaSbaaKqbagaacaaIWaaaleqaaOGaamOBamaaCaaaleqaju aGbaGaamizaaaaaaa@5B72@   (7)

a+b+d=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaGaamyyaiaadU cacaWGIbGaam4kaiaadsgacaWG9aGaaeymaaaaaa@3D80@   (8)

Exτ=n k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWG4bGaeqiXdqNaeyypa0JaamOBaiaadUgadaWgaaqcfaya aiaaicdaaSqabaaaaa@3FFC@   (9)

If the above deductions are true, we can obtain a new way to describe fundamental particles. The method is the same for all particles. Different values of a, b, d, and n correspond to different particles. Where n is the number of STQA contained in the particle. The question is, what are the physical meanings of a, b, and d?

The fractal structure of particles

The next question is to seek the physical meanings of a, b, and d. By rearranging the space interval of the common particle formula x=x0nb to (x/x0)1/b = n, then logarithm on both sides, Eq. (10) was obtained. The fractal dimension of the self-similar set in Fractal Geometry4 is shown in Eq. (11).

1 b = logn log( x x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaaig daaeaacaWGIbaaaiabg2da9maalaaabaGaciiBaiaac+gacaGGNbGa amOBaaqaaiGacYgacaGGVbGaai4zaiaacIcadaWcaaqaaiaadIhaae aacaWG4bWaaSbaaKqbagaacaaIWaaaleqaaaaakiaacMcaaaaaaa@462F@   (10)

D= logN log( 1 r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaeyypa0 ZaaSaaaeaaciGGSbGaai4BaiaacEgacaWGobaabaGaciiBaiaac+ga caGGNbGaaiikamaalaaabaGaaGymaaqaaiaadkhaaaGaaiykaaaaaa a@4360@   (11)

The similarity between Eq. (10) and Eq. (11) are not a coincidence. In Eq. (11), D is the fractal dimension of the self-similar set. r is the shrinkage ratio with a value less than one. N is the number of small sets obtained from the self-similar set at shrinkage ratio r. The meaning of xo /x in Eq. (10) is equivalent to r in Eq. (11). n in Eq. (10) is simply the number of small sets – the STQA sets–which are obtained from the particle at the shrinkage ratio xo/x. From the meaning of the variables in these two formulae, we can deduce that 1/b is the spatial fractal dimension of the particles.

The derivation above can be generalized to the time and energy of the particles. Similar conclusions were drawn in this study. In addition to space, time and energy exhibit fractal dimensions. Their fractal dimensions can be calculated using Eq. (12), where DX, DE and Dτ correspond to the space, energy, and time dimensions of the particles, respectively. The formulae derived from the above have a mathematical framework for Fractal Geometry, which supports the validity of the STQA hypothesis.

D x = 1 b = logn log( x x 0 ) , D E = 1 a = logn log( E E 0 ) , D τ = 1 d = logn log( τ τ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaSbaaK qbagaacaWG4baaleqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOy aaaacqGH9aqpdaWcaaqaaiGacYgacaGGVbGaai4zaiaad6gaaeaaci GGSbGaai4BaiaacEgacaGGOaWaaSaaaeaacaWG4baabaGaamiEamaa BaaajuaGbaGaaGimaaWcbeaaaaGccaGGPaaaaiaacYcacaWGebWaaS baaKqbagaacaWGfbaaleqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa amyyaaaacqGH9aqpdaWcaaqaaiGacYgacaGGVbGaai4zaiaad6gaae aaciGGSbGaai4BaiaacEgacaGGOaWaaSaaaeaacaWGfbaabaGaamyr amaaBaaajuaGbaGaaGimaaWcbeaaaaGccaGGPaaaaiaacYcacaWGeb WaaSbaaKqbagaacqaHepaDaSqabaGccqGH9aqpdaWcaaqaaiaaigda aeaacaWGKbaaaiabg2da9maalaaabaGaciiBaiaac+gacaGGNbGaam OBaaqaaiGacYgacaGGVbGaai4zaiaacIcadaWcaaqaaiabes8a0bqa aiabes8a0naaBaaajuaGbaGaaGimaaWcbeaaaaGccaGGPaaaaaaa@7077@   (12)

