Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 4

The rotational–translational spectra of Nand CO2 and their mixtures with argon

Ryzhov VA

Ioffe Physicotechnical Institute, Russian Academy Science, Russia

Correspondence: Valery A Ryzhov, Ioffe Physicotechnical Institute, Russian Academy Science, 194021 St. Petersburg, Russia, Tel 8122727172

Received: May 24, 2018 | Published: July 23, 2018

Citation: Ryzhov VA. The rotational–translational spectra of N2 and CO2 and their mixtures with argon. Phys Astron Int J. 2018;2(4):323-328. DOI: 10.15406/paij.2018.02.00105

Download PDF

Abstract

Rotational–translational absorption spectra of carbon dioxide, nitrogen and their mixtures with argon in the wavelength range 20–190 cm–1 induced by pair collisions of molecules are obtained and analyzed. It is shown that, in contrast to absorption in noble gas mixtures, terahertz spectra of N2 a CO2 are mainly caused by quadrupole interactions, The role of the overlapping mechanism in the formation of these spectra was estimated, and the quadrupole moments of the N2 and CO2 molecules, equal to 1.5–1.7∙10–26 CGSE and 4.25∙10–26 CGS, respectively, were determined from the integrated intensity of the recorded spectra.

Keywords: terahertz spectra, collision induced absorption, quadrupole interactions, quadrupole moments of the N2 and CO2

Introduction

The inclusion of N2 and CO2 molecules in the range of investigated objects makes it possible to approach the study of a wider class of interaction–induced spectra: rotational–translational spectra. In contrast to absorption in mixtures of noble gases,1 the FIR N2 and CO2 spectra are mainly caused by quadrupole interactions, since the dipole moment of overlapping in the collision of two identical molecules, as well as of two identical atoms, is zero.

On the other hand, the difference between these spectra and the spectra of H2 and its mixtures with Ar, Kr and Xe, also due to quadrupole interactions,2 lies in the fact that in them the rotational part, due to the much smaller rotational constant of the molecules N2 a CO2 (BN2=2cm–1, Bco2=0.4cm–1, and BH2=40cm–1), will not be basically separated from the translational part of a, overlapping with it, forms one absorption band. The long–wavelength spectra of N2 a CO2 have been studied in detail in3,4 the spectra of mixtures of these gases with Ar have been studied in less detail.5

The study of the spectra of their mixtures with argon, carried out in parallel with the study of the spectra of N2 and CO2, is interesting in that it allows us to evaluate the role of the overlapping mechanism in the formation of the rotational–translational spectrum.

Materials and methods

The recorded absorption spectra of N2 a CO2 and their mixtures with argon are shown in Figure 2–7. Spectra in the 20–180 cm–1 region were obtained using a vacuum long–wavelength spectrometer Hitachi FIS–21 with resolution of 1–2 cm–1. The investigated mixture of gases was placed in a multi–way cell, collected according to the White scheme, with a base of 34.2 cm, which made it possible to obtain an optical layer of 6.9 m at 20 intersections of the working volume. The windows of crystalline quartz 6 mm thick were installed on a cuvette withstanding the pressure of 70 atm. Temperature regulation in the interval 135–300°K was carried out by changing the flow rate of cold nitrogen in the heat exchanger assembled on the casing. Thermal insulation was achieved by placing the cooled part of the cuvette in a vacuum.

The temperature was measured with copper–constantan thermocouple; its stability was not lower than + 2°. Gas purification was performed on a high–pressure unit assembled from absorbers with KOH and zeolite and low–temperature traps. The purity of the investigated gases was controlled by the absence of absorption in each component separately. General view of the experimental setup is shown in Figure 1.

Figure 1 General view of the experimental setup. 1–10: cleaning system, 10: multi–way cuvette, 11: long–wave infrared spectrometer, 12, 13: temperature adjustment and measurement system. PВН: systems of evacuation of a cuvette and a spectrometer.

The experimental conditions for pressures (p), density (ρ) and temperatures, and also (νmax), (Imax) and the integrated intensities (A) of the recorded absorption bands are given in Table 1.

 

 Т
 (0К)

  p
 (atm)

 ρ 
  (amagat)   

  ν max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPq=Be9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaeaqbaaGcba qcLbsacqaH9oGBkmaaBaaaleaajugWaiGac2gacaGGHbGaaiiEaaWc beaaaaa@3FB2@
 (cm-1)

Imax∙107 (cm-1∙am-2)

A∙104
 (am-2∙cm-2)

 

   N2

138

298

7.2 N2

18.0 N2

17.0 N26

17.0 N26

  88±5

110±10

     75.0

     50.0

     5.65

     6.45

 

 N2+Ar

 

  138

 

3.9 N2

12.6 Ar

 8.0 N26

28.5 Ar7

 
82±5

     
55.0

     
5.25

 

298

14.5 N2

14.5 Ar

13.8 N26

13.5 Ar 6,4

 

100±10

    
40.0

  
5.80

   CO2

215

3.5   CO2

4.75 CO28

  42.5

    110.0

      71.5

   CO2+Ar

215

1.75 CO2

10.25 Ar

1.95  CO29

13.5 Ar8

 

  47±5

 

     37.0

 

      18.5

Table 1 The experimental conditions of the recorded absorption bands.

An analysis of the errors in the measurement and processing of the measurement results showed that the error in determining the intensities of the recorded absorption bands does not exceed 10–15%.

Results and discussions

The first thing that attracts attention when considering these spectra is that unlike the translational spectra of noble gases and mixtures of H2 with Ar, Kr, and Xe,2 practically the entire absorption band with a maximum and wings up to a level of 5–10% with respect to absorption at the maximum. An exception is the spectra of N2 and N2 + Ar at room temperature, whose high–frequency wing at the boundary of the investigated range had an intensity only half the intensity at the maximum.

The spectra of CO2 and CO2 with argon, because of the large quadrupole moment of the CO2 molecule, are almost an order of magnitude stronger than the spectra of N2 and N2 +Ar. Spectra of pure N2 and CO2 more intense than the spectra of the mixtures with argon. While the intensity of the spectrum of the CO2 + Ar mixture differs several times from the intensity of the CO2 spectrum, the intensity of the N2 + Ar spectrum differs insignificantly from the N2 spectrum.

