Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 5

The debye region in astrophysical plasmas: a new access to the problem

Hans J Fahr

Correspondence: Hans J Fahr, Argelander Institute for Astronomy, University of Bonn, Germany, Auf dem Huegel 71, D53121 Bonn, Germany

Received: October 14, 2020 | Published: October 29, 2020

Citation: Fahr HJ. The debye region in astrophysical plasmas: a new access to the problem. Phys Astron Int J. 2020;4(5):182-186. DOI: 10.15406/paij.2020.04.00220

Download PDF

Abstract

We study the consequences of defining the Debye region in astrophysical plasmas as that region where purely stochastic Poissonian density fluctuations must be perturbed by the appearance of unscreened electric Coulomb forces. Here by we test a new definition of the charge screening length requiring that purely statistical density fluctuations in sub-volumes of the system can only be expected, if particle residence probabilities in those volumes are uncorrelated. We find that within Debye spheres where electric micro fields appear, this can evidently not anymore be guaranteed. We introduce a new definition of the charge-screening length based on this requirement. It turns out that the newly defined charge screening length increases compared to its classical Debye value proportional to the so-called Debye number, i.e. the number of particles in the Debye sphere, while the classical Debye length delivers one unique result independent on the Debye number. We discuss the astrophysical relevance of this new definition which has the consequence that the effective screening length increases with the square of the temperature and decreases inversely proportional to the density, instead of with their square roots as in classic representations. Based on this revised Debye concept we furthermore study the general dispersion relation for electrostatic waves and show, that these waves when propagating into the direction of increasing electron temperatures will grow nonlinear and thus dissipate their excess energy to the electrons, with the consequence of heating them further up. This naturally explains the occurence of observed electron temperature increases at space plasma passages over MHD shocks. Furthermore we study the radiowave scattering in a plasma environment due to density-fluctuations which induce dielectricity fluctuations exciting secondary dipolar radio waves which latter serve as a valuable diagnostic tool for plasma investigations.

Keywords: debye region, astrophysical plasmas, Coulomb forces, radiowave scattering, dielectricity fluctuations

Introduction

Ensembles of large-numbers of particles, microscopically considered, do not have a unique homogeneous particle density n=   n( l ) l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpqaaaaaaaaaWdbiaacckacaGGGcWaaaWaaeaacaWGUbWaaeWaaeaa caWGSbaacaGLOaGaayzkaaaacaGLPmIaayPkJaWaaSbaaSqaaiaadY gaaeqaaaaa@41C9@  independent on spatial scales l. In contrast, the smaller are the spatial scales l under consideration, the more pronounced is the expectation value of the occurring density fluctuation δn( l ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamOBamaabmaabaGaamiBaaGaayjkaiaawMcaaiaacYca aaa@3CF0@  even though the density average over sufficiently large time periodsnevertheless is given by the expectation value n=   n( l ) t =  ( 1/τ ) 0 τ n( l,t )dt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpqaaaaaaaaaWdbiaacckacaGGGcWaaaWaaeaacaWGUbWaaeWaaeaa caWGSbaacaGLOaGaayzkaaaacaGLPmIaayPkJaWaaSbaaSqaaiaads haaeqaaOGaeyypa0JaaiiOaiaacckadaqadaqaaiaaigdacaGGVaGa eqiXdqhacaGLOaGaayzkaaWaa8qmaeaacaWGUbWaaeWaaeaacaWGSb GaaiilaiaadshaaiaawIcacaGLPaaacaWGKbGaamiDaaWcbaGaaGim aaqaaiabes8a0bqdcqGHRiI8aOGaaiOlaaaa@5641@ This evidently also allows to conclude that the differential phase-space density δn( r,v )=f( r,v ) d 3 v d 3 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamOBamaabmaabaGaamOCaiaacYcacaWG2baacaGLOaGa ayzkaaGaeyypa0JaamOzamaabmaabaGaamOCaiaacYcacaWG2baaca GLOaGaayzkaaGaamizamaaCaaaleqabaGaaG4maaaakiaadAhacaWG KbWaaWbaaSqabeaacaaIZaaaaOGaamOCaaaa@49B9@ is a fluctuating quantity, especially in the weakly populated wings of the distribution function f( r,v ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzamaabmaabaGaamOCaiaacYcacaWG2baacaGLOaGaayzkaaGa aiilaaaa@3CF4@ where this function attains the smallest values, there relative fluctuations become important. This means that comparing to the bulk densities the wing densities are showing higher relative fluctuation amplitudes. The stochastic expression for these probabilistically expectable density fluctuations can be worked out with the theory of Poissonian statistics1–3 which latter, however, is developed under the Boltzmann´ìan assumption that the distribution of particles in space is completely uncorrelated, meaning that the presence of a particle in a sub volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOvaaaa@3970@ is completely uncorrelated with the probability to have other particles of different velocities in the same space volume at the same time. This can of course only then be considered as a reasonable assumption, if all particles, due to the exclusive existence of short-range forces (e.g. like hard-core atomic forces, polarization forces or Van der Waals forces), over the dimension ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOvaaaa@3970@ effectively can be considered as non-interacting particles, - particles which - so to speak - do not "know" of their mutual, respective presence, i.e. they do not recognize each other. As soon, however, as long-range forces, e.g. like Coulomb forces or gravitational forces, are involved into the game on a dimension of ΔV 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaOqaaeaacqGHuoarcaWGwbaaleaacaaIZaaaaOGaaiilaaaa@3B02@ the residence probability of a particle in that sub-volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOvaaaa@3970@ is not anymore uncorrelated with the presence of other particles there.

Usually in form of space plasmas one generally has in view a quasi-neutral mixture with identical densities of negatively and positively charged particles (i.e. electrons and protons in most cases). Since the densities of electrons and protons on small scales are fluctuating, one has to expect uncorrelated electric field fluctuations. Under equilibrium conditions no large-scale electric fields are maintained in such quasi-neutral environments, however, on small scales of the order of Debye lengths λ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaSbaaSqaaiaadseaaeqaaaaa@39D7@ or smaller,4 i.e. for l λ D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabgsMiJkabeU7aSnaaBaaaleaacaWGebaabeaakiaacYca aaa@3D37@  electric micro-fields evidently are present due to the manifestation of unshielded single electric charges in these subregions.5–7 Since in these small scale regions no quasi-neutrality, i.e. n i ñ e , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBamaaBaaaleaacaWGPbaabeaakiabloKi7iaadgpadaWgaaWc baGaamyzaaqabaGccaGGSaaaaa@3DBC@ can be assumed, for wavelengths λ λ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyizImQaeq4UdW2aaSbaaSqaaiaadseaaeqaaaaa@3D40@  the dispersion relation for electrostatic waves differs substantially from the commonly used one and attains a more complicated form8,9 given by:

ω=k K T e M 1 1+ ( k λ D ) 2 + K T i M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaeyypa0Jaam4AamaakaaabaWaaSaaaeaacaWGlbGaamiv amaaBaaaleaacaWGLbaabeaaaOqaaiaad2eaaaWaaSaaaeaacaaIXa aabaGaaGymaiabgUcaRmaabmaabaGaam4AaiabeU7aSnaaBaaaleaa caWGebaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa GccqGHRaWkdaWcaaqaaiaadUeacaWGubWaaSbaaSqaaiaadMgaaeqa aaGcbaGaamytaaaaaSqabaaaaa@4BCF@

With ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdChaaa@38FB@ and k denoting the wave frequency and the wave vector, with T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaacaWGPbaabeaaaaa@3921@ and T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaacaWGPbaabeaaaaa@3921@ being the ion and electron temperature, respectively, and M, denoting the ion mass. This interestingly enough shows that for wavelengths λ λ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyizImQaeq4UdW2aaSbaaSqaaiaadseaaeqaaaaa@3D40@ electrostatic waves enter into a very specific propagation mode which commonly is not properly recognized.10 In this article here we now want to look at these aspects from a different view, namely turning the above question to the inverse, - rather asking now - what region should be defined as Debye region, if it is just in this region that unshielded electric fields do compete with stochastic density or pressure force fluctuations, in other words defining the Debye region by that characteristic scale λ= λ PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0Jaeq4UdW2aaSbaaSqaaiaadcfacaWGebaabeaa aaa@3D66@ where Poissonian density fluctuations are perturbed due to field-correlated residence probabilities of the particles.

