Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 4

The big-bang started from nothing: Not the initially hot cosmic matter, but a positive vacuum pressure made the universe explode!

Hans J Fahr

Argelander Institute for Astronomy, University of Bonn, Germany

Correspondence: Hans J Fahr, Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, 53121 Bonn, Germany

Received: November 29, 2023 | Published: December 8, 2023

Citation: Hans JF. The big-bang started from nothing: Not the initially hot cosmic matter, but a positive vacuum pressure made the universe explode!. Phys Astron Int J. 2023;7(4):274-278. DOI: 10.15406/paij.2023.07.00319

Download PDF

Abstract

Mankind all over its past epochs did ask the question, how this huge and materially impressive universe could ever have started its existence. The standard dogmatic answer presently given by the majority of modern cosmologists is: By the Big-Bang! - i.e. that initial explosion of the central highly condensed world matter system! But why - it could be asked - should this system have exploded at all? Perhaps this popular BB-hypothesis of a general and global cosmic explosion creating the world is especially suggestive just in these days of wars and weapons all around. Nevertheless to declare such an initial event as the begin of the universe unexpectedly turns out to be extremely hard to explain when based on purely physical grounds. Though it is easy to envisage a granate explosion causing matter to fly apart in all directions from the center of the explosion, but as a total surprise it is extremely hard to explain which physically operating forces or pressures might be responsible to drive the initially highly compacted cosmic matter agglomeration apart of each other. If the explosion forces are imagined as due to acting thermal pressure forces of normal massive matter, then the needed pressures cannot be due to the extremely high temperatures of the condensed matter, because the thermal energy of relativistically hot matter, as relativity theory tells us, will act as an additional source of gravity, i.e. making matter even "heavier"! Hence this just impedes the initial mass agglomeration to explode and fly apart. As we shall show in the following article the explosive BB- event can only physically be explained, if the necessary pressure is not conventionally realized by the temperature of the gravitating matter, but to the contrary by the immaterial cosmic vacuum. In fact - as we shall demonstrate here - without a cosmic vacuum pressure, the so-called Big-Bang never at all could have happened. Certainly vacuum pressure up to the present days of cosmology still is a fully speculative subject, but it will become evident in the following article, that without this highly speculative, physically handable quantity a primordial Big-Bang would not have happened at all.

Introduction: Doubts on the big-bang hypothesis

Surprisingly enough just this initial explosive event of the universe represents a genuine physical secret and deep mystery. This is true because relativistic material pressure namely not acts explosively, but to the contrary does effectively support gravity, i.e. produces additional centripetal gravitation forces. This just impedes an explosion by helping to keep concentrated the matter at its small volume or even initiating an implosion. This problem, however, as we shall show here, might have an astonishing, completely unexpected solution: Namely the initial explosion only could happen by a pressure of a completely unusual type - namely an immaterial pressure that is not connected with hot matter, but with a pressurized, cosmic vacuum.

The always cited Big-Bang is generally seen as the prime physical, causal condition for the cosmic matter to explosively fly apart into ever growing cosmic volumes. This initial explosion may also have initiated the early Hubble expansion of the universe. But should scientists of these days not ask on the basis of modern physics for the responsible physical terms and forces which could have provocated this initial explosive event? Matter, when it is assumed to be highly condensed at this "BB"-begin, evidently organizes a strong gravitational field which effectively opposes the explosive fly-off of cosmic matter. One evidently needs in addition an overcompensating "antigravitational", "centrifugally directed" force. As the needed force cosmologists have of course identified pressure forces at this cosmic evolution. Evidently the B-B-matter not only is infinitely dense and hot - it also evidently is highly pressurized by thermal pressure. And hence in a first glance this makes evident that this necessarily creates an explosive scenario!

But this is simply not true, - because the thermal pressure connected with the relativistically hot BB- matter namely also contributes to a strengthening of the internal centripetal gravitational field. This is due to the presence of countable portions of increased equivalent relativistic masses, as it is well described by the theory of General Relativity.1−4

This has to be concluded, because energy in all its mass-equivalent forms, evidently including all forms of kinetic energy, also acts as source of gravity. And the relativistic thermal kinetic energy of the Big-Bang matter can not at all be neglected relative to its rest mass energy. As soon as the mass energy density ε M = ϱ M · c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xTdu2aaSbaaSqaaiaad2eaaeqaaOGaeyypa0JaaGPaVprr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbsacqGFXp q8kmaaBaaaleaacaWGnbaabeaakiaaykW7caGG3cGaaGPaVlaadoga daahaaWcbeqaaiaaikdaaaaaaa@5029@ , seen from its order of magnitude, competes with the energy equivalent of the material pressure p M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaaaaa@391F@ , then immediately its pressure-induced effects are showing up in the field-relevant energy-momentum tensor Π ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiOda1aaSbaaSqaaiaadMgacaWGRbaabeaaaaa@3AB4@  of the GR-field equations. We first give them here without taking into account vacuum energy. Then these equations take the form:1

ψ ik ψ· g ik 2 =8πG· Π ik c 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaSbaaSqaaiaadMgacaWGRbaabeaakiabgkHiTmaalaaa baGaeqiYdKNaaGPaVlaacElacaaMc8Uaam4zamaaBaaaleaacaWGPb Gaam4AaaqabaaakeaacaaIYaaaaiabg2da9iaaykW7caaMc8UaaGio aiabec8aWjaadEeacaaMc8UaaGPaVlaacElacaaMc8UaaGPaVpaala aabaGaeuiOda1aaSbaaSqaaiaadMgacaWGRbaabeaaaOqaaiaadoga daahaaWcbeqaaiaaisdaaaaaaaaa@5A29@

where ψ ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdK3aaSbaaSqaaiaadMgacaWGRbaabeaaaaa@3B04@ denotes the Riemann´ian curvature tensor, ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiYdKhaaa@38FA@ is the curvature scalar, g ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4zamaaBaaaleaacaWGPbGaam4Aaaqabaaaaa@3A22@ is the metric tensor, Π ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiOda1aaSbaaSqaaiaadMgacaWGRbaabeaaaaa@3AB4@ is the energy-momentum tensor, and G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@37F8@ is Newton‘s constant of gravitation. The specific action of the thermal material pressure p M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaaaaa@391F@ becomes evident, when one procedes from the above tensor equations to the Friedmann-Lemaître differential equations2,3 which are given in the form:

