Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 3

The real structure of the crystal according to vlasov model

Talanin VI, Talanin IE, Kondratiev VV, Yakymchuk DI

Department of Computer Science & Software Engineering, Institute of Economics and Information Technologies, Ukraine

Correspondence: Vitalyi Talanin, Department of Computer Science & Software Engineering, Institute of Economics & Information Technologies, Kiyashko Street, 16b, Zaporozhye, 69015, Ukraine

Received: December 11, 2011 | Published: June 8, 2018

Citation: Talanin VI, Talanin IE, Kondratiev VV, et al. The real structure of the crystal according to vlasov model. Phys Astron Int J. 2018;2(3):218-222. DOI: 10.15406/paij.2018.02.00089

Download PDF

Abstract

Questions of application of the Vlasov model for solid state for description of the nucleation of defect structure, taking into account of the thermal conditions of the crystal growth were discussed. The Vlasov model for solid state describes the processes of complexation during the growth of real crystals adequately classical theory of nucleation and growth of second–phase particles in solids. With the help of the Vlasov model for solid state shown that during of low–temperature treatments of crystals the complexation is unlikely. In this case we have the processes of coalescence of grown–in defects. Method of calculation of the initial defect structure of crystals was proposed. This method includes the Vlasov model for solid state and the classical theory of nucleation and growth of second–phase particles in solids.

Keywords: vlasov model, crystal lattice, classical theory, nuclei

Introduction

To describe the physical properties of solids in literature two approaches were suggested. In the framework of classical approach we say's about the crystal lattice.1 The classic approach assumes: (i) location of each atom in the lattice site, (ii) the consistency of introducing the concept of probability and of the mechanical description of the behavior of particles, and (iii) the premise that the totality of atoms in a crystal is an integer. Statistical and quantum mechanical methods are used in the classical theory of the crystal. This theory has resulted to important results. In particular, one of such results is the creation of the classical theory of nucleation and growth of second–phase particles in solids.2 With the help of this theory can describe the formation and development (transformation) of the defect structure of a solid, both in the process of its growth, and as a result of various technological impacts.3

The Czochralski–growth and the floating zone–growth of dislocation–free silicon monocrystals is accompanied by the formation of structural (or grown–in) microdefects. Grown–in microdefects are formed by interactions between intrinsic point defects and atoms of oxygen and carbon during crystal cooling. Grown–in microdefects are precipitates of impurities, microvoids or interstitial dislocation loops.4

In 2010 we publish a model of impurities high–temperature precipitation.5 We are theoretically describe the nucleation, growth, and coalescence of the precipitates in the range from the crystallization temperature to room temperature by introduction in formulas the dependence T( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaaaaa@3E1A@ (where T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaaaa@3A48@ is temperature, t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ is time). The model of high–temperature precipitation is not only adequate to the experimental results of the investigation of grown–in microdefects but also does not contradict the classical theory of nucleation of second–phase particles.

In the second approach, a periodic structure of the crystal is not a consequence restriction on the freedom of movement of the atoms in the crystal. Periodic structure caused by the specificity of statistical laws of motion of particles, which agree a periodic structure with the freedom of movement of atoms. As a result the probability of finding an atom in interstitials of the crystal lattice are always different from zero.6,7 The second approach is based on the solution of the Vlasov kinetic equation. Vlasov’s model is a system of equations for describing the evolution of the particle continuum with potential of the pair interaction.8 This is the task for system of many particles. Vlasov assumed that the method to solve the plasma has a universal character. The interaction in those systems can be a short–range or long–range, weak or strong.9

For the first time a solution for solid state was conducted Vlasov. Vlasov showed that the spatial periodic distribution is one of the particular conditions of particle motion.6,9 Such decision was conducted for the perfect crystal. Hitherto the Vlasov model for solid state has not been used.

In 2016 we publish the complexation process in accordance with Vlasov’s model for solids.10 Vlasov’s model for solids can be applied for description of structure formation of real crystal. The aim of this paper is to consider the processes of formation and growth of the particles of the second phase in the semiconductor silicon on the basis of Vlasov model for solid state and the classical theory of nucleation and growth of particles of the second phase.

Mathematical model

The primary in Vlasov’s model is the distribution function. The particle is characterized by geometric and kinematic properties. Thus the category of motion is included on the same level with the primacy of categories of space and time. Therefore, in Vlasov model for solid state the periodic distribution of probability density of the particles is the state (motion) of the particles of the system, not the design.