This fact reflects the difference in the polarizability of CO2 and argon: αco2=2.93∙10–24cm3, αAr=1.63∙10–24cm3, and the proximity of the polarizability of N2 and argon (αN2=1.74∙10–24cm3). In this case, as in the case of mixtures of H2 with Ar, Kr and Xe, we are dealing here with spectra induced by the electrostatic mechanism–quadrupole induction, but in contrast to the spectra of mixtures of H2 with Ar, Kr, and Xe in the spectra of N2 and CO2 and their mixtures with argon, individual rotational lines will no longer be resolved and not because of the insufficient resolution of the spectrometer Δυ( Δ υ spect =12 c m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeqyXduxcfa4damaabmaakeaa jugib8qacqqHuoarcqaHfpqDjuaGpaWaaSbaaKqaGeaajugWa8qaca WGZbGaamiCaiaadwgacaWGJbGaamiDaaWcpaqabaqcLbsapeGaeyyp a0JaaGymaiaacobicaaIYaGaaeiiaiaadogacaWGTbWcpaWaaWbaaK qaGeqabaqcLbmapeGaai4eGiaaigdaaaaak8aacaGLOaGaayzkaaaa aa@530E@ , but because these lines, for example, in the case of N2 from each other by 8 cm–1,10 will be significantly broadened by the translational effect. According to,11 Δ ν J 1/ d ( T / M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeqyVd42cpaWaaSbaaKqaGeaa jugWa8qacaWGkbaajeaipaqabaqcLbsapeGaeyyrIaKaaGymaiaac+ cacaqGGaGaamizaiabgwSixNqbaoaakaaakeaajuaGpaWaaeWaaOqa aKqzGeWdbiaadsfacaqGGaGaai4laiaabccacaWGnbaak8aacaGLOa Gaayzkaaaal8qabeaaaaa@4D9C@ , where d is the collision diameter, M is the reduced mass of the colliding particles. Assuming the value of d to be proportional to the value of the parameter σ of the Lennard–Jones potential, it is easy to compare it with the width of the rotational lines of H2: for nitrogen, Δ ν J =40 c m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeqyVd42cpaWaaSbaaKqaGeaa jugWa8qacaWGkbaajeaipaqabaqcLbsapeGaeyypa0JaaGinaiaaic dacaqGGaGaam4yaiaad2gal8aadaahaaqcbasabeaajugWa8qacaGG taIaaGymaaaaaaa@47E7@ , for carbon dioxide Δ ν J =20 c m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeqyVd42cpaWaaSbaaKqaGeaa jugWa8qacaWGkbaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaaic dacaqGGaGaam4yaiaad2gal8aadaahaaqcbasabeaajugWa8qacaGG taIaaGymaaaaaaa@47E5@ .

The temperature behavior of the spectra is in agreement with their assignment to the rotational–translational class induced by the quadrupole field. With decreasing temperature, the spectrum shifts to the low–frequency region in accordance with the redistribution of molecules along rotational levels. It should, however, be pointed out that the maxima of the recorded absorption bands, due to the asymmetric broadening of the rotational lines, by the translational effect, are shifted to the high–frequency region with respect to those predicted by the theoretical rotational spectrum. (In Figure 2–7, the theoretical rotational spectrum is shown by vertical lines). To learn from the spectra of further information, a computer calculation of the integrated absorption intensities was carried out. From the theory of rotational–translational spectra developed by Kiss & Van Kranendonk12, it follows that the binary absorption coefficient of a mixture of diatomic molecules with monatomic

А rot.tr. =β{L( J )[ λ 2 (I+4π σ 2 I )+ μ 2 (F+ 6mc σ 2 i F )+λμ(K+ 7.75m σ 2 i K +D ( μ ) 2 F }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamieeSWdamaaBaaajeaibaqcLbmapeGa amOCaiaad+gacaWG0bGaaiOlaiaacobicaWG0bGaamOCaiaac6caaK qaG8aabeaajugib8qacqGH9aqpcqaHYoGycqGHflY1paGaai4Ea8qa caWGmbqcfa4damaabmaakeaajugib8qacaWGkbaak8aacaGLOaGaay zkaaqcLbsapeGaeyyXIC9daiaacUfapeGaeq4UdW2cpaWaaWbaaKqa GeqabaqcLbmapeGaaGOmaaaajugibiabgwSix=aacaGGOaWdbiaadM eacqGHRaWkcaaI0aGaeqiWdaNaeq4Wdm3cpaWaaWbaaKqaGeqabaqc LbmapeGaaGOmaaaajugibiabgwSixlqadMeagaqba8aacaGGPaWdbi abgUcaRiabeY7aTTWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaaqc LbsacqGHflY1paGaaiika8qacaWGgbGaey4kaSscfa4aaSaaaOWdae aajugib8qacaaI2aGaamyBaiaadogacqaHdpWCjuaGpaWaaWbaaSqa bKqaGeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaadMgaaaGaey yXICTabmOrayaafaWdaiaacMcacqGHRaWkpeGaeq4UdWMaeyyXICTa eqiVd0MaeyyXIC9daiaacIcapeGaam4saiabgUcaRKqbaoaalaaak8 aabaqcLbsapeGaaG4naiaac6cacaaI3aGaaGynaiaad2gacqaHdpWC juaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaaGcpaqaaKqzGe WdbiaadMgaaaGaeyyXICTabm4sayaafaGaey4kaSIaamiraiabgwSi xNqba+aadaqadaGcbaqcLbsapeGafqiVd0MbauaaaOWdaiaawIcaca GLPaaajuaGdaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaeyyX ICTabmOrayaafaWdaiaac2hapeGaaiilaaaa@A9F9@  (1)