The fractal dimension of subatomic particles and the whole universe

Considering the whole universe as a particle, we know that the energy of the universe based on its total mass (m=1.5×1053 kg) is E= mc2 = 1.3481×1077 erg. The age of the universe (13.787 billion years) was τ =4.3512×1017s. The diameter of the universe is 8.8×1026 m, so the radius of the universe is x = 4.4×1028 cm.5 And we have ko = 9.4868845×10-60 erg⋅cm⋅s, Eo = 3.47×1016 erg, xo = 2.86×10-33 cm and τ0 = 9.54×10-44 s. The n value of the universe can then be calculated using Eq. (13).

Exτ=n k 0               n=  Exτ k 0 =8.06324× 10 181 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweacaWG4bGaeqiXdqNaeyypa0JaamOBaiaadUgadaWgaaqcfaya aiaaicdaaSqabaGccaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacqGHsgIRcaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaad6gacqGH9aqpcaGGGcWaaSaaaeaacaWGfbGaamiEai abes8a0bqaaiaadUgadaWgaaqcfayaaiaaicdaaSqabaaaaOGaeyyp a0JaaGioaiaac6cacaaIWaGaaGOnaiaaiodacaaIYaGaaGinaiabgE na0kaaigdacaaIWaWaaWbaaSqabKqbagaacaaIXaGaaGioaiaaigda aaaaaa@67BC@   (13)

a, b, and d or the Dx, DE and Dτ of the universe can be calculated as follows:

E=E0na → 1.3481×1077=3.47×1016×(8.06324×10181)a → a=0.33307

x=x0nb → 4.4×1028=2.86×10-33×(8.06324×10181)b → b=0.33347

τ=τ0nd → 4.3551×1017=9.54×10-44 ×(8.06324×10181)d → d=0.33346

So,  D E = 1 a =3.00277, D x = 1 b =2.99879, D τ = 1 d =2.99883 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaSbaaK qbagaacaWGfbaaleqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyy aaaacqGH9aqpcaaIZaGaaiOlaiaaicdacaaIWaGaaGOmaiaaiEdaca aI3aGaaiilaiaadseadaWgaaqcfayaaiaadIhaaSqabaGccqGH9aqp daWcaaqaaiaaigdaaeaacaWGIbaaaiabg2da9iaaikdacaGGUaGaaG yoaiaaiMdacaaI4aGaaG4naiaaiMdacaGGSaGaamiramaaBaaajuaG baGaeqiXdqhaleqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamizaa aacqGH9aqpcaaIYaGaaiOlaiaaiMdacaaI5aGaaGioaiaaiIdacaaI Zaaaaa@5C51@

If rounding to the nearest integer, we can obtain:

D E =3,  D x =3,  D τ =3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadseapaWaaSbaaKqbagaapeGaamyraaWcpaqabaGcpeGaeyypa0Ja aG4maiaacYcacaqGGaGaamiraKqba+aadaWgaaqaa8qacaWG4baapa qabaGcpeGaeyypa0JaaG4maiaacYcacaqGGaGaamira8aadaWgaaqc fayaa8qacqaHepaDaSWdaeqaaOWdbiabg2da9iaaiodaaaa@48E4@   (14)

It is encouraging that the spatial fractal dimension of the universe is exactly three dimensions if rounding to the nearest integer, in the first time, which reveals the theoretical calculation of the universe dimension. The STQA hypothesis suggests that the energy and time dimensions of the universe are also three. These findings were intriguing. Space, time, and energy are interacting with each other. Space time is no longer a fix background, but a dynamic parameter. We get a quantize background independence method to describe our universe.6 The following question is how exactly STQAs form particles that we are familiar with. For particles with rest mass, electric charge, and spin angular momentum, m is the rest mass, e is the electric charge, I is the spin angular momentum of the particles, and E is the rest energy of the particles.

