Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 4

The importance of geometric algebra in the language of physics

D Sen,1 Deeprodyuti Sen2

1FE 38, Salt Lake, India
2RSD, BARC, India

Correspondence: D Sen, FE 38, Salt Lake, Kolkata 700106, India

Received: September 29, 2023 | Published: October 27, 2023

Citation: D Sen, Deeprodyuti S. The importance of geometric algebra in the language of physics. Phys Astron Int J. 2023;7(4):220-229. DOI: 10.15406/paij.2023.07.00313

Download PDF

Abstract

Geometric algebra has emerged as the preferred mathematical framework for physics because it provides compact and intuitive descriptions in many areas including classical and quantum mechanics, electromagnetic theory and relativity. Geometric algebra has also found prolific applications as a computational tool in computer graphics and robotics. Leading exponents of this extensive mathematical apparatus are fervently insisting its inclusion in the undergraduate physics curriculum.

Keywords: geometric algebra, physics, quantum mechanics, relativity, robotics

Introduction

Geometric algebra is an immensely powerful mathematical framework in which most of the advanced concepts of physics can be expressed. Proponents are also claiming that GA is straightforward and simple enough to be taught to school children1! As an initiation for the undergraduate physics students, we discuss here the basics of geometric algebra (GA) and its wide scope of applications with reference to some supplementary reading materials.2,3 The algebra developed by Clifford is actually an unification of the algebras of Grassmann and Hamilton into a single structure. By combining both exterior (wedge) and inner (dot) products of Grassmann algebra, Clifford’s ingenuous contribution was to define a new associative product,1 the geometric product:

uv=u.v+uv=C  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF1bGaa8NDaiabg2da9iaa=vhacaGGUaGaa8NDaiab gUcaRiaa=vhacqGHNis2caWF2bGaeyypa0dcbaGaa43qaiaabccaaa a@4449@   (1)

of two vectors u and v which endows the basic vector space with an algebraic structure that embraces the vector, complex, quaternion and the spin algebras in a single formalism and sets apart Clifford algebra from others. The product C is the sum of a scalar s( = u.v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGZbGcpaWaaeWaaeaajugib8qacqGH9aqpcaqGGaacbeGa a8xDaiaac6cacaWF2baak8aacaGLOaGaayzkaaaaaa@3F5F@ and a bivector B(=uv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaaykW7paGaaiika8qacqGH9aqpieqajugibiaa=vhakiab gEIizNqzGeGaa8NDaOWdaiaacMcaaaa@40E2@ represents a multivector, termed as a clif. The scalars, bivectors are homogeneous multivectors of grade zero and two respectively. For two 3-D vectors, this product actually represents the four component quaternion defined by Hamilton.4 Here we use lower case symbols for scalars, bold lower cases for vectors, the multivectors of definite grade are represented with bold capitals and roman capitals represent clifs – multivectors of mixed grade. The works of Hamilton, Grassmann5 and Clifford6 which initiate the search for a unifying mathematical language of physics, generated considerable interest among contemporaries. The subsequent development of seemingly more straightforward vector algebra (VA) by Gibbs, however, almost eclipsed those important earlier studies for a long time. In fact, the reformulation of Maxwell’s equations of electromagnetism by Heaviside using VA, signalled its emergence as the dominant paradigm of vector manipulations for a three dimensional world. It should be noted that, the cross product, triple product etc. of vectors and hence the vector algebra itself can be defined in 3-D only. Generalisation to any other dimension is not possible – in two dimension, no third dimension exists to accommodate the (cross) product vector, and in higher dimensions there are too many orthogonal directions! We may recall here that, only the scalar dot product of four-vectors is required in the usual discussions of special relativity. Also, the cross product is not preserved under reflection, and thus it introduces a fake chirality (handedness) to the model of reality it creates. The cross product of two vectors is a third vector and VA deals only with scalars and vectors – hence contains no geometric description beyond points and lines. All these led Tait to brand VA “a sort of hermaphrodite monster”.7 Grassmann algebra provides an efficient and useful generalisation (to any finite dimension) by removing the inadequacies of VA. Modern physics is looking for higher dimensional (string, brane) theories beyond the usual (3+1)- dimensional spacetime universe. Also, in projective geometry, extra dimension is added to the reality to view it from the vantage perspective of the supernumerary dimension. Finally, “integrating and applying the large body of geometrical ideas running through mathematics and physics”, Hestenes8 and a number of other collaborators (see references in1,2) have reinvented and developed Clifford’s geometric algebra as a unified and versatile language of mathematical physics.

Unfortunately though, mainstream physics is yet to appropriate and embrace this development fully. Apart from the historical reasons, it appears that the introduction needs a more familiar and nonaxiomatic direct approach for the inquisitive students who are just beginning to get exposed to this algebra. In this work we discuss the formulation of GA directly from the exterior algebra and hope to equip budding scientists in working out the standard problems and to use it as the main language for expressing their work. We also intend to offer a broad overview, indicating its immense applications. The first article2 of the supplementary materials reviews and explains, starting from the elementary vector algebra, general ideas of Grassman algebra and quaternions, right up to the geometric algebra. Multivectors accommodate multiple inner products or contractions and in GA, both the exterior and (multiple) inner products are used to define the geometric product of multivectors. In the second paper,3 following the multiplication rules of exterior and inner products, products between arbitrary multivectors of different grades are derived explicitly in terms of the components of the elements. Following an introduction to the exterior algebra in the next section, some new aspects and results are also discussed and before we engage with GA in the final section, a brief introduction to the Hamilton’s quaternion is also included.

Grassmann algebra: The exterior or wedge product (denoted by the multiplication symbol ‘∧’) of two vectors, introduced by Grassmann in his ‘Algebra of Extension’, anticommutes and creates a graded structure from the basis vectors to higher order multivector bases. From the anticommutivty, the wedge product of a vector with itself obviously vanishes, and produces a closure property. Also in an n-dimensional vector space, the exterior product of any number of k,(k  n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGaaiilaiaaykW7paGaaiika8qacaWGRbGaaeiiaiab gsMiJkaabccacaWGUbGaaiykaaaa@413E@ linearly independent vectors is nonvanishing and the product is associative.

In addition to the scalars and vectors of ordinary vector algebra, Grassmann algebra thus introduces bivectors, trivectors etc. (multivectors of higher grade) from the wedge product of two, three vectors representing (oriented) area, (oriented) volume etc. respectively. The grade of an entity is the number of vectors wedged together to make it. The algebra, therefore, has a grade or ‘rank’ for its elements up to a maximum of n – the dimension of the underlying vector space. Element of a definite grade is called a blade and these elements make up distinct subspaces of the algebra and provide a more natural representation of various physical quantities. For two distinct vectors u and v in a in two dimensional vector space , we get

uv =  u i v j   e ^ i e ^ j , ij, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF1bGccqGHNis2jugibiaa=zhacaqGGaGaeyypa0Ja aeiiaiaadwhakmaaBaaaleaacaWGPbaabeaajugibiaaykW7caWG2b GcdaWgaaWcbaGaamOAaaqabaqcLbsacaqGGaGabmyzayaajaGcdaWg aaWcbaGaamyAaaqabaqcLbsacqGHNis2ceWGLbGbaKaakmaaBaaale aacaWGQbaabeaajugibiaacYcacaqGGaGaamyAaiabgcMi5kaadQga caGGSaaaaa@527F@  With orthonormal basis vectors  e ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaaaaa@39DB@

=  u 1 v 2   e ^ 1 e ^ 2 + u 2 v 1   e ^ 2 e ^ 1 = ( u 1 v 2 u 2 v 1 ) e ^ 1 e ^ 2 =  | u 1 u 2 v 1 v 2 | e ^ 1 e ^ 2 =uv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbsaqa aaaaaaaaWdbiabg2da9iaabccacaWG1bGcdaWgaaWcbaGaaGymaaqa baqcLbsacaWG2bGcdaWgaaWcbaGaaGOmaaqabaqcLbsacaqGGaGabm yzayaajaGcdaWgaaWcbaGaaGymaaqabaqcLbsacqGHNis2ceWGLbGb aKaakmaaBaaaleaacaaIYaaabeaajugibiabgUcaRiaadwhakmaaBa aaleaacaaIYaaabeaajugibiaadAhakmaaBaaaleaacaaIXaaabeaa jugibiaabccaceWGLbGbaKaakmaaBaaaleaacaaIYaaabeaajugibi abgEIizlqadwgagaqcaOWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyyp a0Jaaeiia8aadaqadaqaa8qacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaamODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadwhadaWgaaWc baGaaGOmaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcpaGaay jkaiaawMcaaKqzGeWdbiqadwgagaqcaOWaaSbaaSqaaiaaigdaaeqa aKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGOmaaqabaaake aacqGH9aqpcaqGGaGaaeiiamaaeeaabaWaaqGaaeaafaqabeGacaaa baGaamyDamaaBaaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaWcba GaaGOmaaqabaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGa amODamaaBaaaleaacaaIYaaabeaaaaaakiaawIa7aaGaay5bSdGaaG PaVNqzGeGabmyzayaajaGcdaWgaaWcbaGaaGymaaqabaGccaaMc8Ec LbsacqGHNis2ceWGLbGbaKaakmaaBaaaleaacaaIYaaabeaakiaayk W7cqGH9aqpcaaMc8UaeyOeI0IaaGPaVJqabKqzGeGaa8xDaOGaey4j IKDcLbsacaWF2baaaaa@8761@   (2)

The determinant gives the area of the parallelogram spanned by the two vectors u and v, i.e | u || v |sinθ,θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaaeaaieqajugibiaa=vhaaOGaay5bSlaawIa7aiaaykW7caaM c8+aaqWaaeaajugibiaa=zhaaOGaay5bSlaawIa7aiaaykW7ciGGZb GaaiyAaiaac6gacaaMc8occiGae4hUdeNaaiilaiaaykW7cqGF4oqC aaa@4F44@ . being the angle between the two vectors; whereas, e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaakiaaykW7jugi biabgEIizlqadwgagaqcaOWaaSbaaSqaaiaaikdaaeqaaaaa@3F66@  represents the single basis of the bivector – the highest grade multivector (of the exterior algebra v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4jIKTaamODaaaa@39D7@  in two dimensional v). The square-magnitude of the lone basis of the bivector being −1, it represents unit pseudoscalar or antiscalar in 2-D. The unit bivector e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaakiaaykW7jugi biabgEIizlqadwgagaqcaOWaaSbaaSqaaiaaikdaaeqaaaaa@3F66@ has the geometric effect of rotating the vectors e ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaaaaa@39A8@  and e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaaaaa@39A8@  in its own plane by π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@39B7@ clockwise when multiplying them on their left. It rotates vectors by π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacqaHapaCaeaacaaIYaaaaaaa@39B7@  anticlockwise when multiplying on their right. The orientation of the basis bivector e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaakiaaykW7jugi biabgEIizlqadwgagaqcaOWaaSbaaSqaaiaaikdaaeqaaaaa@3F66@ can be thought of as a ‘direction of circulation’ marked on the parallelogram, namely moving in the ê1 direction first and then moving in the ê2 direction.

Accordingly, in 3-D, v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4jIKTaamODaaaa@39D7@  has three bivector bases as:

uv= ( u 2 v 3 u 3 v 2 ) e ^ 2 e ^ 3 +( u 3 v 1 u v 1 3 ) e ^ 3 e ^ 1 +( u 1 v 2 u 2 v 1 ) e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF1bGccqGHNis2jugibiaa=zhacqGH9aqpcaqGGaGc daqadaqaaKqzGeGaamyDaOWaaSbaaSqaaiaaikdaaeqaaKqzGeGaam ODaOWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0scLbsacaWG1bGcdaWg aaWcbaGaaG4maaqabaqcLbsacaWG2bGcdaWgaaWcbaGaaGOmaaqaba aakiaawIcacaGLPaaajugibiqadwgagaqcaOWaaSbaaSqaaiaaikda aeqaaKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaG4maaqaba qcLbsacqGHRaWkkmaabmaabaqcLbsacaWG1bGcdaWgaaWcbaGaaG4m aaqabaqcLbsacaWG2bGcdaWgaaWcbaGaaGymaaqabaGccqGHsislju gibiaadwhakmaaBeaaleaacaaIXaaabeaajugibiaadAhakmaaBaaa leaacaaIZaaabeaaaOGaayjkaiaawMcaaiaaykW7caaMc8EcLbsace WGLbGbaKaakmaaBaaaleaacaaIZaaabeaakiaaykW7jugibiabgEIi zRGaaGPaVNqzGeGabmyzayaajaGcdaWgaaWcbaGaaGymaaqabaGcca aMc8Uaey4kaSIaaGPaV=aadaqadaqaa8qacaWG1bWaaSbaaSqaaiaa igdaaeqaaOGaamODamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadw hadaWgaaWcbaGaaGOmaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqa aaGcpaGaayjkaiaawMcaaKqzGeWdbiqadwgagaqcaOWaaSbaaSqaai aaigdaaeqaaKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGOm aaqabaaaaa@813B@

=| e ^ 2 e ^ 3 e ^ 3 e ^ 1 e ^ 1 e ^ 2 u 1 u 2 u 3 v 1 v 2 v 3 | =| u 1 u 2 v 1 v 2 | e ^ 1 e ^ 2 +| u 1 u 3 v 1 v 3 | e ^ 1 e ^ 3 +| u 2 u 3 v 2 v 3 | e ^ 2 e ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqGH9aqpdaabdaqaauaabeqadmaaaeaajugibiqadwgagaqc aOWaaSbaaSqaaiaaikdaaeqaaKqzGeGaey4jIKTabmyzayaajaGcda WgaaWcbaGaaG4maaqabaaakeaajugibiqadwgagaqcaOWaaSbaaSqa aiaaiodaaeqaaOGaaGPaVNqzGeGaey4jIKTccaaMc8EcLbsaceWGLb GbaKaakmaaBaaaleaacaaIXaaabeaaaOqaaKqzGeGabmyzayaajaGc daWgaaWcbaGaaGymaaqabaqcLbsacqGHNis2ceWGLbGbaKaakmaaBa aaleaacaaIYaaabeaaaOqaaKqzGeGaamyDaOWaaSraaSqaaiaaigda aeqaaaGcbaqcLbsacaWG1bGcdaWgaaWcbaGaaGOmaaqabaaakeaaju gibiaadwhakmaaBaaaleaacaaIZaaabeaaaOqaaKqzGeGaamODaOWa aSbaaSqaaiaaigdaaeqaaaGcbaqcLbsacaWG2bGcdaWgaaWcbaGaaG OmaaqabaaakeaajugibiaadAhakmaaBaaaleaacaaIZaaabeaaaaaa kiaawEa7caGLiWoaaeaacqGH9aqpdaabdaqaauaabeqaciaaaeaaju gibiaadwhakmaaBeaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaWc baGaaGOmaaqabaaakeaajugibiaadAhakmaaBaaaleaacaaIXaaabe aaaOqaaKqzGeGaamODaOWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay5b SlaawIa7aiaaykW7caaMc8EcLbsaceWGLbGbaKaakmaaBaaaleaaca aIXaaabeaajugibiabgEIizlqadwgagaqcaOWaaSbaaSqaaiaaikda aeqaaOGaaGPaVlabgUcaRiaaykW7daabdaqaauaabeqaciaaaeaaju gibiaadwhakmaaBeaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaWc baGaaG4maaqabaaakeaajugibiaadAhakmaaBaaaleaacaaIXaaabe aaaOqaaKqzGeGaamODaOWaaSbaaSqaaiaaiodaaeqaaaaaaOGaay5b SlaawIa7aiaaykW7jugibiqadwgagaqcaOWaaSbaaSqaaiaaigdaae qaaOGaaGPaVNqzGeGaey4jIKTccaaMc8EcLbsaceWGLbGbaKaakmaa BaaaleaacaaIZaaabeaakiaaykW7cqGHRaWkdaabdaqaauaabeqaci aaaeaajugibiaadwhakmaaBaaaleaacaaIYaaabeaaaOqaaiaadwha daWgaaWcbaGaaG4maaqabaaakeaajugibiaadAhakmaaBaaaleaaca aIYaaabeaaaOqaaKqzGeGaamODaOWaaSbaaSqaaiaaiodaaeqaaaaa aOGaay5bSlaawIa7aiaaykW7jugibiqadwgagaqcaOWaaSbaaSqaai aaikdaaeqaaKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaG4m aaqabaGccaaMc8oaaaa@AF4D@   (3)

Notice that the components of this bivector are the same as the components of the pseudovector given by the ‘cross product’ defined in 3-dimensional VA. These are actually the projected areas of the parallelogram on each of the three coordinate planes. The square root of the sum of the squares of its components, representing the area of the parallelogram spanned by the vectors u and v as it lies in the three-dimensional space. Clearly, the bivector produced by the wedge product of two vectors u and v represents their common plane. Usually, a general bivector is represented as: B =  B ij   e ^ i e ^ ; j  ij, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8Nqaiaa=bcacqGH9aqpcaqGGaGaamOqamaaBaaaleaacaWG PbGaamOAaaqabaGccaqGGaqcLbsaceWGLbGbaKaakmaaBaaaleaaca WGPbaabeaakiabgEIizNqzGeGabmyzayaajaGcdaWgbaWcbaGaamOA aaqabaGccaGG7aGaaeiiaKqzGeGaamyAaiabgcMi5kaadQgakiaacY caaaa@4B2D@ with B ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqamaaBaaaleaacaWGPbGaamOAaaqabaaaaa@39FE@  representing the components of the bivector. But, since e ^ i e ^ j = e ^ j e ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaakiabgEIizNqz GeGabmyzayaajaGcdaWgaaWcbaGaamOAaaqabaGccqGH9aqpcqGHsi sljugibiqadwgagaqcaOWaaSbaaSqaaiaadQgaaeqaaOGaey4jIKDc LbsaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaakiaacYcaaaa@480B@ actually only three components ( B ij B ji ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaakiabgkHi TiaaykW7caWGcbWaaSbaaSqaaiaadQgacaWGPbaabeaaaOGaayjkai aawMcaaaaa@40E3@ of the bivector are independent in 3-D. Subsequently we will learn further, how bivectors are used to generate rotations and the number of independent bivector bases in any dimension gives the number of rotational degrees of freedom. Finally, ΛV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaamOvaaaa@397E@  has one additional trivector basis  in 3-D and this highest grade element is given by:

uvw = u 1 ( v 2 w 3 v 3 w 2 )  e ^ 1 e ^ 2 e ^ 3 +  u 2 ( v 3 w 1 v 1 w 3 )  e ^ 2 e ^ 3 e ^ 1 + u 3 ( v 1 w 2 v 2 w 1 ) e ^ 3 e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeqcLb saqaaaaaaaaaWdbiaa=vhakiabgEIizNqzGeGaa8NDaOGaey4jIKTa am4DaiaabccacqGH9aqpcaWG1bWaaSbaaSqaaiaaigdaaeqaaOWdam aabmaabaWdbiaadAhadaWgaaWcbaGaaGOmaaqabaGccaWG3bWaaSba aSqaaiaaiodaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIZaaabe aakiaadEhadaWgaaWcbaGaaGOmaaqabaaak8aacaGLOaGaayzkaaWd biaabccajugibiqadwgagaqcaOWaaSbaaSqaaiaaigdaaeqaaKqzGe Gaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGOmaaqabaGccaaMc8Ec LbsacqGHNis2kiaaykW7jugibiqadwgagaqcaOWaaSbaaSqaaiaaio daaeqaaOGaey4kaSIaaeiiaiaadwhadaWgaaWcbaGaaGOmaaqabaGc paWaaeWaaeaapeGaamODamaaBaaaleaacaaIZaaabeaakiaadEhada WgaaWcbaGaaGymaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaaigda aeqaaOGaam4DamaaBaaaleaacaaIZaaabeaaaOWdaiaawIcacaGLPa aapeGaaeiiaaqaaKqzGeGabmyzayaajaGcdaWgaaWcbaGaaGOmaaqa baGccaaMc8EcLbsacqGHNis2kiaaykW7jugibiqadwgagaqcaOWaaS baaSqaaiaaiodaaeqaaKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaaiodaaeqaaO WdamaabmaabaWdbiaadAhadaWgaaWcbaGaaGymaaqabaGccaWG3bWa aSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaaIYa aabeaakiaadEhadaWgaaWcbaGaaGymaaqabaaak8aacaGLOaGaayzk aaGaaGPaVNqzGeWdbiqadwgagaqcaOWaaSbaaSqaaiaaiodaaeqaaK qzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGymaaqabaGccaaM c8EcLbsacqGHNis2ceWGLbGbaKaakmaaBaaaleaacaaIYaaabeaaki aaykW7aaaa@95AE@

