Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 5

Stationary concentrated vortex with three velocity components above the water surface

OA Sinkevich, GO Zinchenko

National Research University Moscow Power Engineering Institute, Russia

Correspondence: OA Sinkevich, National Research University Moscow Power Engineering Institute, Moscow, 111250, Russia

Received: July 09, 2019 | Published: September 20, 2019

Citation: Sinkevich OA, Zinchenko GO. Stationary concentrated vortex with three velocity components above the water surface. Phys Astron Int J. 2019;3(8):189-192. DOI: 10.15406/paij.2019.03.00181

Download PDF

Abstract

The characteristics of stationary, concentrated vortices of a special type are studying. The new solution for the problem of a concentrated vortex with three components of the velocity vector was constructed using a cylindrical coordinate system. Vortices of this type can be initiated by intense evaporation of moisture in a limited area of the water surface.

Keywords: concentrated vortices, coriolis effect, cylindrical coordinate system, velocity vector, three components, velocity distributions, pressure distributions

Introduction

The mechanisms leading to the generation of various types of vortices are of great interest for meteorology and services that protect the population from natural disasters.1–4 At present, a large number of tornadoes are observed annually in the United States and in many other countries. A cyclone (anticyclone), which is a giant atmospheric vortex with a low (high) pressure at the center and the presence of temperature and pressure gradients, can form from a small vortex in the atmosphere above the surface of lakes, mars, and oceans. It is known that cyclone development (anticyclone) consists of three stages: the initial stage, the quasistationary stage of existence, and decay.1–4 It is at the quasistationary stage of vortexes existence various methods of investigations influence can be effective. The purpose of this work is to study in a cylindrical coordinate system the characteristics of stationary, concentrated vortices of a special type. The new solution for the problem of a concentrated vortex with three components of the velocity vector u =( u r , u φ , u z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadwhaga Wcaiabg2da9maabmaabaGaamyDamaaBaaabaqcLbmacaWGYbaajuaG beaacaGGSaGaamyDamaaBaaabaqcLbmacqaHgpGAaKqbagqaaiaacY cacaWG1bWaaSbaaeaajugWaiaadQhaaKqbagqaaaGaayjkaiaawMca aaaa@47AC@ was constructed. Vortices of this type can be initiated by intense evaporation of moisture in a limited area F=π R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcqaHapaCcaWGsbWaaWbaaSqabeaacaaIYaaaaaaa@3D79@ of the water surface.

Stationary, concentrated vortex with three velocity components that depend on the vertical and radial coordinates

For a detailed analysis of the distribution of velocities, pressures, and temperatures in a concentrated vortex of a special type for an inviscid medium with allowance for the Coriolis effect 2[ Ωk×u ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaaikdakmaadm aajuaGbaqcLbsacqqHPoWvcaWGRbGaey41aqRaamyDaaqcfaOaay5w aiaaw2faaKqzGeGaaiilaaaa@427F@  it is necessary to find a complete solution to the system of equations of continuity and motion:

u=0,    1 ρ ρ+ u 2 2 +2[ Ω k ×u ]u×Ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgw SixlaadwhacqGH9aqpcaaIWaGaaiilaabaaaaaaaaapeGaaiiOaiaa cckacaGGGcWaaSaaaeaacaaIXaaabaGaeqyWdihaaiabgEGirlabeg 8aYjabgUcaRmaalaaabaGaamyDamaaCaaaleqabaGaaGOmaaaaaOqa aiaaikdaaaGaey4kaSIaaGOmamaadmaabaGaeuyQdC1aaSbaaSqaai aadUgaaeqaaOGaey41aqRaamyDaaGaay5waiaaw2faaiabgkHiTiaa dwhacqGHxdaTcqqHPoWvcqGH9aqpcaaIWaaaaa@5CFE@   (1)

Here, is the medium speed, Ω=×u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape GaeuyQdCLaeyypa0Jaey4bIeTaey41aqRaamyDaaaa@3E99@  is the vortex.

Special cases of eddy currents in which the directions of the vorticity and velocity vectors are collinear belong to the class of Gromeka–Beltrami8–11 and NЕ Zhukovsky currents.12,13 In,8 it was shown that the velocity field can be found in a concentrated vortex when the condition.