( R ˙ /R ) 2 = 8πG 3 ϱ M (t) k c 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaaceWGsbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabg2da9iaaykW7caaMc8UaaGPaVpaala aabaGaaGioaiabec8aWjaadEeaaeaacaaIZaaaaiaaykW7caaMc8+e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=f =aXRWaaSbaaSqaaiaad2eaaeqaaOGaaiikaiaadshacaGGPaGaeyOe I0IaaGPaVpaalaaabaGaam4AaiaadogadaahaaWcbeqaaiaaikdaaa aakeaacaaIZaaaaaaa@5EDE@

And:

R ¨ R = 4πG 3 [ ϱ M (t)+ 3 p M (t) c 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaaceWGsbGbamaaaeaacaWGsbaaaiabg2da9iabgkHiTmaa laaabaGaaGinaiabec8aWjaadEeaaeaacaaIZaaaaiaaykW7caGGBb Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab =f=aXRWaaSbaaSqaaiaad2eaaeqaaOGaaiikaiaadshacaGGPaGaey 4kaSIaaGPaVlaaykW7daWcaaqaaiaaiodacaWGWbWaaSbaaSqaaiaa d2eaaeqaaOGaaiikaiaadshacaGGPaaabaGaam4yamaaCaaaleqaba GaaGOmaaaaaaGccaGGDbaaaa@5D1C@

where R=R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaaykW7caaMc8UaamOuaiaacIcacaWG0bGaaiyk aaaa@3F48@ is the time-dependent spatial scale of the homogeneous Robertson-Walker universe,4,5 R ο MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaCbiaeaacaWGsbaaleqabaWaaSbaaWqaaiabe+7aVbqabaaaaaaa @3A34@  and R ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaaaaa@380D@ denote its first and second derivatives with respect to cosmic time t,  ϱ M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiaacYcacaqGGaWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiuaajugibiab=f=aXRWaaSbaaSqaaiaad2eaaeqaaaaa@4703@ and p M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaaaaa@391F@ denote mass density and pressure of the cosmic matter, and k is the curvature parameter which in this normalized approach can only attain values of k=+1,k=0,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgUcaRiaaigdacaGGSaGaaGPaVlaaykW7caWG RbGaeyypa0JaaGimaiaacYcacaaMc8UaaGPaVlaadUgacqGH9aqpcq GHsislcaaIXaaaaa@4899@ .

One can see in the second of these two above differential equations, that as well the material pressure p M (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaakiaacIcacaWG0bGaaiykaaaa @3B7B@ , as also the material energy density ϱ M (t) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbsaqaaaaaaaaaWdbiab =f=aXRWaaSbaaSqaaiaad2eaaeqaaOGaaiikaiaadshacaGGPaGaam 4yamaaCaaaleqabaGaaGOmaaaaaaa@48E4@ , both do contribute in the same sense to the acting gravitational field. They namely do decelerate the scale expansion, and with R ¨ <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaGaeyipaWJaaGPaVlaaykW7caaIWaaaaa@3CE1@ do determine a collapsing!,- rather than an explosively - expanding universe, in case no other cosmic forces in addition had to be taken into account. This is especially true in case when the cosmic matter has relativistic temperatures, i.e. when ϱ M (t) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbsaqaaaaaaaaaWdbiab =f=aXRWaaSbaaSqaaiaad2eaaeqaaOGaaiikaiaadshacaGGPaGaam 4yamaaCaaaleqabaGaaGOmaaaaaaa@48E4@ and p M (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaakiaacIcacaWG0bGaaiykaaaa @3B7B@ turn out to be of the same order of magnitude. How then the early universe with a relativistically hot matter can at all have exploded? This according to present-day views is only possible, if in addition to the upper material pressure p M (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaakiaacIcacaWG0bGaaiykaaaa @3B7B@ an additional cosmic pressure p ˜ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCayaaiaGaaiikaiaadshacaGGPaaaaa@3A82@ of a completely different nature becomes active; namely a pressure is needed of a nonthermal nature and thus is not coupled to "massive" matter. It rather must be a pressure of an unusual, i.e. an "immaterial" form, which does not simultaneously contribute to a centripetal gravity field.

Such an "immaterial" pressure p ˜ (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCayaaiaGaaiikaiaadshacaGGPaaaaa@3A82@ , as it is suggested in these present days, could perhaps be connected with cosmic vacuum energy, whose role nowadays is seriously discussed all around in cosmology. The first who introduced vacuum energy, however , a pressure-less vacuum energy ,into the theory of cosmology was Einstein6 with his cosmologic constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWeaaa@38A1@  which helped at least for the value Λ E =8π G Q E / c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0aaSbaaSqaaiaadweaaeqaaOGaeyypa0JaeyOeI0IaaGio aiabec8aWjaadEeadaWgaaWcbaGaamyuaaqabaGcdaWgaaWcbaWaaS baaWqaaiaadweaaeqaaaWcbeaakiaac+cacaWGJbWaaWbaaSqabeaa caaIYaaaaaaa@43A7@  to enable a static Euclidean (uncurved k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DC@ !) universe which Einstein at these days was looking for. Later then Friedman,3,4 introduced this term, given by the cosmologic constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWeaaa@38A1@ , into the field equations. Together with the use of the so-called Robertson-Walker geometry,4,5 (Robertson),he obtained the following set of equations:

( R ˙ /R ) 2 = c 2 k/ R 2 c 2 Λ/3= 8π G Q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaaceWGsbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabg2da9iaaykW7caaMc8Uaam4yamaaCa aaleqabaGaaGOmaaaakiaadUgacaGGVaGaamOuamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaGccqqHBo atcaGGVaGaaG4maiabg2da9iaaykW7caaMc8+aaSaaaeaacaaI4aGa eqiWdaNaam4ramaaBaaaleaacaWGrbaabeaaaOqaaiaaiodaaaGaaG PaVlaaykW7aaa@5779@

And:

2 R ¨ /R+ ( R ˙ /R ) 2 + c 2 k/ R 2 c 2 Λ= 8πG c 2 ·(p+ p ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiqadkfagaWaaiaac+cacaWGsbGaey4kaSYaaeWaaeaaceWG sbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaykW7caaMc8Uaam4yamaaCaaaleqabaGaaGOm aaaakiaadUgacaGGVaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaadogadaahaaWcbeqaaiaaikdaaaGccqqHBoatcqGH9aqpcqGH sislcaaMc8UaaGPaVpaalaaabaGaaGioaiabec8aWjaadEeaaeaaca WGJbWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaMc8Uaai4Taiaa ykW7caaMc8UaaiikaiaadchacqGHRaWkceWGWbGbaGaacaGGPaaaaa@6372@