The Vlasov model for solid state based on the following fundamental physical positions:6,7 1) rejection of the principle of spatial and speed localization of the particles (in terms of classical mechanics), which takes place regardless of the force interactions; 2) introduction of force interactions in analogy with classical mechanics, but taking into account the new principle of non–localization of particles; 3) the behavior of each particle of the system is described by means of an extended in phase space f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaaaa@3A5A@ –function. In this approach are combined the ideas of continuity and of corpuscular. The method of describing of motion of particle associated with the extended function, and the particle in the form of a point occurs only in the particular case.6

In general, the equation of Vlasov describes the evolution of the function of distribution f( x,v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqbaoaabmaak8aabaqcLbsapeGa amiEaiaacYcacaWG2bGaaiilaiaadshaaOGaayjkaiaawMcaaaaa@4184@ of the continuum of interacting particles in Euclidean space for speed v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaaaa@3A6A@ and for coordinate x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaaaa@3A6C@ at time point t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ . Equation has the form

f t +( f x ,v )+( f v ,F )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIyRaamOz aaGcpaqaaKqzGeWdbiabgkGi2kaadshaaaGaey4kaSscfa4aaeWaaO WdaeaajuaGpeWaaSaaaOWdaeaajugib8qacqGHciITcaWGMbaak8aa baqcLbsapeGaeyOaIyRaamiEaaaacaGGSaGaamODaaGccaGLOaGaay zkaaqcLbsacqGHRaWkjuaGdaqadaGcpaqaaKqba+qadaWcaaGcpaqa aKqzGeWdbiabgkGi2kaadAgaaOWdaeaajugib8qacqGHciITcaWG2b aaaiaacYcacaWGgbaakiaawIcacaGLPaaajugibiabg2da9iaaicda aaa@597C@  (1)

F= x K( x,y )f( y,v,t )dvdy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraiabg2da9iabgkHiTKqbaoaalaaa k8aabaqcLbsapeGaeyOaIylak8aabaqcLbsapeGaeyOaIyRaamiEaa aajuaGdaWdbaqaaKqzGeGaam4saKqbaoaabmaapaqaaKqzGeWdbiaa dIhacaGGSaGaamyEaaqcfaOaayjkaiaawMcaaKqzGeGaamOzaKqbao aabmaapaqaaKqzGeWdbiaadMhacaGGSaGaamODaiaacYcacaWG0baa juaGcaGLOaGaayzkaaqcLbsacaWGKbGaamODaiaadsgacaWG5baaju aGbeqabKqzGeGaey4kIipaaaa@5A68@

where K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saaaa@3A3F@ is the pair interaction potential, which is in real problems depends on the distance | xy | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaaemaak8aabaqcLbsapeGaamiEaiabgkHi TiaadMhaaOGaay5bSlaawIa7aaaa@403A@ ; F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraaaa@3A3A@ is the total force, with which all the particles act on one of them, which is located at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ at point x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaaaa@3A6C@ .8 In order for distinguish between the types of interactions are usually talking about the systems of equations of Vlasov (Vlasov–Poisson, Vlasov–Maxwell, Vlasov–Einstein and Vlasov–Yang–Mills equations).11

For a description of stationary properties of the crystal used the particles distribution density ρ( r )= f( r,v )dv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4aaeWaaOWdaeaajugib8qa caWGYbaakiaawIcacaGLPaaajugibiabg2da9Kqba+aadaqfGaGcbe WcbeqaaKqzGeGaaGzaVdqdbaqcLbsapeGaey4kIipaaiaadAgajuaG daqadaGcpaqaaKqzGeWdbiaadkhacaGGSaGaamODaaGccaGLOaGaay zkaaqcLbsacaWGKbGaamODaaaa@4EED@ . Probable locations of atoms describes by the potential function. The potential function contains the density of probability of the particles with considering the temperature distribution of the particles.6 The choice of potential of the pair interaction depends on the problem under consideration. Nonlocal model of a crystal is described by nonlinear equations. These equations make it possible to calculate the molecular potential and density of location of particles in the conditions of temperature equilibrium:6

V( r )=λkT K 1,2 ( r )exp( K 1,2 ( r ) kT )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaKqbaoaabmaak8aabaqcLbsapeGa amOCaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaH7oaBcaWGRbGaam ivaKqbaoaapehabaqcLbsacaWGlbWcpaWaaSbaaKqbGeaajugWa8qa caaIXaGaaiilaiaaikdaaKqbG8aabeaajuaGpeWaaeWaa8aabaqcLb sapeGaamOCaaqcfaOaayjkaiaawMcaaKqzGeGaamyzaiaadIhacaWG Wbqcfa4aaeWaa8aabaqcLbsapeGaeyOeI0scfa4aaSaaa8aabaqcLb sapeGaam4saKqba+aadaWgaaqcfasaaKqzadWdbiaaigdacaGGSaGa aGOmaaqcfa4daeqaa8qadaqadaWdaeaajugib8qacaWGYbaajuaGca GLOaGaayzkaaaapaqaaKqzGeWdbiaadUgacaWGubaaaaqcfaOaayjk aiaawMcaaKqzGeGaamizaiaadkhaaKqbGeaajugWaiabgkHiTiabg6 HiLcqcfasaaKqzadGaeyOhIukajugibiabgUIiYdaaaa@6E4B@  (2)

ρ( r )=λkTexp( K 1,2 ( r ) kT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4aaeWaaOWdaeaajugib8qa caWGYbaakiaawIcacaGLPaaajugibiabg2da9iabeU7aSjaadUgaca WGubGaamyzaiaadIhacaWGWbqcfa4aaeWaaOWdaeaajugib8qacqGH sisljuaGdaWcaaGcpaqaaKqzGeWdbiaadUeal8aadaWgaaqcbasaaK qzadWdbiaaigdacaGGSaGaaGOmaaqcbaYdaeqaaKqba+qadaqadaGc paqaaKqzGeWdbiaadkhaaOGaayjkaiaawMcaaaWdaeaajugib8qaca WGRbGaamivaaaaaOGaayjkaiaawMcaaaaa@5733@