=| u 1 u 2 u 3 v 1 v 2 v 3 w 1 w 2 w 3 | e ^ 1 e ^ 2 e ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0ZaaqWaaeaafaqabeWadaaabaqcLbsacaWG1bGcdaWgbaWc baGaaGymaaqabaaakeaajugibiaadwhakmaaBaaaleaacaaIYaaabe aaaOqaaKqzGeGaamyDaOWaaSbaaSqaaiaaiodaaeqaaaGcbaqcLbsa caWG2bGcdaWgaaWcbaGaaGymaaqabaaakeaajugibiaadAhakmaaBa aaleaacaaIYaaabeaaaOqaaKqzGeGaamODaOWaaSbaaSqaaiaaioda aeqaaaGcbaqcLbsacaWG3bGcdaWgaaWcbaGaaGymaaqabaaakeaaju gibiaadEhakmaaBaaaleaacaaIYaaabeaaaOqaaKqzGeGaam4DaOWa aSbaaSqaaiaaiodaaeqaaaaaaOGaay5bSlaawIa7aiaaykW7jugibi qadwgagaqcaOWaaSbaaSqaaiaaigdaaeqaaKqzGeGaey4jIKTabmyz ayaajaGcdaWgaaWcbaGaaGOmaaqabaGccaaMc8EcLbsacqGHNis2ki aaykW7jugibiqadwgagaqcaOWaaSbaaSqaaiaaiodaaeqaaaaa@6235@

Produces a pseudoscalar in (3-D) exterior algebra. The determinant gives the volume of the parallelepiped spanned by the three vectors u, v and w (the scalar triple product of the vectors in VA) and e ^ 1 e ^ 2 e ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaajugibiabgEIi zlqadwgagaqcaOWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVNqzGeGaey 4jIKTccaaMc8EcLbsaceWGLbGbaKaakmaaBaaaleaacaaIZaaabeaa aaa@45B4@ represents the unit pseudoscalar. It may be noted that e ^ i e ^ j e ^ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaajugibiabgEIi zlqadwgagaqcaOWaaSbaaSqaaiaadQgaaeqaaOGaaGPaVNqzGeGaey 4jIKTccaaMc8EcLbsaceWGLbGbaKaakmaaBaaaleaacaWGRbaabeaa kiaaykW7aaa@47E2@ provides a representation of the Levi-Civita index ϵ ijk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWF1pG8 daWgaaWcbaGaamyAaiaadQgacaWGRbaabeaaaaa@4620@ . In higher dimensional ( n > 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaaeiiaiabg6da+iaabccacaaIZaaapaGaayjk aiaawMcaaaaa@3CC4@ spaces, the components of a trivector are the projections of the volume of a parallelepiped onto the coordinate three-spaces, as it is oriented in a higher n-dimensional space. The wedge or exterior product (also called progressive in projective geometry) ‘joins’ or ‘expands’ the subspaces to form an upgraded subspace.

After introducing the exterior product, Grassmann5 has also introduced the dot or inner product of two vectors, defined similarly as incorporated in ordinary vector algebra (VA) but, always to be carried out first in a sequence, i.e u·vw( u·v )w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF1bGccaGG3cGaaGPaVNqzGeGaa8NDaOGaey4jIKTa a83DaiabggMi6+aadaqadaqaaKqzGeWdbiaa=vhakiaacElacaaMc8 EcLbsacaWF2baak8aacaGLOaGaayzkaaWdbiaa=Dhaaaa@4A2E@ . For any arbitrary vector v and any bivector B: v.B =  v i   e ^ i .  B jk   e ^ j e ^ k =  v i   B ik   e ^ k v i   B ji   e ^ j =  v i ( B ij B ji )  e ^ j ( ij ),=B.v=v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF2bGccaGGUaGaa8NqaiaabccacqGH9aqpcaqGGaGa amODamaaBaaaleaacaWGPbaabeaakiaabccajugibiqadwgagaqcaO WaaSbaaSqaaiaadMgaaeqaaOGaaiOlaiaabccacaWGcbWaaSbaaSqa aiaadQgacaWGRbaabeaakiaabccajugibiqadwgagaqcaOWaaSbaaS qaaiaadQgaaeqaaKqzGeGaey4jIKTccaaMc8EcLbsaceWGLbGbaKaa kmaaBaaaleaacaWGRbaabeaakiaaykW7cqGH9aqpcaqGGaGaamODam aaBaaaleaacaWGPbaabeaakiaabccacaWGcbWaaSbaaSqaaiaadMga caWGRbaabeaakiaabccajugibiqadwgagaqcaOWaaSbaaSqaaiaadU gaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaWGPbaabeaakiaabcca caWGcbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaabccajugibiqadw gagaqcaOWaaSbaaSqaaiaadQgaaeqaaOGaeyypa0JaaeiiaiaadAha daWgaaWcbaGaamyAaaqabaGcpaWaaeWaaeaapeGaamOqamaaBaaale aacaWGPbGaamOAaaqabaGccqGHsislcaWGcbWaaSbaaSqaaiaadQga caWGPbaabeaaaOWdaiaawIcacaGLPaaapeGaaeiiaKqzGeGabmyzay aajaGcdaWgaaWcbaGaamOAaaqabaGccaaMc8+aaeWaaeaajugibiaa dMgacqGHGjsUcaWGQbaakiaawIcacaGLPaaacaGGSaGaeyypa0Jaey OeI0Iaa8Nqaiaac6cajugibiaa=zhakiabg2da9KqzGeGaa8NDaOGa eyOmGiQaaeiiaiaacYcaaaa@880B@  a new vector.

Also, vB= υ i e ^ i B jk   e ^ j e ^ k =  υ i B jk   e ^ k e ^ j e ^ k =Bv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWF2bGaey4jIKTccaWFcbGaeyypa0JaeqyXdu3aaSba aSqaaiaadMgaaeqaaOGaaGPaVNqzGeGabmyzayaajaGcdaWgaaWcba GaamyAaaqabaGccqGHNis2caWGcbWaaSbaaSqaaiaadQgacaWGRbaa beaakiaabccajugibiqadwgagaqcaOWaaSbaaSqaaiaadQgaaeqaaK qzGeGaey4jIKTccaaMc8EcLbsaceWGLbGbaKaakmaaBaaaleaacaWG Rbaabeaakiabg2da9iaabccacqaHfpqDdaWgaaWcbaGaamyAaaqaba GccaaMc8UaamOqamaaBaaaleaacaWGQbGaam4AaaqabaGccaqGGaqc LbsaceWGLbGbaKaakmaaBaaaleaacaWGRbaabeaajugibiabgEIizl qadwgagaqcaOWaaSbaaSqaaiaadQgaaeqaaKqzGeGaey4jIKTabmyz ayaajaGcdaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWFcbGaey4jIK DcLbsacaWF2baaaa@6BDD@ –a trivector [2, 3]. The notion of inner product in exterior algebra will be discussed further subsequently.

By definition the wedge product implies closure property. For example, a bivector v 1 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWg aaWcbaGaaGOmaaqabaaaaa@3CAB@ in two dimensions and a trivector v 1 v 2 v 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWg aaWcbaGaaGOmaaqabaGccqGHNis2caWF2bWaaSbaaSqaaiaaiodaae qaaaaa@4043@ in three dimensions, both having only one component each that flips sign under reflection, represent the highest grade element and pseudoscalar of the respective dimensions. But a trivector v 1 v 2 v 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWg aaWcbaGaaGOmaaqabaGccqGHNis2caWF2bWaaSbaaSqaaiaaiodaae qaaaaa@4043@  in 2-D and a quadrivector v 1 v 2 v 3 v 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWg aaWcbaGaaGOmaaqabaGccqGHNis2caWF2bWaaSbaaSqaaiaaiodaae qaaOGaaGPaVlabgEIizlaa=zhadaWgaaWcbaGaaGinaaqabaaaaa@4567@ in 3-D collapse back down to scalar zero so as to prevent construction of any element of grade higher than the dimensionality of the space. The wedge product is, by definition, associative in the sense: v 1 ( v 2 v 3 )=( v 1 v 2 ) v 3 =  v 1 v 2 v 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizpaabmaabaGa a8NDamaaBaaaleaacaaIYaaabeaakiabgEIizlaa=zhadaWgaaWcba GaaG4maaqabaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaa=zha daWgaaWcbaGaaGymaaqabaGccqGHNis2caWF2bWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaGaey4jIKTaa8NDamaaBaaaleaacaaI Zaaabeaakiabg2da9iaabccacaWF2bWaaSbaaSqaaiaaigdaaeqaaO Gaey4jIKTaa8NDamaaBaaaleaacaaIYaaabeaakiabgEIizlaa=zha daWgaaWcbaGaaG4maaqabaGccaGGUaaaaa@58EE@

In higher dimensions, one can accordingly define quadrivector, pentavector etc. by taking wedge product among four, five or more vectors and in general, with k( <n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGcdaqadaqaaKqzGeGaeyipaWJaamOBaaGccaGLOaGa ayzkaaaaaa@3CD0@  vectors a ‘k-blade’ may be formed. Thus, each dimension is accordingly represented in exterior algebra. In the reduced form any k-fold k( <n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGcdaqadaqaaKqzGeGaeyipaWJaamOBaaGccaGLOaGa ayzkaaaaaa@3CD0@  wedge product can be expressed as:

v 1 v 2 ...  v k  = i 1 =1 n ν 1 i 1   e ^ i 1   i 2 =1 n v 2 i 2 e ^ i 2 ... i k =1 n v k i k e ^ i k   i 1 < i 2 ...< i k ( 1 ) γ ν 1 i 1 v 2 i 2 ...  v k i k e ^ i 1 e ^ i 2 ... e ^ i k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWF2bWaaSbaaSqaaiaaigdaaeqaaOGaey4jIKTaa8ND amaaBaaaleaacaaIYaaabeaakiabgEIizlaac6cacaGGUaGaaiOlai aabccacqGHNis2caWF2bWaaSbaaSqaaiaadUgaaeqaaOGaaeiiaiab g2da9iaaykW7caaMc8+aaabCaeaacqaH9oGBdaWgaaWcbaGaaGymam aaBaaameaacaWGPbaabeaalmaaBaaameaadaWgaaqaaiaaigdaaeqa aaqabaaaleqaaaqaaiaadMgadaWgaaadbaGaaGymaaqabaWccqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aOGaaeiiaKqzGeGabmyzayaa jaGcdaWgaaWcbaGaamyAamaaBaaameaacaaIXaaabeaaaSqabaGcca qGGaWaaabCaeaacaWG2bWaaSbaaSqaaiaaikdadaWgaaadbaGaamyA amaaBaaabaGaaGOmaaqabaaabeaaaSqabaqcLbsaceWGLbGbaKaakm aaBaaaleaacaWGPbWaaSbaaWqaaiaaikdaaeqaaaWcbeaakiaac6ca caGGUaGaaiOlaiabgEIizlaaykW7daaeWbqaaiaadAhadaWgaaWcba Gaam4AamaaBaaameaacaWGPbWaaSbaaeaacaWGRbaabeaaaeqaaaWc beaajugibiqadwgagaqcaOWaaSbaaSqaaiaadMgadaWgaaadbaGaam 4AaaqabaaaleqaaOGaaeiiaaWcbaGaamyAamaaBaaameaacaWGRbaa beaaliabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaleaacaWGPb WaaSbaaWqaaiaaikdaaeqaaSGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoaaOqaamaaqafabaWdamaabmaabaWdbiabgkHiTiaaigdaa8 aacaGLOaGaayzkaaWdbmaaCaaaleqabaGaeq4SdCgaaOGaeqyVd42a aSbaaSqaaiaaigdadaWgaaadbaGaamyAaaqabaWcdaWgaaadbaWaaS baaeaacaaIXaaabeaaaeqaaaWcbeaakiaadAhadaWgaaWcbaGaaGOm amaaBaaameaacaWGPbWaaSbaaeaacaaIYaaabeaaaeqaaaWcbeaaki aac6cacaGGUaGaaiOlaiaabccacaWG2bWaaSbaaSqaaiaadUgadaWg aaadbaGaamyAamaaBaaabaGaam4AaaqabaaabeaaaSqabaqcLbsace WGLbGbaKaakmaaBaaaleaacaWGPbWaaSbaaWqaaiaaigdaaeqaaaWc beaakiabgEIizNqzGeGabmyzayaajaGcdaWgaaWcbaGaamyAamaaBa aameaacaaIYaaabeaaaSqabaGccaGGUaGaaiOlaiaac6cacqGHNis2 jugibiqadwgagaqcaOWaaSbaaSqaaiaadMgadaWgaaadbaGaam4Aaa qabaaaleqaaOGaaiilaaWcbaGaamyAamaaBaaameaacaaIXaaabeaa liabgYda8iaadMgadaWgaaadbaGaaGOmaaqabaWccaGGUaGaaiOlai aac6cacqGH8aapcaWGPbWaaSbaaWqaaiaadUgaaeqaaaWcbeqdcqGH ris5aaaaaa@B081@   (5)

where γ denotes the number of transpositions required to obtain  i 1 < i 2 ...< i k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabMgadaWgaa WcbaGaaeymaaqabaGccaaMc8UaaeipaiaaykW7caqGPbWaaSbaaSqa aiaabkdaaeqaaOGaaeOlaiaab6cacaqGUaGaaGPaVlaaykW7caqG8a GaaGPaVlaabMgadaWgaaWcbaGaae4AaaqabaGccaqGUaaaaa@48C4@

The wedge product thus, provides a natural extension to higher dimensions ( n>3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOpa4JaaG4maaWdaiaawIcacaGLPaaaaaa@3B7E@ and the product of any number k( <n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGcdaqadaqaaKqzGeGaeyipaWJaamOBaaGccaGLOaGa ayzkaaaaaa@3CD0@ of independent vectors is usually called simple multivector blade of grade k or a simple k-blade in short. It lives in a geometrical space known as the k-th exterior power. The magnitude of the resulting k-blade is the volume of the k-dimensional parallelotope (a generalisation of the parallelepiped in higher dimensions). According to this terminology for the elements of the algebra, a scalar is of grade zero, a vector has grade 1, bivector has grade 2 and a trivector is assigned grade 3 etc. In n dimensions, both vectors and ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C5E@ blades have n components and the ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C5E@ blades are called antivectors or pseudovectors.

Finally following eq.(5), the n-fold wedge product ( k=n )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGRbGaeyypa0JaamOBaaWdaiaawIcacaGLPaaapeGa aeiiaaaa@3C62@ in V n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaCaaaleqabaGaamOBaaaaaaa@3929@ is given by:

v 1 v 2 ... v n | v 11 v 12 ... v 1n v 21 v 22 ... v 2n ... ... ... ... v n1 v n2 ... v nn | e ^ 1 e ^ 2 ... e ^ n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWg aaWcbaGaaGOmaaqabaGccqGHNis2caGGUaGaaiOlaiaac6cacqGHNi s2caWF2bWaaSbaaSqaaiaad6gaaeqaaOWaaqWaaeaafaqabeabeaaa aaqaaiaadAhadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamODam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaGGUaGaaiOlaiaac6ca aeaacaWG2bWaaSraaSqaaiaaigdacaWGUbaabeaaaOqaaiaadAhada WgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamODamaaBaaaleaacaaI YaGaaGOmaaqabaaakeaacaGGUaGaaiOlaiaac6caaeaacaWG2bWaaS raaSqaaiaaikdacaWGUbaabeaaaOqaaiaac6cacaGGUaGaaiOlaaqa aiaac6cacaGGUaGaaiOlaaqaaiaac6cacaGGUaGaaiOlaaqaaiaac6 cacaGGUaGaaiOlaaqaaiaadAhadaWgaaWcbaGaamOBaiaaigdaaeqa aaGcbaGaamODamaaBaaaleaacaWGUbGaaGOmaaqabaaakeaacaGGUa GaaiOlaiaac6caaeaacaWG2bWaaSbaaSqaaiaad6gacaWGUbaabeaa aaaakiaawEa7caGLiWoajugibiqadwgagaqcaOWaaSbaaSqaaiaaig daaeqaaKqzGeGaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGOmaaqa baGccaGGUaGaaiOlaiaac6cajugibiabgEIizRGaaGPaVNqzGeGabm yzayaajaGcdaWgaaWcbaGaamOBaaqabaGccaGGUaaaaa@7F5D@   (6)

The determinant ( Δ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqqHuoara8aacaGLOaGaayzkaaaaaa@3A2C@ , obtained from the n components of each of the n vectors gives the volume of the n-parallelotope in the n-dimensional vector space and the lone component of the highest n-grade element of this algebra. Evidently from the expression (eq.6), it flips sign under reflection – hence follows the name pseudoscalar (or antiscalar).

For a k-blade and an ( nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0Iaam4AaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C93@ blade, the number of basis elements, given by the binomial coefficients ( n k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaaMc8Ebaeqabiqaaaqaaiaad6gaaeaacaWGRbaaaaGa ayjkaiaawMcaaaaa@3C32@  and ( n nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaaMc8Ebaeqabiqaaaqaaiaad6gaaeaacaWGUbGaeyOe I0Iaam4AaaaaaiaawIcacaGLPaaaaaa@3E12@  respectively, are the same. This produces an exact symmetry and the total number of ‘multivector’ basis elements is given by:

k=0 n ( n k )  = 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7qaaaaa aaaaWdbmaaqahabaWaaeWaaeaacaaMc8Ebaeqabiqaaaqaaiaad6ga aeaacaWGRbaaaaGaayjkaiaawMcaaaWcbaGaam4Aaiabg2da9iaaic daaeaacaWGUbaaniabggHiLdGccaqGGaGaeyypa0JaaGOmamaaCaaa leqabaGaamOBaaaaaaa@4731@

Whereas VA deals with scalars and vectors only, the wedge product expands the vector space with the subspaces of multivector blades of all grades from 0 to n which contain a total of 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmamaaCaaaleqabaGaamOBaaaaaaa@390A@  basis elements. Thus, the grade structure of exterior algebra follows the pattern of so called Pascal’s triangle. For any two blades A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ , which are of grade p and r respectively, it simply follows that, the grade of A p A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiabgEIizlaa=feadaWg aaWcbaGaamOCaaqabaaaaa@3CB6@ will be p+r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabgUcaRiaadkhaaaa@39FC@  (unless the product happens to be zero, in which case its grade is zero). Finally, the further expanded Clifford space of GA using the geometric product contains all the 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmamaaCaaaleqabaGaamOBaaaaaaa@390A@  basis elements plus any arbitrary linear sum over the basis elements, the so called clif.