If now one only is interested in the uncurved Euclidean universe with a constant but vanishing curvature k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DC@ !, one then obtains the following two differential equations, but now containing the influence of vacuum energy in the form:

( R ˙ /R ) 2 = c 2 Λ+8π G Q 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaaceWGsbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaam4yamaaCaaale qabaGaaGOmaaaakiabfU5amjabgUcaRiaaiIdacqaHapaCcaWGhbWa aSbaaSqaaiaadgfaaeqaaaGcbaGaaG4maaaaaaa@466E@

and:

2 R ¨ /R+ ( R ˙ /R ) 2 c 2 Λ= 8πG c 2 ·(p+ p ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiqadkfagaWaaiaac+cacaWGsbGaey4kaSYaaeWaaeaaceWG sbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaGccqqHBoat cqGH9aqpcqGHsislcaaMc8UaaGPaVpaalaaabaGaaGioaiabec8aWj aadEeaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaaakiaaykW7caaM c8Uaai4TaiaaykW7caaMc8UaaiikaiaadchacqGHRaWkceWGWbGbaG aacaGGPaaaaa@5A32@

Replacing here the term ( R ˙ /R ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaaceWGsbGbaiaacaGGVaGaamOuaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaaaaa@3C08@ in the second equation by the first equation leads to

2 R ¨ /R+ 2 c 2 Λ+8π G ϱ 3 = 8πG c 2 ·(p+ p ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiqadkfagaWaaiaac+cacaWGsbGaey4kaSYaaSaaaeaacqGH sislcaaIYaGaam4yamaaCaaaleqabaGaaGOmaaaakiabfU5amjabgU caRiaaiIdacqaHapaCcaWGhbWaaSbaaSqaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGae8x8depabeaaaOqaaiaaiodaaa Gaeyypa0JaeyOeI0IaaGPaVlaaykW7daWcaaqaaiaaiIdacqaHapaC caWGhbaabaGaam4yamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaG PaVlaacElacaaMc8UaaGPaVlaacIcacaWGWbGaey4kaSIabmiCayaa iaGaaiykaaaa@672C@

expressing the following, interesting relation:

2 R ¨ /R= c 2 Λ 3 4πG c 2 [ 1 3 ϱ c 2 +(p+ p ˜ )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiqadkfagaWaaiaac+cacaWGsbGaeyypa0ZaaSaaaeaacaWG JbWaaWbaaSqabeaacaaIYaaaaOGaeu4MdWeabaGaaG4maaaacqGHsi sldaWcaaqaaiaaisdacqaHapaCcaWGhbaabaGaam4yamaaCaaaleqa baGaaGOmaaaaaaGccaaMc8Uaai4wamaalaaabaGaaGymaaqaaiaaio daaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugi biab=f=aXRGaam4yamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaacI cacaWGWbGaey4kaSIabmiCayaaiaGaaiykaiaac2faaaa@5DE6@

This equation, however, for the first time here and now, shows the possibility of getting an explosive Big-Bang event for the specific, but realistic case:

c 2 Λ 3 > 4πG c 2 [ 1 3 ϱ c 2 +(p+ p ˜ )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeu4MdWeabaGa aG4maaaacqGH+aGpcaaMc8UaaGPaVpaalaaabaGaaGinaiabec8aWj aadEeaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaaakiaacUfadaWc aaqaaiaaigdaaeaacaaIZaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKb stHrhAG8KBLbacfaqcLbsacqWFXpq8kiaadogadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaGGOaGaamiCaiabgUcaRiqadchagaacaiaacM cacaGGDbaaaa@5B5F@

How to describe vacuum pressure?

To further continue this analysis we now have to study the unusual form of the vacuum pressure p ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCayaaiaaaaa@3830@ which is connected with the vacuum energy density vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8hcI48aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaaaaa@3BAA@ and anyway, in these days, is strongly instrumentalized for cosmological purposes. Of course, its physical nature and its relation to other physical quantities, even today, is strongly obscure and under permanently new discussions. Nevertheless as has been shown by Fahr and Sokaliwska7 and Fahr,8 vacuum energy density only is a conserved quantity of cosmic spacetime, when it is introduced like Einstein6 did it with his Λ=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaeyypa0Jaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3E67@ , - namely only -, if the proper energy of the comoving space time volume is conserved. This invariance, however, can only be expected, if this vacuum proper energy or its energy density does not perform work at the expansion or upon the dynamics of cosmic space time. If to the contrary such a work is in fact performed by the vacuum energy, i.e. in case the vacuum does perform work at the expansion of the cosmic scale R,9 then - as an unavoidable thermodynamical consequence of the omni-valid energy conservation law - it cannot be constant!

This is because in that case the thermodynamic relations between the cosmic vacuum energy density and the associated vacuum pressure p ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCayaaiaaaaa@3830@ = p vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaaaa@3B16@ do require that the following thermodynamical relation is fulfilled:

d dR ( vac R 3 )= p vac d dR R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaGaaGPaVlaacIcaiiGa cqWFiiIZdaWgaaWcbaGaamODaiaadggacaWGJbaabeaakiaadkfada ahaaWcbeqaaiaaiodaaaGccaGGPaGaaGPaVlaaykW7cqGH9aqpcaaM c8UaaGPaVlabgkHiTiaadchadaWgaaWcbaGaamODaiaadggacaWGJb aabeaakmaalaaabaGaamizaaqaaiaadsgacaWGsbaaaiaaykW7caWG sbWaaWbaaSqabeaacaaIZaaaaaaa@5534@