For a static particle, we can obtain Eq. (15). where A=m/m0, B=e2/e02, D=I/I0, m0=E0/c2, e0=(E0x0)1/2, I0=E0τ0. Using Eq. (15), the values of a, b, d, and n for leptons, quarks, intermediate bosons, and some heavy particles can be calculated, as listed in Table 1

a= logA logn ,         b= log B A logn ,         d= log D A logn ,         n= BD A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggacqGH9aqpdaWcaaqaaiGacYgacaGGVbGaai4zaiaadgeaaeaa ciGGSbGaai4BaiaacEgacaWGUbaaaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGIbGaeyyp a0ZaaSaaaeaaciGGSbGaai4BaiaacEgajuaGdaWcaaqaaiaadkeaae aacaWGbbaaaaGcbaGaciiBaiaac+gacaGGNbGaamOBaaaacaGGSaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaamizaiabg2da9maalaaabaGaciiBaiaac+gacaGGNbqcfa4a aSaaaeaacaWGebaabaGaamyqaaaaaOqaaiGacYgacaGGVbGaai4zai aad6gaaaGaaiilaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaad6gacqGH9aqpdaWcaaqaaiaadkeaca WGebaabaGaamyqaaaaaaa@7C31@   (15)

For particles with a rest mass, magnetic dipole moment, and spin angular momentum, we can calculate a, b, d, and n using Eq. (16), where H=μ/μ0, μ0=(τ0e0c)/2, μ  is the magnetic dipole moment of the particles, and c is the speed of light. Using Eq. (16), the values of a, b, d, and n for protons, neutrons, and other heavy particles can be calculated, as shown in Table I.

a= logA logn ,         b= log A H 2 D 2 logn ,         d= log D A logn ,         n= A H 2 A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggacqGH9aqpdaWcaaqaaiGacYgacaGGVbGaai4zaiaadgeaaeaa ciGGSbGaai4BaiaacEgacaWGUbaaaiaacYcacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaWGIbGaeyyp a0ZaaSaaaeaaciGGSbGaai4BaiaacEgajuaGdaWcaaqaaiaadgeaca WGibWaaWbaaeqabaGaaGOmaaaaaeaacaWGebWaaWbaaeqabaGaaGOm aaaaaaaakeaaciGGSbGaai4BaiaacEgacaWGUbaaaiaacYcacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caWGKbGaeyypa0ZaaSaaaeaaciGGSbGaai4BaiaacEgajuaGdaWcaa qaaiaadseaaeaacaWGbbaaaaGcbaGaciiBaiaac+gacaGGNbGaamOB aaaacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaamOBaiabg2da9maalaaabaGaamyqaiaadIea daahaaWcbeqcfayaaiaaikdaaaaakeaacaWGbbaaaaaa@8040@   (16)

Because mesons have no spin momentum, and a few of them also have no electric charge, we cannot deduce equations like Eq. (15) or Eq. (16). The Quark Model7 was used for the calculation of the mesons.

For the visible light, the frequency ranges from 6.383×1014 Hz to 4.286×1014 Hz, we can calculate their space interval ranges from 2.37×104 cm to 5.18×104 cm, and the time interval rages from 7.78×10-7 s to 1.73×10-6 s. this space interval may be corresponding to the coherence length of a single photon.

Based the STQA hypothesis, we can calculate the mass ranges of fundamental particles from the lightest to heaviest, they are 1.37×10-5eV/c2 to 2.4×105GeV/c2. The experiment suggests that neutrino have a mass of 0.1eV/c2,8 it is greater than the mass of the lightest particle predicted by STQA hypothesis. And we can predict all the physical parameters such as mass, space, time, electric charge, spin, etc. for all possibly exists particles that can be tested by experiment. We will provide the data in the future articles.

The meaning of the volume of the fractal space of a particle is different from the meaning of the volume of the three-dimensional space. Because every particle is a fractal set of STQAs, its volume of fractal space is equal to the Hausdorff Measure9 of the fractal space of particles. The Hausdorff Measure of space, time and energy of particles are respectively expressed by Η(x), H(τ), and H(E) as shown in Table 1. Thus, not only space but also energy and time have “volume.” This is an interesting result.