Where K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saaaa@3A3F@ is the Boltzmann constant; K 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saSWdamaaBaaajeaibaqcLbmapeGa aGymaiaacYcacaaIYaaajeaipaqabaaaaa@3E42@ is the potential of the pair interaction; λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3B23@ is some characteristic number; T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaaaa@3A48@ is the temperature. The initial equations are equations for the two particles in a stationary condition ( t =0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaabmaak8aabaqcfa4dbmaalaaak8aabaqc LbsapeGaeyOaIylak8aabaqcLbsapeGaeyOaIyRaamiDaaaacqGH9a qpcaaIWaaakiaawIcacaGLPaaaaaa@42BD@ .6) Under the characteristic number to be understood the values of a parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3B23@ , at which the Equation (2) has solutions different from the trivial.6 If the position of one of the particles taken as the origin of coordinates, it is possible to determine ρ( 0 )=λkT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4aaeWaaOWdaeaajugib8qa caaIWaaakiaawIcacaGLPaaajugibiabg2da9iabeU7aSjaadUgaca WGubaaaa@43D4@ .6 The important task of Vlasov model for the solid state is the determination of characteristic numbers.

The characteristic number λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3B23@ is determined from the basic criterion of the existence of the crystal state. The conditions of crystallization can be written as follows:

4πN k T m 0 K 1,2 * ( ρ ) ρ 2 dρ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGinaiabec8a Wjaad6eaaOWdaeaajugib8qacaWGRbGaamivaKqba+aadaWgaaqcKf aG=haajugWa8qacaWGTbaal8aabeaaaaqcfa4dbmaapehabaqcLbsa caWGlbWcpaWaa0baaKqbGeaajugWa8qacaaIXaGaaiilaiaaikdaaK qbG8aabaqcLbmapeGaaiOkaaaajuaGdaqadaWdaeaajugib8qacqaH bpGCaKqbakaawIcacaGLPaaajugibiabeg8aYLqba+aadaahaaqabK qbGeaajugWa8qacaaIYaaaaKqzGeGaamizaiabeg8aYjabg2da9iaa igdaaKqbGeaajugWaiaaicdaaKqbGeaajugWaiabg6HiLcqcLbsacq GHRiI8aaaa@63F4@  (3)

Where N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaaaa@3A42@ is the number of particles; T m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaad2gaaSWdaeqaaaaa@3D7A@ is the temperature of melting (crystallization) of crystal; K 1,2 * = K 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saSWdamaaDaaajeaibaqcLbmapeGa aGymaiaacYcacaaIYaaajeaipaqaaKqzadWdbiaacQcaaaqcLbsacq GH9aqpcqGHsislcaWGlbWcpaWaaSbaaKqaGeaajugWa8qacaaIXaGa aiilaiaaikdaaKqaG8aabeaaaaa@4784@ .6 Equation (2) is written for the conditions of thermal equilibrium of system. The minima of interatomic potential correspond to the stable equilibrium position of atoms in the complexes (silicon–oxygen and silicon–carbon). Then we can determine the density of the distribution of complexes as a function of the cooling temperature of the crystal

ρ( T )=λkTexp( V 1min,2min kT ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4aaeWaaOWdaeaajugib8qa caWGubaakiaawIcacaGLPaaajugibiabg2da9iabeU7aSjaadUgaca WGubGaamyzaiaadIhacaWGWbqcfa4aaeWaaOWdaeaajugib8qacqGH sisljuaGdaWcaaGcpaqaaKqzGeWdbiaadAfajuaGpaWaaSbaaKqaGe aajugWa8qacaaIXaGaamyBaiaadMgacaWGUbGaaiilaiaaikdacaWG TbGaamyAaiaad6gaaSWdaeqaaaGcbaqcLbsapeGaam4Aaiaadsfaaa aakiaawIcacaGLPaaaaaa@5945@  (4)

In the classical theory of nucleation and growth of new–phase particles the process of precipitation in a crystal is treated as a first–order phase transition and the kinetics of this process is divided into three stages: the formation of new–phase nuclei, the growth of clusters, and the coalescence stage.12 The formation of new phase nuclei takes place near the crystallization front of the crystal.3 In article3 are the description of model of high–temperature precipitation of impurities. At the second stage of the precipitation process, clusters grow without a change in their number. Assuming that the precipitates have a spherical shape, it is possible to calculate the average radius of the precipitate at the growth stage:

R( t )= 3bi( t ) 4π 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaGcbaGcpaqaaK qba+qadaWcaaGcpaqaaKqzGeWdbiaaiodacaWGIbGaamyAaKqbaoaa bmaak8aabaqcLbsapeGaamiDaaGccaGLOaGaayzkaaaapaqaaKqzGe WdbiaaisdacqaHapaCaaaajeaipaqaaKqzadWdbiaaiodaaaaaaa@4D8B@  (5)

where b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOyaaaa@3A55@ is the quantity of order the distance between the particles in the cluster; i( t )=[ N( 0 )N( t ) ]/ N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyAaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWadaGcpaqaaK qzGeWdbiaad6eajuaGdaqadaGcpaqaaKqzGeWdbiaaicdaaOGaayjk aiaawMcaaKqzGeGaeyOeI0IaamOtaKqbaoaabmaak8aabaqcLbsape GaamiDaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsacaGGVaGa amOtaSWdamaaBaaajeaibaqcLbmapeGaam4yaaqcbaYdaeqaaaaa@525C@ is the average number of particles at the nucleation centers; N( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaKqbaoaabmaak8aabaqcLbsapeGa aGimaaGccaGLOaGaayzkaaaaaa@3DD5@ is the monomer concentration at the initial instant of time; N( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaaaaa@3E14@ is the changes in concentration of monomers over time; N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaaaa@3D06@ is the concentration of nucleation centers; t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ is the time.13

At the third of the precipitation process, when the particles of the new phase are sufficiently large, the super saturation is relatively low, new particles are not formed and the decisive role is played by the coalescence, which is accompanied by the dissolution of small–sized particles and the growth of large–sized particles. The condition providing for changeover to the coalescence stage is the ratio R( t )/ R cr ( t )1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacaGGVaGaamOuaSWdamaaBaaaje aibaqcLbmapeGaam4yaiaadkhaaKqaG8aabeaajuaGpeWaaeWaaOWd aeaajugib8qacaWG0baakiaawIcacaGLPaaajugibiabgIKi7kaaig daaaa@4AC9@ , where R cr ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaSWdamaaBaaajeaibaqcLbmapeGa am4yaiaadkhaaKqaG8aabeaajuaGpeWaaeWaaOWdaeaajugib8qaca WG0baakiaawIcacaGLPaaaaaa@41E3@ is the critical radius of the precipitate. Under this condition, the precipitate is in equilibrium with the solution ( dR/dt=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaamizaiaadkfa caGGVaGaamizaiaadshacqGH9aqpcaaIWaaakiaawIcacaGLPaaaaa a@41CE@ . The precipitate grows at R( t )> R cr ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacqGH+aGpcaWGsbWcpaWaaSbaaK qaGeaajugWa8qacaWGJbGaamOCaaqcbaYdaeqaaKqba+qadaqadaGc paqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaaaa@4823@ and dissolves at R( t )< R cr ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacqGH8aapcaWGsbWcpaWaaSbaaK qaGeaajugWa8qacaWGJbGaamOCaaqcbaYdaeqaaKqba+qadaqadaGc paqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaaaa@481F@ . With time, the critical radius R cr ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOuaSWdamaaBaaajeaibaqcLbmapeGa am4yaiaadkhaaKqaG8aabeaajuaGpeWaaeWaaOWdaeaajugib8qaca WG0baakiaawIcacaGLPaaaaaa@41E3@ increases and the number of particles per unit volume decreases.13,14

Is possible to determine the critical size of the precipitates in accordance with:15
R cr O ( t )= 2σu V p kT( t )ln( S 0 S i γ i S v γ v )6μδεu V p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaDaaajeaibaqcLbmacaWGJbGaamOCaaqcbasa aKqzadGaam4taaaajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcaca GLPaaajugibiabg2da9KqbaoaalaaakeaajugibiaaikdacqaHdpWC caWG1bGaamOvaSWaaSbaaKqaGeaajugWaiaadchaaKqaGeqaaaGcba qcLbsacaWGRbGaamivaKqbaoaabmaakeaajugibiaadshaaOGaayjk aiaawMcaaKqzGeGaciiBaiaac6gacaGGOaGaam4uaWWaaSbaaKazba 4=baqcLbgacaaIWaaajqwaa+FabaqcLbsacaWGtbWcdaqhaaqcbasa aKqzadGaamyAaaqcbasaaKqzadGaeyOeI0Iaeq4SdC2cdaWgaaqcca saaKqzadGaamyAaaqccasabaaaaKqzGeGaam4uaSWaa0baaKqaGeaa jugWaiaadAhaaKqaGeaajugWaiabeo7aNTWaaSbaaKGaGeaajugWai aadAhaaKGaGeqaaaaajugibiaacMcacqGHsislcaaI2aGaeqiVd0Ma eqiTdqMaeqyTduMaamyDaiaadAfajuaGdaWgaaqcbasaaKqzadGaam iCaaWcbeaaaaaaaa@7D82@