This relation can, however, mathematically only be satisfied, when the following functional relation between these two quantities holds:

p vac = 3ξ 3 vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaeyypa0Ja aGPaVlaaykW7cqGHsisldaWcaaqaaiaaiodacqGHsislcqaH+oaEae aacaaIZaaaaGGaciab=HGiopaaBaaaleaacaWG2bGaamyyaiaadoga aeqaaaaa@48E1@

where ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@38EF@  is the polytropic vacuum index, i.e. a pure number which only for the specific case ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@38EF@  = 3 describes the case of a "pressure-less" vacuum which in fact Einstein6 and Friedman2 did consider. In all other cases ξ3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF2jYOcaaIZaaaaa@450F@ vacuum energy vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8hcI48aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaaaaa@3BAA@ is associated with a pressurized vacuum and evidently also then does unavoidably perform work at the scale-expansion of space. Under these latter conditions, however, vacuum energy density vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8hcI48aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaaaaa@3BAA@ as shown by the upper equation, cannot be constant, which in contrast once was formulated by Einstein7 with his Λ=8πG vac / c 4 =8π G Q E / c 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaeyypa0JaaGPaVlaaykW7caaI4aGaeqiWdaNaam4raGGa ciab=HGiopaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaai4lai aadogadaahaaWcbeqaaiaaisdaaaGccqGH9aqpcaaI4aGaeqiWdaNa am4ramaaBaaaleaacaWGrbaabeaakmaaBaaaleaadaWgaaadbaGaam yraaqabaaaleqaaOGaai4laiaadogadaahaaWcbeqaaiaaikdaaaGc cqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaaa@5609@ . for a static universe (i.e for R=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3DC9@ !), where Q E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuamaaBaaaleaacaWGfbaabeaaaaa@38F8@ is equivalent of the Einstein´ían mass density just stabilizing the universe against a gravitational collapse.

Looking here again back to the earlier problem raised in this article, that the thermal pressure p M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGnbaabeaaaaa@391F@ of relativistic cosmic matter cannot help to let the Big-Bang matter explode, we therefore, in order to nevertheless have a Big-Bang genesis of our universe, would need a type of vacuum with a non-vanishing, positive pressure p vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaaaa@3B16@ , given for the cases ξ>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaaGPaVlaaykW7cqGH+aGpcaaIZaGaaGPaVlaaykW7aaa@40E0@ , however, with the evident consequence, that this kind of pressure unavoidably performs thermodynamic work at the expansion of the universe (i.e. with growing scale R=(R(t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaaykW7caaMc8UaaiikaiaadkfacaGGOaGaamiD aiaacMcacaGGPaaaaa@40A1@ . This necessarily means that vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8hcI48aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaaaaa@3BAA@ in that case cannot be constant, but, also, and even in favour of a Big-Bang genesis of the universe, has to fall off with the scale R of the universe! This in no case would be a dramatic or desastrous solution for a Big-Bang universe. One only has to see the consequence that this result were contrary to what was thought by many cosmologists of these days, especially by Perlmutter et al.,10 Schmidt et al.,11 or Riess et al.12 namely that this actual universe, in view of its observed redshift-luminosity relations, can well and best! be explained by a constant vacuum energy density with Λ=8πG ϱ vac / c 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaeyypa0JaaGioaiabec8aWjaadEeatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=f=aX=aadaWgaaWcbaWdbi aadAhacaWGHbGaam4yaaWdaeqaaOWdbiaac+cacaWGJbWdamaaCaaa leqabaWdbiaaikdaaaGccqGH9aqpcaWGJbGaam4Baiaad6gacaWGZb GaamiDaaaa@5496@  according just to the idea once created by Einstein,7 however, by him for different reasons.

How does the cosmic vacuum cause a big-bang?

Let us remind here, that the only essential condition for an "explosive" BB- event is fulfilled, if the following relation holds:

8π G ϱ vac 3 > 4πG c 2 [ 1 3 ϱ c 2 +(p+ p vac )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaI4aGaeqiWdaNaam4ramaaBaaaleaatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=f=aX=aadaWgaaadba WdbiaadAhacaWGHbGaam4yaaWdaeqaaaWcpeqabaaakeaacaaIZaaa aiaaykW7caaMc8UaeyOpa4JaaGPaVlaaykW7caaMc8+aaSaaaeaaca aI0aGaeqiWdaNaam4raaqaaiaadogadaahaaWcbeqaaiaaikdaaaaa aOGaai4wamaalaaabaGaaGymaaqaaiaaiodaaaqcLbsacqWFXpq8ki aadogadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamiCaiab gUcaRiaadchapaWaaSbaaSqaa8qacaWG2bGaamyyaiaadogaa8aabe aak8qacaGGPaGaaiyxaaaa@6908@

which, with p vac = 3ξ 3 vac = ξ3 3 ϱ vac c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAhacaWGHbGaam4yaaWdaeqaaOGa eyypa0JaeyOeI0YdbmaalaaabaGaaG4maiabgkHiTiabe67a4bqaai aaiodaaaacciGae8hcI48aaSbaaSqaaiaadAhacaWGHbGaam4yaaqa baGccaaMc8UaaGPaVlabg2da9iaaykW7caaMc8+aaSaaaeaacqaH+o aEcqGHsislcaaIZaaabaGaaG4maaaacaaMc8+efv3ySLgznfgDOfda ryqr1ngBPrginfgDObYtUvgaiuaajugibiab+f=aXRWaaSbaaSqaai aadAhacaWGHbGaam4yaaqabaGccaWGJbWaaWbaaSqabeaacaaIYaaa aaaa@6466@ ,

leads to the following form of the second Friedman equation:

R ¨ /R= 8π G ϱ vac 3 4πG c 2 [ 1 3 ϱ c 2 +(p+ ξ3 3 ϱ vac c 2 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaGaai4laiaadkfacqGH9aqpdaWcaaqaaiaaiIdacqaH apaCcaWGhbWaaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae8x8de=damaaBaaameaapeGaamODaiaadggacaWG Jbaapaqabaaal8qabeaaaOqaaiaaiodaaaGaeyOeI0YaaSaaaeaaca aI0aGaeqiWdaNaam4raaqaaiaadogadaahaaWcbeqaaiaaikdaaaaa aOGaai4wamaalaaabaGaaGymaaqaaiaaiodaaaqcLbsacqWFXpq8ki aadogadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaamiCaiab gUcaRmaalaaabaGaeqOVdGNaeyOeI0IaaG4maaqaaiaaiodaaaGaaG PaVNqzGeGae8x8deVcdaWgaaWcbaGaamODaiaadggacaWGJbaabeaa kiaadogadaahaaWcbeqaaiaaikdaaaGccaGGPaGaaiyxaaaa@6E17@

Taking this equation serious, one then can think positively in favour of the Big-Bang to happen, namely: In order to have the vacuum pressure dominant at small scales of the universe, i.e. in the very young universe R< R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaaykW7caaMc8UaeyipaWJaaGPaVlaaykW7caWGsbWaaSba aSqaaiaaicdaaeqaaaaa@40F0@ !, and thus to have a Big-Bang happening in this earliest cosmologic epoch, one needs to have a dominance of the vacuum mass energy density Q vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaWcqaaaaaaaaaWdbiab=br8 r9aadaWgaaadbaWdbiaadAhacaWGHbGaam4yaaWdaeqaaaaa@45BC@ over cosmic mass density ϱ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 aaa@4320@ , thus a relation for instance given in the form:

ϱ vac,0 / Q =( ϱ vac,0 / Q 0 )·( R 0 /R) γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 paWaaSbaaSqaa8qacaWG2bGaamyyaiaadogacaGGSaGaaGimaaWdae qaaOWdbiaac+cadaWgaaWcbaGaamyuaaqabaGccqGH9aqpcaaMc8Ua aGPaVlaacIcacqWFXpq8paWaaSbaaSqaa8qacaWG2bGaamyyaiaado gacaGGSaGaaGimaaWdaeqaaOWdbiaac+cadaWgaaWcbaGaamyuaaqa baGcdaWgaaWcbaGaaGimaaqabaGccaGGPaGaai4TaiaaykW7caaMc8 UaaiikaiaadkfadaWgaaWcbaGaaGimaaqabaGccaGGVaGaamOuaiaa cMcacaaMc8+aaWbaaSqabeaacqaHZoWzaaaaaa@6515@

with γ denoting a positive number and meaning that the vacuum energy density is given by:

ϱ vac (R)=( ϱ vac,0 )·( R 0 /R) 3+ γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbsaqaaaaaaaaaWdbiab =f=aXRWaaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaGccaGGOaGaam OuaiaacMcacqGH9aqpdaqadaqaaiab=f=aX=aadaWgaaWcbaWdbiaa dAhacaWGHbGaam4yaiaacYcacaaIWaaapaqabaaak8qacaGLOaGaay zkaaGaaGPaVlaaykW7caGG3cGaaGPaVlaaykW7caGGOaGaamOuamaa BaaaleaacaaIWaaabeaakiaac+cacaWGsbGaaiykaiaaykW7daahaa WcbeqaaiaaiodacqGHRaWkaaGcdaahaaWcbeqaaiabeo7aNbaaaaa@63CE@

With this information one could then reduce the upper differential equation for scales R< R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaaykW7caaMc8UaeyipaWJaaGPaVlaaykW7caWGsbWaaSba aSqaaiaaicdaaeqaaaaa@40F0@ by neglecting the term containing the mass density ϱ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 aaa@4320@  into the following simplified form:

R ¨ /R= 8π G ϱ vac 3 4πG c 2 [ ξ3 3 ϱ vac c 2 )]= 4πG 3 ϱ vac ·[2( ξ3 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaGaai4laiaadkfacqGH9aqpdaWcaaqaaiaaiIdacqaH apaCcaWGhbWaaSbaaSqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae8x8de=damaaBaaameaapeGaamODaiaadggacaWG Jbaapaqabaaal8qabeaaaOqaaiaaiodaaaGaeyOeI0YaaSaaaeaaca aI0aGaeqiWdaNaam4raaqaaiaadogadaahaaWcbeqaaiaaikdaaaaa aOGaai4waiaaykW7caaMc8+aaSaaaeaacqaH+oaEcqGHsislcaaIZa aabaGaaG4maaaacqWFXpq8daWgaaWcbaGaamODaiaadggacaWGJbaa beaakiaadogadaahaaWcbeqaaiaaikdaaaGccaGGPaGaaiyxaiabg2 da9maalaaabaGaaGinaiabec8aWjaadEeaaeaacaaIZaaaaiab=f=a XpaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaai4TaiaaykW7ca aMc8Uaai4waiaaikdacqGHsisldaqadaqaaiabe67a4jabgkHiTiaa iodaaiaawIcacaGLPaaacaGGDbaaaa@7C71@

and would find the Big-Bang acceleration R ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaaaaa@380D@  for the range R< R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaaykW7caaMc8UaeyipaWJaaGPaVlaaykW7caWGsbWaaSba aSqaaiaaicdaaeqaaaaa@40F0@ with a positive scale acceleration given by:

R ¨ = 4πG 3 ϱ vac,0 R 0 ( R 0 /R ) 4+γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOuayaadaGaeyypa0ZaaSaaa8aabaWdbiaaisdacqaHapaCcaWG hbaapaqaa8qacaaIZaaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaGae8x8de=damaaBaaaleaapeGaamODaiaadggacaWG JbGaaiilaiaaicdaa8aabeaak8qacaWGsbWdamaaBaaaleaapeGaaG imaaWdaeqaaOWdbiabgwSixpaabmaapaqaa8qacaWGsbWdamaaBaaa leaapeGaaGimaaWdaeqaaOWdbiaac+cacaWGsbaacaGLOaGaayzkaa WdamaaCaaaleqabaWdbiaaisdacqGHRaWkcqaHZoWzaaaaaa@5B19@

The above equation does not allow to calculate the exact course of the Big-Bang scale explosion due to the missing knowledge on the relevant cosmologic quantities ϱ vac,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 paWaaSbaaSqaa8qacaWG2bGaamyyaiaadogacaGGSaGaaGimaaWdae qaaaaa@47AD@ , ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@38EF@ , and γ but it nevertheless allows to at least prove that under conditions of a pressurized cosmic vacuum the event of a cosmic Big-Bang at least seems physically representable.

A universe with vanishing energy

For many cosmologists it would establish a usefull basis to start from the principle, that this universe in terms of energy consists of "nothing". Because then it would also be easy to understand that this world could have originated from "nothing", and the plagueing question, how the world could originate at all, would have an easy and evident answer: This universe came from nothing, it is nothing, and will be nothing forever! But how such an idea could be put on rational physical grounds?

Physically spoken, - "nothing" is absense of energy. But can the assumption of a complete absense of energy be a rational approach towards the real nature of our universe where evidently the energies of stars and galaxies, added up from all over the universe, represent a huge positive amount of energy? The answer can astonishingly enough be : "YES"! - Namely, if all positively valued energies E are completely balanced by negatively valued energies U, e.g. like binding energies , with the result: E+U=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaaykW7cqGHRaWkcaWGvbGaeyypa0JaaGimaaaa@3CFD@ !

Whether or not such a cosmic condition can at all be expected as realized, must be further investigated in detail, but it definitely requires a universe different from that which we presently believe in or have in mind.