where β = π e 2 σ 3 n 0 2 3m c 2  ,  λ= ξ exp( σ ρ ), μ =Q α 5 ,   μ  = 88 255    γQ R 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaaiiOaiabg2da9Kqbaoaalaaa k8aabaqcLbsapeGaeqiWdaNaamyzaKqba+aadaahaaWcbeqcbasaaK qzadWdbiaaikdaaaqcLbsacqaHdpWCl8aadaahaaqcbasabeaajugW a8qacaaIZaaaaKqzGeGaamOBaSWdamaaDaaajeaibaqcLbmapeGaaG imaaqcbaYdaeaajugWa8qacaaIYaaaaaGcpaqaaKqzGeWdbiaaioda caWGTbGaam4yaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaa aaaKqzGeGaaiiOaiaacYcacaGGGcGaaiiOaiaabU7acqGH9aqpjuaG daWcaaGcpaqaaKqzGeWdbiaab67aaOWdaeaajugib8qacaqGLbGaae 4WdaaacqGHflY1caqGLbGaaeiEaiaabchajuaGdaqadaGcpaqaaKqz GeWdbiabgkHiTKqbaoaalaaak8aabaqcLbsapeGaae4WdaGcpaqaaK qzGeWdbiaabg8aaaaakiaawIcacaGLPaaajugibiaacYcacaqGGcGa aeiVdiaabckacqGH9aqpcaqGrbGaeyyXICDcfa4aaSaaaOWdaeaaju gib8qacaqGXoaak8aabaqcLbsapeGaaeyzaiaabo8acaaI1aaaaiaa cYcacaqGGcGaaeiOaiqabY7agaqbaiaabckacqGH9aqpjuaGdaGcaa GcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaaiIdacaaI4aaak8aa baqcLbsapeGaaGOmaiaaiwdacaaI1aaaaaWcbeaajugibiaabckacq GHflY1caqGGcqcfa4aaSaaaOWdaeaajugib8qacqaHZoWzcaWGrbaa k8aabaqcLbsapeGaamOuaKqba+aadaahaaWcbeqcbasaaKqzadWdbi aaisdaaaaaaaaa@98BC@ ,and L(J) is the result of averaging over the rotational states of the molecule; I, Iʹ, F, , K, , and D are configuration integrals, similar to the integrals F, F′ in expression (7); Q is the quadrupole moment of the molecule; α is the polarizability; γ–anisotropy of polarizability; i is the moment of inertia.

Figure 2 Rotational–translational spectrum N2 at T=1380 K.

Figure 3 Rotational–translational spectrum of N2 at T=2980 K.

Figure 4 Rotational–translational spectrum N2+Ar at T=1380 K.

Figure 5 Rotational–translational spectrum of N2 + Ar at T=2980 K.

Figure 6 Rotational–translational spectrum CO2 at T=2150 K.

Figure 7 Rotational–translational spectrum of CO2 + Ar at T = 2150 K.

The first term in (1), proportional to the integral I–is the contribution of the overlapping mechanism, the second and third, proportional to the integrals F and F', are respectively translational and rotational contributions to the spectrum due to the quadrupole induction mechanism. The terms proportional to the integrals K and K' are respectively translational and rotational contributions to the interference spectrum between the quadrupole mechanism and the overlapping mechanism. Finally, the last term, in square brackets, is the term proportional to the integral F' is the contribution of the double transitions due to the anisotropy of the polarizability: ΔJ1=2, ΔJ2=2 or ΔJ1=2, ΔJ2=0.

Since the contribution to the band is due to absorption due to quadrupole induction, according to formula (2),

  А rot. ( J )= 48 π 4 ν hc Q 2 α 2 { p( J ) 2J+1   p( J+2 ) 2J+5 }Z( J,J+2 )  0 R 6 exp[ V( R )/kT ] dR, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadcbbjuaGpaWaaSbaaSqaaKqz GeWdbiaadkhacaWGVbGaamiDaiaac6caaSWdaeqaaKqbaoaabmaake aajugib8qacaWGkbaak8aacaGLOaGaayzkaaqcLbsapeGaeyypa0tc fa4aaSaaaOWdaeaajugib8qacaaI0aGaaGioaiabec8aWTWdamaaCa aajeaibeqaaKqzadWdbiaaisdaaaqcLbsacqaH9oGBaOWdaeaajugi b8qacaWGObGaam4yaaaacqGHflY1caWGrbWcpaWaaWbaaKqaGeqaba qcLbmapeGaaGOmaaaajugibiabgwSixlabeg7aHTWdamaaCaaajeai beqaaKqzadWdbiaaikdaaaqcfa4aaiWaaOWdaeaajuaGpeWaaSaaaO Wdaeaajugib8qacaWGWbqcfa4aaeWaaOWdaeaajugib8qacaWGkbaa kiaawIcacaGLPaaaa8aabaqcLbsapeGaaGOmaiaadQeacqGHRaWkca aIXaaaaiabgkHiTiaacckajuaGdaWcaaGcpaqaaKqzGeWdbiaadcha juaGdaqadaGcpaqaaKqzGeWdbiaadQeacqGHRaWkcaaIYaaakiaawI cacaGLPaaaa8aabaqcLbsapeGaaGOmaiaadQeacqGHRaWkcaaI1aaa aaGccaGL7bGaayzFaaqcLbsacqGHflY1caWGAbqcfa4damaabmaake aajugib8qacaWGkbGaaiilaiaadQeacqGHRaWkcaaIYaaak8aacaGL OaGaayzkaaqcLbsapeGaaeiiaiabgwSixNqbaoaapehabaqcLbsaca WGsbWcpaWaaWbaaKqbGeqabaqcLbmapeGaeyOeI0IaaGOnaaaaaKqb GeaajugWaiaaicdaaKqbGeaajugWaiabg6HiLcqcLbsacqGHRiI8a8 aacqGHflY1peGaamyzaiaadIhacaWGWbqcfa4damaadmaakeaajugi b8qacaGGtaIaamOvaKqba+aadaqadaGcbaqcLbsapeGaamOuaaGcpa GaayjkaiaawMcaaKqzGeWdbiaac+cacaWGRbGaamivaaGcpaGaay5w aiaaw2faaKqzGeWdbiaabccacaWGKbGaamOuaiaacYcaaaa@A7C0@ (2)

where p are the Boltzmann factors and Z is the Racah`s coefficients for the quantum numbers J, V (R) is the pair interaction potential of the Lennard–Jones or Kihara type, which is obtained from (1) when only the electrostatic induction mechanism is taken into account, the relative intensities of the rotational lines of the branches S(J), O(J) and Q(J) are determined. (The branch O(J)–(transitions ΔJ=–2) corresponds to stimulated emission, which plays an important role in the formation of the total contour of the band at not too low temperatures, especially near zero frequencies. The branch Q(J)–(transitions ΔJ=0) gives a line at one frequency ν=0; however, due to broadening, its high–frequency wing must also be taken into account when calculating the total spectrum. In principle, the branch Q(J) corresponds to purely translational transitions). Each rotational line was then "broadened" on the PC and described purely formally, as in the case of spectra of mixtures of H2 with Ar, Kr and Xe, a curve of the form:

А(ν)=Вνth( hν/2kT )exp [ £ 2 +  ( ν ν 0 ) 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiee8aacaGGOaWdbiabe27aU9aacaGG PaWdbiabg2da9iaadkbbcqGHflY1cqaH9oGBcqGHflY1caWG0bGaam iAaKqba+aadaqadaGcbaqcLbsapeGaamiAaiabe27aUjaac+cacaaI YaGaam4AaiaadsfaaOWdaiaawIcacaGLPaaajugib8qacqGHflY1ca WGLbGaamiEaiaadchacaqGGaWdaiaacUfapeGaai4eGKqbaoaakaaa k8aabaqcLbsapeGaae4OaKqba+aadaahaaWcbeqcbasaaKqzadWdbi aaikdaaaqcLbsacqGHRaWkcaqGGcqcfa4aaeWaaOWdaeaajuaGpeWa aSaaaOWdaeaajugib8qacaqG9oaak8aabaqcLbsapeGaaeyVdSWaaS baaWqaaKqzadGaaGimaaadbeaaaaaakiaawIcacaGLPaaalmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaSqabaqcLbsapaGaaiyxa8qacaGGSa aaaa@6D9E@ (3)

Proposed in Kouzov13, The parameters of this contour B, £, and v0 were varied so that the experimental contour was combined with the calculated one in the best way. The values ​​of B, £, and v0, together with the values ​​of the integrated intensities found in the calculation, are given in Table 2.

Spectra
(Parameters of the contourof the line in equation (3))

N2
(T=1380K)

N2
(T=2980K)

N2+Ar
(T=1380K)

N2+Ar
(T=2980K)

CO2
(T=2150K)

CO2+Ar
(T=2150K)

     В 10 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPq=Be9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaeaqbaaGcba qcLbsaqaaaaaaaaaWdbiaadkbbcqGHflY1caaIXaGaaGimaOWdamaa CaaaleqabaqcLbmapeGaaGynaaaaaaa@4073@

3,3

4,2

2.9

4,0

400,0

103,4

         £ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPq=Be9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaeaqbaaGcba qcLbsaqaaaaaaaaaWdbiaacokaaaa@3AFD@   

1,0

0,7

1,0

0,3

1,0

1,0

       ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPq=Be9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaeaqbaaGcba qcLbsaqaaaaaaaaaWdbiabe27aUPWdamaaBaaaleaajugWa8qacaaI Waaal8aabeaaaaa@3DE5@

21,6

25,7

23,5

25,3

13,2

25,0

  A 10 4    ( a m 2  c m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPq=Be9sqqrpepC0xbbL8F4rqqrFfpe ea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpe peKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaeaqbaaGcba qcLbsaqaaaaaaaaaWdbiaadgeacqGHflY1caaIXaGaaGimaOWdamaa CaaaleqabaqcLbmapeGaaGinaKqzGeGaaiiOaiaacckacaGGGcaaaO WdamaabmaabaqcLbsapeGaamyyaiaad2gajuaGpaWaaWbaaSqabeaa jugWa8qacqGHsislcaaIYaaaaKqzGeGaeyyXICTaaeiiaiaadogaca WGTbqcfa4damaaCaaaleqabaqcLbmapeGaeyOeI0IaaGOmaaaaaOWd aiaawIcacaGLPaaaaaa@5582@

5,65

6,45

5,25

5,80

71,0

18,6

Table 2 The integrated intensities of spectra.

Having the values ​​of the integral intensities now it is possible, if the quadrupole moments of the N2 and CO2 molecules are known, to assess the role of the induction mechanisms in the formation of the rotational–translational spectrum. For the N2 molecule, the values ​​of the quadrupole moments1 obtained by different methods differ somewhat from each other.

So, from the quantum mechanical calculations, we obtain Q N2 =1.21.3· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa amOtaiaaikdaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaiOlai aaikdacaGGtaIaaGymaiaac6cacaaIZaGaai4TaiaaigdacaaIWaWc paWaaWbaaKqaGeqabaqcLbmapeGaai4eGiaaikdacaaI2aaaaKqzGe Gaam4qaiaadEeacaWGtbGaamyraaaa@4EAA@ 14 obtained from the second virial coefficient and from measurements of the spin relaxation of Q N2 =1.92.0· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaKqba+aadaWgaaqcbasaaKqzadWd biaad6eacaaIYaaal8aabeaajugib8qacqGH9aqpcaaIXaGaaiOlai aaiMdacaGGtaIaaGOmaiaac6cacaaIWaGaai4TaiaaigdacaaIWaWc paWaaWbaaKqaGeqabaqcLbmapeGaai4eGiaaikdacaaI2aaaaKqzGe Gaam4qaiaadEeacaWGtbGaamyraaaa@4F13@ .15,16 Intermediate values ​​were found using data on induced spectra: on the vibrational–rotational spectrum of H2 + N2 at: room temperature 1.64.10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaac6cacaaI2aGaaGinaiaac6ca caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbiaacobicaaIYa GaaGOnaaaajugibiaadoeacaWGhbGaam4uaiaadweaaaa@461C@ ;17 on the rotational–translational spectrum of N2 at room temperature– 1.1· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaac6cacaaIXaGaai4Taiaaigda caaIWaWcpaWaaWbaaKqaGeqabaqcLbmapeGaai4eGiaaikdacaaI2a aaaKqzGeGaam4qaiaadEeacaWGtbGaamyraaaa@45E2@ ,11 1.47· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaac6cacaaI0aGaaG4naiaacEla caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbiaacobicaaIYa GaaGOnaaaajugibiaadoeacaWGhbGaam4uaiaadweaaaa@46A6@ 18 and 1.58· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaac6cacaaI1aGaaGioaiaacEla caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbiaacobicaaIYa GaaGOnaaaajugibiaadoeacaWGhbGaam4uaiaadweaaaa@46A8@ .19