Derivation of the poissonian debye screening

Let us first consider here the stochastic residence probabilities to find a sub number Δn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOBaaaa@3988@  of particles in a sub volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOvaaaa@3970@ of the system. The specific probability to have μ particles in a volume V= V 0 +ΔV, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da9iaadAfadaWgaaWcbaGaaGimaaqabaGccqGHRaWk cqGHuoarcaWGwbGaaiilaaaa@3EAE@ where V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaBaaaleaacaaIWaaabeaaaaa@38EF@ is the norm-volume of these μ particles given by the relation: μ/ V 0 =N/V=n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maai4laiaadAfadaWgaaWcbaGaaGimaaqabaGccqGH9aqp caWGobGaai4laiaadAfacqGH9aqpcaWGUbGaaiilaaaa@4172@ is given by:11

W( v )= W 0 exp[ μ 2 ( ΔV V 0 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vamaabmaabaGaamODaaGaayjkaiaawMcaaiabg2da9iaadEfa daWgaaWcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacchacaGGBbGaey OeI0YaaSaaaeaacqaH8oqBaeaacaaIYaaaaiaacIcadaWcaaqaaiab gs5aejaadAfaaeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaaakiaacM cadaahaaWcbeqaaiaaikdaaaGccaGGDbaaaa@4BD3@

In addition it can be well concluded for the Debye sphere, that the probability to have N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaWGebaabeaaaaa@38F6@ particles in a volume V= V D +Δ V D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da9iaadAfadaWgaaWcbaGaamiraaqabaGccqGHRaWk cqGHuoarcaWGwbWaaSbaaSqaaiaadseaaeqaaOGaaiilaaaa@3FBC@  where V D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaaBaaaleaacaWGebaabeaaaaa@38FE@  is the Debye norm-volume of N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaWGebaabeaaaaa@38F6@ particles (the so-called Debye number N D =n V D =n( 4π/3 ) λ D 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaWGebaabeaakiabg2da9iaad6gacaWGwbWa aSbaaSqaaiaadseaaeqaaOGaeyypa0JaamOBamaabmaabaGaaGinai abec8aWjaac+cacaaIZaaacaGLOaGaayzkaaGaeq4UdW2aa0baaSqa aiaadseaaeaacaaIZaaaaaaa@47A7@ related to: N D / V D =N/V=n), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaWGebaabeaakiaac+cacaWGwbWaaSbaaSqa aiaadseaaeqaaOGaeyypa0JaamOtaiaac+cacaWGwbGaeyypa0Jaam OBaiaacMcacaGGSaaaaa@424A@  thus is given by

W( N D )= W 0 exp[ N D 2 ( Δ V D V D ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vamaabmaabaGaamOtamaaBaaaleaacaWGebaabeaaaOGaayjk aiaawMcaaiabg2da9iaadEfadaWgaaWcbaGaaGimaaqabaGcciGGLb GaaiiEaiaacchacaGGBbGaeyOeI0YaaSaaaeaacaWGobWaaSbaaSqa aiaadseaaeqaaaGcbaGaaGOmaaaacaGGOaWaaSqaaSqaaiabgs5aej aadAfadaWgaaadbaGaamiraaqabaaaleaacaWGwbWaaSbaaWqaaiaa dseaaeqaaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGDbaaaa@4DE3@

where the probability weight W 0 =W(Δ V D =0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vamaaBaaaleaacaaIWaaabeaakiabg2da9iaadEfacaGGOaGa eyiLdqKaamOvamaaBaaaleaacaWGebaabeaakiabg2da9iaaicdaca GGPaaaaa@4136@ is taken to be equal to 1! The above relation then leads to

W( N D )=exp[ n V D 2 ( Δ V D V D ) 2 ]=exp[ n 2 Δ V D 2 D ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vamaabmaabaGaamOtamaaBaaaleaacaWGebaabeaaaOGaayjk aiaawMcaaiabg2da9iGacwgacaGG4bGaaiiCaiaacUfacqGHsislda Wcaaqaaiaad6gacaWGwbWaaSbaaSqaaiaadseaaeqaaaGcbaGaaGOm aaaacaGGOaWaaSaaaeaacqGHuoarcaWGwbWaaSbaaSqaaiaadseaae qaaaGcbaGaamOvamaaBaaaleaacaWGebaabeaaaaGccaGGPaWaaWba aSqabeaacaaIYaaaaOGaaiyxaiabg2da9iaacwgacaGG4bGaaiiCai aacUfacqGHsisldaWcaaqaaiaad6gaaeaacaaIYaaaamaalaaabaGa eyiLdqKaamOvamaaDaaaleaacaWGebaabaGaaGOmaaaaaOqaaiaads eaaaGaaiyxaaaa@5A25@

With the probability W( Δ V D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vamaabmaabaGaeyiLdqKaamOvamaaBaaaleaacaWGebaabeaa aOGaayjkaiaawMcaaaaa@3CD4@ that Δ V D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKaamOvamaaBaaaleaacaWGebaabeaaaaa@3A65@ is the volume fluctuation of N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOtamaaBaaaleaacaWGebaabeaaaaa@38F6@ ions, one can calculate the most probable fluctuation volume Δ V ¯ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKabmOvayaaraWaaSbaaSqaaiaadseaaeqaaaaa@3A7D@ as:

Δ V ¯ D =ς Δ V D W( Δ V D )dΔ V D =ς 0 Δ V D exp[ n 2 Δ V D 2 V D ]dΔ V D =ς V D 2 0 Xexp[ N D 2 X 2 ]dX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKabmOvayaaraWaaSbaaSqaaiaadseaaeqaaOGaeyypa0Ja eqOWdy1aa8qaaeaacqGHuoarcaWGwbWaaSbaaSqaaiaadseaaeqaaa qabeqaniabgUIiYdGccaWGxbWaaeWaaeaacqGHuoarcaWGwbWaaSba aSqaaiaadseaaeqaaaGccaGLOaGaayzkaaGaamizaiabgs5aejaadA fadaWgaaWcbaGaamiraaqabaGccqGH9aqpcqaHcpGvdaWdXaqaaiab gs5aejaadAfadaWgaaWcbaGaamiraaqabaaabaGaaGimaaqaaiabg6 HiLcqdcqGHRiI8aOGaciyzaiaacIhacaGGWbGaai4waiabgkHiTmaa laaabaGaamOBaaqaaiaaikdaaaWaaSaaaeaacqGHuoarcaWGwbWaa0 baaSqaaiaadseaaeaacaaIYaaaaaGcbaGaamOvamaaBaaaleaacaWG ebaabeaaaaGccaGGDbGaamizaiabgs5aejaadAfadaWgaaWcbaGaam iraaqabaGccqGH9aqpcqaHcpGvcaWGwbWaa0baaSqaaiaadseaaeaa caaIYaaaaOWaa8qmaeaacaWGybGaciyzaiaacIhacaGGWbGaai4wai abgkHiTmaalaaabaGaamOtamaaBaaaleaacaWGebaabeaaaOqaaiaa ikdaaaGaamiwamaaCaaaleqabaGaaGOmaaaaaeaacaaIWaaabaGaey OhIukaniabgUIiYdGccaGGDbGaamizaiaadIfaaaa@7DE5@

Where ς MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOWdyfaaa@38D3@ takes care of normalizing the probability function W(Δ V D ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4vaiaacIcacqGHuoarcaWGwbWaaSbaaSqaaiaadseaaeqaaOGa aiykaaaa@3CA4@ and hence is calculated to

ς= 1 V D 2 N D π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOWdyLaeyypa0ZaaSaaaeaacaaIXaaabaGaamOvamaaBaaaleaa caWGebaabeaaaaGcdaGcaaqaamaalaaabaGaaGOmaiaad6eadaWgaa WcbaGaamiraaqabaaakeaacqaHapaCaaaaleqaaaaa@40F4@

