Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Opinion Volume 4 Issue 4

The geometry of our universe is definitely FLAT

S Kalimuthu

Centre for inner studies, India

Correspondence: Sennimalai Kalimuthu, Centre for inner studies, 2/394, Kanjampatti P.O, Pollachi, Tamil Nadu 642003, India, Tel +91 8220541577

Received: June 30, 2020 | Published: July 13, 2020

Citation: Kalimuthu S. The geometry of our universe is definitely FLAT. Phys Astron Int J. 2020;4(4):146-147. DOI: 10.15406/paij.2020.04.00213

Download PDF

Abstract

In the nineteen twenties, the famous Russian mathematician Alexander Freedman published a paper on general relativity which revealed that the geometry of our universe can be flat, closed or open. The flat universe obeys the classical Euclidean geometry, the closed universe denotes spherical/elliptic geometry and the open universe is hyperbolic geometry. Recent experimental and observational data show that our universe is flat. In 2019, Anantha Anantha published a paper by delving cosmic triangles that the geometry of our universe is Euclidean.1 But till this day, there is no relativistic mathematical verification for flat universe. In this brief note, by analyzing Freedman’s modified general relativistic equation, the author attempts to establish that the shape of our universe is definitely flat.

Keywords: freedman equations, application of algebra, the shape of our universe, relativistic equation, cosmic triangles, curvature parameter, omega greater

Opinion

Proof ONE

The density parameter Ω, the curvature parameter k and the Hubble parameter H are related as1–5

( 1Ω )=k c 2 / H 2 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTiabfM6axbGaayjkaiaawMcaaiabg2da9iabgkHiTiaa dUgacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadIeadaahaa WcbeqaaiaaikdaaaGccaWGsbWaaWbaaSqabeaacaaIYaaaaaaa@44BE@           (1)

If omega less than 1, k is less than 1 if omega is equal to 1, k is zero If omega greater than 1, k is +1.

If k is -1, the geometry of the universe is open, if it is greater than one, the shape of the universe is closed and the universe obeys Euclidean geometry if k is equal to zero.

I.e. if Ω=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9iaaigdacaGGSaaaaa@3B0D@ the universe is Euclidean, if Ω= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9aaa@39A2@ less than 1, the geometry of the universe is open, and if Ω= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9aaa@39A2@ greater than 1, the universe is closed. For our convenience, let us assume in ( 1 ),n = k c 2 /  H 2 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaaIXaaapaGaayjkaiaawMcaa8qacaGGSaGaai4eGiaa d6gacaqGGaGaeyypa0JaeyOeI0IaaeiiaiaadUgacaWGJbWdamaaCa aaleqabaWdbiaaikdaaaGccaGGVaGaaeiiaiaadIeapaWaaWbaaSqa beaapeGaaGOmaaaakiaadkfapaWaaWbaaSqabeaapeGaaGOmaaaaaa a@4722@

So, ( 1Ω  )= n  ( 1a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaaIXaGaai4eGiabfM6axjaabccaa8aacaGLOaGaayzk aaWdbiabg2da9iabgkHiTiaabccacaWGUbGaaiiOaiaacckapaWaae WaaeaapeGaaGymaiaadggaa8aacaGLOaGaayzkaaaaaa@45A2@

Applying (1a) and cubing (1) we get that, 1 Ω 3 3 Ω ( 1Ω )=  n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaacobicqqHPoWvpaWaaWbaaSqabeaapeGaaG4maaaakiab gkHiTiaaiodacaqGGaGaeuyQdCLaaeiia8aadaqadaqaa8qacaaIXa Gaai4eGiabfM6axbWdaiaawIcacaGLPaaapeGaeyypa0Jaaeiiaiab gkHiTiaad6gapaWaaWbaaSqabeaapeGaaG4maaaaaaa@4918@

i.e. ( n 3 Ω 3) +13 Ω ( 1 Ω  )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaad6gapaWaaWbaaSqabeaapeGaaG4maaaakiaacobicqqH PoWvpaWaaWbaaSqabeaapeGaaG4ma8aacaGGPaaaaOWdbiabgUcaRi aaigdacaGGtaIaaG4maiaabccacqqHPoWvcaqGGaWdamaabmaabaWd biaaigdacaGGtaIaaeiiaiabfM6axjaabccaa8aacaGLOaGaayzkaa Wdbiabg2da9iaaicdaaaa@4BB6@