According to Table 1, for particles in the general state, DE < 0, Dx > 0, and Dτ > 0. This implies that the energy (mass) of a particle cannot exceed E0, space size of the particle cannot be smaller than x0 and time interval (duration) of the particle cannot be smaller than τ0. Therefore, there is no infinitely large energy or infinitely small space-time. This is an ideal condition in physics. According to fractal geometry, a fractal curve is a broken line, including a discrete form similar to the Cantor set.9 The minimum segment of the broken line was x0 for a particle in the STQA hypothesis. Every particle corresponds to a fractal curve – a broken line (or a discrete set if Dx < 1, then every particle, as shown in Table 1, is a discrete set of STQAs), where n corresponds to the number of minimum segments of the broken line.

Particles

DE

Dx

Dτ

n

E erg

X cm

τ s β

H(E)

H(x)

H(τ)

Leptons        

e±    

-0.85    

0.96    

0.88    

1.53×1019    

7.98×10-7    

2.56×10-13    

2.10×10-22    

0.0407    

1.5×10-5    

8.1×10-13    

2.4×10-17    

μ±

-0.83

0.95

0.86

7.30×1016

9.50×10-5

1.45×10-15

5.00×10-24

0.0097

2.1×10-3

8.0×10-15

9.1×10-21

τ±

-0.82

0.95

0.83

4.38×1015

2.90×10-3

7.58×10-17

5.60×10-25

0.0045

1.2×102

4.6×10-16

7.4×10-21

Quarks

u

-0.81

0.95

0.84

1.13×1016

5.00×10-4

2.05×10-17

1.10×10-24

0.0006

4.7×102

1.3×10-15

7.3×10-21

d

-0.78

0.95

0.81

2.80×1015

5.90×10-4

4.70×10-17

1.06×10-24

0.0015

3.3×102

3.1×10-16

3.8×10-20

s

-0.78

0.95

0.81

1.70×1015

7.50×10-4

2.90×10-17

7.60×10-25

0.0013

2.6×102

1.9×10-16

2.9×10-20

c

-0.80

0.95

0.83

2.34×1015

2.10×10-3

3.93×10-17

2.65×10-25

0.0051

1.4×102

2.6×10-16

4.0×1021

t

-0.79

0.95

0.83

1.56×1014

1.08×100

2.78×10-18

1.42×10-26

0.0065

9.4×10-1

2.4×10-17

4.4×10-22

b

-0.77

0.95

0.80

1.77×1014

1.04×10-2

3.18×10-18

6.58×10-26

0.0016

3.4×101

2.7×10-17

7.2×10-21

Heavy Particles

p

-0.90

0.96

0.94

2.69×1017

1.56×10-3

4.90×10-15

3.48×10-25

0.4697

3.4×102

2.1×10-14

1.1×10-23

n

-0.88

0.96

0.92

1.26×1017

1.65×10-3

2.29×10-15

3.16×10-25

0.2416

2.8×102

1.0×10-14

2.9×10-23

Λ

-0.84

0.95

0.88

1.57×1016

1.85×10-3

2.90×10-16

2.77×10-25

0.0349

2.0×102

1.7×10-15

2.9×10-22

Σ+

-0.90

0.96

0.94

2.37×1017

1.79×10-3

4.27×10-15

2.81×10-25

0.5069

3.0×102

1.8×10-14

8.4×10-24

Σ-

-0.88

0.96

0.92

8.75×1016

1.89×10-3

1.57×10-15

2.79×10-25

0.1877

2.5×102

7.3×10-15

2.6×10-23

Σ0

-0.88

0.95

0.93

1.60×1017

1.74×10-3

2.45×10-15

2.66×10-25

0.3072

2.7×102

1.3×10-14

1.4×10-23

Ξ-

-0.90

0.96

0.94

1.66×1017

2.10×10-3

2.94×10-15

2.54×10-25

0.3861

2.5×102

1.3×10-14

1.0×10-23

Ξ0

-0.88

0.96

0.91

6.96×1016

2.19×10-3

1.23×10-15

2.54×10-25

0.1615

2.1×102

5.8×10-15

3.3×10-23

Ω-

-0.85

0.98

0.88

1.42×1016

3.02×10-3

8.54×10-17

1.70×10-25

0.0168

1.4×102

1.8×10-16

5.6×10-22

A+c

-0.82

0.95

0.86

3.48×1015

3.80×10-3

5.96×10-17

1.45×10-25

0.0137

9.7×101

3.9×10-16

5.8×10-22

Bosons

-0.82

0.97

0.85

1.96×1014

1.27×10-1

1.50×10-18

6.98×10-27

0.0072

5.4×100

5.2×10-18

7.0×10-23

Z0

-0.90

0.97

0.93

5.15×1015

1.81×10-1

4.35×10-17

6.18×10-27

0.2348

4.7×100

1.4×10-16

4.2×10-25

Mesons

π±

-0.86

0.99

0.87

2.28×1017

2.54×10-4

9.72×10-16

8.73×10-24

0.0037

1.2×103

1.4×10-15

8.7×10-21

π0

-0.86

0.95

0.90