Be

which then yields the most-probable fluctuation volume as

Δ V ¯ D =ς V D 2 0 Xexp[ N D 2 X 2 ]dX=ς V D 2 Γ( 1 ) N D = 2 N D π V D Γ( 1 ) N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKabmOvayaaraWaaSbaaSqaaiaadseaaeqaaOGaeyypa0Ja eqOWdyLaamOvamaaDaaaleaacaWGebaabaGaaGOmaaaakmaapedaba GaamiwaiGacwgacaGG4bGaaiiCaiaacUfacqGHsislaSqaaiaaicda aeaacqGHEisPa0Gaey4kIipakmaalaaabaGaamOtamaaBaaaleaaca WGebaabeaaaOqaaiaaikdaaaGaamiwamaaCaaaleqabaGaaGOmaaaa kiaac2facaWGKbGaamiwaiabg2da9iabek8awjaadAfadaqhaaWcba GaamiraaqaaiaaikdaaaGcdaWcaaqaaiabfo5ahnaabmaabaGaaGym aaGaayjkaiaawMcaaaqaaiaad6eadaWgaaWcbaGaamiraaqabaaaaO Gaeyypa0ZaaOaaaeaadaWcaaqaaiaaikdacaWGobWaaSbaaSqaaiaa dseaaeqaaaGcbaGaeqiWdahaaaWcbeaakiaadAfadaWgaaWcbaGaam iraaqabaGcdaWcaaqaaiabfo5ahnaabmaabaGaaGymaaGaayjkaiaa wMcaaaqaaiaad6eadaWgaaWcbaGaamiraaqabaaaaaaa@6874@

Where Γ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaaeaacaWG4baacaGLOaGaayzkaaaaaa@3B1C@ is the well known Gamma function. This, with Γ( x )=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaaGym aiaacYcaaaa@3D8D@ finally delivers

Δ V ¯ D = V D 2 π N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiLdqKabmOvayaaraWaaSbaaSqaaiaadseaaeqaaOGaeyypa0Ja amOvamaaBaaaleaacaWGebaabeaakmaakaaabaWaaSaaaeaacaaIYa aabaGaeqiWdaNaamOtamaaBaaaleaacaWGebaabeaaaaaabeaaaaa@41C8@

With this above result for the most probable volume fluctuation one obtains, - assuming that volume and temperature fluctuations are uncorrelated -, and - for the moment here - that electron and ion temperatures are identical - , the associated Poissonian pressure fluctuations which then are given by

δ P ¯ D =P P ¯ =KTδ n ¯ =KTn( Δ V ¯ D / V D )=KT·n 2 π N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjqadc fagaqeamaaBaaaleaacaWGebaabeaakiabg2da9iaadcfacqGHsisl ceWGqbGbaebacqGH9aqpcaWGlbGaamivaiabes7aKjqad6gagaqeai abg2da9iabgkHiTiaadUeacaWGubGaamOBamaabmaabaGaeyiLdqKa bmOvayaaraWaaSbaaSqaaiaadseaaeqaaOGaai4laiaadAfadaWgaa WcbaGaamiraaqabaaakiaawIcacaGLPaaacqGH9aqpcqGHsislcaWG lbGaamivaiabl+y6Njaad6gadaGcaaqaamaalaaabaGaaGOmaaqaai abec8aWjaad6eadaWgaaWcbaGaamiraaqabaaaaaqabaaaaa@5B11@

Within the Debye sphere this leads to a pressure force per particle of Π D =δ P ¯ D /n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfc6aqnaaBa aaleaacaWGebaabeaakiabg2da9iabgkHiTiabgEGirlabes7aKjqa dcfagaqeamaaBaaaleaacaWGebaabeaakiaac+cacaWGUbaaaa@423B@ given by

Π D =( δ P ¯ D λ D 1 n )= 1 λ D KT 2 π N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfc6aqnaaBa aaleaacaWGebaabeaakiabg2da9iaacIcadaWcaaqaaiabes7aKjqa dcfagaqeamaaBaaaleaacaWGebaabeaaaOqaaiabeU7aSnaaBaaale aacaWGebaabeaaaaGcdaWcaaqaaiaaigdaaeaacaWGUbaaaiaacMca cqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacqaH7oaBdaWgaaWcba GaamiraaqabaaaaOGaam4saiaadsfadaGcaaqaamaalaaabaGaaGOm aaqaaiabec8aWjaad6eadaWgaaWcbaGaamiraaqabaaaaaqabaaaaa@4F77@

Now we have to respect that within the Debye sphere the Poissonian fluctuation pattern is perturbed due to competing electric Coulomb forces of unscreened electric charges. Hence we expect that just within this sphere, where the Poissonian pressure fluctuation force Π D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfc6aqnaaBa aaleaacaWGebaabeaaaaa@3981@ competes with the single-charge electric field force D =e E D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaaqaaaaaaaaaWdbiaadseaa8aabeaak8qacqGH9aqpcaWGLbGa amyra8aadaWgaaWcbaWdbiaadseaa8aabeaaaaa@3DAF@ of an unscreened charge e the normal Poissonian pressure fluctuation pattern is perturbed. This means we now and here consider the "effective Debye sphere" as to be that specific region with non-Poissonian pressure fluctuations, defined by the following criterion: | Π D |=| D | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaacbaWdbiaa=b6apaWaaSbaaSqaa8qacaWGebaapaqa baaak8qacaGLhWUaayjcSdGaeyypa0ZaaqWaa8aabaGaeyicI48aaS baaSqaa8qacaWGebaapaqabaaak8qacaGLhWUaayjcSdaaaa@43C4@   and thus consequently we obtain the following relation for the so-called "Poissonian Debye length" λ PD : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGqbGaamiraaqabaGccaGG6aaaaa@3B54@

e 2 λ PD 2 = 1 λ PD KT 2 π N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yzamaaCaaaleqabaGaaGOmaaaaaOqaaiabeU7aSnaaDaaaleaacaWG qbGaamiraaqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaaIXaaaba Gaeq4UdW2aaSbaaSqaaiaadcfacaWGebaabeaaaaGccaWGlbGaamiv amaakaaabaWaaSaaaeaacaaIYaaabaGaeqiWdaNaamOtamaaBaaale aacaWGebaabeaaaaaabeaaaaa@48A3@

which then further on leads to:

( e 2 KT ) 2 = 3 2 π 2 n λ PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaWcaa qaaiaadwgadaahaaWcbeqaaiaaikdaaaaakeaacaWGlbGaamivaaaa caGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIZa aabaGaaGOmaiabec8aWnaaCaaaleqabaGaaGOmaaaakiaad6gacqaH 7oaBdaWgaaWcbaGaamiuaiaadseaaeqaaaaaaaa@46A0@

or finally to:

λ PD = 3 (KT) 2 2 π 2 n e 4 = λ D0 · ( λ D0 3 n)= 3 4π λ D0 N D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGqbGaamiraaqabaGccqGH9aqpdaWcaaqaaiaaiodacaGG OaGaam4saiaadsfacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG Omaiabec8aWnaaCaaaleqabaGaaGOmaaaakiaad6gacaWGLbWaaWba aSqabeaacaaI0aaaaaaakiabg2da9iabeU7aSnaaBaaaleaacaWGeb GaaGimaaqabaGccqWIpM+zqaaaaaaaaaWdbiaacckapaGaaiikaiab eU7aSnaaDaaaleaacaWGebGaaGimaaqaaiaaiodaaaGccaWGUbGaai ykaiabg2da9maalaaabaGaaG4maaqaaiaaisdacqaHapaCaaGaeq4U dW2aaSbaaSqaaiaadseacaaIWaaabeaakiaad6eadaWgaaWcbaGaam iraiaaicdaaeqaaaaa@5F86@

where in the above relation the classical Debye length has been introduced with λ P0 = KT/(4πn e 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGqbGaaGimaaqabaGccqGH9aqpdaGcaaqaaiaadUeacaWG ubGaai4laiaacIcacaaI0aGaeqiWdaNaamOBaiaadwgadaahaaWcbe qaaiaaikdaaaGccaGGPaaaleqaaOGaaiOlaaaa@4564@ This above formulation expresses the fact that the Poissonian Debye length λ DP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGebGaamiuaaqabaaaaa@3A8C@ is larger or smaller than the classical Debye length λ D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGebGaaGimaaqabaaaaa@3A71@ dependent on, whether the classical Debye number N D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamiraiaaicdaaeqaaaaa@3990@ is larger or smaller than (4π/3). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaI0a GaeqiWdaNaai4laiaaiodacaGGPaGaaiOlaaaa@3D04@   This for the first time also now opens the opportunity to even obtain a value for PD for the condition that the number of particles in the Debye region is not a statistically relevant one, which in fact does not allow to at all consider the charge screening on a statistical basis.