We set ourselves the task, having set the induction mechanism, to determine the quadrupole moment of the N2 molecules from the integrated intensity of the spectra recorded by us. We recall that according to (1), the following induction mechanisms take part in the formation of the rotational–translational spectrum. The first term in (1), which is proportional to the integrals I and I', is the contribution of the overlapping mechanism. The second and third terms proportional to the integrals F and F' are, respectively, translational and rotational contributions to the spectrum due to the quadrupole induction mechanism. The terms proportional to the integrals K and K' are translational and rotational contributions of the interference between the quadrupole induction mechanism and the overlapping mechanism. Finally, the last term, in parentheses, is the term proportional to the integral F', which is the contribution of the double transitions due to the anisotropy of the polarizability: ΔJ1=2, ΔJ2=2 or ΔJ1=2, ΔJ2=0.
In,11,18,19 calculating the quadrupole moment of the N2 molecule, it was assumed that the contribution of the overlapping mechanism to the spectrum of pure nitrogen is negligible. Indeed, in the collision of two identical particles, the coefficient characterizing the main part of the dipole moment of overlap is zero for symmetry reasons.

The contribution of transitions due to polarizability anisotropy to the total absorption intensity does not exceed, apparently, 1–2%. Thus, according to the data of,3 in the induced rotational spectrum of CO2, the polarizability anisotropy of which is larger than for N2, only 5% of the intensity is associated with these transitions.

Neglecting the contribution of the overlap mechanism and the contribution of the transitions due to the anisotropy of the polarizability, from (1) we obtain the following expression for the binary absorption coefficient of the rotational–translational band:

А 1,rot.tr. .= π Q 2 α 2  n 0 2 c 2  L [ F 3m σ 7 +  2 F ' i σ 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamieeSWdamaaBaaajeaibaqcLbmapeGa aGymaiaacYcacaWGYbGaam4BaiaadshacaGGUaGaai4eGiaadshaca WGYbGaaiOlaaqcbaYdaeqaaKqzadWdbiaac6cajugibiabg2da9Kqb aoaalaaak8aabaqcLbsapeGaeqiWdaNaamyuaSWdamaaCaaajeaibe qaaKqzadWdbiaaikdaaaqcLbsacqaHXoqyl8aadaahaaqcbasabeaa jugWa8qacaaIYaGaaeiOaaaajugibiaad6gal8aadaWgaaqcbasaaK qzadWdbiaaicdaaKqaG8aabeaalmaaCaaajeaibeqaaKqzadWdbiaa ikdaaaaak8aabaqcLbsapeGaam4yaKqba+aadaahaaWcbeqcbasaaK qzadWdbiaaikdaaaaaaKqzGeGaaeiOaiabgwSixlaadYeacaqGGcqc fa4aamWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGgbaak8 aabaqcLbsapeGaaG4maiaad2gacqaHdpWCl8aadaahaaqcbasabeaa jugWa8qacaaI3aaaaaaajugibiabgUcaRiaabckajuaGdaWcaaGcpa qaaKqzGeWdbiaaikdacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGa ae4jaaaaaOWdaeaajugib8qacaWGPbGaeq4Wdm3cpaWaaWbaaKqaGe qabaqcLbmapeGaaGynaaaaaaaakiaawUfacaGLDbaaaaa@7D56@ (5)

Hence, knowing the integral intensity of the N2 spectrum, we can determine QN2. Using the integrals F and F′ calculated with the Lennard–Jones potential, tabulated,12,20 we obtain from the intensity of the N2 spectrum at room temperature: Q N2 =1.7  10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa amOtaiaaikdaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaiOlai aaiEdacaqGGaGaeyyXICTaaGymaiaaicdal8aadaahaaqcbasabeaa jugWa8qacaGGtaIaaGOmaiaaiAdaaaqcLbsacaWGdbGaam4raiaado facaWGfbaaaa@4D80@ , the intensity of the N2 spectrum at T = 1380 K is Q N2 =1.5 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa amOtaiaaikdaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaiOlai aaiwdacqGHflY1caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWd biaacobicaaIYaGaaGOnaaaajugibiaadoeacaWGhbGaam4uaiaadw eaaaa@4CDB@ .

In determining QN2 from the spectra of the N2 + Ar mixture, the assumption of a negligible contribution of the overlapping mechanism should apparently remain in force: in the case of collision of N2 with Ar, practically isoelectronic particles interact. If we use the correlation we found between the difference between the polarizabilities of the colliding atoms and the dipole moment parameter λ, from the graph of Figure 6 of the article21 with Δα=1.74 ( Å ) 3 1.63 ( Å ) 3 =0.11 ( Å ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeqySdeMaeyypa0JaaGymaiaa c6cacaaI3aGaaGinaKqba+aadaqadaGcbaqcLbsapeGaamyXaaGcpa GaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugi biaacobicaaIXaGaaiOlaiaaiAdacaaIZaqcfa4damaabmaakeaaju gib8qacaWGfdaak8aacaGLOaGaayzkaaWcdaahaaqcbasabeaajugW a8qacaaIZaaaaKqzGeGaeyypa0JaaGimaiaac6cacaaIXaGaaGymaK qba+aadaqadaGcbaqcLbsapeGaamyXaaGcpaGaayjkaiaawMcaaKqb aoaaCaaaleqajeaibaqcLbmapeGaaG4maaaaaaa@5D26@ , we can obtain λ=0.1 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGimaiaac6cacaaI XaGaeyyXICTaaGymaiaaicdal8aadaahaaqcbasabeaajugWa8qaca GGtaIaaGinaaaaaaa@4527@ . The intensity calculated for this λ is no more than 1% of the recorded absorption2>. Thus, if the overlapping mechanism is neglected, using equation (4) for the intensity of the N2 + Ar spectrum at room temperature, we obtain Q N2 =1.6 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa amOtaiaaikdaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaiOlai aaiAdacqGHflY1caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWd biaacobicaaIYaGaaGOnaaaajugibiaadoeacaWGhbGaam4uaiaadw eaaaa@4CDC@ , and from the intensity of the N2 + Ar spectrum at T=138 K 0 Q N2 =1.4 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiabg2da9iaaigdacaaIZaGaaGio aKqbaoaaCeaajuaibeqaaiaaicdaaaqcLbsacaWGlbGaai4eGiaadg fal8aadaWgaaqcbasaaKqzadWdbiaad6eacaaIYaaajeaipaqabaqc LbsapeGaeyypa0JaaGymaiaac6cacaaI0aGaeyyXICTaaGymaiaaic dal8aadaahaaqcbasabeaajugWa8qacaGGtaIaaGOmaiaaiAdaaaqc LbsacaWGdbGaam4raiaadofacaWGfbaaaa@54A2@ . These values are close to those obtained by other methods.