R cr C ( t )= 2σu V p kT( t )ln( S с S i γ i S v γ v )6μδεu V p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaDaaajeaibaqcLbmacaWGJbGaamOCaaqcbasa aKqzadGaam4qaaaajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcaca GLPaaajugibiabg2da9KqbaoaalaaakeaajugibiaaikdacqaHdpWC caWG1bGaamOvaSWaaSbaaKqaGeaajugWaiaadchaaKqaGeqaaaGcba qcLbsacaWGRbGaamivaKqbaoaabmaakeaajugibiaadshaaOGaayjk aiaawMcaaKqzGeGaciiBaiaac6gacaGGOaGaam4uaSWaaSbaaKqaGe aajugWaiaadgebaKqaGeqaaKqzGeGaam4uaSWaa0baaKqaGeaajugW aiaadMgaaKqaGeaajugWaiabeo7aNTWaaSbaaKGaGeaajugWaiaadM gaaKGaGeqaaaaajugibiaadofalmaaDaaajeaibaqcLbmacaWG2baa jeaibaqcLbmacqGHsislcqaHZoWzlmaaBaaajiaibaqcLbmacaWG2b aajiaibeaaaaqcLbsacaGGPaGaeyOeI0IaaGOnaiabeY7aTjabes7a Kjabew7aLjaadwhacaWGwbWcdaWgaaqcbasaaKqzadGaamiCaaqcba sabaaaaaaa@79FB@ (6)

where S o = C o C o eg , S c = C c C c eg , S i = C i C i eg , S v = C v C v eg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadofalmaaBaaajeaibaqcLbmacaWGVbaajeaibeaajugi biabg2da9KqbaoaaliaakeaajugibiaadoealmaaBaaajeaibaqcLb macaWGVbaajeaibeaaaOqaaKqzGeGaam4qaSWaa0baaKqaGeaajugW aiaad+gaaKqaGeaajugWaiaadwgacaWGNbaaaaaajugibiaacYcaca WGtbWcdaWgaaqcbasaaKqzadGaam4yaaqcbasabaqcLbsacqGH9aqp juaGdaWccaGcbaqcLbsacaWGdbWcdaWgaaqcbasaaKqzadGaam4yaa qcbasabaaakeaajugibiaadoealmaaDaaajeaibaqcLbmacaWGJbaa jeaibaqcLbmacaWGLbGaam4zaaaaaaqcLbsacaGGSaGaam4uaSWaaS baaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyypa0tcfa4aaSGa aOqaaKqzGeGaam4qaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaa GcbaqcLbsacaWGdbWcdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqz adGaamyzaiaadEgaaaaaaKqzGeGaaiilaiaadofalmaaBaaajeaiba qcLbmacaWG2baajeaibeaajugibiabg2da9Kqbaoaaliaakeaajugi biaadoealmaaBaaajeaibaqcLbmacaWG2baajeaibeaaaOqaaKqzGe Gaam4qaSWaa0baaKqaGeaajugWaiaadAhaaKqaGeaajugWaiaadwga caWGNbaaaaaaaaa@7FD2@ are the supersaturations of the oxygen atoms, carbon atoms, intrinsic interstitial silicon atoms, and vacancies, respectively; σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZbaa@3B11@ is the density of the surface energy of the interface between the precipitate and the matrix; μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeY7aTbaa@3B04@ is the shear modulus of silicon; δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabes7aKbaa@3AF3@ and ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLbaa@3AF5@ are the linear and volume misfit strains of the precipitate and the matrix, respectively; γ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNTWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaaaa @3D91@ and γ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo7aNLqbaoaaBaaajeaibaqcLbmacaWG2baaleqaaaaa @3E02@ are the fractions of intrinsic interstitial silicon atoms and vacancies per impurity atom attached to the precipitate, respectively; V p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajeaibaqcLbmacaWGWbaajeaibeaaaaa@3CCC@ is the molecular volume of the precipitate; and u= (1+ γ i x+ γ v x) 1 ( 1+ε 1+δ ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhacqGH9aqpcaGGOaGaaGymaiabgUcaRiabeo7aNTWa aSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaamiEaiabgUcaRi abeo7aNTWaaSbaaKqaGeaajugWaiaadAhaaKqaGeqaaKqzGeGaamiE aiaacMcalmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaajugibi abgwSixlaacIcajuaGdaWcaaGcbaqcLbsacaaIXaGaey4kaSIaeqyT dugakeaajugibiaaigdacqGHRaWkcqaH0oazaaGaaiykaSWaaWbaaK qaGeqabaqcLbmacaaIZaaaaaaa@5CC8@ .

The average size of precipitates at the stage of the coalescence is proportional to the cube root of time:13

R av (t)= R cr 3 ( t 0 )+ 4Dβt 9 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaWGHbGaamODaaqcbasa baqcLbsacaGGOaGaamiDaiaacMcacqGH9aqpjuaGdaGcbaGcbaqcLb sacaWGsbWcdaqhaaqcbasaaKqzadGaam4yaiaadkhaaKqaGeaajugW aiaaiodaaaqcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkjuaG daWcaaGcbaqcLbsacaaI0aGaamiraiabek7aIjaadshaaOqaaKqzGe GaaGyoaaaaaKqaGeaajugWaiaaiodaaaaaaa@59DB@  (7)

where D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadseaaaa@3A17@ is the diffusion coefficient of impurity atoms; β=( σΩ kT )N( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIjabg2da9KqbaoaabmaakeaajuaGdaWcaaGcbaqc LbsacqaHdpWCcqqHPoWvaOqaaKqzGeGaam4AaiaadsfaaaaakiaawI cacaGLPaaajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaa wIcacaGLPaaaaaa@49E0@ ; R cr ( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacaWGJbGaamOCaaqcbasa baqcfa4aaeWaaOqaaKqzGeGaamiDaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaaGccaGLOaGaayzkaaaaaa@43CD@ is the initial critical radius; σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZbaa@3B11@ is the surface tension at the precipitate–solid solution interface; Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfM6axbaa@3ADC@ is the atomic volume.