While the classical Debye length shrinks as function of the density according to (1/ n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaIXa Gaai4lamaakaaabaGaamOBaaWcbeaakiaacMcacaGGSaaaaa@3B9D@  and increases as function of the temperature according to T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaam ivaaWcbeaakiaacYcaaaa@38BC@  the above derived Poissonian Debye length λ DP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGebGaamiuaaqabaaaaa@3A8C@ reacts to these quantities by

λ PD = λ D0 · N D0 ( T n ( T 3/2 n 1/2 ) ~ T 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGqbGaamiraaqabaGccqGH9aqpcqaH7oaBdaWgaaWcbaGa amiraiaaicdaaeqaaOGaeS4JPFMaamOtamaaBaaaleaacaWGebGaaG imaaqabaGccqGHijYUcaGGOaWaaOaaaeaadaWcaaqaaiaadsfaaeaa caWGUbaaaaWcbeaakiaacIcadaWcaaqaaiaadsfadaahaaWcbeqaai aaiodacaGGVaGaaGOmaaaaaOqaaiaad6gadaahaaWcbeqaaiaaigda caGGVaGaaGOmaaaaaaGccaGGPaGaeyisIS7aaSaaaeaacaGG+bGaam ivamaaCaaaleqabaGaaGOmaaaaaOqaaiaad6gaaaaaaa@55DE@

i.e., compared to the classical Debye length λ D0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGebGaaGimaaqabaGccaGGSaaaaa@3B2B@ it thus decreases more strongly with the increase of the density, namely by (1/n), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaIXa Gaai4laiaad6gacaGGPaGaaiilaaaa@3B78@ and also increases more strongly with temperature, namely by T 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaahaa WcbeqaaiaaikdaaaGccaGGUaaaaa@398C@

We can also look here at the ratio R P,D = λ PD / λ D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamiuaiaacYcacaWGebaabeaakiabg2da9iabeU7aSnaaBaaa leaacaWGqbGaamiraaqabaGccaGGVaGaeq4UdW2aaSbaaSqaaiaads eacaaIWaaabeaaaaa@430D@ of the Poissonian over the classical Debye length and obtain for this ratio

R P,D = λ PD / λ D0 =n( 4π 3 ) [ KT 4πn e 2 ] 3/2 = 4 3 π ·  6.9 3 | T ¯ 3/2 n ¯ 1/2 |=  1376| T ¯ 3/2 n ¯ 1/2 |= 3 4π 1376 ·  N D0 =328 ·  N D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamiuaiaacYcacaWGebaabeaakiabg2da9iabeU7aSnaaBaaa leaacaWGqbGaamiraaqabaGccaGGVaGaeq4UdW2aaSbaaSqaaiaads eacaaIWaaabeaakiabg2da9iaad6gacaGGOaWaaSaaaeaacaaI0aGa eqiWdahabaGaaG4maaaacaGGPaGaai4wamaalaaabaGaam4saiaads faaeaacaaI0aGaeqiWdaNaamOBaiaadwgadaahaaWcbeqaaiaaikda aaaaaOGaaiyxamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaOGaey ypa0ZaaSaaaeaacaaI0aaabaGaaG4maaaacqaHapaCqaaaaaaaaaWd biaacckapaGaeS4JPF2dbiaacckapaGaaGOnaiaac6cacaaI5aWaaW baaSqabeaacaaIZaaaaOWaaqWaaeaadaWcaaqaaiqadsfagaqeamaa CaaaleqabaGaaG4maiaac+cacaaIYaaaaaGcbaGabmOBayaaraWaaW baaSqabeaacaaIXaGaai4laiaaikdaaaaaaaGccaGLhWUaayjcSdGa eyypa0ZdbiaacckacaGGGcWdaiaaigdacaaIZaGaaG4naiaaiAdada abdaqaamaalaaabaGabmivayaaraWaaWbaaSqabeaacaaIZaGaai4l aiaaikdaaaaakeaaceWGUbGbaebadaahaaWcbeqaaiaaigdacaGGVa GaaGOmaaaaaaaakiaawEa7caGLiWoacqGH9aqpdaWcaaqaaiaaioda aeaacaaI0aGaeqiWdahaaiaaigdacaaIZaGaaG4naiaaiAdapeGaai iOa8aacqWIpM+zpeGaaiiOa8aacaWGobWaaSbaaSqaaiaadseacaaI Waaabeaakiabg2da9iaaiodacaaIYaGaaGioa8qacaGGGcWdaiabl+ y6N9qacaGGGcWdaiaad6eadaWgaaWcbaGaamiraiaaicdaaeqaaaaa @9521@

Where T ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadsfagaqeaa aa@37FF@ must be measured in Kelvin and n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad6gagaqeaa aa@3819@ in c m 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacaWGTb WaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaiOlaaaa@3B7B@ This means that for a Debye number N D0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamiraiaaicdaaeqaaOGaaiilaaaa@3A4A@ which falls off  with density like 1/ n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaGGVa WaaOaaaeaacaWGUbGaaiilaaWcbeaaaaa@3A3A@ of N D0 =1/328, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamiraiaaicdaaeqaaOGaeyypa0JaaGymaiaac+cacaaIZaGa aGOmaiaaiIdacaGGSaaaaa@3EF9@    i.e. just for the case of statistical irrelevance, the two Debye lengths would become equal.

Scattering of electromagnetic waves in fluctuating dielectrica

It is well known that fluctuating dielectrica induce scatterings of electromagnetic wave power by causing secondary waves, e.g. Rayleigh scattering, aerosole scattering, or the blue-sky phenomenon. This is connected with the fact that propagating electromagnetic waves under fluctuating environmental dielectricity conditions δε(l,E(t))=ε(r,t) ε ¯ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeqyTduMaaiikaiaadYgacaGGSaGaamyraiaacIcacaWG 0bGaaiykaiaacMcacqGH9aqpcqaH1oqzcaGGOaGaamOCaiaacYcaca WG0bGaaiykaiabgkHiTiqbew7aLzaaraWdamaaBaaaleaapeGaamiB aaWdaeqaaaaa@4B2F@ on scales l induce time-dependent local electric dipoles which by themselves radiate frequency-coherent secondary waves, i.e. scatter the original wave by parts. This means the propagation of electromagnetic radiowaves in a plasma environment, due to the coherent dielectricity fluctuations excites as well radiowave scatterings. If the scale of the fluctuation volume l= ΔV 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabg2da9maakeaapaqaaGqaa8qacaWFuoGaamOvaaWcpaqa a8qacaaIZaaaaaaa@3C39@ is small compared to the wavelength λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E4@  of the radiowave, then it can be assumed that the wave locally induces a homogeneous, dipole-inducing electric field extended over the volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hLdiaadAfaaaa@392C@  which would allow to apply Poissonian statistics, as long as the number of particles in this fluctuation volume, i.e. nΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaGqaaiaa=r5acaWGwbaaaa@3A1F@  is a statistically significant or relevant number. Hence, assuming λ1m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeS4qISJaaGymaiaad2gaaaa@3BC2@  and l10cm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabloKi7iaaigdacaaIWaGaam4yaiaad2gaaaa@3CA1@  then, with an electron density of n=1c m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaigdacaWGJbGaamyBa8aadaahaaWcbeqaa8qa cqGHsislcaaIZaaaaaaa@3DB4@  this would yield a statistically relevant number of about 103 particles in the fluctuation volume, i.e. would permit to apply statistical considerations as carried out in section 2 of this paper. First we can calculate here the electric dipole moment of the volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hLdiaadAfaaaa@392C@  and obtain