Moreover, the values determined from the low–temperature spectra of N2 and N2 + Ar agree better. A few overestimated values, found from spectra recorded at room temperature, seem to reflect the effect of absorbing impurities, which could not be eliminated during nitrogen purification. If we assume that the assumption of the predominant role of the quadrupole induction mechanism in the formation of the rotational–translational spectrum is also valid in the case of CO2, calculation by formula (4), analogous to the calculation of QN2, leads to the following QCO2 values: from the induced spectrum of pure C O 2 QC O 2 =5.9 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4qaiaad+eal8aadaWgaaqcbasaaKqz adWdbiaaikdaaKqaG8aabeaajugib8qacaGGtaIaamyuaiaadoeaca WGpbWcpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsa peGaeyypa0JaaGynaiaac6cacaaI5aGaeyyXICTaaGymaiaaicdal8 aadaahaaqcbasabeaajugWa8qacaGGtaIaaGOmaiaaiAdaaaqcLbsa caWGdbGaam4raiaadofacaWGfbaaaa@5336@ , from the spectrum of a mixture of CO2 with argon Q C O 2 =5.6 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaai4eGiaadgfalmaaBaaabaqcLbmacaWG dbGaam4taSWaaSbaaWqaaKqzadGaaGOmaaadbeaaaSqabaqcLbsacq GH9aqpcaaI1aGaaiOlaiaaiAdacqGHflY1caaIXaGaaGimaSWdamaa CaaajeaibeqaaKqzadWdbiaacobicaaIYaGaaGOnaaaajugibiaado eacaWGhbGaam4uaiaadweaaaa@4F4B@ .

These quantities, generally speaking, are close to those obtained by other authors from the rotational–translational spectrum of CO2: 6.68.2 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGOnaiaac6cacaaI2aGaai4eGiaaiIda caGGUaGaaGOmaiabgwSixlaaigdacaaIWaWcpaWaaWbaaKqaGeqaba qcLbmapeGaai4eGiaaikdacaaI2aaaaKqzGeGaam4qaiaadEeacaWG tbGaamyraaaa@49E2@ ;22

6.65.2 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGOnaiaac6cacaaI2aGaai4eGiaaiwda caGGUaGaaGOmaiabgwSixlaaigdacaaIWaWcpaWaaWbaaKqaGeqaba qcLbmapeGaai4eGiaaikdacaaI2aaaaKqzGeGaam4qaiaadEeacaWG tbGaamyraaaa@49DF@ ,3 but slightly differ from the most accurate of the currently known values ​​of Q CO2 =4.5 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa am4qaiaad+eacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaGinai aac6cacaaI1aGaeyyXICTaaGymaiaaicdal8aadaahaaqcbasabeaa jugWa8qacaGGtaIaaGOmaiaaiAdaaaqcLbsacaWGdbGaam4raiaado facaWGfbaaaa@4DA7@ .23

To clarify our calculation of Q CO2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa am4qaiaad+eacaaIYaaajeaipaqabaaaaa@3E78@ in terms of the intensity of the spectrum of the CO2 + Ar mixture, we took into account the fact that this spectrum is due to its origin in addition to quadrupole induction, also the induction of overlap. Indeed, in contrast to the interaction of two isoelectronic particles of type N2 and Ar in the collision of CO2 and Ar, the isotropic part of the dipole moment of overlap is obviously not equal to zero. Evidence for this can be found in Bar-Ziv24, in which a high–frequency wing from the center of a mixture of CO2 + He was investigated at room temperature. It shows that in the region of 250 cm–1, the binary absorption coefficient of the CO2 + He mixture is only 3 times lower than in the pure CO2 spectrum, whereas in the case of the small contribution of the overlapping mechanism it must differ in ( α СО2 α Не ) = ( 12.5 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaabmaak8aabaqcfa4dbmaaliaak8aabaqc LbsapeGaeqySdewcfa4damaaBaaajeaibaqcLbmapeGaamyieiaad6 bbcaaIYaaal8aabeaaaOqaaKqzGeWdbiabeg7aHLqba+aadaWgaaqc basaaKqzadWdbiaad2bbcaWG1qaal8aabeaaaaaak8qacaGLOaGaay zkaaqcLbsacaGGGcGaeyypa0tcfa4damaabmaakeaajugib8qacaaI XaGaaGOmaiaac6cacaaI1aaak8aacaGLOaGaayzkaaWcdaahaaqcba sabeaajugWa8qacaaIYaaaaaaa@5344@ times. The intensity of the rotational–translational spectrum with allowance for the contribution of the induction of overlap is determined by the expression (1). From it, roughly estimating the graph of Figure 6 of the previous work, the parameter λ= 2.10 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGOmaiaac6cacaaI XaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbiaacobicaaI0aaaaa aa@4224@ and using the integrals I, I′, F, F′, K and K′ tabulated in Poll et al.21 and,12 we have: Q СО2 =4.8 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaKqba+aadaWgaaqcbasaaKqzadWd biaadgcbcaWGEqGaaGOmaaWcpaqabaqcLbsapeGaeyypa0JaaGinai aac6cacaaI4aGaeyyXICTaaGymaiaaicdal8aadaahaaqcbasabeaa jugWa8qacaGGtaIaaGOmaiaaiAdaaaqcLbsacaWGdbGaam4raiaado facaWGfbaaaa@4DC3@ .