Dot product of two vectors produces a scalar, and hence the name scalar product in VA. In tensor algebra, this product is termed as inner product or contraction which reduces the total rank by 2 and the product is not always a scalar. For the higher rank tensors, it is extended with the provision of multiple inner products or contractions, producing different lower rank tensors in addition to scalars. Similarly, the exterior algebra also creates the possibility of accommodating multiple inner products or contractions of two multivector blades. For example, with A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A r ( r>p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaak8aadaqadaqaa8qacaWG YbGaeyOpa4JaamiCaaWdaiaawIcacaGLPaaaaaa@3DD0@ one can get p multivector blades of all grades from rp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgkHiTiaadchaaaa@3A07@  to r+p2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgUcaRiaadchacqGHsislcaaIYaaaaa@3BA5@ in steps of +2. In fact, the geometric product between A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ is defined to contain all these ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGWbaapaGaayjkaiaawMcaaaaa@39BB@  terms in addition to the highest grade ( p+r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaWGWbGaey4kaSIaamOCaaGaayjkaiaawMcaaaaa@3B85@ term from the wedge product. For p=r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9iaadkhaaaa@3A20@ , the full contraction, producing the lowest 0 grade scalar element, is obviously symmetric. The symmetry of the successive higher blades alternate. Both exterior and inner products have definite symmetries. The symmetries depend on the grades (p and r) of the multiplicative blades and for inner products also on the number of contractions q (say). For example, A p A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiabgEIizlaa=feadaWg aaWcbaGaamOCaaqabaaaaa@3CB6@ is antisymmetric if both are odd, otherwise it is symmetric. Finally, we note that the symmetry of both the inner products and the exterior product between A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ may be represented by the overall sign factor obtained by reversing (the operation reversion to be defined in the next section) the two multiplicand blades and the product blade of grade ( r+p2q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGYbGaey4kaSIaamiCaiabgkHiTiaaikdacaWGXbaa paGaayjkaiaawMcaaaaa@3E33@ , given by: ( 1 ) r( r1 )/2   ( 1 ) p( p1 )/2   ( 1 ) ( r+p2q ) ( r+p2q1 )/2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWc beqaaiaadkhapaWaaeWaaeaapeGaamOCaiabgkHiTiaaigdaa8aaca GLOaGaayzkaaWdbiaac+cacaaIYaaaaOGaaeiia8aadaqadaqaa8qa cqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWcbeqaaiaadc hapaWaaeWaaeaapeGaamiCaiabgkHiTiaaigdaa8aacaGLOaGaayzk aaWdbiaac+cacaaIYaaaaOGaaeiia8aadaqadaqaa8qacqGHsislca aIXaaapaGaayjkaiaawMcaa8qadaahaaWcbeqaa8aadaqadaqaa8qa caWGYbGaey4kaSIaamiCaiabgkHiTiaaikdacaWGXbaapaGaayjkai aawMcaaaaak8qadaahaaWcbeqaa8aadaqadaqaa8qacaWGYbGaey4k aSIaamiCaiabgkHiTiaaikdacaWGXbGaeyOeI0IaaGymaaWdaiaawI cacaGLPaaapeGaai4laiaaikdapaGaaGPaVdaak8qacaqGUaaaaa@64EC@ This sign factor also reproduce correctly the symmetry of two extreme cases: (i) with q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaiabg2da9iaaicdaaaa@39E4@ , wedge product of the two blades; and (ii) the symmetric zero (lowest) grade scalar with p=r=q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9iaadkhacqGH9aqpcaWGXbaaaa@3C1C@ . The results can be directly verified with the various products of the higher grade elements, derived explicitly following the multiplication rules of exterior algebra in.3 The symmetry argument will be discussed again in connection with the geometric product.

Since the wedge product between a k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabgkHiTaaa@390B@  and ( nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0Iaam4AaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C93@ an blade (in n dimensional space) is a pseudoscalar and the number of basis elements of the two blades are same, they constitute dual form. Inner product (contractions) with unit pseudoscalar in establishes a one-to-one mapping from the k-blade basis space to the ( nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0Iaam4AaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C93@  blade basis space and vice-versa. Grassmann algebra thus introduces the important concept of dual form. Each element of the algebra has its dual. For example the dual of a vector (in n-dimension) is the blades ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C5E@  the wedge product of the rest ( n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaaaaa@3B61@ vectors that are orthogonal to it. In 3-D, the duals of the three unit vectors e ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaaaaa@39A8@ , e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaaaaa@39A8@  and e ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaaIZaaabeaaaaa@39AA@  are respectively: I 3 . e ^ 1 = e ^ 1 e ^ 2 e ^ 3 . e ^ 1 = e ^ 2 e ^ 3 ,  I 3 . e ^ 2 = e ^ 1 e ^ 2 e ^ 3 . e ^ 2 = e ^ 3 e ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaaIZaaabeaakiaac6cajugibiqadwgagaqc aOWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0tcLbsaceWGLbGbaKaakm aaBaaaleaacaaIXaaabeaajugibiabgEIizlqadwgagaqcaOWaaSba aSqaaiaaikdaaeqaaOGaaGPaVNqzGeGaey4jIKTccaaMc8EcLbsace WGLbGbaKaakmaaBaaaleaacaaIZaaabeaakiaac6cajugibiqadwga gaqcaOWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0tcLbsaceWGLbGbaK aakmaaBaaaleaacaaIYaaabeaakiaaykW7jugibiabgEIizRGaaGPa VNqzGeGabmyzayaajaGcdaWgaaWcbaGaaG4maaqabaGccaGGSaGaae iiaiaadMeadaWgaaWcbaGaaG4maaqabaGccaGGUaqcLbsaceWGLbGb aKaakmaaBaaaleaacaaIYaaabeaakiabg2da9KqzGeGabmyzayaaja GcdaWgaaWcbaGaaGymaaqabaqcLbsacqGHNis2ceWGLbGbaKaakmaa BaaaleaacaaIYaaabeaakiaaykW7jugibiabgEIizRGaaGPaVNqzGe GabmyzayaajaGcdaWgaaWcbaGaaG4maaqabaGccaGGUaqcLbsaceWG LbGbaKaakmaaBaaaleaacaaIYaaabeaakiabg2da9KqzGeGabmyzay aajaGcdaWgaaWcbaGaaG4maaqabaGccqGHNis2jugibiqadwgagaqc aOWaaSbaaSqaaiaaigdaaeqaaaaa@7B2B@  and I 3 . e ^ 3 = e ^ 1 e ^ 2 e ^ 3 . e ^ 3 = e ^ 1 e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaaIZaaabeaakiaac6cajugibiqadwgagaqc aOWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0tcLbsaceWGLbGbaKaakm aaBaaaleaacaaIXaaabeaajugibiabgEIizlqadwgagaqcaOWaaSba aSqaaiaaikdaaeqaaOGaaGPaVNqzGeGaey4jIKTccaaMc8EcLbsace WGLbGbaKaakmaaBaaaleaacaaIZaaabeaakiaac6cajugibiqadwga gaqcaOWaaSbaaSqaaiaaiodaaeqaaOGaeyypa0tcLbsaceWGLbGbaK aakmaaBaaaleaacaaIXaaabeaajugibiabgEIizlqadwgagaqcaOWa aSbaaSqaaiaaikdaaeqaaOGaaGPaVlaacobiaaa@58EA@ the three independent unit bivectors. Similarly, a k-blade has an ( nk ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyOeI0Iaam4AaaWdaiaawIcacaGLPaaapeGa eyOeI0caaa@3C93@ blade as its dual. Pseudoscalar, the highest-grade element of the algebra i.e. the n-blade is the dual of the lowest zero-grade element scalar. The study of dual spaces states that the pseudoscalar plays the role that the scalar does in normal space. The dual of a scalar, which has no spatial extent, is the pseudoscalar, which has all the spatial extent (volume of the parallelotope in n-dimensions).

The computation of the square of the pseudoscalar I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ is given by: I n 2 =( e ^ 1 e ^ 2 ... e ^ n )( e ^ 1 e ^ 2 .. e ^ n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabg2da98aadaqa daqaaKqzGeWdbiqadwgagaqcaOWaaSbaaSqaaiaaigdaaeqaaKqzGe Gaey4jIKTabmyzayaajaGcdaWgaaWcbaGaaGOmaaqabaGccaaMc8Ec LbsacqGHNis2kiaac6cacaGGUaGaaiOlaiabgEIizNqzGeGabmyzay aajaGcdaWgaaWcbaGaamOBaaqabaaak8aacaGLOaGaayzkaaWaaeWa aeaajugib8qaceWGLbGbaKaakmaaBaaaleaacaaIXaaabeaajugibi abgEIizlqadwgagaqcaOWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVNqz GeGaey4jIKTccaGGUaGaaiOlaiabgEIizNqzGeGabmyzayaajaGcda WgaaWcbaGaamOBaaqabaaak8aacaGLOaGaayzkaaWdbiaacYcaaaa@6053@ one can either reverse the order of the second group or apply a perfect shuffle, both require ( n1 )n/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGPaV=aadaqadaqaa8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIca caGLPaaapeGaamOBaiaac+cacaaIYaaaaa@3F7D@ swaps and yielding the sign factor (-1)n(n-1)/2, which is 4-periodic, and combined with e ^ i · e ^ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaakiaacElacaaM c8EcLbsaceWGLbGbaKaakmaaBaaaleaacaWGPbaabeaaaaa@3F58@ the square is given by I n 2 =±1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabg2da9iabggla Xkaaigdaaaa@3D91@ . So, I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ is invertible and the inverse I n 1 =  e ^ n e ^ n1 ... e ^ 1 =( 1 ) ( n1 ) n/2  I n =± I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaakmaaCaaaleqabaGaeyOeI0Ia aGymaaaakiabg2da9iaabccajugibiqadwgagaqcaOWaaSbaaSqaai aad6gaaeqaaOGaey4jIKDcLbsaceWGLbGbaKaakmaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaGccqGHNis2caGGUaGaaiOlaiaac6cacq GHNis2jugibiqadwgagaqcaOWaaSbaaSqaaiaaigdaaeqaaOGaeyyp a0ZdamaabmaabaWdbiabgkHiTiaaigdaa8aacaGLOaGaayzkaaWaae WaaeaapeGaamOBaiabgkHiTiaaigdaa8aacaGLOaGaayzkaaWdbmaa CaaaleqabaGaamOBaiaac+cacaaIYaGaaeiiaiaadMeadaWgaaadba GaamOBaaqabaaaaOGaeyypa0JaeyySaeRaaGPaVlaadMeadaWgaaWc baGaamOBaaqabaaaaa@61BF@  (the general definition of the inverse of an invertible r-blade will be discussed subsequently).

Physical quantities like angular velocity, angular momentum, torque in a force field and the magnetic induction field B at a point due to a current-element (given according to Biot-Savart law by the cross-product of the field producing vectorial current-element with the position vector of the point) and vorticity W in fluid motion, usually represented by pseudovectors of classical Gibbs-Heaviside VA, are properly represented by bivectors defined in Grassman algebra.2 Exterior algebra also clarifies the origin of imaginary of complex numbers with the identification to unit bivector basis e i e j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaBaaaleaacaWGPbaabeaakiabgEIizlaadwgadaWgaaWc baGaamOAaaqabaaaaa@3CEF@ and provides a representation of the Levi-Civita index ϵ ijk... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWF1pG8 daWgaaWcbaGaamyAaiaadQgacaWGRbGaaiOlaiaac6cacaGGUaaabe aaaaa@4836@ by dual of unit pseudoscalars of three and higher dimensions.2 It also introduces the notion of dual space and dual form with proper definition of the pseudoscalar, and above all,  forms the basis of GA.

Quaternion algebra of hamilton: While investigating a higher dimensional generalization of the complex numbers, Hamilton in 1843 has developed the first noncommutative algebra  the quaternion algebra. In analogy with the imaginary i of two component complex number, he introduced the basic unit triplet q 1 ,  q 2 ,  q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaaIXaaabeaakiaacYcacaqGGaGaamyCamaa BaaaleaacaaIYaaabeaakiaacYcacaqGGaGaamyCamaaBaaaleaaca aIZaaabeaakiaacobiaaa@4043@ 33all square roots of -1, representing the set ( S 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGtbWaaWbaaSqabeaacaaIZaaaaaGcpaGaayjkaiaa wMcaaiaaykW7aaa@3C1D@ of unit quaternions, to define the 4-component ( a 0 ,  a 1 ,  a 2 ,  a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaabcca caWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaabccacaWGHbWaaS baaSqaaiaaikdaaeqaaOGaaiilaiaabccacaWGHbWaaSbaaSqaaiaa iodaaeqaaaGcpaGaayjkaiaawMcaaaaa@441D@ quaternion a as:

a= a 0 + q kak , k=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9iaadggadaWgaaWcbaGaaGimaaqabaGccqGHRaWk caWGXbWaaSbaaSqaaiaadUgacaWGHbGaam4AaaqabaGccaGGSaGaae iiaiaadUgacqGH9aqpcaaIXaGaaiilaiaaykW7caaMc8UaaGOmaiaa cYcacaaMc8UaaG4maaaa@4B42@   (7)

and enunciated the fundamental equation (multiplication rule) of quaternion algebra:

q k q l = δ kl + ϵ klm q m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGRbaabeaakiaadghadaWgaaWcbaGaamiB aaqabaGccqGH9aqpcqGHsislcqaH0oazdaWgaaWcbaGaam4AaiaadY gaaeqaaOGaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWF1pG8daWgaaWcbaGaam4AaiaadYgacaWGTbaabeaaki aadghadaWgaaWcbaGaamyBaaqabaaaaa@530E@   (8)

If a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIWaaabeaaaaa@38FA@ is zero, then a is called a ‘pure quaternion’.

The conjugate of a is defined as a = a 0 q k a k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaCaaaleqabaGaey4fIOcaaOGaeyypa0JaamyyamaaBaaa leaacaaIWaaabeaakiabgkHiTiaadghadaWgaaWcbaGaam4Aaaqaba GccaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaaGPaVdaa@42B6@ and from this definition we immediately have ( a ) = a 0 ( q k a k )=a;  a 0 =( a+ a )/2,  q k a k =( a a )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGHbWaaWbaaSqabeaacqGHxiIkaaaak8aacaGLOaGa ayzkaaWdbmaaCaaaleqabaGaey4fIOcaaOGaeyypa0JaamyyamaaBa aaleaacaaIWaaabeaakiabgkHiT8aadaqadaqaa8qacqGHsislcaWG XbWaaSbaaSqaaiaadUgaaeqaaOGaamyyamaaBaaaleaacaWGRbaabe aaaOWdaiaawIcacaGLPaaapeGaeyypa0JaamyyaiaacUdacaqGGaGa amyyamaaBaaaleaacaaIWaaabeaakiabg2da98aadaqadaqaa8qaca WGHbGaey4kaSIaamyyamaaCaaaleqabaGaey4fIOcaaaGcpaGaayjk aiaawMcaa8qacaGGVaGaaGOmaiaacYcacaqGGaGaamyCamaaBaaale aacaWGRbaabeaakiaadggadaWgaaWcbaGaam4AaaqabaGccqGH9aqp paWaaeWaaeaapeGaamyyaiabgkHiTiaadggadaahaaWcbeqaaiabgE HiQaaaaOWdaiaawIcacaGLPaaapeGaai4laiaaikdaaaa@6177@ . Also, using the fundamental multiplication rule (eq.8), we get:

a a=( a 0 q k a k )( a 0 + q l a l )= a 0 2 + a 1 2 + a 2 2 + a 3 2 =a a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaCaaaleqabaGaey4fIOcaaOGaamyyaiabg2da9maabmaa baGaamyyamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadghadaWgaa WcbaGaam4AaaqabaGccaWGHbWaaSbaaSqaaiaadUgaaeqaaaGccaGL OaGaayzkaaWdamaabmaabaWdbiaadggadaWgaaWcbaGaaGimaaqaba GccqGHRaWkcaWGXbWaaSbaaSqaaiaadYgaaeqaaOGaamyyamaaBaaa leaacaWGSbaabeaaaOWdaiaawIcacaGLPaaapeGaeyypa0Jaamyyam aaDaaaleaacaaIWaaabaGaaGOmaaaakiabgUcaRiaadggadaqhaaWc baGaaGymaaqaaiaaikdaaaGccqGHRaWkcaWGHbWaa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaamyyamaaDaaaleaacaaIZaaabaGa aGOmaaaakiabg2da9iaadggacaWGHbWaaWbaaSqabeaacqGHxiIkaa GccaqGUaGaaeiiaaaa@5F8D@  The norm of a quaternion a, is the scalar denoted by | a |= a a . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaaeaa aaaaaaa8qacaWGHbaapaGaay5bSlaawIa7a8qacqGH9aqpdaGcaaqa aiaadggadaahaaWcbeqaaiabgEHiQaaakiaadggaaSqabaGccaGGUa aaaa@4024@ A quaternion is called a unit quaternion if its norm is 1. The only quaternion with norm zero is zero, and every nonzero quaternion has a unique inverse. It implies that the quaternions form a division algebra. An algebra is a division algebra if given  a,bA  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaacYcacaWGIbGaeyicI4Saamyqaiaabccaaaa@3C98@ .

with ab=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaadkgacqGH9aqpcaaIWaaaaa@3ABB@ , then either a=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9iaaicdaaaa@39D4@ or b=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg2da9iaaicdaaaa@39D5@ .4 In ref.2, the quaternion algebra described by eq.(8), is discussed in some details.

Quaternions encode rotations by four real numbers only and in most applications the procedure is found to be more efficient than the conventional rotation matrix. In a sequence of rotations, interpolation with quaternionic representation is far more convenient than that with the familiar Euler angles. Quaternions are frequently used in computer graphics programming. In modern mathematics, as we will see, the algebra of quaternions belongs to a even subalgebra of GA, consisting of scalars, bivectors. A quaternion is easily identified with the geometric product (eq.1) of two 3-D vectors and the Eulerian form of the unit quaternion is called rotor in GA. Expressed as the sum of a scalar a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyamaaBaaaleaacaaIWaaabeaaaaa@38FA@  (the scalar product part) and the pure quaternion part q k a k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCamaaBaaaleaacaWGRbaabeaakiaadggadaWgaaWcbaGaam4A aaqabaaaaa@3B4C@ , for which the wedge product (bivector A, say) provides an appropriate representation. In fact, the similar algebraic properties of the pure imaginary and the ‘unit’ bivector bases allow an algebraic isomorphism. It can be easily shown that this representation of the quaternion in GA is consistent with the quaternion algebra and correctly reproduce the product of two arbitrary quaternions. All these advantages, importance and limitations of quaternion algebra are also discussed.2

Geometric algebra: We have already noted that, Grassmann algebra provides the basic framework for Clifford algebra. The inner and exterior products of two vectors complement each other: while the inner product lowers the grade, the other raises it, one is commutative and the other is anticommutative. However, they are not invertible in general. By defining the combined geometric product (eq.1), Clifford6 has shown that the quaternion algebra is just a special case of Grassmann’s “theory of extension” (Ausdehnungslehre). The product is associative and executing both lowering and raising of the grade simultaneously. It renders almost all elements to be invertible and the associativity and almost invertibility of the geometric product makes this algebra a formidable tool of mathematical physics.

Since the geometric product of two vectors, in general, produces a scalar and a bivector, it is not closed over the set of vectors but is closed over the larger graded ring of multivectors. The definitions of the inner, exterior and geometric products of two vectors are seamlessly extended in geometric algebra for all multivectors to form a closed algebra of multivectors. Also to start with, it stipulates that for a scalar s and a vector v, the dot product s.v=v.s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caiaac6caieqacaWF2bGaeyypa0Jaa8NDaiaac6cacaWGZbGa eyypa0JaaGimaaaa@3F3E@ and the exterior product defining the scaling of a vector with the scalar sv=vs=sv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiabgEIizJqabiaa=zhacqGH9aqpcaWF2bGaey4jIKTaam4C aiabg2da9iaadohacaWF2baaaa@426B@ . So, the geometric product sv=vs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaadAhacqGH9aqpcaWG2bGaam4Caaaa@3C1A@ also produces the same scaling operation.