μ = ε 0 ε(r,t) ε ¯ l ΔV E = ε 0 Δ ε l ΔV E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqiVd0MbaSaacqGH9aqpcqaH1oqzpaWaaSbaaSqaa8qacaaIWaaa paqabaGcdaaabaqaaiabew7aLbGaayzkJaWdbiaacIcacaWGYbGaai ilaiaadshacaGGPaGaeyOeI0YaaaGaaeaacuaH1oqzgaqeaaGaayPk JaWaaSbaaSqaaiaadYgaaeqaaGqaaOGaa8hLdiaadAfacqGHflY1ce WGfbGbaSaacqGH9aqpcqaH1oqzpaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaa8hLdiabew7aL9aadaWgaaWcbaWdbiaadYgaa8aabeaak8 qacaWFuoGaamOvaiabgwSixlqadweagaWcaaaa@5A54@

Consequently connected with the time-dependent electric field E = E (r,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyrayaalaGaeyypa0JabmyrayaalaGaaiikaiaadkhacaGGSaGa amiDaiaacMcaaaa@3DE7@ a co-herently time-dependent electric dipole μ = μ (r,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacqaH8oqBaSWdaeqabaWdbiablEniYbaakiabg2da98aa daWfGaqaa8qacqaH8oqBaSWdaeqabaWdbiablEniYbaakiaacIcaca WGYbGaaiilaiaadshacaGGPaaaaa@4492@ is induced which by itself emits in its typical dipolar characteristics, like a dipolar antenna does as well, i.e. a secondary wave with a dipolar emission characteristic originates. At a distance rd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiablUMi=iaadsgaaaa@3A6D@  (radiation zone!) one then obtains the following emission intensity (see e.g. Weizel, 1973b)

S(r,θ)= π 2 c μ 2 2 ε 0 λ 4 r 2 si n 2 θ= π 2 cΔ ε 2 Δ V 2 E 2 2 ε 0 λ 4 r 2 si n 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpdaWc aaWdaeaapeGaeqiWda3damaaCaaaleqabaWdbiaaikdaaaGccaWGJb GaeqiVd02damaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaikda cqaH1oqzpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeq4UdW2dam aaCaaaleqabaWdbiaaisdaaaGccaWGYbWdamaaCaaaleqabaWdbiaa ikdaaaaaaOGaam4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaik daaaGccqaH4oqCcqGH9aqpdaWcaaWdaeaapeGaeqiWda3damaaCaaa leqabaWdbiaaikdaaaGccaWGJbacbaGaa8hLdiabew7aL9aadaahaa Wcbeqaa8qacaaIYaaaaOGaa8hLdiaadAfapaWaaWbaaSqabeaapeGa aGOmaaaakiaadweapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaape GaaGOmaiabew7aL9aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqaH 7oaBpaWaaWbaaSqabeaapeGaaGinaaaakiaadkhapaWaaWbaaSqabe aapeGaaGOmaaaaaaGccaWGZbGaamyAaiaad6gapaWaaWbaaSqabeaa peGaaGOmaaaakiabeI7aXbaa@6E5D@

Where θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E6@  is the angle between the infalling and the scattered wave. The above expression can be written in the following form, then containing the intensity of the primary wave S 0 =(1/2)( D E )=(1/2) ε ε 0 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaGG OaGaaGymaiaac+cacaaIYaGaaiykaiaacIcaceGGebGbaSaacqGHfl Y1ceWGfbGbaSaacaGGPaGaeyypa0JaaiikaiaaigdacaGGVaGaaGOm aiaacMcacuaH1oqzgaWcaiabew7aL9aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaWGfbWdamaaCaaaleqabaWdbiaaikdaaaaaaa@4E01@ when given in the form

S(r,θ)= S 0 π 2 cΔ ε 2 Δ V 2 ε 0 2 λ 4 r 2 si n 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpcaWG tbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaalaaapaqaa8qacq aHapaCpaWaaWbaaSqabeaapeGaaGOmaaaakiaadogaieaacaWFuoGa eqyTdu2damaaCaaaleqabaWdbiaaikdaaaGccaWFuoGaamOva8aada ahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqaH1oqzpaWaa0baaSqa a8qacaaIWaaapaqaa8qacaaIYaaaaOGaeq4UdW2damaaCaaaleqaba WdbiaaisdaaaGccaWGYbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGa am4CaiaadMgacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH4o qCaaa@58B2@

Now we can make use of the density-dependence of the dielectricity in the form

Δε ε = 1 ε dε dρ Δρ= ρ ε dε dρ δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaacbaWdbiaa=r5acqaH1oqza8aabaWdbiabew7aLbaa cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqyTdugaamaala aapaqaa8qacaWGKbGaeqyTdugapaqaa8qacaWGKbGaeqyWdihaaiaa =r5acqaHbpGCcqGH9aqpdaWcaaWdaeaapeGaeqyWdihapaqaa8qacq aH1oqzaaWaaSaaa8aabaWdbiaadsgacqaH1oqza8aabaWdbiaadsga cqaHbpGCaaGaeqiTdqgaaa@53E9@

where the density fluctuation δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@38D5@  has been defined by δ=Δρ/ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0dcbaGaa8hLdiabeg8aYjaac+cacqaHbpGCaaa@3F2F@  Calculating next the statistical mean of δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@38D5@  by using the expression developed in section 2 (Equ. 12), one finds

δ 2 = δ 2 exp[v δ 2 2 ]dδ exp[v δ 2 2 ]dδ = 1 v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaaeaacqaH0oazpaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayzk JiaawQYiaiabg2da9maalaaabaWaa8qaaeaacqaH0oazdaahaaWcbe qaaiaaikdaaaGcciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0IaamOD amaalaaabaGaeqiTdq2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaa aacaGGDbGaamizaiabes7aKbWcbeqab0Gaey4kIipaaOqaamaapeaa baGaciyzaiaacIhacaGGWbGaai4waiabgkHiTiaadAhadaWcaaqaai abes7aKnaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaaiyxaiaa dsgacqaH0oazaSqabeqaniabgUIiYdaaaOGaeyypa0ZaaSaaaeaaca aIXaaabaGaamODaaaaaaa@5F25@

where ν=nΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaamOBaGqaaiaa=r5acaWGwbaaaa@3CDD@  is the expectation number of electrons in the volume ΔV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hLdiaadAfaaaa@392C@  then one obtains the intensity of scattered radiation in the form

S(r,θ)= S 0 ΔV n π 2 ρ 2 ( dε dρ ) 2 ε 0 2 λ 4 r 2 si n 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpcaWG tbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaalaaapaqaaGqaa8 qacaWFuoGaamOvaaWdaeaapeGaamOBaaaadaWcaaWdaeaapeGaeqiW da3damaaCaaaleqabaWdbiaaikdaaaGccqaHbpGCpaWaaWbaaSqabe aapeGaaGOmaaaakiaacIcadaWcaaWdaeaapeGaamizaiabew7aLbWd aeaapeGaamizaiabeg8aYbaacaGGPaWdamaaCaaaleqabaWdbiaaik daaaaak8aabaWdbiabew7aL9aadaqhaaWcbaWdbiaaicdaa8aabaWd biaaikdaaaGccqaH7oaBpaWaaWbaaSqabeaapeGaaGinaaaakiaadk hapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaWGZbGaamyAaiaad6ga paWaaWbaaSqabeaapeGaaGOmaaaakiabeI7aXbaa@5EEC@

The change dε/dρ=(1/M)d/dn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiabew7aLjaac+cacaWGKbGaeqyWdiNaeyypa0Jaaiikaiaa igdacaGGVaGaamytaiaacMcacaWGKbGaeyicI4Saai4laiaadsgaca WGUbaaaa@46B7@  of the dielectricty ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTdugaaa@38D7@  with changing density n hereby can be derived with the help of the well-known Lorentzian formula of the optics.