As is known, the formation and development of the structure of grown–in microdefects in silicon are determined by thermal conditions of growth and cooling of the crystal.3,4 The temperature distribution along the length of the ingot during its cooling varies depending on the thermal parameters of the growth according to the expression 1/T=1/ T m +Gz/ T m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaac+cacaWGubGaeyypa0JaaGym aiaac+cacaWGubWcpaWaaSbaaKqaGeaajugWa8qacaWGTbaajeaipa qabaqcLbsapeGaey4kaSIaam4raiaadQhacaGGVaGaamivaSWdamaa DaaajeaibaqcLbmapeGaamyBaaqcbaYdaeaajugWa8qacaaIYaaaaa aa@4B72@ , where z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaaaa@3A6E@ is the distance from the crystallization front; G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4raaaa@3A3B@ is the axial temperature gradient at the crystallization front; T m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyBaaqcbaYdaeqaaaaa@3D16@ is the crystallization temperature.3 It should be noted that, in the general case, it is necessary to take into account the radial in homogeneity of the temperature field. We introduce the crystal growth rate ( V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaaaa@3A4A@ ) into in this formula and obtain

T( t )= T m 2 T m +VGt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaGcpaqaaK qzGeWdbiaadsfal8aadaqhaaqcbasaaKqzadWdbiaad2gaaKqaG8aa baqcLbmapeGaaGOmaaaaaOWdaeaajugib8qacaWGubWcpaWaaSbaaK qaGeaajugWa8qacaWGTbaajeaipaqabaqcLbsapeGaey4kaSIaamOv aiaadEeacaWG0baaaaaa@4F27@ (8)

Results and discussion

We performed three separate groups of calculations that simulated the processes of precipitation during the growth of crystals of large and small diameters with the use of the Czochralski method (CZ–Si) and crucibleless floating zone melting (FZ–Si). Calculations of the first group (I) was performed using the following parameters: the crystal growth rate was V= 0.6 mm/min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaiAdacaGGGcGaamyBaiaad2gacaGGVaGaamyBaiaadMgacaWGUb aaaa@44AC@ , the axial temperature gradient was N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaaaa@3D06@ , the oxygen concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ , and the carbon concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ . The corresponding parameters used in calculations of the second group (II) were as follows: the crystal growth rate was V= 0.3 mm/min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfaqaaaaaaaaaWdbiabg2da9iaabccacaaIWaGaaiOl aiaaiodacaGGGcGaamyBaiaad2gacaGGVaGaamyBaiaadMgacaWGUb aaaa@44A9@ , the axial temperature gradient was G=25 K/сm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEeaqaaaaaaaaaWdbiabg2da9iaaikdacaaI1aGaaeii aiaadUeacaGGVaGaamyqeiaad2gaaaa@409D@ , the oxygen concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ , and the carbon concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ . These conditions correspond to the growth of large–sized silicon single crystals with the use of the Czochralski method. For calculations of the third group (III), we used the following parameters: the crystal growth rate was V=6 mm/min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfaqaaaaaaaaaWdbiabg2da9iaaiAdacaqGGaGaamyB aiaad2gacaGGVaGaamyBaiaadMgacaWGUbaaaa@421C@ , the axial temperature gradient was G=130 K/сm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEeacqGH9aqpqaaaaaaaaaWdbiaaigdacaaIZaGaaGim aiaabccacaWGlbGaai4laiaadgebcaWGTbaaaa@4154@ , the oxygen concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ , and the carbon concentration was N( 0 )=  10 18 c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6eajuaGdaqadaGcbaqcLbsacaaIWaaakiaawIcacaGL PaaajugibabaaaaaaaaapeGaeyypa0JaaeiiaiaaigdacaaIWaWcpa WaaWbaaKqaGeqabaqcLbmapeGaaGymaiaaiIdaaaqcLbsacaWGJbGa amyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaaaa@4A3A@ . Group III correspond to the conditions for growth of small–sized silicon single crystals with the use of crucibleless floating zone melting (Table 1).