To correct the calculation of the QCO2 value from the intensity of the rotational–translational spectrum of pure CO2 as the interaction potential, instead of Lennard–Jones, the potential of Kihara was used:

V( R )=4ε{[ ( σ2a R2a ) 1 2   ( σ2a R2a  ) 6 ]} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaKqba+aadaqadaGcbaqcLbsapeGa amOuaaGcpaGaayjkaiaawMcaaKqzGeWdbiabg2da9iaaisdacqaH1o qzpaGaai4EaiaacUfacaGGOaqcfa4dbmaalaaak8aabaqcLbsapeGa eq4WdmNaeyOeI0IaaGOmaiaadggaaOWdaeaajugib8qacaWGsbGaey OeI0IaaGOmaiaadggaaaWdaiaacMcalmaaCaaajeaibeqaaKqzadWd biaaigdaaaWcpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibi aacobicaGGGcWdaiaacIcajuaGpeWaaSaaaOWdaeaajugib8qacqaH dpWCcqGHsislcaaIYaGaamyyaaGcpaqaaKqzGeWdbiaadkfacqGHsi slcaaIYaGaamyyaaaacaGGGcGaaiykaSWdamaaCaaajeaibeqaaKqz adWdbiaaiAdaaaqcLbsapaGaaiyxaiaac2haaaa@679D@ (6)

with the following parameters: ε= 441.7 0 К;σ=3.72 Å;2a=1.46 Å MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaGinaiaaisdacaaI XaGaaiOlaiaaiEdajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWa aaaKqzGeGaamOgeiaacUdacqaHdpWCcqGH9aqpcaaIZaGaaiOlaiaa iEdacaaIYaGaaeiiaiaadwmacaGG7aGaaGOmaiaadggacqGH9aqpca aIXaGaaiOlaiaaisdacaaI2aGaaeiiaiaadwmaaaa@5483@ ,26 which, as was shown in Kihara27 & Datta et al.28  more precisely than the Lennard–Jones potential, conveys the features of the interaction of molecules of similar CO2.

When the Lennard–Jones potential G(R)=exp [–V(R)/ kT] is replaced by the Kihara potential, the integrals F and F1 in expression (4) become:

 F=336π 0 x 8 exp[     ( 1b xb )   6     ( 1b xb )   12      0.25  T * ]dx,    F 1 =12π 0 x 6  exp[     ( 1b xb )   6     ( 1b xb )   12      0.25  T * ]dx, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeaeaaaaaaaaa8qacaGGGcGaamOraiabg2da9iaaioda caaIZaGaaGOnaiabec8aWLqbaoaapehabaqcLbsacaWG4bWcpaWaaW baaKqbGeqabaqcLbmapeGaeyOeI0IaaGioaaaajugib8aacqGHflY1 peGaamyzaiaadIhacaWGWbqcfa4aamWaa8aabaqcLbsapeGaaiiOaK qbaoaalaaapaqaaKqzGeWdbiaacckacaqGGcqcfa4aaeWaa8aabaWd bmaalaaapaqaaKqzGeWdbiaaigdacqGHsislcaWGIbaajuaGpaqaaK qzGeWdbiaadIhacqGHsislcaWGIbaaaaqcfaOaayjkaiaawMcaaKqz GeGaaiiOaSWdamaaCaaajuaibeqaaKqzadWdbiaaiAdaaaqcLbsaca GGGcGaaiiOaiabgkHiTiaacckacaqGGcqcfa4aaeWaa8aabaWdbmaa laaapaqaaKqzGeWdbiaaigdacqGHsislcaWGIbaajuaGpaqaaKqzGe WdbiaadIhacqGHsislcaWGIbaaaaqcfaOaayjkaiaawMcaaKqzGeGa aiiOaKqba+aadaahaaqabKqbGeaajugWa8qacaaIXaGaaGOmaaaaju gibiaabckacaqGGcGaaeiOaiaabckaaKqba+aabaqcLbsapeGaaGim aiaac6cacaaIYaGaaGynaiaacckacaWGubqcfa4damaaCaaabeqcfa saaKqzadWdbiaacQcaaaaaaaqcfaOaay5waiaaw2faaKqzGeGaamiz aiaadIhacaGGSaaajuaibaqcLbmacaaIWaaajuaibaqcLbmacqGHEi sPaKqzGeGaey4kIipacaGGGcGaaiiOaaGcbaqcLbsacaWGgbWcpaWa aWbaaKqaGeqabaqcLbmapeGaaGymaaaajugibiabg2da9iaaigdaca aIYaGaeqiWdaxcfa4aa8qCaeaajugibiaadIhajuaGpaWaaWbaaeqa juaibaqcLbmapeGaeyOeI0IaaGOnaaaajugibiabgwSixlaacckaca WGLbGaamiEaiaadchajuaGdaWadaWdaeaajugib8qacaGGGcqcfa4a aSaaa8aabaqcLbsapeGaaiiOaiaabckajuaGdaqadaWdaeaapeWaaS aaa8aabaqcLbsapeGaaGymaiabgkHiTiaadkgaaKqba+aabaqcLbsa peGaamiEaiabgkHiTiaadkgaaaaajuaGcaGLOaGaayzkaaqcLbsaca GGGcqcfa4damaaCaaabeqaaKqzadWdbiaaiAdaaaqcLbsacaGGGcGa aiiOaiabgkHiTiaacckacaqGGcqcfa4aaeWaa8aabaWdbmaalaaapa qaaKqzGeWdbiaaigdacqGHsislcaWGIbaajuaGpaqaaKqzGeWdbiaa dIhacqGHsislcaWGIbaaaaqcfaOaayjkaiaawMcaaKqzGeGaaiiOaK qba+aadaahaaqabKqbGeaajugWa8qacaaIXaGaaGOmaaaajugibiaa bckacaqGGcGaaeiOaiaabckaaKqba+aabaqcLbsapeGaaGimaiaac6 cacaaIYaGaaGynaiaacckacaWGubqcfa4damaaCaaabeqcfasaaKqz adWdbiaacQcaaaaaaaqcfaOaay5waiaaw2faaKqzGeGaamizaiaadI hacaGGSaaajuaibaqcLbmacaaIWaaajuaibaqcLbmacqGHEisPaKqz GeGaey4kIipaaaaa@EDE6@  (7)

where x=R / σ; b=2a / σ.

Calculating them on a PC and substituting in (4), we have obtained Q CO2 =4.25· 10 26 CGSE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaSWdamaaBaaajeaibaqcLbmapeGa am4qaiaad+eacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaGinai aac6cacaaIYaGaaGynaiaacElacaaIXaGaaGimaSWdamaaCaaajeai beqaaKqzadWdbiaacobicaaIYaGaaGOnaaaajugibiaadoeacaWGhb Gaam4uaiaadweaaaa@4D54@ .