The Poissonian average of the density fluctuation δ n ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMabmOBayaaraaaaa@39E0@ over a Debye volume as derived in Equ. (12) of section 2 is given by

δ n ¯ =n 2 π N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMabmOBayaaraGaeyypa0JaeyOeI0IaamOBamaakaaapaqa a8qadaWcaaWdaeaapeGaaGOmaaWdaeaapeGaeqiWdaNaamOta8aada WgaaWcbaWdbiaadseaa8aabeaaaaaapeqabaaaaa@41C2@

and consequently one can express the scattered radiation flux by

S(r,θ)= S 0 ΔV n π 2 n 2 δ n ¯ 2 ( dε dn ) 2 ε 0 2 λ 4 r 2 si n 2 θ= S 0 ΔV 1 N D 2π n 3 ( dε dn ) 2 ε 0 2 λ 4 r 2 si n 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpcaWG tbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaalaaapaqaaGqaa8 qacaWFuoGaamOvaaWdaeaapeGaamOBaaaadaWcaaWdaeaapeGaeqiW da3damaaCaaaleqabaWdbiaaikdaaaGccaWGUbWdamaaCaaaleqaba WdbiaaikdaaaGccqaH0oazceWGUbGbaebapaWaaWbaaSqabeaapeGa aGOmaaaakiaacIcadaWcaaWdaeaapeGaamizaiabew7aLbWdaeaape Gaamizaiaad6gaaaGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaa8qacqaH1oqzpaWaa0baaSqaa8qacaaIWaaapaqaa8qacaaIYa aaaOGaeq4UdW2damaaCaaaleqabaWdbiaaisdaaaGccaWGYbWdamaa CaaaleqabaWdbiaaikdaaaaaaOGaam4CaiaadMgacaWGUbWdamaaCa aaleqabaWdbiaaikdaaaGccqaH4oqCcqGH9aqpcaWGtbWdamaaBaaa leaapeGaaGimaaWdaeqaaOWdbiaa=r5acaWGwbWaaSaaa8aabaWdbi aaigdaa8aabaWdbiaad6eapaWaaSbaaSqaa8qacaWGebaapaqabaaa aOWdbmaalaaapaqaa8qacaaIYaGaeqiWdaNaamOBa8aadaahaaWcbe qaa8qacaaIZaaaaOGaaiikamaalaaapaqaa8qacaWGKbGaeqyTduga paqaa8qacaWGKbGaamOBaaaacaGGPaWdamaaCaaaleqabaWdbiaaik daaaaak8aabaWdbiabew7aL9aadaqhaaWcbaWdbiaaicdaa8aabaWd biaaikdaaaGccqaH7oaBpaWaaWbaaSqabeaapeGaaGinaaaakiaadk hapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaWGZbGaamyAaiaad6ga paWaaWbaaSqabeaapeGaaGOmaaaakiabeI7aXbaa@8322@

As becomes evident from the above expression, the relative intensity S/ S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaac+cacaWGtbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa @3AA7@ of the scattered radiation depends on the Debye number N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadseaa8aabeaaaaa@3926@ being inversely proportional to it. The dependence on the effective (Poissonian) Debye length λ PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiuaiaadseaa8aabeaaaaa@3ADC@ can even better be expressed by rewriting the above expression in the following form:

S(r,θ)= S 0 ΔV 3 2 n λ PD ( dε dn ) 2 ε 0 2 (λ/ λ PD ) 4 r 2 si n 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacqGH9aqpcaWG tbWdamaaBaaaleaapeGaaGimaaWdaeqaaGqaaOWdbiaa=r5acaWGwb WaaSaaa8aabaWdbmaalaaapaqaa8qacaaIZaaapaqaa8qacaaIYaaa aiaad6gacqaH7oaBpaWaaSbaaSqaa8qacaWGqbGaamiraaWdaeqaaO WdbiaacIcadaWcaaWdaeaapeGaamizaiabew7aLbWdaeaapeGaamiz aiaad6gaaaGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8 qacqaH1oqzpaWaa0baaSqaa8qacaaIWaaapaqaa8qacaaIYaaaaOGa aiikaiabeU7aSjaac+cacqaH7oaBpaWaaSbaaSqaa8qacaWGqbGaam iraaWdaeqaaOWdbiaacMcapaWaaWbaaSqabeaapeGaaGinaaaakiaa dkhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaWGZbGaamyAaiaad6 gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeI7aXbaa@638F@

Our conclusion thus is that by studying the spectral behaviour of the scattered intensity of radiowaves with wavelengths λ λ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeS4AI8Jaeq4UdW2damaaBaaaleaapeGaamiraaWdaeqa aaaa@3D18@ propagating through a plasma environment with an electron density n one should be able to find indications for the actual value of the effective Debye length λ PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiuaiaadseaa8aabeaaaaa@3ADC@ and also the actual Debye number N D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaWgaaWcbaWdbiaadseaa8aabeaaaaa@3926@ .

The revised electrostatic dispersion for electron plasma oscillations

As already mentioned earlier in this paper the generalized dispersion relation for electrostatic electron plasma waves, when replacing λ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiraaWdaeqaaaaa@3A07@  by λ PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiuaiaadseaa8aabeaaaaa@3ADC@  as setting the limit of validity of the plasma approximation, i.e. n= n e = n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaad6gapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyypa0JaamOBa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3EBB@ , is given by:4

ω=k K T e M 1 1+ (k λ PD ) 2 + K T i M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaeyypa0Jaam4Aamaakaaapaqaa8qadaWcaaWdaeaapeGa am4saiaadsfapaWaaSbaaSqaa8qacaWGLbaapaqabaaakeaapeGaam ytaaaadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymaiabgUcaRiaa cIcacaWGRbGaeq4UdW2damaaBaaaleaapeGaamiuaiaadseaa8aabe aak8qacaGGPaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSYa aSaaa8aabaWdbiaadUeacaWGubWdamaaBaaaleaapeGaamyAaaWdae qaaaGcbaWdbiaad2eaaaaaleqaaaaa@4DEA@

Introducing first now the electron plasma frequency ω pe = 4πn e 2 /m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaamiCaiaadwgaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeGaaGinaiabec8aWjaad6gacaWGLbWdamaaCa aaleqabaWdbiaaikdaaaGccaGGVaGaamyBaaWcbeaaaaa@439F@ , the classical Debye length λ D0 = K T e /4πn e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiraiaaicdaa8aabeaak8qacqGH 9aqpdaGcaaWdaeaapeGaam4saiaadsfapaWaaSbaaSqaa8qacaWGLb aapaqabaGcpeGaai4laiaaisdacqaHapaCcaWGUbGaamyza8aadaah aaWcbeqaa8qacaaIYaaaaaqabaaaaa@452A@ , the Debye wave vector k D0 =2π/ λ D0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadseacaaIWaaapaqabaGcpeGaeyyp a0JaaGOmaiabec8aWjaac+cacqaH7oaBpaWaaSbaaSqaa8qacaWGeb GaaGimaaWdaeqaaOGaaiilaaaa@4292@ and the definition of the effective Poissonian Debye length λ PD = R PD λ D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiuaiaadseaa8aabeaak8qacqGH 9aqpcaWGsbWdamaaBaaaleaapeGaamiuaiaadseaa8aabeaak8qacq GHflY1cqaH7oaBpaWaaSbaaSqaa8qacaWGebGaaGimaaWdaeqaaaaa @44C0@ , with R PD 126 T 3/2 / n 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadcfacaWGebaapaqabaGcpeGaaGym aiaaikdacaaI2aGaamiva8aadaahaaWcbeqaa8qacaaIZaGaai4lai aaikdaaaGccaGGVaGaamOBa8aadaahaaWcbeqaa8qacaaIXaGaai4l aiaaikdaaaaaaa@43C7@  we then find:

ω/ ω pe =k m 4πn e 2 K T e M ( 1 1+ (k λ P,D ) 2 + T i T e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaai4laiabeM8a39aadaWgaaWcbaWdbiaadchacaWGLbaa paqabaGcpeGaeyypa0Jaam4Aamaakaaapaqaa8qadaWcaaWdaeaape GaamyBaaWdaeaapeGaaGinaiabec8aWjaad6gacaWGLbWdamaaCaaa leqabaWdbiaaikdaaaaaaOWaaSaaa8aabaWdbiaadUeacaWGubWdam aaBaaaleaapeGaamyzaaWdaeqaaaGcbaWdbiaad2eaaaGaaiikamaa laaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSIaaiikaiaadU gacqaH7oaBpaWaaSbaaSqaa8qacaWGqbGaaiilaiaadseaa8aabeaa k8qacaGGPaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSYaaS aaa8aabaWdbiaadsfapaWaaSbaaSqaa8qacaWGPbaapaqabaaakeaa peGaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeGaaiykaa Wcbeaaaaa@5C05@

and furthermore

ω/ ω pe =2π(k/ k D0 ) m M ( 1 1+(2π R PD (k/ k D0 ) 2 + T i T e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaai4laiabeM8a39aadaWgaaWcbaWdbiaadchacaWGLbaa paqabaGcpeGaeyypa0JaaGOmaiabec8aWjaacIcacaWGRbGaai4lai aadUgapaWaaSbaaSqaa8qacaWGebGaaGimaaWdaeqaaOWdbiaacMca daGcaaWdaeaapeWaaSaaa8aabaWdbiaad2gaa8aabaWdbiaad2eaaa Gaaiikamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaSIa aiikaiaaikdacqaHapaCcaWGsbWdamaaBaaaleaapeGaamiuaiaads eaa8aabeaak8qacaGGOaGaam4Aaiaac+cacaWGRbWdamaaBaaaleaa peGaamiraiaaicdaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaadsfapaWaaSbaaSqa a8qacaWGPbaapaqabaaakeaapeGaamiva8aadaWgaaWcbaWdbiaadw gaa8aabeaaaaGcpeGaaiykaaWcbeaaaaa@6003@

When introducing now normalized quantities with ω ¯ =ω/ ω pe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyYdCNbaebacqGH9aqpcqaHjpWDcaGGVaGaeqyYdC3damaaBaaa leaapeGaamiCaiaadwgaa8aabeaaaaa@40A1@  and k ¯ =k/ k D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4AayaaraGaeyypa0Jaam4Aaiaac+cacaWGRbWdamaaBaaaleaa peGaamiraiaaicdaa8aabeaaaaa@3DAE@  one finds

ω ¯ =2π m M k ¯ 1 1+ (2π R PD k ¯ ) 2 + T i T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyYdCNbaebacqGH9aqpcaaIYaGaeqiWda3aaOaaa8aabaWdbmaa laaapaqaa8qacaWGTbaapaqaa8qacaWGnbaaaaWcbeaakiqadUgaga qeamaakaaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGym aiabgUcaRiaacIcacaaIYaGaeqiWdaNaamOua8aadaWgaaWcbaWdbi aadcfacaWGebaapaqabaGcceGGRbGbaebapeGaaiyka8aadaahaaWc beqaa8qacaaIYaaaaaaakiabgUcaRmaalaaapaqaa8qacaWGubWdam aaBaaaleaapeGaamyAaaWdaeqaaaGcbaWdbiaadsfapaWaaSbaaSqa a8qacaWGLbaapaqabaaaaaWdbeqaaaaa@5114@

and finally denoting Ω ¯ =ω/ ω pi =ω/ ω pe M/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafuyQdCLbaebacqGH9aqpcqaHjpWDcaGGVaGaeqyYdC3damaaBaaa leaapeGaamiCaiaadMgaa8aabeaak8qacqGH9aqpcqaHjpWDcaGGVa GaeqyYdC3damaaBaaaleaapeGaamiCaiaadwgaa8aabeaak8qadaGc aaWdaeaapeGaamytaiaac+cacaWGTbaaleqaaaaa@4AD7@  one can write 

Ω ¯ =2π k ¯ 1 1+ (2π R PD k ¯ ) 2 + T i T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafuyQdCLbaebacqGH9aqpcaaIYaGaeqiWdaNabm4AayaaraWaaOaa a8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGaey4kaS IaaiikaiaaikdacqaHapaCcaWGsbWdamaaBaaaleaapeGaamiuaiaa dseaa8aabeaakiqacUgagaqea8qacaGGPaWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaey4kaSYaaSaaa8aabaWdbiaadsfapaWaaSbaaSqa a8qacaWGPbaapaqabaaakeaapeGaamiva8aadaWgaaWcbaWdbiaadw gaa8aabeaaaaaapeqabaaaaa@4E7F@

The above dispersion relation is displayed in Figure 1 and shows that always there exists a part of the relation connected with a vanishing or nearly vanishing group velocity with v g ( ω s )= | ω/k | ω s 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadEgaa8aabeaak8qacaGGOaGaeqyY dC3damaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaacMcacqGH9aqpda abdaWdaeaapeGaeyOaIyRaeqyYdCNaai4laiabgkGi2kaadUgaaiaa wEa7caGLiWoapaWaaSbaaSqaa8qacqaHjpWDpaWaaSbaaWqaa8qaca WGZbaapaqabaaaleqaaOWdbiabloKi7iaaicdaaaa@4E1B@ . It turns out that this ”standing wave”- branch occurs at the higher frequencies ω s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaam4CaaWdaeqaaaaa@3A4F@ , the higher is the effective Debye length λ P,D = R PD λ D0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaamiuaiaacYcacaWGebaapaqabaGc peGaeyypa0JaamOua8aadaWgaaWcbaWdbiaadcfacaWGebaapaqaba GcpeGaeyyXICTaeq4UdW2damaaBaaaleaapeGaamiraiaaicdaa8aa beaaaaa@4570@ , or, so to say it in other words, the electron temperature T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394D@ . This for instance means that electrostatic turbulent waves at subcritical frequencies ω ω s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaeyizImQaeqyYdC3damaaBaaaleaapeGaam4CaaWdaeqa aaaa@3DD1@  when propagating into regions with increasing electron temperatures T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394D@ , then may naturally enter a region in which their frequencies ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdChaaa@38FD@  become equal to the local value of ω s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaam4CaaWdaeqaaaaa@3A4F@ . This furtheron then, however, implies that the group velocity v g (ω ω s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadEgaa8aabeaak8qacaGGOaGaeqyY dCNaeS4qISJaeqyYdC3damaaBaaaleaapeGaam4CaaWdaeqaaOWdbi aacMcaaaa@411B@  by which turbulent wave energy is transported slows substantially down there, and turbulent fluctuation amplitudes consequently have to grow to keep the turbulent wave energy flow constant.12–14 Thus it can happen that in such regions of slowly increasing temperatures the pile-up of turbulent electrostatic energy leads to an amplitude growth from the linear to the nonlinear wave regime. As soon as electrostatic waves, however, grow to nonlinear amplitudes, they then start dissipating their wave energy to thermal degrees of freedom of the electrons (i.e. dissipation of wave energy into electron thermal energy), and thus will induce an additional electron heating, i.e. will drive the electron temperatures even higher in this region.

Figure 1 Shown is the electrostatic dispersion relation ω=ω(k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9iabeM8a3jaacIcacaWGRbGaaiykaaaa@3DF7@ showing the normalized frequency ω/ Ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaac+ cacqqHPoWvdaWgaaWcbaGaamyAaaqabaaaaa@3C36@ on the ordinate as function of the normalized wavevector k/ k D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacaGGVa Gaam4AamaaBaaaleaacaWGebaabeaaaaa@3A96@ on the abscissa. The parameter s is equal to the number R PD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamiuaiaadseaaeqaaaaa@39AF@ introduced in the text.