Ideas that the total energy of the universe might be zero, already appeared in the scientific literature very early in the last century13,14 Cosmic mass energies can be calculated by15 (Rosen and Cooperstock, the expression derived for perfect fluids in the form:

E= g (ρ c 2 +3 p m )dV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9maapeaabaWaaOaaaeaacqGHsislcaWGNbaaleqa aaqabeqaniabgUIiYdGccaGGOaacciGae8xWdiNaam4yamaaCaaale qabaGaaGOmaaaakiabgUcaRiaaiodacaWGWbWaaSbaaSqaaiaad2ga aeqaaOGaaiykaiaadsgacaWGwbaaaa@4765@

where  is the determinant of the cosmic metric tensor, and ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdihaaa@38F3@  and p m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGTbaabeaaaaa@393F@ denote the mass density and the material pressure. When additionally including the pressure of the vacuum here with p vac = ρ vac c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaeyypa0Ja eyOeI0ccciGae8xWdi3aaSbaaSqaaiaadAhacaWGHbGaam4yaaqaba GccaWGJbWaaWbaaSqabeaacaaIYaaaaaaa@43AA@ and integrating the above integral one obtains:

E=M c 2 Λ c 4 R 3 3G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9iaad2eacaWGJbWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0YaaSaaaeaacqqHBoatcaWGJbWaaWbaaSqabeaacaaI0aaaaO GaamOuamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacaWGhbaaaaaa @434C@

where M=4π R 3 ρ/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9iaaisdacqaHapaCcaWGsbWaaWbaaSqabeaacaaI ZaaaaGGacOGae8xWdiNaai4laiaaiodaaaa@4081@ is the cosmic mass inside a spherical region of V=4π R 3 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da9iaaisdacqaHapaCcaWGsbWaaWbaaSqabeaacaaI ZaaaaOGaai4laiaaiodaaaa@3EC3@ , and Λ=3GM/ c 2 R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaeyypa0JaaGPaVlaaiodacaWGhbGaamytaiaac+cacaWG JbWaaWbaaSqabeaacaaIYaaaaOGaamOuamaaCaaaleqabaGaaG4maa aaaaa@41DC@ denotes the vacuum energy density according to Einstein and De Sitter.16

As shown by Overduin and Fahr17 the total binding energy under such conditions can be determined to

U= Λ c 2 M R 2 10 3G M 2 10R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiabg2da9maalaaabaGaeu4MdWKaam4yamaaCaaaleqabaGa aGOmaaaakiaad2eacaWGsbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG ymaiaaicdaaaGaeyOeI0YaaSaaaeaacaaMc8UaaG4maiaadEeacaWG nbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiaaicdacaWGsbaaaa aa@489F@

and thus leads to the following condition for the "zero"-energy universe:

E+U=0=(1 Λ c 2 R 2 3GM )(M c 2 3G M 2 10R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaaykW7cqGHRaWkcaWGvbGaeyypa0JaaGimaiabg2da9iaa ykW7caaMc8UaaiikaiaaigdacqGHsisldaWcaaqaaiabfU5amjaado gadaahaaWcbeqaaiaaikdaaaGccaWGsbWaaWbaaSqabeaacaaIYaaa aaGcbaGaaG4maiaadEeacaWGnbaaaiaacMcacaaMc8Uaaiikaiaad2 eacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaSaaaeaacaaM c8UaaG4maiaadEeacaWGnbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG ymaiaaicdacaWGsbaaaiaacMcaaaa@5952@

This means one would have two conditions under which the total energy of the universe vanishes, namely

1:   1= Λ c 2 R 2 3GM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabg2da9maalaaabaGaeu4MdWKaam4yamaaCaaaleqabaGa aGOmaaaakiaadkfadaahaaWcbeqaaiaaikdaaaaakeaacaaIZaGaam 4raiaad2eaaaaaaa@4072@

And

2:   1= 3GM 10 c 2 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabg2da9maalaaabaGaaG4maiaadEeacaWGnbaabaGaaGym aiaaicdacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaamOuaaaaaaa@3F7F@

This second condition is in fact, and to some surprise for theoreticians, identical with the well known "perfect cosmic dragging" - condition formulated already very early in the last century by Thirring,18 but for completely different reasons.

To stress this result a little more let us construct an expression for the total energy of the universe. Hereby not only those energies have to be added up over the total cosmic space, which serve as energy equivalents of deposited masses with densities ϱ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 aaa@4320@ , but also the thermal and kinetic energies of these masses have to be added up in this balance. This can be done by accounting for their pressures and bulk velocities. For a total balance one thereby has to count for baryonic mass densities ρ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadkgaaeqaaaaa@3A06@ , dark matter densities ρ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadsgaaeqaaaaa@3A08@ , and of course also the mass equivalent density of the vacuum ρ vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaaaaa@3BE8@ . The same procedure has to be carried out for the respective pressures in the form p= p b + p d + p vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCaiabg2da9iaadchadaWgaaWcbaGaamOyaaqabaGccqGHRaWk caWGWbWaaSbaaSqaaiaadsgaaeqaaOGaey4kaSIaamiCamaaBaaale aacaWG2bGaamyyaiaadogaaeqaaaaa@42FB@ . The resulting expression of the sum E in a homogeneous universe reveals as proportional to the cube of the cosmic scale, i.e. R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaCaaaleqabaGaaG4maaaaaaa@38ED@ .

Along a similar procedure the gravitational binding energy of the mass-and energy-carrying cosmic matter can be define by adding up scale-per-scale of the gravitating mass and energy in their gravitational binding strength to the rest of the world. Hereby one finds for the total binding energy U an expresssion which is proportional to the fivth power of the scale R, i.e. R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaaCaaaleqabaGaaGynaaaaaaa@38EF@ (Fahr and Heyl, 2007a/b). When requiring again now that E and U just compensate, this then leads to the interesting requirement:

3 c 2 2πG R 2 =( ρ b + ρ d +(ξ2) ρ vac ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIZaGaam4yamaaCaaaleqabaGaaGOmaaaaaOqaaiaa ikdacqaHapaCcaWGhbGaamOuamaaCaaaleqabaGaaGOmaaaaaaGccq GH9aqpcaaMc8UaaiikaGGaciab=f8aYnaaBaaaleaacaWGIbaabeaa kiabgUcaRiab=f8aYnaaBaaaleaacaWGKbaabeaakiabgUcaRiaayk W7caaMc8Uaaiikaiabe67a4jabgkHiTiaaikdacaGGPaGaaGPaVlab =f8aYnaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaaiykaaaa@586F@

where ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGhaaa@38EF@  again is the polytrope of the relation between vacuum pressure and vacuum energy density as given in the form:

p vac = (3ξ) 3 ρ vac c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG2bGaamyyaiaadogaaeqaaOGaeyypa0Ja eyOeI0YaaSaaaeaacaGGOaGaaG4maiabgkHiTiabe67a4jaacMcaae aacaaIZaaaaGGaciab=f8aYnaaBaaaleaacaWG2bGaamyyaiaadoga aeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaaaaa@493D@