After a long time, both Pauli in the formulation of quantum mechanical spinor algebra and Dirac in his theory of the relativistic electron, though not being appreciated fully, have rediscovered Clifford algebra. It was Hestenes who demonstrated that both the Pauli and Dirac equations are indeed expressible in the language of Clifford algebra and finally realised its wider significance. Mathematically, a geometric algebra may be defined as the Clifford algebra of a vector space with a quadratic form. For a finite dimensional vector space v over a field R (or C, real or complex), a quadratic form Q is a a homogeneous polynomial of degree two in a number of variables and defines a map Q:VR, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaacQdacaWGwbGaeyOKH4QaamOuaiaacYcaaaa@3D11@ such that: Q( λv )= λ 2 Q( v ); λR; vV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyua8aadaqadaqaa8qacqaH7oaBieqacaWF2baapaGaayjkaiaa wMcaa8qacqGH9aqpcqaH7oaBdaahaaWcbeqaaiaaikdaaaGccaWGrb WdamaabmaabaWdbiaa=zhaa8aacaGLOaGaayzkaaWdbiaacUdacaqG GaGaeq4UdWMaeyicI4SaamOuaiaacUdacaqGGaGaa8NDaiabgIGiol aadAfaaaa@4DE8@ . The term geometric algebra was used by Artin [9] while discussing algebras in association with a number of geometries, including Clifford algebra with the structure of symplectic and orthogonal groups. Clifford’s geometric product, comprehensibly captured geometric relations between various objects, providing efficient solution to geometric problems on one hand and on the other facilitating the use of vectors v as elementary algebraic quantities – all common functions such as logarithms, trigonometric, exponential of v are now available! Finally, it was Hestenes who stressed the introduction of the term geometric algebra to highlight the importance of Clifford’s contribution to the mathematical framework of physics and defines it in terms of the following axiomatic rules for the geometric product (eq.1) for vectors u, v and w:

(i) associative : ( uv )w=u( vw ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWF1bGaa8NDaaWdaiaawIcacaGLPaaapeGaa83D aiabg2da9iaa=vhapaWaaeWaaeaapeGaa8NDaiaa=Dhaa8aacaGLOa GaayzkaaWdbiaacYcaaaa@4225@

(ii) left distributive : u( v+w )=uv+uw,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDa8aadaqadaqaa8qacaWF2bGaey4kaSIaa83DaaWdaiaa wIcacaGLPaaapeGaeyypa0Jaa8xDaiaa=zhacqGHRaWkcaWF1bGaa8 3DaiaacYcacaqGGaaaaa@43DA@

(iii) right distributive : ( v+w )u=vu+wu,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWF2bGaey4kaSIaa83DaaWdaiaawIcacaGLPaaa peGaa8xDaiabg2da9iaa=zhacaWF1bGaey4kaSIaa83Daiaa=vhaca GGSaGaaeiiaaaa@43BB@

and the magnitude of v, defined as: vvv.v= | v | 2 ,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiaa=zhacqGHHjIUcaWF2bGaaiOlaiaa=zhacqGH9aqp paWaaqWaaeaapeGaa8NDaaWdaiaawEa7caGLiWoapeWaaWbaaSqabe aacaaIYaaaaOGaaiilaiaabccaaaa@4530@ in terms of dot or scalar product, where | v | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaaeaa aaaaaaa8qacaWG2baapaGaay5bSlaawIa7aaaa@3B5A@ is a positive scalar called the magnitude of v and | v |=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaaeaa aaaaaaa8qacaWG2baapaGaay5bSlaawIa7a8qacqGH9aqpcaaIWaaa aa@3D2A@ implies that v=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODaiabg2da9iaaicdacaGGUaaaaa@3A9B@ Starting with the above postulates, Hestenes has shown the consistency with the inner and exterior products of Grassmann algebra using coordinate free approach.8 Unlike vector algebra, GA naturally accommodates any number of dimensions and any quadratic form, such as one, compatible with the theory of relativity.

In GA, the basic geometric product has no definite symmetry in general and on reversing the order of multiplication, known as reversion, one gets: vu=reverse( uv )=uv˜=C. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiaa=vhacqGH9aqpcaWGYbGaamyzaiaadAhacaWGLbGa amOCaiaadohacaWGLbWdamaabmaabaWdbiaa=vhacaWF2baapaGaay jkaiaawMcaa8qacqGH9aqpcaWF1bGaa8NDaiaacYTacqGH9aqpjugi biaa=neakiaac6caaaa@4BE6@ The inner and ˜ exterior products can be derived axiomatically as the symmetric and antisymmetric parts of the geometric product, given by, u.v=  uv+vu 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDaiaac6cacaWF2bGaeyypa0JaaeiiamaalaaabaGaa8xD aiaa=zhacqGHRaWkcaWF2bGaa8xDaaqaaiaaikdaaaGaaiilaaaa@41B6@ and uv= uv+vu 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDaiabgEIizlaa=zhacqGH9aqpdaWcaaqaaiaa=vhacaWF 2bGaey4kaSIaa8NDaiaa=vhaaeaacaaIYaaaaiaac6caaaa@4211@ From the simple axioms of GA it follows that the symmetries of the two products between a bivector and a vector, on the other hand, are just the opposite: B.v=  BvvB 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGccaGGUaGaa8NDaiabg2da9iaabccadaWcaaqa aKqzGeGaa8NqaOGaa8NDaiabgkHiTiaa=zhajugibiaa=jeaaOqaai aaikdaaaaaaa@4243@ and Bv= Bv+vB 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGccqGHNis2caWF2bGaeyypa0ZaaSaaaeaajugi biaa=jeakiaa=zhacqGHRaWkcaWF2bqcLbsacaWFcbaakeaacaaIYa aaaiaac6caaaa@4343@ The definitions of the inner and exterior products are extended to the geometric product of a vector with a grade-r multivector blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ as, v A r =v. A r +v A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiaa=feadaWgaaWcbaGaamOCaaqabaGccqGH9aqpcaWF 2bGaaiOlaiaa=feadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWF2b Gaey4jIKTaa8xqamaaBaaaleaacaWGYbaabeaaaaa@4426@ , where the inner product v. A r =<v. A r > r1 = 1 2 ( v A r + ( 1 ) r1 A r v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiaac6cacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaeyyp a0JaeyipaWJaa8NDaiaac6cacaWFbbWaaSbaaSqaaiaadkhaaeqaaO GaeyOpa4ZaaSbaaSqaaiaadkhacqGHsislcaaIXaaabeaakiabg2da 9maalaaabaGaaGymaaqaaiaaikdaaaWdamaabmaabaWdbiaa=zhaca WFbbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSYdamaabmaabaWdbiab gkHiTiaaigdaa8aacaGLOaGaayzkaaWdbmaaCaaaleqabaGaamOCai abgkHiTiaaigdaaaGccaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaa8ND aaWdaiaawIcacaGLPaaaaaa@5584@  lowers the grade of A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqamaaBaaaleaacaWGYbaabeaaaaa@3917@ by one and the exterior product v A r =<v A r > r+1 1 2 ( v A r + ( 1 ) r1 A r v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaa=feadaWgaaWcbaGaamOCaaqabaGccqGH 9aqpcqGH8aapcaWF2bGaa8xqamaaBaaaleaacaWGYbaabeaakiabg6 da+maaBaaaleaacaWGYbGaey4kaSIaaGymaaqabaGcdaWcaaqaaiaa igdaaeaacaaIYaaaa8aadaqadaqaa8qacaWF2bGaa8xqamaaBaaale aacaWGYbaabeaakiabgUcaR8aadaqadaqaa8qacqGHsislcaaIXaaa paGaayjkaiaawMcaa8qadaahaaWcbeqaaiaadkhacqGHsislcaaIXa aaaOGaa8xqamaaBaaaleaacaWGYbaabeaakiaa=zhaa8aacaGLOaGa ayzkaaaaaa@54BD@  raises the grade of A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ by one. The symmetries of the two products alternate for the odd or even grade blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ .

On the other hand, appropriate multiple inner (dot) products between two higher grade elements of exterior algebra are possible and consequently, their geometric product contains more terms. In n-dimension, the geometric product of two blades of grade p and r, r>p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiaacYcacaqGGaGaamOCaiabg6da+iaadchacaGGSaaaaa@3D1C@ is defined to contain blades of all grades from rp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgkHiTiaadchaaaa@3A07@ to r+p( n )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgUcaRiaadchapaWaaeWaaeaapeGaeyizImQaamOBaaWd aiaawIcacaGLPaaapeGaaeiiaaaa@3F0E@ in steps of +2. For example, with two bivectors B and B′ we get a three component clif (for n4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaaisdaaaa@3AA5@ ):

BB=<BB > 0 +<BB > 2 +<BB > 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGaa8NqaOGaeyOmGiQaeyypa0JaeyipaWtcLbsa caWFcbGaa8NqaOGaeyOmGiQaeyOpa4ZaaSbaaSqaaiaaicdaaeqaaO Gaey4kaSIaeyipaWtcLbsacaWFcbGaa8NqaOGaeyOmGiQaeyOpa4Za aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeyipaWtcLbsacaWFcbGaa8 NqaOGaeyOmGiQaeyOpa4ZaaSbaaSqaaiaaisdaaeqaaaaa@516C@

Therefore, each of the terms on r.h.s. cannot be expressed individually by either of the symmetric or the antisymmetric part of the geometric product. Manipulations are usually made by equating the terms of same grade, using the grade preserving property of the geometric product (to be discussed in the next subsection).

The last term of the above equation comes from the exterior (wedge) product of the two bivectors and Hestenes13 denoted the first (scalar product, grade-0) term by B.B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiaac6cacaWGcbGaeyOmGikaaa@3AEE@ and the second (grade-2) term by the ‘commutator product’ B×B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGccqGHxdaTjugibiaa=jeakiabgkdiIcaa@3D85@ – the antisymmetric part of BB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGaa8NqaOGaeyOmGikaaa@3AD5@ . He also observed that the decomposition of BB′ into terms of homogeneous grade cannot be expressed in terms of inner and exterior products alone without decomposing the bivectors into vectors. However, this is not true and with arbitrary (nonsimple) bivectors, the three terms in the above equation are manifestly denoted by:2,3

BB=<BB > 0 +<BB > 2 +<BB > 4 = B:B+B.B+BB MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabKqzGeaeaa aaaaaaa8qacaWFcbGaa8NqaOGaeyOmGiQaeyypa0JaeyipaWtcLbsa caWFcbGaa8NqaOGaeyOmGiQaeyOpa4ZaaSbaaSqaaiaaicdaaeqaaO Gaey4kaSIaeyipaWtcLbsacaWFcbGaa8NqaOGaeyOmGiQaeyOpa4Za aSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeyipaWtcLbsacaWFcbGaa8 NqaOGaeyOmGiQaeyOpa4ZaaSbaaSqaaiaaisdaaeqaaOGaeyypa0Ja aeiiaKqzGeGaa8NqaOGaaiOoaKqzGeGaa8NqaOGaeyOmGiQaey4kaS scLbsacaWFcbGccaGGUaqcLbsacaWFcbGccqGHYaIOcqGHRaWkjugi biaa=jeakiabgEIizNqzGeGaa8NqaOGaeyOmGikaaa@64A9@   (9)

Thus, using appropriate multiple inner products or contractions between two higher grade (r-blade) elements together with the exterior product, the geometric product can accordingly be expressed in terms of homogeneous grades even for nonsimple (which cannot be expressed as the wedge product of independent vector factors) element(s). Similarly, the geometric product of two trivectors T and T′, containing four terms (for n6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaaiAdaaaa@3AA7@ ) can be written as:

TT =<TT > 0 +<TT> + 2 <TT > 4 +<TT>6  = T:.T+ T:T+ T.T+TT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWFubGaa8hvaiabgkdiIkaabccacqGH9aqpcqGH8aap caWFubGaa8hvaiabgkdiIkabg6da+maaBaaaleaacaaIWaaabeaaki abgUcaRiabgYda8iaa=rfacaWFubGaeyOmGiQaeyOpa4ZaaSraaSqa aiaaikdaaeqaaOGaey4kaSIaeyipaWJaa8hvaiaa=rfacqGHYaIOcq GH+aGpdaWgaaWcbaGaaGinaaqabaGccqGHRaWkcqGH8aapcaWFubGa a8hvaiabgkdiIkabg6da+iaaykW7caaMc8UaaGOnaiaabccaaeaacq GH9aqpcaqGGaGaa8hvaiaacQdacaGGUaGaa8hvaiabgkdiIkabgUca RiaabccacaWFubGaaiOoaiaa=rfacqGHYaIOcqGHRaWkcaqGGaGaa8 hvaiaac6cacaWFubGaeyOmGiQaey4kaSIaa8hvaiabgEIizlaa=rfa cqGHYaIOaaaa@71A9@   (10)

The different products on r.h.s. of equations (9) and (10) are explicitly derived in ref.3 In general, the geometric product of two r -blades A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ and A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakiabgkdiIcaa@3AA5@ contains r+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgUcaRiaaigdaaaa@39C2@ terms (in n2r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaaikdacaWGYbaaaa@3B9A@ ) and is given by:

A r A r =< A r A r > 0 + ...+< A r A r > 2r4 +< A r A r > 2r2 +< A r A r > 2r =  A r ( r dots ) A r +...+ A r : A r + A r . A r + A r A r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaa8xqamaaBaaa leaacaWGYbaabeaakiabgkdiIkabg2da9iabgYda8iaa=feadaWgaa WcbaGaamOCaaqabaGccaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaeyOm GiQaeyOpa4ZaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaeiiaiaac6 cacaGGUaGaaiOlaiabgUcaRiabgYda8iaa=feadaWgaaWcbaGaamOC aaqabaGccaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaeyOmGiQaeyOpa4 ZaaSbaaSqaaiaaikdacaWGYbGaeyOeI0IaaGinaaqabaGccqGHRaWk cqGH8aapcaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaa8xqamaaBaaale aacaWGYbaabeaakiabgkdiIkabg6da+maaBaaaleaacaaIYaGaamOC aiabgkHiTiaaikdaaeqaaOGaey4kaSIaeyipaWJaa8xqamaaBaaale aacaWGYbaabeaakiaa=feadaWgaaWcbaGaamOCaaqabaGccqGHYaIO cqGH+aGpdaWgaaWcbaGaaGOmaiaadkhaaeqaaaGcbaGaeyypa0Jaae iiaiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaapeGaamOC aiaabccacaWGKbGaam4BaiaadshacaWGZbaapaGaayjkaiaawMcaa8 qacaqGGaGaa8xqaiabgkdiIoaaBaaaleaacaWGYbaabeaakiabgUca Riaac6cacaGGUaGaaiOlaiabgUcaRiaa=feadaWgaaWcbaGaamOCaa qabaGccaGG6aGaa8xqamaaBaaaleaacaWGYbaabeaakiabgkdiIkab gUcaRiaa=feadaWgaaWcbaGaamOCaaqabaGccaGGUaGaa8xqamaaBa aaleaacaWGYbaabeaakiabgkdiIkabgUcaRiaa=feadaWgaaWcbaGa amOCaaqabaGccqGHNis2caWFbbWaaSbaaSqaaiaadkhaaeqaaOGaey OmGiQaaiOlaaaaaa@93EA@   (11)

With r= 1, 2 and 3, we get the results for vectors, bivectors and trivectors (equations (1), (9) and (10) respectively. It is to be noted here that, the geometric product of any simple r-blade (which is expressible as the wedge product of r independent vectors) with itself is given by the first term of eq.(11)) only, i.e. the scalar product representing the square magnitude of the simple r-blade, since 7 all other higher grade terms are identically zero. We have also noted earlier that, the geometric product of A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ , ( p r, r+pn ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGWbGaeyizImQaaeiiaiaadkhacaGGSaGaaeiiaiaa dkhacqGHRaWkcaWGWbGaeyizImQaamOBaaWdaiaawIcacaGLPaaaaa a@43D3@ contains ( p+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGWbGaey4kaSIaaGymaaWdaiaawIcacaGLPaaaaaa@3B58@ terms (blades) of all grades from rp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgkHiTiaadchaaaa@3A07@  to r+p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabgUcaRiaadchaaaa@39FC@ in steps of +2 and may be written as: A p A r = A p ( pdots ) A r +...+ A p : A r + A p . A r + A p A r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiaa=feadaWgaaWcbaGa amOCaaqabaGccqGH9aqpcaWFbbWaaSbaaSqaaiaadchaaeqaaOWdam aabmaabaWdbiaadchacaWGKbGaam4BaiaadshacaWGZbaapaGaayjk aiaawMcaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaai Olaiaac6cacaGGUaGaey4kaSIaa8xqamaaBaaaleaacaWGWbaabeaa kiaacQdacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaa8xqam aaBaaaleaacaWGWbaabeaakiaac6cacaWFbbWaaSbaaSqaaiaadkha aeqaaOGaey4kaSIaa8xqamaaBaaaleaacaWGWbaabeaakiabgEIizl aa=feadaWgaaWcbaGaamOCaaqabaGccaGGUaaaaa@5B80@ The definite symmetry (or antisymmetry) of each grade ( p+r2q, q=0, 1,..., p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGWbGaey4kaSIaamOCaiabgkHiTiaaikdacaWGXbGa aiilaiaabccacaWGXbGaeyypa0JaaGimaiaacYcacaqGGaGaaGymai aacYcacaGGUaGaaiOlaiaac6cacaGGSaGaaeiiaiaadchaa8aacaGL OaGaayzkaaaaaa@4958@ is represented by the sign factor ( 1 ) p ( p1 )/2   ( 1 ) r( r1 )/2   ( 1 ) ( p+r2q )( p+r2q1 )/2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWc beqaaiaadchaaaGcdaahaaWcbeqaa8aadaqadaqaa8qacaWGWbGaey OeI0IaaGymaaWdaiaawIcacaGLPaaapeGaai4laiaaikdaaaGccaqG GaWdamaabmaabaWdbiabgkHiTiaaigdaa8aacaGLOaGaayzkaaWdbm aaCaaaleqabaGaamOCa8aadaqadaqaa8qacaWGYbGaeyOeI0IaaGym aaWdaiaawIcacaGLPaaapeGaai4laiaaikdaaaGccaqGGaWdamaabm aabaWdbiabgkHiTiaaigdaa8aacaGLOaGaayzkaaWdbmaaCaaaleqa baWdamaabmaabaWdbiaadchacqGHRaWkcaWGYbGaeyOeI0IaaGOmai aadghaa8aacaGLOaGaayzkaaWaaeWaaeaapeGaamiCaiabgUcaRiaa dkhacqGHsislcaaIYaGaamyCaiabgkHiTiaaigdaa8aacaGLOaGaay zkaaWdbiaac+cacaaIYaaaaOGaaiOlaaaa@6324@

In fact dispensing with the Descartes coordinate system, GA creates great flexibility and consistently generalises to arbitrary n-dimensional space. The coordinate free formulation renders the equations of physics invariant under coordinate transformations, rather than covariant as in the tensorial form. However, one can still recourse to the coordinate system to advantage, when required. For example, a term by term equality between the product of two quaternions and its analogue in GA can be easily derived using the component representation. Also, the component representation is often much economic than the lengthy verification of various properties and identities in the coordinate free approach.3 Moreover, various arbitrary definitions are used in the literature to generalize the inner product of vectors for higher grade multivector blades, which are rather confusing. Also, all these try to capture the idea of full contraction (producing the lowest-grade piece of the geometric product) only. One can, however, properly account for the whole gamut of various (multiple) inner products between two blades of different grades by checking the appropriate symmetries of the relevant exterior and inner products.3 For nonsimple multivector blades, these expressions appear to be convenient and useful.