[ ×u ]Ω=  ku,     u=0,   k=const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaGaey 4bIeTaey41aqRaamyDaaGaay5waiaaw2faaiabggMi6kabfM6axjab g2da9abaaaaaaaaapeGaaiiOaiaacckacaWGRbGaamyDaiaacYcaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiabgEGirlabgwSixlaadwha cqGH9aqpcaaIWaGaaiilaiaacckacaGGGcGaaiiOaiaadUgacqGH9a qpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaiaac6caaaa@5FD5@   (2)

Here, k is the unknown parameter in the process of problem solution

The concentrated vortex Ω  r, z =×u r,z =k . u r,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiabfM6axbbaaa aaaaaapeGaaiiOaiaacckacaWGYbGaaiilaiaacckacaWG6bGaaiiO aiabg2da9iabgEGirlabgEna0kaadwhacaGGGcGaamOCaiaacYcaca WG6bGaaiiOaiabg2da9iaadUgacaGGGcGaaiOlaiaacckacaWG1bGa aiiOaiaadkhacaGGSaGaamOEaaaa@5471@  obtained in8 contained two velocity components that depend only on the radius. Of no less interest are concentrated vortices with three velocity components that depend not only on the radius but also on the vertical coordinate

u=u  r,z =  u r ,   r,z  , u φ   r,z  , u z   r,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpcaWG1baeaaaaaaaaa8qacaGGGcGaaiiOaiaadkhacaGGSaGaamOE aiaacckacqGH9aqpcaGGGcGaamyDamaaBaaaleaacaWGYbaabeaaki aacYcacaGGGcGaaiiOaiaacckacaWGYbGaaiilaiaadQhacaGGGcGa aiiOaiaacYcacaGG1bWaaSbaaSqaaiabeA8aQbqabaGccaGGGcGaai iOaiaadkhacaGGSaGaamOEaiaacckacaGGGcGaaiilaiaadwhadaWg aaWcbaGaamOEaaqabaGccaGGGcGaaiiOaiaadkhacaGGSaGaamOEaa aa@6151@   (3)

Given the Coriolis Effect, the system of equations of motion splits into the equation

×u  r,z  2 Ω c =k . u  r,z    , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHhis0cqGHxdaTca WG1baeaaaaaaaaa8qacaGGGcGaaiiOaiaadkhacaGGSaGaamOEaiaa cckacqGHsislcaGGGcGaaGOmaiabfM6axnaaBaaaleaajugWaiaado gaaSqabaGccqGH9aqpcaWGRbGaaiiOaiaac6cacaGGGcGaamyDaiaa cckacaGGGcGaamOCaiaacYcacaWG6bGaaiiOaiaacckacaGGGcGaai iOaiaacYcaaaa@5852@

Which, unlike (2), is reduced to the system of equations for flow rates

{   u φ z =k u r, u r , z uz r =k u φ , 1 r   r u φ r = k u z  + 2 Ω k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaqaaabaaaaaaa aapeGaaiiOaiabgkHiTmaalaaabaGaeyOaIyRaamyDamaaBaaaleaa jugWaiabeA8aQbWcbeaaaOqaaiabgkGi2oaaBaaaleaajugWaiaadQ haaSqabaaaaOGaeyypa0Jaam4AaiaadwhadaWgaaWcbaqcLbmacaWG YbGaaiilaaWcbeaakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaaju gWaiaadkhaaSqabaGccaGGSaaabaGaeyOaIy7aaSbaaSqaaKqzadGa amOEaaWcbeaaaaGccqGHsisldaWcaaqaaiabgkGi2kaadwhacaWG6b aabaGaeyOaIyRaamOCaaaacqGH9aqpcaWGRbGaamyDamaaBaaaleaa jugWaiabeA8aQbWcbeaakiaacYcadaWcaaqaaiaaigdaaeaacaWGYb aaamaalaaabaGaeyOaIyRaaiiOaiaacckacaGGYbGaaiyDamaaBaaa leaajugWaiabeA8aQbWcbeaaaOqaaiabgkGi2kaadkhaaaGaeyypa0 JaaiiOaiaadUgacaWG1bWaaSbaaSqaaKqzadGaamOEaaWcbeaakiaa cckacqGHRaWkcaGGGcGaaGOmaiabfM6axnaaBaaaleaajugWaiaadU gaaSqabaGccaGGSaaapaGaay5Eaaaaaa@7C6B@   (4)

And the equation to determine the pressure distribution in a vortex is

p ρ + u 2 2 ==const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iCaaqaaiabeg8aYbaacqGHRaWkdaWcaaqaaiaadwhadaahaaWcbeqa aiaaikdaaaaakeaacaaIYaaaaiabg2da9iabg+Givlabg2da9iaado gacaWGVbGaamOBaiaadohacaWG0bGaaiOlaaaa@479B@   (4a)