By applying the famous algebraic cubic formula a 3   b 3 = ( ab ) 3 + 3ab ( a b  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaahaaWcbeqaa8qacaaIZaaaaOGaai4eGiaabccacaWG IbWdamaaCaaaleqabaWdbiaaiodaaaGccqGH9aqppaWaaeWaaeaape GaamyyaiabgkHiTiaadkgaa8aacaGLOaGaayzkaaWaaWbaaSqabeaa peGaaG4maaaakiabgUcaRiaabccacaaIZaGaamyyaiaadkgacaqGGa WdamaabmaabaWdbiaadggacaqGGaGaamOyaiaabccaa8aacaGLOaGa ayzkaaaaaa@4C72@ in the first factor of the above relation we obtain that, ( nΩ  ) 3 + 3n Ω ( nΩ  ) =1 +3 Ω ( 1Ω  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaWGUbGaai4eGiabfM6axjaabccaa8aacaGLOaGaayzk aaWaaWbaaSqabeaapeGaaG4maaaakiabgUcaRiaabccacaaIZaGaam OBaiaabccacqqHPoWvcaqGGaWdamaabmaabaWdbiaad6gacaGGtaIa euyQdCLaaeiiaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iabgk HiTiaaigdacaqGGaGaey4kaSIaaG4maiaabccacqqHPoWvcaqGGaWd amaabmaabaWdbiaaigdacaGGtaIaeuyQdCLaaeiiaaWdaiaawIcaca GLPaaaaaa@5711@

From (1a) we have, n  Ω =  1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaabccacaGGtaIaaeiiaiabfM6axjaabccacqGH9aqpcaqG GaGaeyOeI0Iaaeiiaiaaigdaaaa@4043@

Putting this relation in the above eqn. we have, n ( nΩ  ) = Ω ( 1Ω  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaabccapaWaaeWaaeaapeGaamOBaiaacobicqqHPoWvcaqG GaaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0JaaeiiaiabfM6axj aabccapaWaaeWaaeaapeGaaGymaiaacobicqqHPoWvcaqGGaaapaGa ayjkaiaawMcaaaaa@483D@ (1b) Again applying (1a) in RHS, n ( n  Ω  ) = n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaabccapaWaaeWaaeaapeGaamOBaiaabccacaGGtaIaaeii aiabfM6axjaabccaa8aacaGLOaGaayzkaaWdbiaabccacqGH9aqpcq GHsislcaqGGaGaamOBaiaabccacqqHPoWvaaa@4609@ (2) From (1a) we also have, n  Ω =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaabccacaGGtaIaaeiiaiabfM6axjaabccacqGH9aqpcqGH sislcaaIXaaaaa@3EFD@

By assuming the above relation in the LHS of (2) we get  n =n Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0Iaaeiiaiaad6gacaqGGaGaeyypa0JaeyOeI0IaamOBaiaa bccacqqHPoWvaaa@3F6B@

By simplifying we get that   Ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9iaaigdaaaa@3A5D@     (3)

As we have previously noted the shape of our universe is flat if Ω is equal to one.

Proof TWO

The density parameter Ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjaacY caaaa@394C@ the curvature parameter k and the Hubble parameter H are related as1–5

( 1  Ω  )= k c 2 /  H 2 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacaaIXaGaaeiiaiaacobicaqGGaGaeuyQdCLaaeiiaaWd aiaawIcacaGLPaaapeGaeyypa0JaeyOeI0IaaeiiaiaadUgacaWGJb WdamaaCaaaleqabaWdbiaaikdaaaGccaGGVaGaaeiiaiaadIeapaWa aWbaaSqabeaapeGaaGOmaaaakiaadkfapaWaaWbaaSqabeaapeGaaG Omaaaaaaa@4853@      (1)

If omega less than 1, k is less than 1 If omega is equal to 1, k is zero If omega greater than 1, k is +1.

If k is -1, the geometry of the universe is open, if it is greater than one, the shape of the universe is closed and the universe obeys Euclidean geometry if k is equal to zero.