1In this paper, the molecular quadrupole moment is determined by the expression:

Q=1 / 2 r 2 ρ ( r, θ )[ 3co s 2 θ1 ] dτ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaiabg2da9iaaigdacaqGGaGaai4l aiaabccacaaIYaqcfa4aa8qaaOqaaKqzGeGaamOCaKqba+aadaahaa WcbeqcbasaaKqzadWdbiaaikdaaaqcLbsapaGaeyyXIC9dbiabeg8a YjaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadkhacaGGSaGaaeiiai abeI7aXbGcpaGaayjkaiaawMcaaKqzGeWdbiabgwSixNqba+aadaWa daGcbaqcLbsapeGaaG4maiaadogacaWGVbGaam4CaSWdamaaCaaaje aibeqaaKqzadWdbiaaikdaaaqcLbsacqaH4oqCcaGGtaIaaGymaaGc paGaay5waiaaw2faaKqzGeWdbiaabccacaWGKbGaeqiXdqhaleqabe qcLbsacqGHRiI8aiaacYcaaaa@6708@ (4)

where ρ is the charge density, r and θ are the polar coordinates with respect to the center of mass molecule (the polar axis is directed along the internuclear axis), and is the volume element.

2Recall that the correlation between λ and Δα, shown in work21 was established from the translational spectra of mixtures of He and Ar, Kr and Xe, and we use it here only for estimating calculations. In the calculations, and relied on the basis of the data of ,25 are the same.

Conclusion

Such results indicate the prospects of studying the rotational–translational spectra of simple molecules for determining their molecular constants. The rotational–translational spectra also undoubtedly contain information about the dynamics of molecular interactions and the intermolecular potential.

The laboratory study of such spectra is also important because induced infrared absorption plays an important role in controlling the energy balance of the terrestrial atmosphere.29,30

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Birnbaum G, Krauss M, Frommhold L. Collision‐induced dipoles of rare gas mixtures. The Journal of Chemical Physics. 1984;80(6.)
  2. Dunker AM, Gordon RG. Bound atom–diatomic molecule complexes. Anisotropic intermolecular potentials for the hydrogen–rare gas systems. The Journal of Chemical Physics. 1978;68(2).
  3. Birnbaum WHG, Rosenberg BA. Far‐Infrared Collision‐Induced Absorption in CO2. I. Temperature Dependence. The Journal of Chemical Physics. 1971;55(3).
  4. Hartmann JM, Boulet C, Jacquemart D. Molecular dynamics simulations for CO2 spectra. III. Permanent and collision–induced tensors contributions to light absorption and scattering. The Journal of Chemical Physics. 2011;134(18).
  5. Kudryavtsev AA, Tonkov MV. Optics and Spectroscopy.1990; 68: 1057.
  6. Sonntag RK, Crain RN. Advances in Cryogenic Engineering. 1966; 11: 379.
  7. Vargaftik NB. Handbook of heat gases and liquids. Malaysia: M–Stars; 2006.
  8. Malkov MP. Handbook of physical and technical sciences. Russia: M Energoatomizdat; 1985.
  9. Cook D. Canadian Journal of Physics. 1957;35: 26.
  10. Herzberg G. Spectra of Diatomic Molecules. USA: Van Nostrand Reinhold Company; 1951.
  11. Ketelaar JAA, Hettshnick RPH. Molecular Physics. 1963;7:191.
  12. Kiss ZJ, Kranendonk JV. Theory of the pressure–induced rotational spectrum of hydrogen. Canadian Journal of Physics. 1959;37(10):1187–1198.
  13. Kouzov AP. Optics and Spectroscopy. 1971; 30:841.
  14. Nesbet RK. Electronic Structure of N2, CO, and BF. The Journal of Chemical Physics. 1964;40(12).
  15. Orcutt RH. Influence of Molecular Quadrupole Moments on the Second Virial Coefficient. The Journal of Chemical Physics. 1963; 39(3).
  16. Spurling TH, Masson EA. Determination of Molecular Quadrupole Moments from Viscosities and Second Virial Coefficients. The Journal of Chemical Physics. 1967;46(1).
  17. Dutta Ak. Characteristics of free electrons in graphite from a study of its magnetic and other properties. Physica. 1958;24(1–5):343–346.
  18. Poll JD. Determination of the quadrupole moment of N2 from induced absorption in the far infrared. Physics Letters. 1963;7(1):32–33.
  19. Dagg IR, Reesor GE, Urbaniak JL. Collision Induced Microwave Absorption in CO2 and CO2–Ar, CO2–CH4Mixtures in the 2.3 cm−1 Region. Canadian Journal of Physics. 1974;52(11): 973–978.
  20. Poll JD, Kranendonk JV. Theory of translational absorption in gases. Canadian Journal of Physics. 1961; 39(1):189–204.
  21. Ryzhov VA, Tonkov MV. Optics and Spectroscopy. 1974; 37:1058.
  22. Harris JE. Journal of Physics. 1970;B3:704.
  23. Buckingham AD, Disch RI. The quadrupole moments of dipolar molecules. Proceedings of the Royal Society. 1963;A273:275.
  24. Bar–Ziv E, Weiss S. Translational Spectra Due to Collision‐Induced Overlap Moments in Mixtures of He with CO2, N2, CH4, and C2H6. The Journal of Chemical Physics. 1972;57(1).
  25. Tonkov MV, Filippov NN. Optics and Spectroscopy. 1976; 41: 45.
  26. Sherwood AE, Prausnits JM. Intermolecular Potential Functions and the Second and Third Virial Coefficients. The Journal of Chemical Physics. 1964;41(2).
  27. Kihara T. Journal of the Physical Society of Japan. 1952;6:289.
  28. Datta KK, Singh Y. Molecular Multipole Moments Determined from Viscosity and Second Virial Coefficients. The Journal of Chemical Physics. 1971;55(7).
  29. Borysow A, Jurgensen UG, Zheng CG. Model atmospheres of cool, low–metallicity stars: the importance of collision–induced absorption. Astronomy & Astrophysics. 1997;324:185–195.
  30. Gruszka M, Borysow A. Molecular Physics. 1998;93:1007.
Creative Commons Attribution License

©2018 Ryzhov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.