Parameter

Unit of measurement

Value

U 1min (Si O 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaSWdamaaBaaajeaibaqcLbmapeGa aGymaiaad2gacaWGPbGaamOBaaqcbaYdaeqaaKqzGeWdbiaacIcaca WGtbGaamyAaiaad+eal8aadaWgaaqcbasaaKqzadWdbiaaikdaaKqa G8aabeaajugibiaacMcaaaa@476C@

eV

2.84

U 2min ( SiC ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaSWdamaaBaaajeaibaqcLbmapeGa aGOmaiaad2gacaWGPbGaamOBaaqcbaYdaeqaaKqba+qadaqadaGcpa qaaKqzGeWdbiaadofacaWGPbGaam4qaaGccaGLOaGaayzkaaaaaa@452B@

eV

2.71

λ 1 ( Si O 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdW2cpaWaaSbaaKqaGeaajugWa8qa caaIXaaajeaipaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4uai aadMgacaWGpbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaWcpaqa baaak8qacaGLOaGaayzkaaaaaa@4649@

eV–1

4.482·109

λ 2 ( SiC ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWwcfa4damaaBaaajeaibaqcLbma peGaaGOmaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4uai aadMgacaWGdbaakiaawIcacaGLPaaaaaa@4396@

eV–1

1.099·109

V p ( Si O 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaKqba+aadaWgaaqcbasaaKqzadWd biaadchaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadofaca WGPbGaam4taSWdamaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqa aaGcpeGaayjkaiaawMcaaaaa@45AA@

nm3

4.302·10–2

V p ( SiC ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaKqba+aadaWgaaqcbasaaKqzadWd biaadchaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadofaca WGPbGaam4qaaGccaGLOaGaayzkaaaaaa@42F6@

nm3

2.04·10–2

σ( Si O 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4Wdmxcfa4aaeWaaOWdaeaajugib8qa caWGtbGaamyAaiaad+eal8aadaWgaaqcbasaaKqzadWdbiaaikdaaK qaG8aabeaaaOWdbiaawIcacaGLPaaaaaa@434D@

erg/cm2

310

σ( SiC ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4Wdmxcfa4aaeWaaOWdaeaajugib8qa caWGtbGaamyAaiaadoeaaOGaayjkaiaawMcaaaaa@4099@

erg/cm2

1000

μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0gaaa@3B25@

Pa

6.41·1010

δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqgaaa@3B14@

0.3

ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdugaaa@3B16@

0.15

b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOyaaaa@3A56@

nm

0.25

k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4Aaaaa@3A5F@

eV/K

8.6153·10–5

N c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaaaa@3D06@

cm–3

1012

Table 1 The calculations were performed using the following parameters

In this the computing experiment, assumed that the concentration of nucleation centers for complexes constitute ~ 10 12  c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake Gabaa8jKqzGeaeaaaaaaaaa8qacaGG+bGaaGymaiaaicdal8aadaah aaqcbasabeaajugWa8qacaaIXaGaaGOmaaaajugibiaacckacaWGJb GaamyBaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiodaaaaa aa@46D8@ . This value corresponds to the experimental data obtained by transmission electron microscopy.4 The densities of distribution of complexes of silicon–carbon for crystals I and II groups are shown in Figure 1. The densities of distribution of complexes of silicon–carbon for crystals III are shown in Figure 2.

Figure 1 Changing the density of distribution of complexes silicon–carbon for crystals I (1) and II(2) groups.

Figure 2 Changing the density of distribution of complexes silicon–carbon for crystals III group.

The precipitation process begins near the crystallization front. The results of the calculations performed in groups I, II and III allow us to compare the processes of precipitation in the CZ–Si and FZ–Si crystals and to analyze them for almost maximum contents of the oxygen and carbon impurities. Changing crystal growth rate or axial temperature gradient as results reduced time of the nucleation stage. Furthermore, the calculations in group III showed that this changing leads to decrease of precipitates average radius in FZ–Si crystals as compared to the CZ–Si crystals at the stage of the growth of precipitates.

The simultaneous nucleation and growth of particles of the new phase (oxygen and carbon precipitates) during cooling of as–grown silicon crystals leads to a strong interplay between the processes of evolution of these two subsystems of grown–in micro defects. The absorption of vacancies by oxygen precipitates results in the emission of silicon atoms in interstitials. The silicon atoms interact with carbon precipitates, which supply vacancies for oxygen precipitates. This interplay between the processes leads to an accelerated changeover of the subsystems of oxygen and carbon precipitates to the stage of the coalescence as compared to the independent evolution of these two subsystems.13

The condition providing changeover to the stage of the coalescence is written in the form R( t ) R cr ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfajuaGdaqadaGcbaqcLbsacaWG0baakiaawIcacaGL PaaajugibiabgIKi7kaadkfalmaaBaaajeaibaqcLbmacaWGJbGaam OCaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaamiDaaGccaGLOaGaayzk aaaaaa@482F@ , which is satisfied at the temperature T1423K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGHijYUcaaIXaGaaGinaiaaikdacaaIZaGaam4s aaaa@3F9A@ . The stage of the coalescence in large–scale crystals begins at temperatures close to the temperatures of the formation of intrinsic point defects clusters (microvoids or interstitial dislocation loops).13 Figure 3 shows the variation of the average size of oxygen and carbon precipitates at the stage of the coalescence in the temperature range of cooling from 1423 to 300 K.

Figure 3 Variation of the average size Rav of (1) oxygen precipitates at the stage of the coalescence during cooling of the CZ–Si crystals in the temperature range from 1423 to 300 K.