As can be recognized from the above, the requirement E+U=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaaykW7cqGHRaWkcaWGvbGaeyypa0JaaGimaaaa@3CFD@ can only be fulfilled, if all mass densities in the universe are scaling with ϱ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 cqWI8iIocaWGsbWaaWbaaSqabeaacqGHsislcaaIYaaaaaaa@46F6@ . That implies that the mass densities ρ b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadkgaaeqaaaaa@3A06@ and ρ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadkgaaeqaaaaa@3A06@ scale like ϱ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXpq8 cqWI8iIocaWGsbWaaWbaaSqabeaacqGHsislcaaIYaaaaaaa@46F6@ , different from the generally expected form ρ R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdiNaeSipIOJaamOuamaaCaaaleqabaGaeyOeI0IaaG4m aaaaaaa@3CCA@ , and clearly meaning that here a cosmic mass generation according to

ρ ˙ b,d = ρ R R ˙ =ρH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGaf8xWdiNbaiaadaWgaaWcbaGaamOyaiaacYcacaWGKbaabeaa kiabg2da9maalaaabaGae8xWdihabaGaamOuaaaaceWGsbGbaiaacq GH9aqpcqWFbpGCcaWGibaaaa@43C8@ has to happen in this universe which otherwise would remain massless forever. It is very interesting to notice that this is exactly identical to the mass generation rate which was required for bound mass systems in the universe as expression of the work of the vacuum pressure at the expansion of the universe8

This may also answer easily the question how the required mass generation can be explained; Now the cosmic vacuum energy density is not anymore taken to be constant as in the standard cosmology (e.g. see Perlmutter et al.,8 but it is reduced in an expanding universe like ρ vac R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdi3aaSbaaSqaaiaadAhacaWGHbGaam4yaaqabaGccqWI 8iIocaWGsbWaaWbaaSqabeaacqGHsislcaaIYaaaaaaa@3FC8@ , from where one can easily draw the solution ρ ˙ vac = ρ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGaf8xWdiNbaiaadaWgaaWcbaGaamODaiaadggacaWGJbaabeaa kiabg2da9iabgkHiTiqb=f8aYzaacaaaaa@3FB2@ .

This interestingly enough means, that in a "zero-energy universe" the cosmic vacuum energy has to convert into cosmic matter energy with the exciting consequence, that at very small cosmic scales, i.e. towards the begin of the universe, the energy of the universe becomes more and more vacuum energy, while the matter energy seen back towards the Big-Bang event dissolves, i.e. vanishes completely. This fits perfectly into the view developed recently by Fahr12 speculating that the Big-Bang only could happen as an explosion of the initial cosmic vacuum.

An other question, however, also not yet solved here is whether or not such a matter generation as a consequence of the decay of the cosmic vacuum energy could also then at its decay deliver the elementary abundances of the originating cosmic matter (i.e.H-, D-, He-, Li- abundances etc!).19 To decide this question one, however, first had to study the thermodynamics of the cosmic vacuum and the condensation and temperature of the generated cosmic matter as function of the scale R and the cosmic time t. We shall, however, look into this problem in a forthcoming paper.

Conclusions with a view on cosmic mass generation and negative masses:

In the article above we have argued that vacuum energy density ϱ vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaqcLbsaqaaaaaaaaaWdbiab =f=aXRWdamaaBaaaleaapeGaamODaiaadggacaWGJbaapaqabaaaaa@46DC@ , even though it is till today a mysterious and hardly handable quantity, for the case of a vacuum polytropic index ξ3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdGNaeyyzImRaaG4maaaa@3B72@ at least must be connected with a positive vacuum pressure p vac =[ ( ξ3 )/3 ] ϱ vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadAhacaWGHbGaam4yaaWdaeqaaOWd biabg2da9maadmaapaqaa8qadaqadaWdaeaapeGaeqOVdGNaeyOeI0 IaaG4maaGaayjkaiaawMcaaiaac+cacaaIZaaacaGLBbGaayzxaaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=f =aXRWdamaaBaaaleaapeGaamODaiaadggacaWGJbaapaqabaaaaa@54AA@ . Thanks to this vacuum pressure it induces at the absence of other cosmic forces a kind of a Hubble- expansion of the whole universe with a growing cosmic scale R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3AA4@ . This may demonstrate the enormous potential of the vacuum concerning an alternative determination of the whole dynamics of the universe, beginning with an explosive, initial cosmic event, however, at the absence of matter, without a mass singularity at its begin.

Our ideas here can be seen as running a little bit in parallel to the so-called "Cold Genesis Theory" (CGT) propagated by Arghirescu.15,20 In this latter theory the possibility was discussed to explain all fundamental fields and particles by a simple, composite chiral soliton model of fermions like a kind of condensation from the primordial vacuum. Hereby it is conceived that leptons and anti-leptons are generated as "gravistars" from a strong vortex of primordial dark energy. This possibility of the generation of dark particles condensating out of the primordial vacuum energy as dark chiral solitons is supported by several accompanying CGT theories.20

Perhaps it may be furthermore interesting to compare this idea with an other view, alternative to ours here and the above, namely presented by Farnes:21 It was recognized by Farnes21 that a kind of vacuum pressure of just that same form, as requested in our article here, would as well arise, if the total of cosmic masses were partly due to negative masses and partly due to positive masses m + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaaa@395A@  ( n.b.: not electrically positively and negatively charged masses, - but with negative and positive mass qualities). This would have the evident property that positive and negative mass particles would reject eachother by repulsive gravitational forces between them according to forces d p vac /dR=G* m + * m / r 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadchapaWaaSbaaSqaa8qacaWG2bGaamyyaiaadogaa8aa beaak8qacaGGVaGaamizaiaadkfacqGH9aqpcqGHsislcaWGhbGaae Okaiaad2gapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaqGQaGa amyBa8aadaWgaaWcbaWdbiabgkHiTaWdaeqaaOWdbiaac+cacaWGYb WdamaaCaaaleqabaWdbiaaikdaaaGccqGHLjYScaaIWaaaaa@4CAA@ . As Farnes21 this opens up a situation similar to the one under positive cosmic vacuum pressure as we have discussed it here in this article. In this sense a mass-less cosmology with ρ + = ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaey4kaScapaqabaGcpeGaeyypa0Ja eqyWdi3damaaBaaaleaapeGaeyOeI0capaqabaaaaa@3E4F@ ( i.e. full compensation of negative by positive cosmic masses!) would also represent at the same time a gravity-free cosmology like given in a mass less case ρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaaGimaaaa@3AAC@ , when only vacuum forces are active. In this respect Farnes21 derives an equivalence of the cosmologic constant  and the neglected negative cosmic masses given by the relation:

Λ=8πG ρ / c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdWKaeyypa0JaaGioaiabec8aWjaadEeaiiGacqWFbpGCpaWa aSbaaSqaa8qacqGHsisla8aabeaak8qacaGGVaGaam4ya8aadaahaa Wcbeqaa8qacaaIYaaaaaaa@42BD@

A similar relation is connected with Hoyle‘s "steady state universe" requiring that the expansion of the universe be connected with a well-adjusted mass generation rate ρ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGaf8xWdiNbaiaaaaa@38FC@  to guarantee that the state of the expanding universe characterized by its instantaneous mass density ρ= ρ H =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGGacabaaaaaaa aapeGae8xWdiNaeyypa0Jae8xWdi3damaaBaaaleaapeGaamisaaWd aeqaaOWdbiabg2da9iaadogacaWGVbGaamOBaiaadohacaWG0baaaa@42BB@  does not change with time. As we have shown18 in the sense of the Einstein - de Sitter universe16 this would lead to the following identity:

Λ H =[ 8πG 3 c 2 ρ H ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4MdW0damaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da9maa dmaapaqaa8qadaWcaaWdaeaapeGaaGioaiabec8aWjaadEeadaGcaa WdaeaapeGaaG4maaWcbeaaaOWdaeaapeGaam4ya8aadaahaaWcbeqa a8qacaaIYaaaaaaaiiGakiab=f8aY9aadaWgaaWcbaWdbiaadIeaa8 aabeaaaOWdbiaawUfacaGLDbaaaaa@4695@

Thus we can draw the following conclusion: On one hand it seems as if vacuum energy is definitely needed to have an initial cosmic explosive event which later leads into an expanding universe according to a Hubble expansion, on the other hand, however, this vacuum energy has to manifest a positive pressure which is shown here to do thermodynamic work at the cosmic scale expansion and thus has to unavoidably reduce its vacuum energy density. It thus seems from the above, as if there are only two options to understand the universe as we wish to understand it at these days:

Either one accepts a variable vacuum energy density decreasing at ongoing expansion of the cosmic scale R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3AA4@ . This would imply that cosmic vacuum energy density becomes less and less important in the cosmic future, and the SN1a-redshift fits presented by Perlmutter et al.,10 Schmidt et al.,11 Riess et al.,12 built on the assumption of a constant vacuum energy according to Einstein‘s , hence cannot tell us the final cosmic truth.

Or alternatively when one assumes, that cosmic vacuum energy density is a constant universal quantity, however, with a permanently vanishing pressure, - then one cannot explain the initial explosive Big-Bang event and the ongoing Hubble expansion of the universe due to an evident lack of cosmic pressure! The reader may make his own choice!

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Goenner H. Einführung in die spezielle und allgemeine Relativitätstheorie. Spektrum Akademischer Verlag, Heidelberg; 1996.
  2. Friedman A. Über die Krümmung des Raumes. Zeitschrift f Physik. 1922;10:377–386.
  3. Friedman A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung. Zeitschrift f Physik. 1924;21:326–332.
  4. Robertson HP. On the foundations of relativistic cosmology. Proc Nat Acad Sci (USA). 1929;15(11):822–829.
  5. Robertson HP. Relativistic cosmology. Rev Mod Phys. 1933;5:62–90.
  6. Einstein A. Kosmologische Betrachtungen zur Allgemeinen Relativit ätstheorie, Sitzungsberichte der K.P.Akademie der Wissenschaften. Phys Math Klasse. 1917;142–152.
  7. Fahr Hans J, Sokaliwska M. Revised concepts for cosmic vacuum energy and binding energy: Innovative Cosmology. In: Antonio Alfonso-Faus, editor. Aspects of Today‘s Cosmology. INTECH Open Access Publisher; 2011. Chapter 5, p. 95−121
  8. Fahr Hans J. Cosmic vacuum energy with thermodynamic and gravodynamic action power. Phys Astron Int J. 2022;6(2):62−66.
  9. Fahr HJ, Heyl M. The universe generated by the explosion of the primordial vacuum. Adv Theo Comp Phy. 2023;6(3):174−178.
  10. Perlmutter S, Aldering G, Goldhabe G, et al. The supernova cosmology project: Measurement of Omega and Lambda from 42 high–redshift supernovae. Astrophys J. 1999;517:565–586.
  11. Schmidt BP, Suntzeff NB, Philipps MM, et al. The high-Z- supernova search; measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys Journal. 1998;507(1):46.
  12. Riess AG, Filippenko AV, Challis P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal. 1998;116(3):1009.
  13. Tryon EP. Is the Universe a vacuum fluctuation? Nature.1973;246:396−397.
  14. Jordan P. Die Herkunft der Sterne. Wissenschaftliche Verlagsgesellschaft, M.B.H; 1949. 16 p.
  15. Arghirescu M. A quasi-unitary pre-quantum theory of particles and fields and some theoretical implications. Intern Journal of High Energy Physics. 2015;2(4-1):80−103
  16. Einstein A, De Sitter W. On the relation between the expansion and the mean density of the universe. Proc Nat Acad Sci (USA). 1932;18(3):213−214.
  17. Overduin JM, Fahr HJ. Vacuum energy and the economical universe. Found Phys Lett. 2003;16(2):119−125.
  18. Fahr HJ, Heyl M. Cosmic vacuum decay and creation of cosmic matter. Naturwissenschaften. 2007;94(9):709−724.
  19. Goenner H. Einführung in die Kosmologie. Spektrum Akademischer Verlag Heidelberg; 1994.
  20. Arghirescu M. The cold genesis of matter and fields. Science Publishing Group; 2015.
  21. Farnes JS. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified  ΛCDM– framework. Astronomy & Astrophysics. 2018;620:A92.
Creative Commons Attribution License

©2023 Hans. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.