One may generate a finite-dimensional GA, by choosing a unit pseudoscalar ( I n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGjbWaaSbaaSqaaiaad6gaaeqaaaGcpaGaayjkaiaa wMcaaaaa@3ABD@ . The set of all vectors that satisfy v I n  = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaadMeadaWgaaWcbaGaamOBaaqabaGccaqG GaGaeyypa0Jaaeiiaiaaicdaaaa@3ED8@ , forms the vector space. The geometric product of the vectors in this vector space then defines the GA, of which I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@  is a member. Since every finite-dimensional GA has a unique I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@  (up to a sign), one can define or characterize the GA by it. A pseudoscalar can be interpreted as the volume of an n-parallelotope in an n-dimensional vector space. From the closure property, it follows that I n A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaakiaaykW7ieqacaWFbbWaaSba aSqaaiaadkhaaeqaaOGaeyyyIOlaaa@3E70@   I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ (r dots) A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ . In spaces of odd dimension, the (unit) pseudoscalar I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ commutes with all vectors and so, with all the multivecor blades A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ . Therefore, in the case of odd dimension, the subalgebras of scalars and pseudoscalars consist of elements of the algebra which commute with every element in it. In even dimensional spaces, on the other hand, I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ commutes with all even grade blades and anti commutes with all vectors and with all odd grade blades. Thus, GA makes a sort of distinction with respect to the dimension of the associated vector space. In general, the result may be expressed as: I n A r  = ( 1 ) r( n1 ) A r I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaieqakiaa=feadaWgaaWcbaGa amOCaaqabaGccaqGGaGaeyypa0ZdamaabmaabaWdbiabgkHiTiaaig daa8aacaGLOaGaayzkaaWdbmaaCaaaleqabaGaamOCa8aadaqadaqa a8qacaWGUbGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaaaaGcpeGaa8 xqamaaBaaaleaacaWGYbaabeaakiaadMeadaWgaaWcbaGaamOBaaqa baaaaa@49A0@ and used to interchange the inner and exterior products. For example:

v.( A r I n )=  1 2 ( v A r I n + ( 1 ) nr1 A r I n v ) =  1 2 ( v A r I n + ( 1 ) nr1 ( 1 ) n1 A r v I n )  =   1 2 ( v A r ( 1 ) r+1 A r v ) I n = v A r I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWF2bGaaiOla8aadaqadaqaa8qacaWFbbWaaSbaaSqa aiaadkhaaeqaaOGaamysamaaBaaaleaacaWGUbaabeaaaOWdaiaawI cacaGLPaaapeGaeyypa0JaaeiiamaalaaabaGaaGymaaqaaiaaikda aaWdamaabmaabaWdbiaa=zhacaWFbbWaaSbaaSqaaiaadkhaaeqaaO GaamysamaaBaaaleaacaWGUbaabeaakiabgUcaR8aadaqadaqaa8qa cqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWcbeqaaiaad6 gacqGHsislcaWGYbGaeyOeI0IaaGymaaaakiaa=feadaWgaaWcbaGa amOCaaqabaGccaWGjbWaaSbaaSqaaiaad6gaaeqaaOGaa8NDaaWdai aawIcacaGLPaaaaeaapeGaeyypa0JaaeiiamaalaaabaGaaGymaaqa aiaaikdaaaWdamaabmaabaWdbiaa=zhacaWFbbWaaSbaaSqaaiaadk haaeqaaOGaamysamaaBaaaleaacaWGUbaabeaakiabgUcaR8aadaqa daqaa8qacqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWcbe qaaiaad6gacqGHsislcaWGYbGaeyOeI0IaaGymaaaakiaaykW7paWa aeWaaeaapeGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaadaahaaWcbe qaaiaad6gacqGHsislcaaIXaaaaOWdbiaa=feadaWgaaWcbaGaamOC aaqabaGccaWF2bGaamysamaaBaaaleaacaWGUbaabeaaaOWdaiaawI cacaGLPaaapeGaaeiiaaqaaiabg2da9iaabccacaqGGaWaaSaaaeaa caaIXaaabaGaaGOmaaaacaaMc8+damaabmaabaWdbiaa=zhacaWFbb WaaSbaaSqaaiaadkhaaeqaaOGaeyOeI0YdamaabmaabaWdbiabgkHi Tiaaigdaa8aacaGLOaGaayzkaaWdbmaaCaaaleqabaGaamOCaiabgU caRiaaigdaaaGccaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaa8NDaaWd aiaawIcacaGLPaaapeGaamysamaaBaaaleaacaWGUbaabeaaaOqaai abg2da9iaabccacaWF2bGaey4jIKTaa8xqamaaBaaaleaacaWGYbaa beaakiaadMeadaWgaaWcbaGaamOBaaqabaaaaaa@94AD@   (12)

This result (eq.12) indicates a sort of duality between the inner and exterior products. An important application of the result is found in defining e j  =  ( 1 ) j1   I n , j I n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyzayaataWaaSbaaSqaaiaadQgaaeqaaOGaaeiiaiabg2da9iaa bccapaWaaeWaaeaapeGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaape WaaWbaaSqabeaacaWGQbGaeyOeI0IaaGymaaaakiaabccacaWGjbWa aSbaaSqaaiaad6gaaeqaaOGaaiilamaaBaaaleaaceWGQbGbaqbaae qaaOGaamysamaaBaaaleaacaWGUbaabeaakmaaCaaaleqabaGaeyOe I0IaaGymaaaaaaa@4A36@ , ( I n , j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaakiaacYcadaWgaaWcbaGabmOA ayaauaaabeaaaaa@3B0B@ means e j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyzayaataWaaSbaaSqaaiaadQgaaeqaaaaa@394D@ is excluded from I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysamaaBaaaleaacaWGUbaabeaaaaa@391B@ ), as the reciprocal set basis element for the set of n orthonormal basis vectors { e ^ i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaaeaa aaaaaaa8qaceWGLbGbaKaadaWgaaWcbaGaamyAaaqabaaak8aacaGL 7bGaayzFaaaaaa@3B8C@ , such that e ^ i  . e ^ j  =  e ^ i  .( ( 1 ) j1   I n, j   I n 1 )=  ( 1 ) j1  ( e ^ i I n, j   )  I n 1  =  I n   I n 1 δ i j = δ i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyzayaajaWaaSbaaSqaaiaadMgaaeqaaOGaaeiiaiaac6caceWG LbGbaKaadaWgaaWcbaGaamOAaaqabaGccaqGGaGaeyypa0Jaaeiiai qadwgagaqcamaaBaaaleaacaWGPbaabeaakiaabccacaGGUaWdamaa bmaabaWaaeWaaeaapeGaeyOeI0IaaGymaaWdaiaawIcacaGLPaaape WaaWbaaSqabeaacaWGQbGaeyOeI0IaaGymaaaakiaabccacaWGjbWa aSbaaSqaaiaad6gacaGGSaGabmOAayaauaaabeaakiaabccacaWGjb WaaSbaaSqaaiaad6gaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaa aaGcpaGaayjkaiaawMcaa8qacqGH9aqpcaqGGaWdamaabmaabaWdbi abgkHiTiaaigdaa8aacaGLOaGaayzkaaWdbmaaCaaaleqabaGaamOA aiabgkHiTiaaigdaaaGccaqGGaWdamaabmaabaWdbiqadwgagaqcam aaBaaaleaacaWGPbaabeaakiabgEIizlaadMeadaWgaaWcbaGaamOB aiaacYcaceWGQbGbaqbaaeqaaOGaaeiiaaWdaiaawIcacaGLPaaape GaaeiiaiaadMeadaWgaaWcbaGaamOBaaqabaGcdaahaaWcbeqaaiab gkHiTiaaigdaaaGccaqGGaGaeyypa0JaaeiiaiaadMeadaWgaaWcba GaamOBaaqabaGccaqGGaGaamysamaaBaaaleaacaWGUbaabeaakmaa CaaaleqabaGaeyOeI0IaaGymaaaakiaaykW7cqaH0oazdaWgaaWcba GaamyAaaqabaGcdaahaaWcbeqaaiaadQgaaaGccqGH9aqpcqaH0oaz daWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaadQgaaaaaaa@7D3B@ . Manipulations using geometric product in intermediate steps brings great simplicity in working out various problems. For example, eq. (12) can be written in the general form for the two blades A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ and A r  p + rn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakiaabccacaWGWbGaaeii aiabgUcaRiaabccacaWGYbGaeyizImQaamOBaaaa@4084@ , interchanging the full contractions to exterior product: A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@  (p dots) ( A r I n ) =  A p A r I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaamysamaa BaaaleaacaWGUbaabeaaaOWdaiaawIcacaGLPaaapeGaaeiiaiabg2 da9iaabccacaWFbbWaaSbaaSqaaiaadchaaeqaaOGaey4jIKTaa8xq amaaBaaaleaacaWGYbaabeaakiaadMeadaWgaaWcbaGaamOBaaqaba aaaa@4687@ .14

Another instructive example may be found in the Gram-Schmidt orthogonalisation procedure. From an arbitrary set of r linearly independent vectors u i , i=1,2, ..., r, rn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDamaaBaaaleaacaWGPbaabeaakiaacYcacaqGGaGaamyA aiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaqGGaGaaiOlaiaac6 cacaGGUaGaaiilaiaabccacaWGYbGaaiilaiaabccacaWGYbGaeyiz ImQaamOBaaaa@4963@ , let us construct a graded sequence of r multivector blades: A 0 =1,  A 1 =  u 1 ,  A 2 = u 1 u 2 , ... ,  A r =  u 1 u 2 ...  u r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaaIWaaabeaakiabg2da9iaaigdacaGG SaGaaeiiaiaa=feadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaqGGa Gaa8xDamaaBaaaleaacaaIXaaabeaakiaacYcacaqGGaGaa8xqamaa BaaaleaacaaIYaaabeaakiabg2da9iaa=vhadaWgaaWcbaGaaGymaa qabaGccqGHNis2caWF1bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaa bccacaGGUaGaaiOlaiaac6cacaqGGaGaaiilaiaabccacaWFbbWaaS baaSqaaiaadkhaaeqaaOGaeyypa0Jaaeiiaiaa=vhadaWgaaWcbaGa aGymaaqabaGccqGHNis2caWF1bWaaSbaaSqaaiaaikdaaeqaaOGaey 4jIKTaaiOlaiaac6cacaGGUaGaaeiiaiaa=vhadaWgaaWcbaGaamOC aaqabaaaaa@5FBD@ . Next we define a new set of vectors v j , j=1,2, ...,r:  v j = à j1 A j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaWGQbaabeaakiaacYcacaqGGaGaamOA aiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaqGGaGaaiOlaiaac6 cacaGGUaGaaiilaiaadkhacaGG6aGaaeiiaiaa=zhadaWgaaWcbaGa amOAaaqabaGccqGH9aqpcaWFddWaaSbaaSqaaiaadQgacqGHsislca aIXaaabeaakiaa=feadaWgaaWcbaGaamOAaaqabaaaaa@4E42@ , where à j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83WamaaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaaaaa@3B3D@ is the reverse of A j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaaaaa@3ABB@  (see subsection 2.1). Since, the subspace defined by the j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabgkHiTiaaigdaaaa@39C5@ vectors of A j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaaaaa@3ABB@ is, by construction, fully contained in the subspace of the ( j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGPaVpaabmaabaGaamOAaaGaayjkaiaawMcaaaaa@3B31@  vectors of A j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGQbaabeaaaaa@3913@ , the geometric product à j1 A j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83WamaaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaGccaWF bbWaaSbaaSqaaiaadQgaaeqaaaaa@3D24@ contains only the full contraction term, all other terms being identically zero. The full contraction ( j( j1 )= 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGQbGaeyOeI0YdamaabmaabaWdbiaadQgacqGHsisl caaIXaaapaGaayjkaiaawMcaa8qacqGH9aqpcaqGGaGaaGymaaWdai aawIcacaGLPaaaaaa@4164@ results in the grade one element v j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaWGQbaabeaaaaa@3948@ , which is contained in the subspace of and orthogonal to the subspace of A j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGQbaabeaaaaa@3913@ . Therefore, the new set of r vectors is an orthogonal set spanning the r dimensional subspace of A j1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGQbGaeyOeI0IaaGymaaqabaaaaa@3ABB@ the n dimensional vector space. This procedure according to geometric algebra,15 fully corresponds to the conventional Gram-Schmidt orthogonalisation process of linear algebra.

Both free and bound vectors are appropriately described in GA using multivectors. Vectors having both magnitude and direction, are usually represented in Gibbs’ vector algebra by directed line segments through the origin of a coordinate system i.e. as bound or position vectors. The generalization to include vectors that are not acting through the origin is achieved in 3-D VA by designating a set of six coordinates (of which only four are independent) – known as Plücker coordinates. The extra coordinates represent the offset vector from the origin. This is more conveniently handled in GA through the use of a vector plus bivector clif: U= v+vr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xvaiabg2da9iaabccaieqacaGF2bGaey4kaSIaa4NDaiab gEIizlaadkhaaaa@3F31@ , where the direction is given by the position vector v and r denotes the offset of this vector from the origin. If the vectors are parallel, the product vr=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaadkhacqGH9aqpcaaIWaaaaa@3C92@ , implying that U= v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xvaiabg2da9iaabccaieqacaGF2baaaa@3AB4@ and we are reverted to the pure position vector passing through the origin. Hence, this naturally generalizes the concept of vectors.

Some useful operations, properties and theorems of geometric algebra: In addition to the geometric product, we have already noted that GA also defines and uses a several unary operations, properties and theorems which are useful in various evaluations and manipulations. These also reveal the richness of the structure of GA and are appended as follows:

  1. Reversion and Inversion: The reverse of an arbitrary blade consists in reversing the order of the factors of the blade. For instance, the reverse of a blade vv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaa=zhaaaa@3AD2@ is vu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaa=vhaaaa@3AD1@ . In general, the reverse of a blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ of grade r is defined as: Ã r = ( 1 ) r( r1 )/2 A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa83WamaaBaaaleaacaWGYbaabeaakiabg2da98aadaqadaqa a8qacqGHsislcaaIXaaapaGaayjkaiaawMcaa8qadaahaaWcbeqaai aadkhapaWaaeWaaeaapeGaamOCaiabgkHiTiaaigdaa8aacaGLOaGa ayzkaaWdbiaac+cacaaIYaaaaOGaa8xqamaaBaaaleaacaWGYbaabe aaaaa@4704@ . The reversion only changes the orientation of a blade according to the change of its sign. The positive scalar magnitude of a blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ is given by: | A r |= | A r 2   | =  Ã r A r  =  A Ã r r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaemaabaacbe aeaaaaaaaaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaaGcpaGaay5b SlaawIa7a8qacqGH9aqpdaGcaaqaa8aadaabdaqaa8qacaWFbbWaa0 baaSqaaiaadkhaaeaacaaIYaaaaOGaaeiiaaWdaiaawEa7caGLiWoa aSWdbeqaaOGaeyypa0JaaeiiamaakaaabaGaa83WamaaBaaaleaaca WGYbaabeaakiaa=feadaWgbaWcbaGaamOCaaqabaaabeaakiaabcca cqGH9aqpcaqGGaWaaOaaaeaacaWFbbWaaSraaSqaaiaadkhaaeqaaO Gaa83WamaaBaaaleaacaWGYbaabeaaaeqaaaaa@510D@ . Consequently, the inverse A r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaeyOe I0IaaGymaaaaaaa@3AFA@ of an invertible blade A r  ( | Ar |0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakiaabccapaWaaeWaaeaa daabdaqaa8qacaWFbbGaamOCaaWdaiaawEa7caGLiWoapeGaeyiyIK RaaGimaaWdaiaawIcacaGLPaaaaaa@42FA@ is defined as: A r 1 = | A r | 2 Ã r   A r 1 A r = A r A r 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaeyOe I0IaaGymaaaakiabg2da98aadaabdaqaa8qacaWFbbWaaSbaaSqaai aadkhaaeqaaaGcpaGaay5bSlaawIa7a8qadaahaaWcbeqaaiabgkHi TiaaikdaaaGccaWFddWaaSbaaSqaaiaadkhaaeqaaOGaeyO0H4Taae iiaiaa=feadaWgaaWcbaGaamOCaaqabaGcdaahaaWcbeqaaiabgkHi TiaaigdaaaGccaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaeyypa0Jaa8 xqamaaBaaaleaacaWGYbaabeaakiaa=feadaWgaaWcbaGaamOCaaqa baGcdaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaaIXaaaaa@56EB@ .
  2. Grade selection and grade preserving property: For the expression C= s+v+B+T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9iaabccacaWGZbGaey4kaSccbeGaa8NDaiabgUca RKqzGeGaa8NqaOGaey4kaSIaa8hvaaaa@406D@ where s is a scalar, v a vector, B a bivector, and T a trivector, C is referred to as a clif and the terms on the r.h.s. are referred to as multivectors of definite grade from 0 to 3 respectively. In GA, a clif or a general multivector is defined to be the sum of blades A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ of different grade r, such as: C=Σ A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83qaiabg2da9iabfo6atHqabiaa+feadaWgaaWcbaGaamOC aaqabaaaaa@3C71@ . The grade selection rule implies, as indicated in equations from (9) to (11), that <C > 0 = s,<C > 1 = v, ...<C > r = A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdcbaGaa83qaiabg6da+maaBaaaleaacaaIWaaabeaakiab g2da9iaabccacaWGZbGaaiilaiabgYda8iaa=neacqGH+aGpdaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaqGGaGaamODaiaacYcacaqGGaGa aiOlaiaac6cacaGGUaGaeyipaWJaa83qaiabg6da+maaBaaaleaaca WGYbaabeaakiabg2da9Gqabiaa+feadaWgaaWcbaGaamOCaaqabaaa aa@4F05@   Consequently, <sC > r = s<C > r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWJaam4CaGqaaiaa=neacqGH+aGpdaWgaaWcbaGaamOCaaqa baGccqGH9aqpcaqGGaGaam4CaiabgYda8iaa=neacqGH+aGpdaWgaa WcbaGaamOCaaqabaaaaa@42BE@ and for two clifs C and C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83qaiabgkdiIcaa@3979@ , C+C (=  Σ r <C > r +<C > r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83qaiabgUcaRiaa=neacqGHYaIOcaqGGaWdaiaacIcapeGa eyypa0Jaaeiiaiabfo6atnaaBaaaleaacaWGYbaabeaakiabgYda8i aa=neacqGH+aGpdaWgaaWcbaGaamOCaaqabaGccqGHRaWkcqGH8aap caWFdbGaeyOmGiQaeyOpa4ZaaSbaaSqaaiaadkhaaeqaaaaa@4B39@  i.e. <C+C > r =<C > r +<C > r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdcbaGaa83qaiabgUcaRiaa=neacqGHYaIOcqGH+aGpdaWg aaWcbaGaamOCaaqabaGccqGH9aqpcqGH8aapcaWFdbGaeyOpa4ZaaS baaSqaaiaadkhaaeqaaOGaey4kaSIaeyipaWJaa83qaiabgkdiIkab g6da+maaBaaaleaacaWGYbaabeaak8aacaGGPaaaaa@4A76@ contains terms of all grades contained in the two clifs. Obviously an identity between two clifs implies that both contain terms of same grades and <C > r =<C > r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyipaWdcbaGaa83qaiabg6da+maaBaaaleaacaWGYbaabeaakiab g2da9iabgYda8iaa=neacqGHYaIOcqGH+aGpdaWgaaWcbaGaamOCaa qabaaaaa@41AB@  for all  .3 This important rule allows great maneuvering flexibility in calculations.
  3. Grade involution: The grade involution toggles the orientation of a blade if its grade is odd and is defined as: ( A r )= ( 1 ) r A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaWbaaSqabeaacqGHNis2aaGcpaWaaeWaaeaaieqapeGaa8xqamaa BaaaleaacaWGYbaabeaaaOWdaiaawIcacaGLPaaapeGaeyypa0Zdam aabmaabaWdbiabgkHiTiaaigdaa8aacaGLOaGaayzkaaWdbmaaCaaa leqabaGaamOCaaaakiaa=feadaWgaaWcbaGaamOCaaqabaaaaa@4459@ . Involution occurs when something turns in upon itself. Two successive operations produce identity. The reversion is also often called an antiinvolution: it is anti since it reverses order of the vector factors and it is involution since its two successive operations produce identity.
  4. Conjugation: The conjugate of a generic blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ is defined as: A r =   ( à r )= ( 1 ) r à r = ( 1 ) r( r+1 )/2 A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaey4f IOcaaOGaeyypa0JaaeiiamaaCaaaleqabaGaey4jIKnaaOWdamaabm aabaWdbiaa=nmadaWgaaWcbaGaamOCaaqabaaak8aacaGLOaGaayzk aaWdbiabg2da98aadaqadaqaa8qacqGHsislcaaIXaaapaGaayjkai aawMcaa8qadaahaaWcbeqaaiaadkhaaaGccaWFddWaaSbaaSqaaiaa dkhaaeqaaOGaeyypa0ZdamaabmaabaWdbiabgkHiTiaaigdaa8aaca GLOaGaayzkaaWdbmaaCaaaleqabaGaamOCa8aadaqadaqaa8qacaWG YbGaey4kaSIaaGymaaWdaiaawIcacaGLPaaapeGaai4laiaaikdaaa GccaWFbbWaaSbaaSqaaiaadkhaaeqaaaaa@5777@ . Since both involution and reversion returns the original blade on two successive operations, it is also true for conjugation.
  5. Duality and dualisation: The dualisation of a generic blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ consists in taking the orthogonal complement of the blade and is defined as: A r =  I n A r (   I n ( r dots ) A r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaaiii Gaaakiabg2da9iaabccacaWGjbWaaSbaaSqaaiaad6gaaeqaaOGaa8 xqamaaBaaaleaacaWGYbaabeaak8aadaqadaqaa8qacqGHHjIUcaqG GaGaamysamaaBaaaleaacaWGUbaabeaak8aadaqadaqaa8qacaWGYb GaaeiiaiaadsgacaWGVbGaamiDaiaadohaa8aacaGLOaGaayzkaaWd biaa=feadaWgaaWcbaGaamOCaaqabaaak8aacaGLOaGaayzkaaaaaa@4EE7@ , where In is the blade with respect to which the dualisation is performed and is usually the unit pseudoscalar of the space. In fact, A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaaiii Gaaaaaa@3A16@ is the part of the space that is not contained A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ in and obviously, A r = I ˜ n A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakiabg2da9iqadMeagaac amaaBaaaleaacaWGUbaabeaakiaa=feadaWgaaWcbaGaamOCaaqaba GcdaahaaWcbeqaaiaaccciaaaaaa@3F11@ . The dual of a clif is simply the geometric product of the clif with the unit pseudoscalar.
  6. Meet operator: GA also introduces the meet operator as opposed to the joining of (two) subspaces in exterior or progressive product. It extracts the smallest common subspaces of blades A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbGaaGPaVlaaykW7aeqaaaaa@3C2F@ and A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ and is denoted by the MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyikIOnaaa@38DC@ symbol as follows: A p A r =< A p A r > r p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiabgIIiAlaa=feadaWg aaWcbaGaamOCaaqabaGccqGH9aqpcqGH8aapcaWFbbWaaSbaaSqaai aadchaaeqaaOWaaWbaaSqabeaacaGGGacaaOGaa8xqamaaBaaaleaa caWGYbaabeaakiabg6da+maaBaaaleaacaWGYbaabeaakmaaBaaale aacqGHsislcaWGWbaabeaaaaa@47E6@ , i.e. the full contraction of the dual of A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbGaaGPaVlaaykW7aeqaaaaa@3C2F@  with A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ . Quite reasonably, the meet operation is termed as regressive product and denoted by the MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyikIOnaaa@38DE@   For two bivectors, it can be easily verified that the regressive product creates the vector that lies on the intersection of the two bivectors. With the notions of duality and the progressive and regressive products, geometric algebra is ideally suited to the study of projective geometry.
  7. Periodicity theorem: An n dimensional real vector space V with a quadratic form having its signature pair of integers (p,r), where n=p+r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaadchacqGHRaWkcaWGYbaaaa@3BF5@ , is denoted by V p,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaCaaaleqabaGaamiCaiaacYcacaWGYbaaaaaa@3AD2@  in GA. The algebra on V p,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaCaaaleqabaGaamiCaiaacYcacaWGYbaaaaaa@3AD2@  is conventionally denoted by G p,r ( V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ramaaCaaaleqabaGaamiCaiaacYcacaWGYbaaaOWdamaabmaa baWdbiaadAfaa8aacaGLOaGaayzkaaaaaa@3D5F@ . A standard orthonormal basis set { e i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaacmaabaaeaa aaaaaaa8qacaWGLbWaaSbaaSqaaiaadMgaaeqaaaGcpaGaay5Eaiaa w2haaaaa@3B7C@  for V p,r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaCaaaleqabaGaamiCaiaacYcacaWGYbaaaaaa@3AD2@  consists of n mutually orthogonal vectors, p of which have norm +1 and r of which have norm -1. Algebras over vector spaces V (over real or complex fields) are classified according to the dimensions and also by the associated quadratic forms. As an outcome of this classification, every geometric algebra can be decomposed into graded indecomposable factors (algebras). This decomposition is the origin of periodicity theorems and GA exhibit a 8-fold periodicity over the real numbers and an 2-fold periodicity over the complex numbers.16