Although the concentrations of oxygen and carbon in crystals of groups I, II and III are identical, the change in the thermal conditions for the growth of small–sized FZ–Si single crystals (high growth rates and axial temperature gradients) leads to the fact that the stage of the coalescence begins far in advance (at T T m 20K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfacqGHijYUcaWGubqcfa4aaSbaaKqaGeaajugWaiaa d2gaaSqabaqcLbsacqGHsislcaaIYaGaaGimaiaadUeaaaa@4377@ ). In the classical theory of the formation of second–phase particles during heat treatments of single crystals, the formation of critical nuclei of small sizes occurs at low temperatures. In the classical theory of the formation of second–phase particles during heat treatments of single crystals, the formation of critical nuclei of small sizes occurs at low temperatures. Here an increase in the temperature leads to the growth and coalescence of precipitates. In real crystals, already there are grown–in micro defects. These micro defects during thermal treatments are sinks for intrinsic point defects and impurities. Using of Vlasov's model for solids to the complication processes during crystals thermal treatment gives another result (Figure 4).

Figure 4 Dependence of the density of distribution for the silicon–oxygen complexes from the temperature during the annealing of the crystal.

In accordance with Vlasov's model for solids the complexation at T723K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiabgIKi7kaaiEdacaaIYaGaaG4m aiaadUeaaaa@3F03@ is unlikely. This temperature corresponds to the formation of thermal donors. The complexation in silicon during thermal treatment is possible only at high temperatures. Excess intrinsic point defects and impurities disappear at initial structural defects. This process leads to transformation of initial defect structure of crystal.

At the same time, it is known that the thermal treatments of silicon lead to the formation of electrically active centers. If the formation of complexes in the temperature range 300KT600K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaG4maiaaicdacaaIWaGaam4saiabgsMi JkaadsfacqGHKjYOcaaI2aGaaGimaiaaicdacaWGlbaaaa@43B7@ is unlikely then the processes of coalescence occur in crystals of any diameter. Then, can be assumed that the dissolving grown–in precipitates lead to formation of electrically active centers.

We note that classical theory of nucleation and growth of second–phase particles and Vlasov's model for solids lead to identical results. Both approaches describe the processes of high–temperature precipitation of impurities. In turn, the high–temperature precipitation of impurities is the basis of the process of defect formation in crystals.

Conclusion

Until now the probabilistic approach (Vlasov's model for solids) for real crystals has not been applied. At the same time joint use of both approaches would allow for a fresh look at known facts and discover new phenomena and laws. This work represents the first attempts in the last 70 years to obtain the solution of Vlasov model for solid state. Questions of application of the Vlasov model for solid state for description of the nucleation of defect structure, taking into account of the thermal conditions of the crystal growth were discussed. There are the following main results:

  1. The concepts and principles of Vlasov physics are fully applicable to solid state.
  2. The Vlasov model for solid state describes the processes of complexation during the growth of real crystals adequately classical theory of nucleation and growth of second–phase particles in solids.
  3. Method of calculation of the initial defect structure of crystals was proposed.
  4. Using Vlasov’s model for solids shown that during of low–temperature crystal treatments proceeds the processes of coalescence of grown–in defects.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Born M, Huang K. Dynamical theory of crystal lattices. UK: Clarendon Press; 1954.
  2. Cristian JW. The theory of transformations in metals and alloys. UK: Pergamon Press; 1965.
  3. Talanin VI, Talanin IE. Diffusion model of the formation of growth microdefects: A new approach to defect formation in crystals (Review). Physics of the Solid State. 2016;58(3):427–437.
  4. Talanin VI, Talanin IE. Formation of grown–in microdefects in dislocation–free silicon monocrystals. In: Elliot TB, editor. New Research on Semiconductors. USA: Nova Science Publishers; 2006.
  5. Talanin VI, Talanin IE. Kinetics of high–temperature precipitation in dislocation–free silicon single crystals. Physics of the Solid State. 2010;52(10):2063–2069.
  6. Vlasov AA. Journal of Physics.1945;9:130.
  7. Vlasov AA. Nonlocal Statistical mechanics. Russia: Nauka; 1978.
  8. Kozlov VV. The generalized Vlasov kinetic equation. Russian Mathematical Surveys. 2008;63(4):691–726.
  9. Vlasov AA. Many–particle theory and its application to plasma. USA: Gordon & Breach Science Publishers; 1961.
  10. Talanin VI, Talanin IE. Complex formation in semiconductor silicon within the framework of the Vlasov model of a solid state. Physics of the Solid State. 2016;58(10):2050–2054.
  11. Vedenyapin VV. Boltzmann and Vlasov kinetic equations. Russia: Fizmatlit; 2001.
  12. Lifshitz EM, Pitaevskii LP. Physical Kinetics. UK: Pergamon Press; 1981.
  13. Talanin VI, Talanin IE. Kinetic model of growth and coalescence of oxygen and carbon precipitates during cooling of As–grown silicon crystals. Physics of the Solid State. 2011;53(1):119–126.
  14. Slezov VV, Sagalovich VV. Usp Fiz Nauk. 1987;151:67.
  15. Vanhellemont J. Diffusion limited oxygen precipitation in silicon: Precipitate growth kinetics and phase formation. Journal of Applied Physics. 1995;78(6).
Creative Commons Attribution License

©2018 Talanin, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.