I.e. if Ω=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9iaaigdacaGGSaaaaa@3B0D@ the universe is Euclidean, if Ω= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9aaa@39A2@ less than 1, the geometry of the universe is open, and if Ω= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfM6axjabg2 da9aaa@39A2@ greater than 1, the universe is closed,

Let   n =  k c 2 /  H 2 R 2 in ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4eGiaad6gacaGGGcGaeyypa0JaaeiiaiabgkHiTiaabccacaWG RbGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaai4laiaabccaca WGibWdamaaCaaaleqabaWdbiaaikdaaaGccaWGsbWdamaaCaaaleqa baWdbiaaikdaaaGccaWGPbGaamOBaiaabccapaWaaeWaaeaapeGaaG ymaaWdaiaawIcacaGLPaaaaaa@4A33@            (1a)

Assuming (1a) in (2), 1Ω + n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaacobicqqHPoWvcaqGGaGaey4kaSIaaeiiaiaad6gacqGH 9aqpcaaIWaaaaa@3F09@ Squaring, 1+  Ω 2 +  n 2 2 Ω2n Ω 2n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgUcaRiaabccacqqHPoWvpaWaaWbaaSqabeaapeGaaGOm aaaakiabgUcaRiaabccacaWGUbWdamaaCaaaleqabaWdbiaaikdaaa GccqGHsislcaaIYaGaaeiiaiabfM6axjaacobicaaIYaGaamOBaiaa bccacqqHPoWvcaqGGaGaai4eGiaaikdacaWGUbGaeyypa0JaaGimaa aa@4CD2@ i.e. ( Ωn  ) 2 =2 Ω +2n1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqqHPoWvcaGGtaIaamOBaiaabccaa8aacaGLOaGaayzk aaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaaikdacaqGGaGaeu yQdCLaaeiiaiabgUcaRiaaikdacaWGUbGaeyOeI0IaaGymaiabg2da 9iaaicdaaaa@4833@

From (1a) we have, Ω  n = 1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCLaaeiiaiaacobicaqGGaGaamOBaiaabccacqGH9aqpcaqG GaGaaGymaiaac6caaaa@3F65@ Putting this in the first factor of the above equation, 1= 2 Ω +2n  1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabg2da9iaabccacaaIYaGaaeiiaiabfM6axjaabccacqGH RaWkcaaIYaGaamOBaiaabccacqGHsislcaqGGaGaaGymaaaa@42A1@

Simplifying, 1 = Ω +n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaabccacqGH9aqpcaqGGaGaeuyQdCLaaeiiaiabgUcaRiaa d6gaaaa@3E3B@

But from eqn. (1a), 1 = Ω  n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaabccacqGH9aqpcaqGGaGaeuyQdCLaaeiiaiabgkHiTiaa bccacaWGUbaaaa@3EE9@

Adding the above two relations,   1 = Ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaabccacqGH9aqpcaqGGaGaeuyQdCfaaa@3BC3@        (4)

As we have previously seen in Ω is equal to 1, the curvature of our universe is zero and the geometry of our universe is flat.

Discussion

The shape of the entire relies on the following properties:

  1. Finite or infinite
  2. The geometry is flat, hyperbolic or elliptic
  3. simply connected space or multiply connected space.

The exact shape is a burning problem in physical cosmology. Several experimental and observational data WMAP, PLANCK, BOOMERanG confirm that universe is flat with only a 0.4% margin of error. Theorists believe that the universe is flat and infinite. Our findings [eqns(3) and (4)] adds more and more favorable arguments for the shape and fate of our universe.

Conclusion

But still there are problems. Theorists have to determine the global shape of our universe. The global structure of the universes concludes its geometry plus topology. Cosmologists propose various models by using FLRW metric. It will take more and more refinements and advancements to furnish with the complete structures of our universe. Let us recall that the famous French mathematician used to tell time and again that as long as algebra and geometry are not linked into one, we could not expect serious results. Considering this nice quote, the author applied the algebraic cubic formula to Freedman equation to find new result. Also, let us remember Einstein’s view. Einstein told that differential equations entered into physics as a maiden servant but became a mistress. Special relativity is purely algebra plus geometry. But that is not the case with general relativity. Einstein wished to deduce many physical results in algebraic system. In this short work, the author attempts to follow both Lagrange’s and Einstein’s proposals.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

Funding

None.

References

Creative Commons Attribution License

©2020 Kalimuthu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.