Basic elements of GA and representations of physical objects and operations: The geometric approach considers the basic elements vectors, bivectors etc. as objects with geometric properties, independent of any basis and the algebraic properties of GA are as simple as those of Euclidean lines, planes and higher dimensional (hyper) surfaces. Although a comparison of elements of different grades is not possible, GA admits, via the geometric product, addition of elements of different grades to form multivector clifs. For example, it can have an element C such that: C= s+v+B+T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9iaabccacaWGZbGaey4kaSccbeGaa8NDaiabgUca RKqzGeGaa8NqaOGaey4kaSIaa8hvaaaa@406D@ , where s is a scalar, v, a vector, B, a bivector and T is a trivector. This clearly sets GA apart from ordinary algebra. We have already noted that quaternions or spinors are multivector clifs of even subalgebra, formed by the geometric product of two vectors.

Another interesting example may be found in describing the instantaneous particle trajectory in three dimensional space by a multivector clif containing the path length, the instantaneous direction, the curvature and the torsion of the space curve. Denoting the distance along the curve (the path length) by a scalar s and the instantaneous direction by the unit tangent u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaaaaa@383C@ , the curvature (deviation from the straight line) and the torsion (deviation from a plane) may be expressed17 in terms of a bivector and a trivector formed by u ^ , n ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaGaaiilaiaaykW7jugibiqa=5gagaqcaaaa@3C05@  (unit normal) and u ^ , n ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaGaaiilaiaaykW7jugibiqa=5gagaqcaaaa@3C05@  and unit binormal b ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8Nyayaajaaaaa@3829@  (the orthonormal triad defined according to the Frenet-Serret formulae of classical 3-D analytic geometry) respectively. Finally, the trajectory may be represented by the multivector clif: S= s+ u ^ +κ( u ^ n ^ )+ κ 2 τ( u ^ n ^ b ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiabg2da9iaabccacaWGZbGaey4kaSccbeGab8xDayaajaGa ey4kaSIaeqOUdS2damaabmaabaWdbiqa=vhagaqcaiabgEIizNqzGe Gab8NBayaajaGccaaMc8oapaGaayjkaiaawMcaa8qacqGHRaWkcqaH 6oWAdaahaaWcbeqaaiaaikdaaaGccqaHepaDpaWaaeWaaeaapeGab8 xDayaajaGaey4jIKDcLbsaceWFUbGbaKaakiabgEIizlqa=jgagaqc aaWdaiaawIcacaGLPaaaaaa@54B9@ , where κ and τ represent the Frenet-Serret magnitudes of curvature and torsion respectively. With the addition of higher order curvatures, this can be easily extended to higher dimensions.

Elements of GA represent both physical objects and operations and this algebra provides evocative names for its elements (versor, paravector, boomerang etc.). A versor actually refers to a monomial, a geometric product of invertible vectors ( u,v,w ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWF1bGaaiilaiaa=zhacaGGSaGaa83DaaWdaiaa wIcacaGLPaaaaaa@3D13@ , for example u,uv,uvw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDaiaacYcacaWF1bGaa8NDaiaacYcacaWF1bGaa8NDaiaa =Dhaaaa@3E5E@  etc. The geometric product of  vectors is called a versor of order  it is called even (rotor, or spinor) or odd depending upon whether is even or odd. Versors are operators of GA, which translate, reflect, rotate, dilate, twist and boost other elements and objects of the algebra. In the following, we discuss some of these operations.

Projections, rejections, reflections along vectors, and rotations in planes – all these operations are handled much more efficiently in geometric algebra compared to traditional vector and matrix algebras. Using an invertible vector u( u 1 = | u | 2 u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xDa8aadaqadaqaa8qacaWF1bWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaeyypa0ZdamaaemaabaWdbiaa=vhaa8aacaGLhWUaay jcSdWaaWbaaSqabeaacqGHsislpeGaaGOmaaaakiaa=vhaa8aacaGL OaGaayzkaaaaaa@44EA@ , one can construct the identity v=vu u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabg2da9iaa=zhacaWF1bGaa8xDamaaCaaaleqabaGa eyOeI0IaaGymaaaaaaa@3DEB@ , and finally write: v=( v.u+vu ) u 1 P u ( v )+ R u ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabg2da98aadaqadaqaa8qacaWF2bGaaiOlaiaa=vha cqGHRaWkcaWF2bGaey4jIKTaa8xDaaWdaiaawIcacaGLPaaapeGaa8 xDamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabggMi6kaadcfadaWg aaWcbaGaamyDaaqabaGcpaWaaeWaaeaapeGaa8NDaaWdaiaawIcaca GLPaaapeGaey4kaSIaamOuamaaBaaaleaacaWG1baabeaak8aadaqa daqaa8qacaWF2baapaGaayjkaiaawMcaaaaa@510E@ . Since P u ( v )u=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaWG1baabeaak8aadaqadaqaaGqab8qacaWF 2baapaGaayjkaiaawMcaa8qacqGHNis2caWF1bGaeyypa0JaaGimaa aa@405D@  and R u ( v ).u =0, v.u u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaBaaaleaacaWG1baabeaak8aadaqadaqaaGqab8qacaWF 2baapaGaayjkaiaawMcaa8qacaGGUaGaa8xDaiaabccacqGH9aqpca aIWaGaaiilaiaabccacaWF2bGaaiOlaiaa=vhacaWF1bWaaWbaaSqa beaacqGHsislcaaIXaaaaaaa@46C3@ can be identified as the orthogonal projection P u ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaWG1baabeaak8aadaqadaqaaGqab8qacaWF 2baapaGaayjkaiaawMcaaaaa@3BE9@ of v along u (i.e. its parallel part v u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacqWILicucaWG1baabeaaaaa@3A7B@ ) and vu u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgEIizlaa=vhacaWF1bWaaWbaaSqabeaacqGHsisl caaIXaaaaaaa@3D9C@  as the orthogonal rejection R u ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaBaaaleaacaWG1baabeaak8aadaqadaqaaGqab8qacaWF 2baapaGaayjkaiaawMcaaaaa@3BEB@ of v from u (the part v u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacqGHLkIxcaWG1baabeaaaaa@3B04@ , perpendicular to u and lies in ( u,v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWG1bGaaiilaiaadAhaa8aacaGLOaGaayzkaaaaaa@3B6B@ plane). A sort of scaling, with respect to an invertible vector, may be defined using the following combination of projection and rejection: ( v;u;ξ )= P u ( v )+ξ R u ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWF2bGaai4oaiaa=vhacaGG7aGaeqOVdGhapaGa ayjkaiaawMcaa8qacqGH9aqpcaWGqbWaaSbaaSqaaiaadwhaaeqaaO WdamaabmaabaWdbiaa=zhaa8aacaGLOaGaayzkaaWdbiabgUcaRiab e67a4jaadkfadaWgaaWcbaGaamyDaaqabaGcpaWaaeWaaeaapeGaa8 NDaaWdaiaawIcacaGLPaaaaaa@4B2F@ which scales v by a factor ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@38F1@  (a scalar) with respect to u. For ξ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyypa0JaaGymaaaa@3AB2@ , it gives v. The above equation can also be written as: ( v;u;ξ )=v+( ξ+1 )( uv ) u 1 =ξ v+( 1ξ )( v.u ) u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaacbe aeaaaaaaaaa8qacaWF2bGaai4oaiaa=vhacaGG7aGaeqOVdGhapaGa ayjkaiaawMcaa8qacqGH9aqpcaWF2bGaey4kaSYdamaabmaabaWdbi abe67a4jabgUcaRiaaigdaa8aacaGLOaGaayzkaaWaaeWaaeaapeGa a8xDaiabgEIizlaa=zhaa8aacaGLOaGaayzkaaWdbiaa=vhadaahaa WcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcqaH+oaEcaqGGaGaa8ND aiabgUcaR8aadaqadaqaa8qacaaIXaGaeyOeI0IaeqOVdGhapaGaay jkaiaawMcaamaabmaabaWdbiaa=zhacaGGUaGaa8xDaaWdaiaawIca caGLPaaapeGaa8xDamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@5FB3@ .

In place of u, using an invertible simple bivector B representing a oriented plane, again from the identity   v=vB B 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabg2da9iaa=zhajugibiaa=jeacaWFcbGcdaahaaWc beqaaiabgkHiTiaaigdaaaaaaa@3E1E@ , projection and rejection of the vector v, on and from the plane respectively, can be similarly defined as: v=v.B B 1 +vB B 1 = P B ( v )+ R B ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabg2da9iaa=zhacaGGUaqcLbsacaWFcbGaa8NqaOWa aWbaaSqabeaacqGHsislcaaIXaaaaOGaey4kaSIaa8NDaiabgEIizN qzGeGaa8Nqaiaa=jeakmaaCaaaleqabaGaeyOeI0IaaGymaaaakiab g2da9iaadcfadaWgaaWcbaGaamOqaaqabaGcpaWaaeWaaeaapeGaa8 NDaaWdaiaawIcacaGLPaaapeGaey4kaSIaamOuamaaBaaaleaacaWG cbaabeaak8aadaqadaqaa8qacaWF2baapaGaayjkaiaawMcaaaaa@5159@ . This result can be similarly extended for any invertible multivector blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ in projecting a vector into the multivector subspace. The idea is to express a vector as a sum of two terms, one in the subspace of A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@  and another in its orthogonal complement (dual) subspace of A r :v=( v. A r +v A r ) A r 1 =P A r ( v )+R A r ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaaiii GaaakiaacQdacaWF2bGaeyypa0ZdamaabmaabaWdbiaa=zhacaGGUa Gaa8xqamaaBaaaleaacaWGYbaabeaakiabgUcaRiaa=zhacqGHNis2 caWFbbWaaSbaaSqaaiaadkhaaeqaaaGcpaGaayjkaiaawMcaa8qaca WFbbWaaSbaaSqaaiaadkhaaeqaaOWaaWbaaSqabeaacqGHsislcaaI XaaaaOGaeyypa0Jaamiuaiaa=feadaWgaaWcbaGaamOCaaqabaGcpa WaaeWaaeaapeGaa8NDaaWdaiaawIcacaGLPaaapeGaey4kaSIaamOu aiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaapeGaa8NDaa WdaiaawIcacaGLPaaaaaa@585C@ . Since P A r ( v ) A r =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuaGqabiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaa peGaa8NDaaWdaiaawIcacaGLPaaapeGaey4jIKTaa8xqamaaBaaale aacaWGYbaabeaakiabg2da9iaaicdaaaa@4215@ and R A r ( v ). A r =0; P A r ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaGqabiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaa peGaa8NDaaWdaiaawIcacaGLPaaapeGaaiOlaiaa=feadaWgaaWcba GaamOCaaqabaGccqGH9aqpcaaIWaGaai4oaiaabccacaWGqbGaa8xq amaaBaaaleaacaWGYbaabeaak8aadaqadaqaa8qacaWF2baapaGaay jkaiaawMcaaaaa@47EF@ lies in A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ and R A r ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaGqabiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaa peGaa8NDaaWdaiaawIcacaGLPaaaaaa@3CAA@  is orthogonal to A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ and lies in the orthogonal complement A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaaiii Gaaaaaa@3A16@ of A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ . It is also interesting to note that: R A r ( v )=v A r A r 1 =v A r I n 1 I n A r 1 =v.( A r I n 1 ) I n A r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaGqabiaa=feadaWgaaWcbaGaamOCaaqabaGcpaWaaeWaaeaa peGaa8NDaaWdaiaawIcacaGLPaaapeGaeyypa0Jaa8NDaiabgEIizl aa=feadaWgaaWcbaGaamOCaaqabaGccaWFbbWaaSbaaSqaaiaadkha aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaeyypa0Jaa8NDai abgEIizlaa=feadaWgaaWcbaGaamOCaaqabaGccaWGjbWaaSbaaSqa aiaad6gaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamysam aaBaaaleaacaWGUbaabeaakiaa=feadaWgaaWcbaGaamOCaaqabaGc daahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqpcaWF2bGaaiOla8 aadaqadaqaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaamysamaa BaaaleaacaWGUbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaO WdaiaawIcacaGLPaaapeGaamysamaaBaaaleaacaWGUbaabeaakiaa =feadaWgaaWcbaGaamOCaaqabaGcdaahaaWcbeqaaiabgkHiTiaaig daaaaaaa@654D@ , according to eq.(12); = v. A r ( A r ) 1 =P A r ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaeiiaGqabiaa=zhacaGGUaGaa8xqamaaBaaaleaacaWG YbaabeaakmaaCaaaleqabaGaaiiiGaaak8aadaqadaqaa8qacaWFbb WaaSbaaSqaaiaadkhaaeqaaOWaaWbaaSqabeaacaGGGacaaaGcpaGa ayjkaiaawMcaa8qadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9a qpcaWGqbGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGa aiiiGaaak8aadaqadaqaa8qacaWF2baapaGaayjkaiaawMcaaaaa@4B75@ , i.e. the orthogonal projection of v in A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCaaaleqabaGaaiii Gaaaaaa@3A16@  is equal to the orthogonal rejection from A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ . Also, it is obvious that both projection and rejection leave the scalars untouched: P Ar ( λ )=λ=  R Ar ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaaieqacaWFbbGaamOCaaqabaGcpaWaaeWaaeaa peGaeq4UdWgapaGaayjkaiaawMcaa8qacqGH9aqpcqaH7oaBcqGH9a qpcaqGGaGaamOuamaaBaaaleaacaWFbbGaamOCaaqabaGcpaWaaeWa aeaapeGaeq4UdWgapaGaayjkaiaawMcaaaaa@4809@ . One can similarly project a multivector into a subspace. For any simple p-blade A p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaaaaa@3919@ , rewriting the identity A p = A p ( A r A r 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiabg2da9iaa=feadaWg aaWcbaGaamiCaaqabaGcpaWaaeWaaeaapeGaa8xqamaaBaaaleaaca WGYbaabeaakiaa=feadaWgaaWcbaGaamOCaaqabaGcdaahaaWcbeqa aiabgkHiTiaaigdaaaaak8aacaGLOaGaayzkaaaaaa@438A@ using the associative property of geometric product, as: A p =( A p A r ) A r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGWbaabeaakiabg2da98aadaqadaqa a8qacaWFbbWaaSbaaSqaaiaadchaaeqaaOGaa8xqamaaBaaaleaaca WGYbaabeaaaOWdaiaawIcacaGLPaaapeGaa8xqamaaBaaaleaacaWG YbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@4390@ , where A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ is an invertible blade ( r>p, r+pn ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGYbGaeyOpa4JaamiCaiaacYcacaqGGaGaamOCaiab gUcaRiaadchacqGHKjYOcaWGUbaapaGaayjkaiaawMcaaaaa@4283@ . It can be easily verified that only two terms of the final geometric product survive and we get:

A p =(< A p A r > rp +< A p A r > r+p ) A r 1 =( A p  ( p dots )  A r + A p A r ) A r 1 = P A r  ( A p )+ R A r ( A p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWFbbWaaSbaaSqaaiaadchaaeqaaOGaeyypa0Zdaiaa cIcapeGaeyipaWJaa8xqamaaBaaaleaacaWGWbaabeaakiaa=feada WgaaWcbaGaamOCaaqabaGccqGH+aGpdaWgaaWcbaGaamOCaiabgkHi TiaadchaaeqaaOGaey4kaSIaeyipaWJaa8xqamaaBaaaleaacaWGWb aabeaakiaa=feadaWgaaWcbaGaamOCaaqabaGccqGH+aGpdaWgaaWc baGaamOCaiabgUcaRiaadchaaeqaaOWdaiaacMcapeGaa8xqamaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaakiab g2da98aadaqadaqaa8qacaWFbbWaaSbaaSqaaiaadchaaeqaaOGaae iia8aadaqadaqaa8qacaWGWbGaaeiiaiaadsgacaWGVbGaamiDaiaa dohaa8aacaGLOaGaayzkaaWdbiaabccacaWFbbWaaSbaaSqaaiaadk haaeqaaOGaey4kaSIaa8xqamaaBaaaleaacaWGWbaabeaakiabgEIi zlaa=feadaWgaaWcbaGaamOCaaqabaaak8aacaGLOaGaayzkaaWdbi aa=feadaWgaaWcbaGaamOCaaqabaGcdaahaaWcbeqaaiabgkHiTiaa igdaaaaakeaacqGH9aqpcaWGqbWaaSbaaSqaaiaa=feaaeqaaOWaaS baaSqaamaaBaaameaacaWGYbaabeaaaSqabaGccaqGGaWdamaabmaa baWdbiaa=feadaWgaaWcbaGaamiCaaqabaaak8aacaGLOaGaayzkaa WdbiabgUcaRiaadkfadaWgaaWcbaGaa8xqamaaBaaameaacaWGYbaa beaaaSqabaGcpaWaaeWaaeaapeGaa8xqamaaBaaaleaacaWGWbaabe aaaOWdaiaawIcacaGLPaaaaaaa@7BC3@