This form of electrostatic wave energy dissipation could perhaps be the reason why at shocks - like e.g. especially the solar wind termination shock - ions must be expected to behave differently from electrons what concerns their polytropic reactions to the downstream density increases, concerning their shock-induced specific temperature increases.15–18 Normally the Rankine-Hugoniot relations do consider electrons and ions as thermally reacting in identical forms. But even in case both species, according to the conventional Rankine-Hugoniot relations, were expected to first react according to identical polytropic relations, the electrons downstream of the shock might additionally be heated up via wave energy dissipation according dissipation of steepened electrostatic waves allong the aforementioned argument. This means that they are nevertheless then furtheron differentially heated up with respect to protons due to being additionally heated by the energy dissipation of the nonlinear electrostatic waves which are convected into the downstream region selectively heating electrons. (see illustration given in our).This could be an alternative or additional explanation for the strong electron heating predicted in papers like Chalov et al.15–18 Most recently there was even given a proof connected with Voyager-2 data  that KeV-energetic electrons are produced at the passage of solar wind electrons over the solar wind termination shock.19

In order to quantitatively check the efficiency of this latter heating process one should first of all know more about the wave amplitudes of the electrostatic noise level upstream of the termination shock, in order to judge the energy that is available for dissipation to electrons. Furthermore one also should be able to make sure that the wave-electron coupling periods are short enough to allow for the wave-induced heating of the electrons while passing over the shock structure. For the latter the so-called Landau damping periods may give a characteristic measure.8–10 Evaluated at the point of maximum growth one might find growth periods of  Kadomtsev et al.20–22

τ L = 1 γ max 1 ω pe 2 3 4M m 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamitaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaaIXaaapaqaa8qacqaHZoWzpaWaaSbaaSqaa8qaci GGTbGaaiyyaiaacIhaa8aabeaaaaGcpeGaeyisIS7aaSaaa8aabaWd biaaigdaa8aabaWdbiabeM8a39aadaWgaaWcbaWdbiaadchacaWGLb aapaqabaaaaOWdbmaalaaapaqaa8qacaaIYaaapaqaa8qadaGcaaWd aeaapeGaaG4maaWcbeaaaaGcdaGcbaWdaeaapeWaaSaaa8aabaWdbi aaisdacaWGnbaapaqaa8qacaWGTbaaaaWcpaqaa8qacaaIZaaaaGqa aOGaa8Nlaaaa@4EC5@

with ω pe MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaBaaaleaapeGaamiCaiaadwgaa8aabeaaaaa@3B34@ denoting the local electron plasma frequency and M and m being the masses of ions and electrons, respectively. This expression at the location of the solar wind termination shock evaluates to τ L 10 2 sec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamitaaWdaeqaaOWdbiabgIKi7kaa igdacaaIWaWdamaaCaaaleqabaWdbiabgkHiTiaaikdaaaGcciGGZb Gaaiyzaiaacogaaaa@4228@  which just is in the order of the electron passage time over the shock τ t 10 λ D /U8 10 3 sec MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgIKi7kaa igdacaaIWaGaeq4UdW2damaaBaaaleaapeGaamiraaWdaeqaaOWdbi aac+cacaWGvbGaeyisISRaaGioaiabgwSixlaaigdacaaIWaWdamaa CaaaleqabaWdbiabgkHiTiaaiodaaaGcciGGZbGaaiyzaiaacogaaa a@4D01@  and thus means that the wave-electron coupling during the shock passage is well possible. Similar results were also found earlier by Chashei et al.23 on the basis of studying the Buneman instability based on the counterstreaming of electrons and protons at the shock.24,25

Conclusion

In this article we have considered stochastic density fluctuations in astrophysical plasmas and have emphasized the important point that such fluctuations can only then be described by means of Poissonian statistics, if the particle residence times within the volumes of such density fluctuations are uncorrelated. This, however, cannot be expected being the case, if for instance electrical forces connected with unscreened electrical charges enforce the correlation of particle residence times. In order to define the Poissonian limit of permitted volumes of density fluctuations we compare forces due to pressure fluctuation forces with electric forces in these volumes due to uncreened electric charges. Following this idea we can define the so-called Poissonian Debye length which contains as a factor the classical Debye length4 and the number of particles in the Debye sphere, the so-called Debye number. It turns out that this modification of the Debye length clearly expresses the statistical relevance of the number of charge-screening particles. This result has a broad astrophysical meaning as we demonstrate. On the basis of this newly defined "effective" Debye length we study the dispersion relation of electrostatic waves in astrophysical plasmas and do show that electrostatic waves with a specific frequency ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdChaaa@38FD@  when propagating into plasma regions with increasing electron temperature where the group velocity dω/dk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaceaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiabeM8a3jaac+cacaWGKbGaam4Aaaaa@3C72@  of this wave becomes small or even vanishes (i.e. standing waves !, see Figure 1), then turbulent wave energy has to be dissipated and electron temperatures are even more increased there. This means that the wave amplitudes of such waves grow nonlinear and the waves start dissipating wave energyinto kinetic, i.e.thermal energy. By this mechanism electrostatic waves in regions of increasing electron temperatures do contribute to an additional heating of electrons. Especially at astrophysical MHD shocks17 this may help to strongly and selectively heat electrons compared to protons at their passage over the shock to the downstream region.

We furthermore discuss observational possibilities to measure the Poissonian Debye length in astrophysical plasmas by transmission of a radiowave through these plasmas observing the extinction of the wave intensity due to excitation of locally generated, secondary dipolar waves. When the radiowave length is larger than the local Poissonian Debye length, then the local excitation of secondary waves occurs and modifies the radiowave intensity of the penetrating wave, while at wavelengths shorter than the local Poissonian Debye length coherent secondary waves will not be excited.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict f interest.

References

  1. Joos G. Lehrbuch der Theoretischen Physik. 10. Auflage, Geest & Portig K.G., Leipzig. 1959. p. 539–554.
  2. Weizel W. Lehrbuch der Theoretischen Physik. Zweiter Band (2.Auflage), Springer Verlag, Heidelberg. 1973A. p. 1480–1485.
  3. Landau LD, Lifshitz EM. Statistical Physics, Part 1 (3rd Edition, Course of Theoretical Physics, Volume 5). New York 1998.
  4. Chen FF. Introduction to plasma physics. 1974, New York, Plenum Press Debye, Phys. Z. 1920. p. 21–181.
  5. Hunger K, Larenz RW. Das Mikrofeld im Plasma. Zeitschr f Physik. 1961;163:245–261.
  6. Ichimaru S. Basic Principles of Plasma Physics: A statistical approach. Benjamin Publ., New York, 1973.
  7. Spatschek KH. Theoretische Plasmaphysik. Teubner Studienbücher, Physik, B.G.Teubner, Stuttgart, 1990.
  8. Baumjohann W, Treumann RA. Basic space plasma physics. London Imperial College Press. 1996.
  9. Goedbloe H, Poedts S. Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge (UK). 2004.
  10. Fahr HJ, Richardson JD, Verscharen D. Probing the thermodynamic conditions of the heliosheath plasma by shock wave propagation. Astron & Astropyhs. 2015;579:A18.
  11. Weizel W. Lehrbuch der Theoretischen Physik. Erster Band (2.Auflage), Springer Verlag, Heidelberg. 1973B. p. 480–485.
  12. Scudder JD. On the causes of temperature changes in inhomogeneous low-density astrophysical plasmas. Astrophys J. 1992;389:299.
  13. Schwartz SJ, Thomsen MF, Bame SJ, et al. Electron heating and the potential jump across fast mode shocks. J Geophys Res. 1988;93:12923.
  14. Leubner MP. Wave induced suprathermal tail generation of electron velocity space distributions. Plan Space Sci. 2000;48:133.
  15. Chalov SV, Fahr HJ. On the effect of transport coefficient anisotropy on the plasma flow in heliospheric interface. MNRAS. 2013;433:L40–L45.
  16. Fahr HJ, Siewert M, Chashei IV. On the electron temperature downstream of the solar wind termination shock. Astrophys Space Sci.  2012;341:265–276.
  17. Fahr HJ, Siewert M. Probing the thermodynamic conditions of the heliosheath plasma by shock wave propagation. Astron & Astrophys. 2013;558:A41.
  18. Fahr HJ, Verscharen D. The behavior of electrons at the heliospheric shock transition. Astron & Astrophys. 2016;587:L1.
  19. Fahr HJ, Krimigis SM, Fichtner H, et al. The behavior of electrons at the heliospheric shock transition. Astrophys J Lett. 2017;848:L3.
  20. Kadomtsev BB. Plasma turbulence. Academic Press, New York, 1965.
  21. Sagdeev RZ, Galeev AA. Nonlinear Plasma Theory. In: D.O ‘Neill, T. Benjamin et al. editors. Book, New York, 1969.
  22. Papadopoulos K. A review of anomalous resistivity for the ionosphere. Rev Geophys Space Physics. 201977;15:113.
  23. Chapman S, Cowling TG. Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge 1961.
  24. Chashei IV, Fahr HJ. On the electron temperature downstream of the solar wind termination shock. Ann Geophys. 2013;31:1205–1212.
  25. Fahr HJ, Heyl M. Quasi-thermal noise spectroscopy: The art and thepractice. Astron & Astrophys. 2016;589:A85.
Creative Commons Attribution License

©2020 Fahr. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.