2.26×1017

2.57×10-4

4.76×10-15

1.75×10-24

0.0907

1.2×103

2.5×10-14

4.2×10-22

k0

-0.88

0.96

0.92

2.18×1017

8.86×10-4

3.08×10-15

7.57×10-25

0.1357

4.9×102

1.2×10-14

6.4×10-23

Table 1 Fundamental parameters of particles based on the STQA Hypothesis

Conclusion

Our study has shown, in the meaning of mathematical calculation, that Space-Time Quantum of Action (STQA) is the basic unit of matter. All matters in our universe consist of various STQA sets. The space-time parameters of all types of particles can be calculated using fractal theory and STQA hypothesis, including black holes and the universe (we will show the calculation of black holes later). The space dimension of our universe was calculated as three dimensions. The product of the space interval, time interval, and energy of any known particle is greater than that of STQA, which suggests that the STQA Hypothesis is self-consistent.

A particle, from a spatial perspective, is not a point of classical mechanics or a wave of quantum mechanics. A particle is a group of STQAs that are distributed in space in a fractal pattern that is similar to the wave function pattern; however, the fractal pattern can define a particle’s space distributions that do not need a probability explanation of a wave function. Thus, we can provide a new approach to explain wave-particle duality that reconciles the controversy between the locality of Einstein and the nonlocality of Copenhagen. Because STQA is in the deepest level of our universe, so everything can be derived from it such as time, space, energy, electric charge, etc. and spacetime is no longer a fix background but spacetime and energy are interacted with each other, this is agreed with Einstein’s general relativity. On the other hand, STQA is a quantum and STQA theory is agreed with quantum mechanics. So, STQA theory is background independence and may be a new theory of quantum gravity. The geometry in the deepest level of our universe is discrete fractal geometry, with Euclid geometry or Riemannian geometry or Lobachevskii geometry are all an approximate description for the nature of our universe.

Based on STQA hypothesis, in Table 1, every fundamental particle’s space, time, and energy parameters are calculated and some of them listed. And for a photon, its space size and time parameters can be calculated. Also, for a possible exists particle, their mass ranges can be calculated. All these results are waiting for the test of experiments so that the correctness and rationality of STQA hypothesis can be tested by experiment.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. FS Crawford. WAVES, Berkerley physics course Vol. 3, McGraw- Hill, 1968.
  2. J Weber. General Relativity and Gravitational Waves, Interscience, New York, 1961.
  3. Liou. Mathematics Bulletin, Mathematics Society of China, No4, 1985.
  4. Mandelbrot BB. The Fractal Geometry of Nature, San Francisco, W. H. Freeman & co.1982.
  5. Observable universe – Wikipedia.
  6. Lee Smolin. The Trouble with Physics, Houghton Mifflin Company, New York, 2006.
  7. Ryder L. Elementary particles and Symmetries, Cordon and Breach.1975.
  8. Wolfenstein L. Physics World. 1998.
  9. Falconer KJ. The Geometry of Fractal Sets, Cambridge Tracts in Mathematics. 1985.
Creative Commons Attribution License

©2023 Shuming, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.