Now, let us consider the vector:

v= P u ( v )+ R u ( v )= v u + v u   =  ( v.u ) u 1 + ( v  u ) u1 = ( v.u ) u1  ( vu ) u 1 = u v  u 1 ,  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWF2bGaeyOmGiQaeyypa0JaeyOeI0IaamiuamaaBaaa leaacaWF1baabeaak8aadaqadaqaa8qacaWF2baapaGaayjkaiaawM caa8qacqGHRaWkcaWGsbWaaSbaaSqaaiaa=vhaaeqaaOWdamaabmaa baWdbiaa=zhaa8aacaGLOaGaayzkaaWdbiabg2da9iabgkHiTiaa=z hadaWgaaWcbaGaeSyjIaLaa8xDaaqabaGccqGHRaWkcaWF2bWaaSba aSqaaiabgwQiEjaa=vhaaeqaaOGaaeiiaaqaaiabg2da9iaabccacq GHsislpaWaaeWaaeaapeGaa8NDaiaac6cacaWF1baapaGaayjkaiaa wMcaa8qadaahaaWcbeqaaiaa=vhacaqGGaGaeyOeI0IaaGymaaaaki abgUcaR8aadaqadaqaa8qacaWF2bGaaeiiaiabgEIizlaabccacaWF 1baapaGaayjkaiaawMcaa8qadaahaaWcbeqaaiaa=vhacqGHsislca aIXaaaaOGaeyypa0JaeyOeI0YdamaabmaabaWdbiaa=zhacaGGUaGa a8xDaaWdaiaawIcacaGLPaaapeWaaWbaaSqabeaacaWF1bGaeyOeI0 IaaGymaiaabccaaaGccqGHsislpaWaaeWaaeaapeGaa8NDaiabgEIi zlaa=vhaa8aacaGLOaGaayzkaaWdbiaa=vhadaahaaWcbeqaaiabgk HiTiaaigdaaaaakeaacqGH9aqpcaqGGaGaeyOeI0Iaa8xDaiaabcca caWF2bGaaeiiaiaa=vhadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca GGSaGaaeiiaaaaaa@825A@   (13)

obtained by reverting the component v u ( P u ( v ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacqWILicucaWF1baabeaak8aadaqadaqa a8qacaWGqbWaaSbaaSqaaiaa=vhaaeqaaOWdamaabmaabaWdbiaa=z haa8aacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@40D8@ of the vector v parallel to u and leaving v u ( R u ( v ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacqGHLkIxcaWF1baabeaak8aadaqadaqa a8qacaWGsbWaaSbaaSqaaiaa=vhaaeqaaOWdamaabmaabaWdbiaa=z haa8aacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@4163@ unaltered. Since v 2 =uv u 1 uv u 1 = v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgkdiIoaaCaaaleqabaGaaGOmaaaakiabg2da9iaa =vhacaWF2bGaa8xDamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaa=v hacaWF2bGaa8xDamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da 9iaa=zhadaahaaWcbeqaaiaaikdaaaaaaa@4810@ , the operation preserves the magnitude and represents simple reflection of the vector v along u (or equivalently in the plane orthogonal to u). Projection and rejection along a direction ( u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGPaV=aadaqadaqaaGqab8qacaWF1baapaGaayjkaiaawMcaaaaa @3B6E@  thus, defines reflection of v along that direction. Reflection from the plane B, on the other hand, is obtained by reverting R B ( v ) ( or  v B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaBaaaleaaieqacaWFcbaabeaak8aadaqadaqaa8qacaWF 2baapaGaayjkaiaawMcaa8qacaqGGaWdamaabmaabaWdbiaad+gaca WGYbGaaeiiaiaa=zhadaWgaaWcbaGaeyyPI4Laa8Nqaaqabaaak8aa caGLOaGaayzkaaaaaa@444D@ and keeping P B ( v ) ( or  v B )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaaieqacaWFcbaabeaak8aadaqadaqaa8qacaWF 2baapaGaayjkaiaawMcaa8qacaqGGaWdamaabmaabaWdbiaad+gaca WGYbGaaeiiaiaa=zhadaWgaaWcbaGaeSyjIaLaa8Nqaaqabaaak8aa caGLOaGaayzkaaWdbiaabccaaaa@4475@ unchanged and is expressed as: v= P B ( v ) R B ( v )=v.B B 1  vB B 1 =Bv B 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgkdiIkabg2da9iaadcfadaWgaaWcbaWaaSbaaWqa aiaa=jeaaeqaaaWcbeaak8aadaqadaqaa8qacaWF2baapaGaayjkai aawMcaa8qacqGHsislcaWGsbWaaSbaaSqaamaaBaaameaacaWFcbaa beaaaSqabaGcpaWaaeWaaeaapeGaa8NDaaWdaiaawIcacaGLPaaape Gaeyypa0Jaa8NDaiaac6cajugibiaa=jeacaWFcbGcdaahaaWcbeqa aiabgkHiTiaaigdaaaGccqGHsislcaqGGaGaa8NDaiabgEIizNqzGe Gaa8Nqaiaa=jeakmaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da 9iabgkHiTKqzGeGaa8NqaOGaa8NDaKqzGeGaa8NqaOWaaWbaaSqabe aacqGHsislcaaIXaaaaaaa@5B81@ . The general result for any invertible blade A r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8xqamaaBaaaleaacaWGYbaabeaaaaa@391B@ may be accordingly expressed as: v= A r v A r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgkdiIkabg2da9iabloHiTjaa=feadaWgaaWcbaGa amOCaaqabaGccaWF2bGaa8xqamaaBaaaleaacaWGYbaabeaakmaaCa aaleqabaGaeyOeI0IaaGymaaaaaaa@4290@ , the sign MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeS4eI0gaaa@3861@  depends on the grade r of the reflecting blade.

Reflection is generally treated using reflection matrix and matrix algebra. However, the simplicity and power of the approach following GA is amply evident in the description of more general, composite reflections in higher dimensions ( n4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaeyyzImRaaGinaaWdaiaawIcacaGLPaaaaaa@3C3D@ .3 Interestingly, replacing the rays by unit vectors and the vertex-ray interface interaction producing reflection and refraction of the incident ray by rotation-like operators, Sugon et al18 have reformulated the laws of geometric optics using GA.

Following eq.(13), next consider a successive second reflection of v along w. This may be expressed as:

v =w v  w 1  =w( u v  u 1   ) w 1  =w u v  u 1   w 1 = ( w u )v ( w u ) 1  , with wu=w.u+wu. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWF2bGaeyOmGiQaeyOmGiQaaeiiaiabg2da9iabgkHi Tiaa=DhacaqGGaGaa8NDaiabgkdiIkaabccacaWF3bWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaaeiiaiabg2da9iabgkHiTiaa=DhapaWa aeWaaeaapeGaeyOeI0Iaa8xDaiaabccacaWF2bGaaeiiaiaa=vhada ahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGGaaapaGaayjkaiaawMca a8qacaWF3bWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaeiiaiabg2 da9iaa=DhacaqGGaGaa8xDaiaabccacaWF2bGaaeiiaiaa=vhadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaqGGaGaa83DamaaCaaaleqaba GaeyOeI0IaaGymaaaaaOqaaiabg2da9iaabccapaWaaeWaaeaapeGa a83DaiaabccacaWF1baapaGaayjkaiaawMcaa8qacaWF2bWdamaabm aabaWdbiaa=DhacaqGGaGaa8xDaaWdaiaawIcacaGLPaaapeWaaWba aSqabeaacqGHsislcaaIXaaaaOGaaeiiaiaacYcacaqGGaGaam4Dai aadMgacaWG0bGaamiAaiaabccacaWF3bGaa8xDaiabg2da9iaa=Dha caGGUaGaa8xDaiabgUcaRiaa=DhacqGHNis2caWF1bGaaiOlaaaaaa@803C@   (14)

The combined operation also preserves the magnitude of v( v 2 = v 2   ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDa8aadaqadaqaa8qacaWF2bWaaWbaaSqabeaacaaIYaaa aOGaeyypa0Jaaeiiaiaa=zhacqGHYaIOcqGHYaIOdaahaaWcbeqaai aaikdaaaGccaqGGaaapaGaayjkaiaawMcaaaaa@4304@ and for two vectors v 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaaaaa@3914@ and v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaaaaa@3914@ , it can be readily shown that v 1 . v 2 = v 1 . v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDamaaBaaaleaacaaIXaaabeaakiaac6cacaWF2bWaaSba aSqaaiaaikdaaeqaaOGaeyypa0Jaa8NDamaaBaaaleaacaaIXaaabe aakiabgkdiIkabgkdiIkaac6cacaWF2bWaaSbaaSqaaiaaikdaaeqa aOGaeyOmGiQaeyOmGikaaa@4742@ . The transformation thus preserves both length and angle and must be a pure rotation. The geometric product of the two invertible vectors, represents normalisable elements of an even subalgebra (isomorphic with quaternion in 3-D). In fact, the normalized geometric product R=  w ^ u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaabccaieqaceWF3bGbaKaaceWF1bGbaKaaaaa@3BC4@ , called rotor, is the generator of pure rotation and since R 1 = R ˜ = w ^ u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabg2da9iqadkfa gaacaiabg2da9Gqabiqa=Dhagaqcaiqa=vhagaqcaaaa@3EEC@ , eq. (14) may be rewritten as: v=Rv R ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGaa8NDaiabgkdiIkabgkdiIkabg2da9iaadkfacaaMc8Uaa8ND aiaaykW7ceWGsbGbaGaaaaa@41FD@ . Also with R=wu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabgkdiIkabg2da9Gqabiaa=DhacaWF1baaaa@3C81@ , the transformation Rv  R ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabgkdiIIqabiaa=zhacaqGGaGabmOuayaaiaGaeyOmGika aa@3D8D@  produces, like quaternions, both rotation and dilation. Magnitude of bivectors in an Euclidean space are characterized by square root of a negative number and using the generalisation of the concept of exponential function of multivectors introduced by Hestenes,13 the rotors can be represented by elliptic functions as: R= exp( B ^ | θ | 2 )= cos( | θ | 2 )+ B ^ sin( | θ | 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaabccacaWGLbGaamiEaiaadchapaWaaeWaaeaa peWaaSaaaeaaieqaceWFcbGbaKaapaWaaqWaaeaapeGaeqiUdehapa Gaay5bSlaawIa7aaWdbeaacaaIYaaaaaWdaiaawIcacaGLPaaapeGa eyypa0JaaeiiaiaadogacaWGVbGaam4Ca8aadaqadaqaa8qadaWcaa qaa8aadaabdaqaa8qacqaH4oqCa8aacaGLhWUaayjcSdaapeqaaiaa ikdaaaaapaGaayjkaiaawMcaa8qacqGHRaWkceWFcbGbaKaacaaMc8 Uaam4CaiaadMgacaWGUbWdamaabmaabaWdbmaalaaabaWdamaaemaa baWdbiabeI7aXbWdaiaawEa7caGLiWoaa8qabaGaaGOmaaaaa8aaca GLOaGaayzkaaaaaa@5EE6@ with, cos( | θ | 2 )=  w ^ . u ^ , sin( | θ | 2 )= | w ^ u ^ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaiaad+gacaWGZbWdamaabmaabaWdbmaalaaabaWdamaaemaa baWdbiabeI7aXbWdaiaawEa7caGLiWoaa8qabaGaaGOmaaaaa8aaca GLOaGaayzkaaWdbiabg2da9iaabccaieqaceWF3bGbaKaacaGGUaGa b8xDayaajaGaaiilaiaabccacaWGZbGaamyAaiaad6gapaWaaeWaae aapeWaaSaaaeaapaWaaqWaaeaapeGaeqiUdehapaGaay5bSlaawIa7 aaWdbeaacaaIYaaaaaWdaiaawIcacaGLPaaapeGaeyypa0Jaaeiia8 aadaabdaqaa8qaceWF3bGbaKaacqGHNis2ceWF1bGbaKaaa8aacaGL hWUaayjcSdaaaa@5AA6@ and B ^ =  | w ^ u ^ | | w ^ u ^ | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8NqayaajaGaeyypa0JaaeiiamaalaaabaWdamaaemaabaWd biqa=DhagaqcaiabgEIizlqa=vhagaqcaaWdaiaawEa7caGLiWoaa8 qabaWdamaaemaabaWdbiqa=DhagaqcaiabgEIizlqa=vhagaqcaaWd aiaawEa7caGLiWoaaaaaaa@47EA@ . The rotor expressed as the exponential of the bivector B, generates a rotation through the bilinear expression of eq. (14). The bivector encodes both the the direction (defined by the oriented plane of B ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8Nqayaajaaaaa@3809@ ) and the magnitude (the angle of rotation θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaai4eGaaa@399B@ twice the angle between w ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab83Dayaajaaaaa@383E@ and u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaaaaa@383C@ and provides unambiguous specification of rotation in any dimension. The half-angle appears in the expression of the rotor is due to the bilinear form of the operation. Although it is less evident in lower dimensions, the bilinear transformation is much easier to handle than the one-sided rotation matrix. As the number of dimensions increases, the latter becomes very complicated.

One can also apply a rotor on a subspace. This will produce rotations of all the individual vectors of the corresponding multivector blade by the rotor. For example, if we take a r-blade A r = v 1 v 2 ... v r , then ( v 1 v 2 ... v r )=R  v 1 v 2 ... v r R ˜ =<R  v 1 v 2 ... v r R ˜ > r =<R  v 1 R ˜ R v 2 R ˜ R... R ˜ R v r R ˜ > r =R  v 1 R ˜ R v2  R ˜ ...R v r R ˜ = v 1 v 2 ... v r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbeaeaa aaaaaaa8qacaWFbbWaaSbaaSqaaiaadkhaaeqaaOGaeyypa0Jaa8ND amaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zhadaWgaaWcbaGaaG OmaaqabaGccqGHNis2caGGUaGaaiOlaiaac6cacqGHNis2caWF2bWa aSbaaSqaaiaadkhaaeqaaOGaaiilaiaabccacaWG0bGaamiAaiaadw gacaWGUbGaaeiia8aadaqadaqaa8qacaWF2bWaaSbaaSqaaiaaigda aeqaaOGaey4jIKTaa8NDamaaBaaaleaacaaIYaaabeaakiabgEIizl aac6cacaGGUaGaaiOlaiabgEIizlaa=zhadaWgaaWcbaGaamOCaaqa baaak8aacaGLOaGaayzkaaWdbiabgkdiIkabgkdiIkabg2da9iaadk facaqGGaGaa8NDamaaBaaaleaacaaIXaaabeaakiabgEIizlaa=zha daWgaaWcbaGaaGOmaaqabaGccqGHNis2caGGUaGaaiOlaiaac6cacq GHNis2caWF2bWaaSbaaSqaaiaadkhaaeqaaOGabmOuayaaiaGaeyyp a0JaeyipaWJaamOuaiaabccacaWF2bWaaSbaaSqaaiaaigdaaeqaaO Gaa8NDamaaBaaaleaacaaIYaaabeaakiaac6cacaGGUaGaaiOlaiaa =zhadaWgaaWcbaGaamOCaaqabaGcceWGsbGbaGaacqGH+aGpdaWgaa WcbaGaamOCaaqabaaakeaacqGH9aqpcqGH8aapcaWGsbGaaeiiaiaa =zhadaWgaaWcbaGaaGymaaqabaGccaaMc8UabmOuayaaiaGaamOuai aaykW7caWF2bWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlqadkfagaac aiaadkfacaGGUaGaaiOlaiaac6caceWGsbGbaGaacaWGsbGaaGPaVl aa=zhadaWgaaWcbaGaamOCaaqabaGccaaMc8UabmOuayaaiaGaeyOp a4ZaaSbaaSqaaiaadkhaaeqaaOGaeyypa0JaamOuaiaabccacaWF2b WaaSbaaSqaaiaaigdaaeqaaOGabmOuayaaiaGaey4jIKTaamOuaiaa bccacaWF2bGaaGOmaiaabccaceWGsbGbaGaacqGHNis2caGGUaGaai Olaiaac6cacqGHNis2caWGsbGaa8NDamaaBaaaleaacaWGYbaabeaa kiqadkfagaacaiabg2da9iaa=zhadaWgaaWcbaGaaGymaaqabaGccq GHYaIOcqGHYaIOcqGHNis2caWF2bWaaSbaaSqaaiaaikdaaeqaaOGa eyOmGiQaeyOmGiQaaiOlaiaac6cacaGGUaGaey4jIKTaa8NDamaaBa aaleaacaWGYbaabeaakiabgkdiIkabgkdiIcaaaa@C40B@ since the bilinear operation with the rotor is grade preserving.

Composition of rotations simply corresponds to multiplication of rotors. For example, if we rotate a cube in yz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiaadQhacqGHsislaaa@3A18@ plane through π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaai4laiaaikdaaaa@3A5A@ first and subsequently in zx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiaadIhacqGHsislaaa@3A17@ plane, again through π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiWdaNaai4laiaaikdaaaa@3A5A@ , applying rotor the equivalent single rotation can be found easily. Let e ^ 1 , e ^ 2  and  e ^ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyzayaajaWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiqadwgagaqc amaaBaaaleaacaaIYaaabeaakiaabccacaWGHbGaamOBaiaadsgaca qGGaGabmyzayaajaWaaSbaaSqaaiaaiodaaeqaaaaa@41A0@ be the orthonormal Cartesian basis vectors and the product rotor for the combined rotation is given by:

R= R 1 R 2 =exp( e ^ 3 e ^ 1 π 4 ) exp( e ^ 2 e ^ 3 π 4 )  = { cos( π 4   ) + e ^ 3 e ^ 1 sin( π 4 ) }{ cos( π 4   ) +  e ^ 2 e ^ 3 sin( π 4   ) } =  1 2 { ( 1+ e ^ 3 e ^ 1 )( 1+  e ^ 2 e ^ 3 ) } =  1 2 + 1 2 ( e ^ 2 e ^ 3 + e ^ 3 e ^ 1 + e ^ 1 e ^ 2 ) = cos( π 3   )+ 1 3 ( e ^ 2 e ^ 3 + e ^ 3 e ^ 1 + e ^ 1 e ^ 2 ) sin( π 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGsbGaeyypa0JaamOuamaaBaaaleaacaaIXaaabeaakiaa dkfadaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcaWGLbGaamiEaiaadc hapaWaaeWaaeaapeGabmyzayaajaWaaSbaaSqaaiaaiodaaeqaaOGa ey4jIKTabmyzayaajaWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacq aHapaCaeaacaaI0aaaaaWdaiaawIcacaGLPaaapeGaaeiiaiaadwga caWG4bGaamiCa8aadaqadaqaa8qaceWGLbGbaKaadaWgaaWcbaGaaG OmaaqabaGccqGHNis2ceWGLbGbaKaadaWgaaWcbaGaaG4maaqabaGc daWcaaqaaiabec8aWbqaaiaaisdaaaaapaGaayjkaiaawMcaa8qaca qGGaaabaGaeyypa0Jaaeiia8aadaGadaqaa8qacaWGJbGaam4Baiaa dohapaWaaeWaaeaapeWaaSaaaeaacqaHapaCaeaacaaI0aaaaiaabc caa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkceWGLbGbaKaadaWg aaWcbaGaaG4maaqabaGccqGHNis2ceWGLbGbaKaadaWgaaWcbaGaaG ymaaqabaGccaaMc8Uaam4CaiaadMgacaWGUbWdamaabmaabaWdbmaa laaabaGaeqiWdahabaGaaGinaaaaa8aacaGLOaGaayzkaaaacaGL7b GaayzFaaGaaGPaVpaacmaabaWdbiaadogacaWGVbGaam4Ca8aadaqa daqaa8qadaWcaaqaaiabec8aWbqaaiaaisdaaaGaaeiiaaWdaiaawI cacaGLPaaapeGaaeiiaiabgUcaRiaabccaceWGLbGbaKaadaWgaaWc baGaaGOmaaqabaGccqGHNis2ceWGLbGbaKaadaWgaaWcbaGaaG4maa qabaGccaWGZbGaamyAaiaad6gapaWaaeWaaeaapeWaaSaaaeaacqaH apaCaeaacaaI0aaaaiaabccaa8aacaGLOaGaayzkaaaacaGL7bGaay zFaaaabaWdbiabg2da9iaabccadaWcaaqaaiaaigdaaeaacaaIYaaa a8aadaGadaqaamaabmaabaWdbiaaigdacqGHRaWkceWGLbGbaKaada WgaaWcbaGaaG4maaqabaGccqGHNis2ceWGLbGbaKaadaWgaaWcbaGa aGymaaqabaaak8aacaGLOaGaayzkaaWaaeWaaeaapeGaaGymaiabgU caRiaabccaceWGLbGbaKaadaWgaaWcbaGaaGOmaaqabaGccqGHNis2 ceWGLbGbaKaadaWgaaWcbaGaaG4maaqabaaak8aacaGLOaGaayzkaa aacaGL7bGaayzFaaWdbiaabccacqGH9aqpcaqGGaWaaSaaaeaacaaI XaaabaGaaGOmaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaa8 aadaqadaqaa8qaceWGLbGbaKaadaWgaaWcbaGaaGOmaaqabaGccqGH Nis2ceWGLbGbaKaadaWgaaWcbaGaaG4maaqabaGccqGHRaWkceWGLb GbaKaadaWgaaWcbaGaaG4maaqabaGccqGHNis2ceWGLbGbaKaadaWg aaWcbaGaaGymaaqabaGccqGHRaWkceWGLbGbaKaadaWgaaWcbaGaaG ymaaqabaGccqGHNis2ceWGLbGbaKaadaWgaaWcbaGaaGOmaaqabaaa k8aacaGLOaGaayzkaaaabaWdbiabg2da9iaabccacaWGJbGaam4Bai aadohapaWaaeWaaeaapeWaaSaaaeaacqaHapaCaeaacaaIZaaaaiaa bccaa8aacaGLOaGaayzkaaWdbiabgUcaRmaalaaabaGaaGymaaqaam aakaaabaGaaG4maaWcbeaaaaGcpaWaaeWaaeaapeGabmyzayaajaWa aSbaaSqaaiaaikdaaeqaaOGaey4jIKTabmyzayaajaWaaSbaaSqaai aaiodaaeqaaOGaey4kaSIabmyzayaajaWaaSbaaSqaaiaaiodaaeqa aOGaey4jIKTabmyzayaajaWaaSbaaSqaaiaaigdaaeqaaOGaey4kaS IabmyzayaajaWaaSbaaSqaaiaaigdaaeqaaOGaey4jIKTabmyzayaa jaWaaSbaaSqaaiaaikdaaeqaaaGcpaGaayjkaiaawMcaa8qacaqGGa Gaam4CaiaadMgacaWGUbWdamaabmaabaWdbmaalaaabaGaeqiWdaha baGaaG4maaaaa8aacaGLOaGaayzkaaaaaaa@E8CC@

Therefore, the combined rotation is in the (1, 1, 1) plane of the Cartesian system and the angle of rotation is ( 2π 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qadaWcaaqaaiaaikdacqaHapaCaeaacaaIZaaaaaWdaiaa wIcacaGLPaaacaGGUaaaaa@3CBE@

For the product rotor R= R 2 R 1 , R R ˜ = R 2 R 1 R ˜ 1 R ˜ 2  =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadkfadaWgaaWcbaGaaGOmaaqabaGccaWGsbWa aSbaaSqaaiaaigdaaeqaaOGaaiilaiaabccacaWGsbGabmOuayaaia Gaeyypa0JaamOuamaaBaaaleaacaaIYaaabeaakiaadkfadaWgaaWc baGaaGymaaqabaGccaaMc8UabmOuayaaiaWaaSbaaSqaaiaaigdaae qaaOGabmOuayaaiaWaaSbaaSqaaiaaikdacaqGGaaabeaakiabg2da 9iaaigdaaaa@4BE1@ . Thus, rotors form a group and multiple rotors compose single-sidedly. Also for any vector v, if we make a rotation of 2π, v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabec8aWjaacYcacaqGGaGaamODaiabgkdiIcaa@3D75@ returns to v. What happens to R is surprising; using15 above, we see that R R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaabccacqGHsgIRcqGHsislcaWGsbaaaa@3C59@ . Nothing quantummechanical is invoked here and it indicates that spinors share identical algebra with rotors. It turns out that it is possible to represent a Pauli spinor by rotors or more specifically by an arbitrary even element in the geometric algebra of 3-space. In fact, spinors may be regarded as nonnormalised rotors in GA  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiaadgeacaqGGaGaai4eGaaa@3A1A@  more importantly GA provides an explicit construction and description of spinors. It is also important to note that rotors can handle much more complex rotations and in the non-Euclidean space, the bivectors may possess a positive square and rotors are no longer elliptic but hyperbolic. For example, the corresponding rotors for the bivectors containing a time-like component as in xt, yt and zt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgkHiTiaadshacaGGSaGaaeiiaiaadMhacqGHsislcaWG 0bGaaeiiaiaadggacaWGUbGaamizaiaabccacaWG6bGaeyOeI0Iaam iDaaaa@4535@ space-time surfaces of a 4-D space-time continuum, produce Lorentz boost in addition to the usual rotations on three orthogonal spatial planes xy, xz and yz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgkHiTiaadMhacaGGSaGaaeiiaiaadIhacqGHsislcaWG 6bGaaeiiaiaadggacaWGUbGaamizaiaabccacaWG5bGaeyOeI0Iaam OEaaaa@4544@ ). It turns out that the Lorentz boost is a sort of generalized rotation obtained from the same rotor prescription of GA. Since spinors allow a more general treatment of the notion of invariance under rotation and Lorentz boosts, from the above discussion it appears that they can be used without reference to relativity, but arise naturally in the discussions of Lorentz group.

Translations or linear shifts in space are usually defined by the addition with a vector representing the shift. This, however, works only for vectors representing locations in space and fails in the case free vectors and other geometric objects. These problems are removed in the projective geometric algebra by adding an extra dimension to reality and representing the geometric objects of the target space (under study) with linear subspaces of the augmented model space. In this setting both the rotor and the translator can be obtained via two consecutive reflections along u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaaaaa@383C@ and w ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab83Dayaajaaaaa@383E@ . If the two unit vectors are intersecting, w ^ u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab83DayaajaGab8xDayaajaaaaa@3944@ is a rotor R producing rotation by twice the angle between them. But If they are parallel, w ^ u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab83DayaajaGab8xDayaajaaaaa@3944@ represents a translator T and produces translation in the direction perpendicular to u ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8xDayaajaaaaa@383C@  and w ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab83Dayaajaaaaa@383E@  by twice the distance between them. Also a continuous shift or drifting of the plane of rotation may be produced by combining a translator ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacaWGubaacaGLOaGaayzkaaaaaa@3990@ with a rotor to form the special motor M=T R  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9iaadsfacaqGGaGaamOuaiaabccacaGGtacaaa@3CB3@ the generator of twist.

From a discussion of spin groups, spinors can be defined in any number of dimensions as elements of the even subalgebra of some real geometric algebra.19 The physical properties of Pauli and Dirac spinors are also discussed and finally evaluate the relationship among Dirac, Lorentz, Weyl, and Majorana spinors. Lounesto,16 on the other hand, has used a special type of Dirac self adjoint clif (consisting of five multivectors – two scalars, two vectors and a bivector), termed boomerang, for the reconstruction of the Weyl and Majorana spinors.5 Another mathematical representation, Twistor, introduced by Penrose in 1967 which attracts recent attention of string theorists, also requires an understanding of spinors and may be viewed as an extension of spinor algebra. Arcaute et al.20 have proposed reinterpretation of twistors within the framework of GA, in terms of 4-d spinors.

It may be noted that specification of axis of rotation is not possible for dimensions other than three. Representing the plane of rotation by a unit bivector B ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqababaaaaaaa aapeGab8Nqayaajaaaaa@3809@ , GA appropriately generalises the description. On the other hand, a rotation with only one plane of rotation is a simple rotation and all rotations in two and three dimensions are simple. In an earlier paper3 we have described the rotational transformation eq. (14) in terms of simple bivector B. However, in four and higher dimensions, complex rotations involving multiple planes of rotation may appear in addition to simple rotations which can be described adequately in GA. For example, rotations can be decomposed either into one or two planar rotations in 4-D and are called simple and double rotations respectively. If the angles and of the two independent planar rotations of a double rotation have the same magnitude, then it is said to be isoclinic. More generally, in an even n-dimensional space, a rotation is isoclinic if all its n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGUbaabaGaaGOmaaaaaaa@38ED@  angles are equal (up to the sign).

Applications and advantages of geometric algebra: Hestenes has paved the way for an extensive application of GA, for a variety of convenient and new formulations of modern physics. He has formulated standard problems on particle and rigid body dynamics using GA and developed the spinor theory of rotations and rotational dynamics.8 Calculations with spinors are demonstrably more efficient compared to the conventional matrix theory and provides new insights into the treatment of the topics discussed. Specially in rotational dynamics and celestial mechanics, this unique treatment has both practical as well as theoretical advantages. Hestenes21 has also given an invariant formulation of the Hamiltonian mechanics in terms of geometric calculus15 -a generalization of the calculus of differential forms according to GA. Moreover, with the introduction of the geometric product, the Spacetime Algebra (STA) – GA on four-dimensional Minkowski space,22 removes much of the mathematical divide among classical, quantum, and relativistic physics.

The strength of GA may also be argued using ‘Occam’s Razor’ as it provides a simpler and economic mathematical model for the description of physical theories, naturally extending from one to two, to higher dimensions. The effectiveness of this algebra is amply demonstrated as it encapsulates the usual four Maxwell’s equations of electromagnetism describing the electromagnetic field for the charge density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EE@  and current density j as sources in a single, compact equation:23

( c 1   t + )F=ρ  j c  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGJbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaeii amaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaacqGHRaWkcqGHhi s0a8aacaGLOaGaayzkaaWdbiaadAeacqGH9aqpiiGacqWFbpGCcqGH sislcaqGGaWaaSaaaeaaieqacaGFQbaabaGaam4yaaaacaqGGaGaai ilaaaa@4AE2@   (16)

where c is the velocity of light. The electromagnetic field F is described as the sum of the electric field vector and the magnetic field bivector, i.e. represented by a clif and F= .F+F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIeTaamOraiabg2da9iaabccacqGHhis0caGGUaGaamOraiab gUcaRiabgEGirlabgEIizlaadAeaaaa@430C@ , defined similarly like the geometric product. The four geometrically distinct parts of eq. (16) – its scalar, vector, bivector, and pseudoscalar parts, are respectively equivalent to the standard set of four equations. It should be noted here that the unification of the separate equations for divergence and curl in electromagnetism in a single equation is nontrivial – the unified equation can be inverted directly to determine the field. The formulation reveals that electromagnetism has no chirality and offers resolution to the Pierres puzzle in this context.24 The apparent chirality turns out to be actually an artifact of the standard electromagnetic theory.

Another interesting point25 to note is that, GA offers a natural extension of Maxwell’s equation to accommodate any possible presence of magnetic monopole through the inclusion of multivector (bivector and trivector) term in the field source. Despite the fact that no free monopoles have yet been found, search for free magnetic monopoles at high energies are still ongoing. Moreover, recent investigation indicates an effective flow of magnetic monopoles in a spin ice system, though they cannot exist outside the material in a free form. Finally, GA allows an appropriate descriptions of electrodynamics and special relativity by extending the algebra of space to the algebra of spacetime. In two recent papers,26 straightforward and unified field theoretic formulations of electromagnetism and fluid mechanics, using purely geometric algebraic description, are presented which is expected to provide new insights and open up new directions of investigation.

The structures of the Pauli’s σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyOeI0caaa@39DE@ and Dirac’s γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyOeI0caaa@39C2@ matrices correspond to the structures of geometric algebra27 rendering an implicit geometric interpretation for quantum mechanics. Consistent formulations of both classical and quantum mechanics (QM) with GA facilitates the introduction of spin as a physical observable and thereby removes the first conceptual hurdle for quantum-classical unification.

From a reformulation of the Dirac theory in terms of STA, The spin is revealed in this formulation as a dynamical property of the electron motion, associated with a local circulatory motion zitterbewegung g( zbw ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4za8aadaqadaqaa8qacaWG6bGaamOyaiaadEhaa8aacaGLOaGa ayzkaaWdbiaacobiaaa@3D7A@ first proposed by Schrödinger. Hestenes has further argued that the zbw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiaadkgacaWG3baaaa@3A10@ idea offers a natural interpretation of the theory and is characterized by the complex phase factor of the wave function – a main feature, which it shares with its nonrelativistic limit.28 Consequently, the barrier penetration in nonrelativistic quantum mechanics can also be interpreted as manifestations of the zbw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiaadkgacaWG3baaaa@3A10@ . The quantum phase has a general interpretation in terms of the Pancharatnam-Berry geometric phase.29 According to Hestenes, the zbw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiaadkgacaWG3baaaa@3A10@  argument provides an even more literal geometrical interpretation. Zitterbewegung has recently been detected in varied experimental situations.30

Developing the nonrelativistic QM as a statistical theory over phase space, the Weyl-WignerMoyal (WWM) formalism31 represents the observables in terms of the corresponding phase space functions (c-number) instead of the Hilbert space operators of standard QM. Replacing the conventional product of functions, the star product regime (also called the Moyal product or WeylGroenewold product)32 used in this formalism, produce noncommutative composition of the phase space functions (the so-called deformation quantization). The star product encodes the quantum mechanical action and the formalism thus accommodates the uncertainty principle in systematic analogy with the noncommuting Hilbert space operators.

Recently, Daviau and Bertrand33 have argued that three geometric algebras are sufficient to describe all interactions of modern physics and discussed the advantages of the approach. The algebra of the usual space, algebra of space-time and a third with only two more dimensions of space are sufficient to describe all aspects of electromagnetism, including the quantum wave of the electron, gravitation, the electro-weak interactions and the gauge group of the standard model, with electro-weak and strong interactions. In summary we note that, the geometric algebra provides a unified and comprehensive mathematical language for physics as it provides the appropriate representation for both physical Variables and operations by the elements of the algebra. The geometric products of two 2-D and 3-D vectors represent respectively ordinary complex numbers and quaternions and thereby generalizes complex analysis with even sub-algebra. GA reduces rotations and Lorentz transformations to algebraic multiplication, and more generally it allows computational geometry without matrices or tensors and via Conformal geometric algebra (the conformal model projects onto a surrounding sphere, instead of a plane as in the case of projective geometry) gives a whole new language for doing geometry on the computer and currently being exploited in computer graphics. GA is also being used to investigate fractal geometry34 and rotors applied to analyze and study low dimensional systems like quantum ring, monolayer and bilayer graphene35

GA offers great notational economy that simplifies many mathematical expressions. It formulates classical physics in an efficient spinorial formulation with tools that are closely related to ones familiar in quantum theory, such as spinors and projectors. Thereby, it unites Newtonian mechanics, relativity, quantum theory, and more in a single formalism and language that is as simple as the algebra of the Pauli spin matrices. Spinors cannot be represented by tensors and besides the arduous language barrier of the tensor algebra, it requires a time consuming exercise to prove the covariance of physical quantities and equations for the coordinate-based tensor formulation. In this sense GA is more general than tensor algebra. From a study of electrically anisotropic medium, Matos et al.36 have also claimed that geometric algebra is the most natural setting and provide a better mathematical framework than tensors and dyadics in the formulation of anisotropy. However, pure grade multivectors can represent only antisymmetric tensors of rank equal to or less than the dimension of the base vector space. Unlike the grade of a multivector, the rank of a tensor is not restricted by the dimension of the vector space. Hestenes has proposed to introduce tensor as multilinear functions defined on geometric algebras.22,37,38

1Grassmann, in his later years, combined the inner and exterior products to form a new product very similar to eq.(1).5 In fact, Grassmann has also discovered the key idea of geometric product independently of Clifford and evidently somewhat before him. Many historians of mathematics have overlooked this important later work of Grassmann.

2In ordinary 3-D vector algebra, the Levi-Civita index, a single element of the Levi-Civita tensor, is defined as: the unit pseudoscalar using the identity (eq.12):

3This notation relates to traditional Hamilton’s notation [4] as , where the fundamental quaternion equation reads:

4Of the four possible normed division algebras (real, complex, quaternion and octonion), GA provide a way to generalize the first three. The octonions being nonassociative,10,11 the family of GA appears to diverge at the point of the octonions. Nonassociative algebras are also being used in some recent string theoretic models and in quantum systems with magnetic charges. Nonassociativity of the octonions, is closely related to triality. In mathematics, triality is a relationship among three vector spaces, analogous to the duality relation between dual vector spaces. Proper accommodation of this algebra in physical theory requires introduction of nonassociative star products.12

5A spinor is determined up to a phase factor by its bilinear covariant (the special clif in the present case), which is in turn determined by its spinor – representing a boomerang, which returns back.16

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Lasenby J, Lasenby AN, Doran CJL. A unified mathematical language for physics and engineering in the 21st century. Phil Trans. Roy Soc Lond. 2000;358(1765):21–39.
  2. Sen D, Sen Deeprodyuti. Representation of physical quantities: From scalars, vectors, tensors and spinors to multivectors; 2016.
  3. Sen D, Sen Deeprodyuti. Products between multivectors in geometric algebra; 2017.
  4. Hamilton WR. Lectures on Quaternions. Hodges and Smith: Dublin; 1853.
  5. H Grassmann. Der ort der Hamiltonschen quaternionen in der Ausdehnungslehre. Math Ann. 1877;12:375–386.
  6. Clifford WK. Applications of Grassmann’s Extensive Algebra. Am J Math. 1878;1(4):350–358.
  7. Tait PG. An elementary treatise on quaternions. Cambridge; 1890.
  8. Hestenes D. New Foundations for Classical Mechanics. Kluwer Academic Publishers; 1986.
  9. Artin E. Geometric algebra. Interscience Publ; 1957.
  10. Baez JC. The octonions. Bul Am Math Soc. 2002;39(2):145–205.
  11. Dray T, Manogue CA. The geometry of the octonions. World Scientific. 2015;228.
  12. Kupriyanov VG. Alternative multiplications and non-associativity in physics. Proc Corfu Summer Inst. School and Workshops onElementary Particle Physics and Gravity; 2015.
  13. Hestenes D. Vectors, spinors, and complex numbers in classical and quantum physics. Am J Phys. 1971;39(9):1013–1027.
  14. Doran C, Lasenby A. Geometric Algebra for Physicists. Cambridge University Press, Cambridge; 2003.
  15. Hestenes D, Garret Sobczyk. Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics. Reprinted paperback edition, Kluwer, Dordrecht/Boston/Lancaster/Tokyo; 1987. p. 28.
  16. Lounesto P. Clifford Algebras and Spinors. Cambridge University Press: Cambridge; 2001. p. 216.
  17. Kurt Nalty. Curvature state multivectors in geometric algebra; 2015.
  18. Sugon QM, McNamara DJ. A geometric algebra reformulation of geometric optics. Am J Phys. 2004;72 (1):92–97.
  19. Francis MR, Kosowsky A. The construction of spinors in geometric algebra. Mathematical Physics; 2004.
  20. Arcaute E, Lasenby A, Doran C. Twistors in geometric algebra. Adv Appl Clifford Algebras. 2008;18(3):373–394.
  21. David H. Hamiltonian mechanics with geometric calculus. Spinors, twistors, clifford algebras and quantum deformation. Oziewicz Z,  Jancewicz B, Borowiec A, editors; 1993.
  22. David H. Space-time algebra. Gordon and Breach: New York; 1966.
  23. David H. Oersted medal lecture 2002: Reforming the mathematical language of physics. Am J Phys. 2003;71(2):104−121
  24. Denker JS. Pierre’s puzzle; 2002.
  25. Chappell JM, Iqbal A, Abbot D. A simplified approach to electromagnetism using geometric algebra. arXiv:1010.4947v2; 2010.
  26. Sen D, Pramana – J. Phys. 2022;96:165; Pramana - J. Phys. 2023;97:132.
  27. David H. Clifford algebra and the interpretation of quantum mechanics. Clifford algebras and their applications in mathematical physics. Chisholm JSR, Commons AK, editors; 1986. 321−346 p.
  28. David H. The Zitterbewegung Interpretation of quantum mechanics. Found Phys. 1990;20(10);1213−1232.
  29. Jeeva A. The geometric phase.  Nature. 1992;360:307−313.
  30. Gerritsma R, Kirchmair G, Zahringer F, et al. Quantum simulation of the dirac equation. Nature. 2010;463:68−71.
  31. LeBlanc LJ, Beeler MC, Jimenez-Garcia K, et al. Direct observation of zitterbewegung in a Bose-Einstein condensate. New Journal of Physics. 2013;15(073011):1−11.
  32. Zachos C, Fairlie D, Curtright T. Quantum mechanics in phase space. World Scientific: Singapore; 2005.
  33. Groenewold HJ. On the principles of elementary quantum mechanics. Physica. 1946;12(7):405−460;
  34. Moyal JE. Quantum mechanics as a statistical theory. Proc Camb Phil Soc. 1949;45(1):99−124.
  35. Claude D, Jacques B. Three clifford algebras for four kinds of interactions. Jour Mod Phys. 2016;7:936−951.
  36. Wareham RJ, Lasenby J. Generating fractals using geometric algebra. Adv Appl Clifford Algebras. 2011;21(3):647−659.
  37. Dargys A, Acus A. Pseudospin, velocity and Berry phase in a bilayer graphene.arXiv:1410.2038; 2014.
  38. Matos SA, Ribeiro MA, Paiva CR. Anisotropy without tensors: a novel approach using geometric algebra. Opt Express. 2007;15(23):15175−15186.
Creative Commons Attribution License

©2023 D, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.