In addition to this system of equations, the velocity vector must satisfy the continuity equation written in a cylindrical coordinate system:

u= 1 r r r u r + z u z =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgw SixlaadwhacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaa baGaeyOaIylabaGaeyOaIy7aaSbaaSqaaiaadkhaaeqaaaaakiaadk hacaWG1bWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSYaaSaaaeaacqGH ciITaeaacqGHciITdaWgaaWcbaGaamOEaaqabaaaaOGaamyDamaaBa aaleaacaWG6baabeaakiabg2da9iaaicdacaGGUaaaaa@5078@   (5)

Constant k in system (4) it is to be determined from the corresponding boundary conditions

The solution of system (4) must be sought with regard to the implementation of (5). The approach to this system with regard to (6) is that the continuity equation is solved identically, if we seek a solution in the form

u r = z Ψ  r,z  ,   u z = 1 r r rΨ  r,z   .  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2cqa aiabgkGi2oaaBaaaleaacaWG6baabeaaaaGccqqHOoqwqaaaaaaaaa WdbiaacckacaGGGcGaamOCaiaacYcacaWG6bGaaiiOaiaacckacaGG SaGaaiiOaiaacckacaWG1bWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0 ZdamaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaa cqGHciITdaWgaaWcbaGaamOCaaqabaaaaOGaamOCaiabfI6az9qaca GGGcGaaiiOaiaadkhacaGGSaGaamOEaiaacckacaGGGcGaaiiOaiaa c6cacaGGGcaaaa@6208@   (7)

From (7) and (4), it follows that the equation for the function Ψ   r,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbiabfI 6azjaacckacaGGGcGaaiiOaiaadkhacaGGSaGaamOEaaaa@3E80@  is

2 Ψ z 2 + r 1 r   rΨ r + k 2 Ψ=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaeuiQdKfabaGaeyOaIyRaamOE amaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabgkGi2c qaaiabgkGi2kaadkhaaaWaaSaaaeaacaaIXaaabaGaamOCaaaadaWc aaqaaiabgkGi2cbaaaaaaaaapeGaaiiOaiaacckacaWGYbGaeuiQdK fapaqaaiabgkGi2kaadkhaaaGaey4kaSIaam4AamaaCaaaleqabaGa aGOmaaaakiabfI6azjabg2da9iaaicdacaGGUaaaaa@5588@   (8)

The solution of this elliptic equation can be found by the method of variable separation: Substituting the proposed form of the solution into the original equation (7), we get

{ S"+ 1 r S'+S   k 2   λ 2   1 r 2 =0             Z"= λ 2 Z. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaaeaqabe aacaWGtbGaaiOiaiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaGa am4uaiaacEcacqGHRaWkcaWGtbaeaaaaaaaaa8qacaGGGcGaaiiOai aadUgadaahaaWcbeqaaiaaikdaaaGccaGGGcGaeyOeI0Iaeq4UdW2a aWbaaSqabeaacaaIYaaaaOGaaiiOaiabgkHiTmaalaaabaGaaGymaa qaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaaGimaaqa aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaadQfacaGGIaGaeyypa0JaeyOe I0Iaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaamOwaiaac6caaaWdai aawUhaaaaa@65A3@   (8)

In equations (8) arbitrary constants λk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaam4Aaaaa@3AEF@ are determined from the boundary conditions of the problem. Further solution of the problem, which makes it possible to find the velocity distribution along the vortex radius and height, depends on the choice of specific boundary conditions.

Vortex with Radius R with a Stream Flowing into the Thickness Layer H.

The general solution of the second equation (8) is

Z( z )= C 1  exp( iλz )+ C 2  exp( iλz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaqada qaaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaSbaaSqaaiaa igdaaeqaaOaeaaaaaaaaa8qacaGGGcWdaiGacwgacaGG4bGaaiiCam aabmaabaGaeyOeI0IaamyAaiabeU7aSjaadQhaaiaawIcacaGLPaaa cqGHRaWkcaWGdbWaaSbaaSqaaiaaikdaaeqaaOWdbiaacckapaGaci yzaiaacIhacaGGWbWaaeWaaeaacaWGPbGaeq4UdWMaamOEaaGaayjk aiaawMcaaaaa@547A@   (9)

Constant λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@39DF@ is found from boundary conditions that assume that the flow velocity is at a height H equal to zero:

Z( z=0 )=C0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadQfakmaabm aabaqcLbsacaWG6bGaeyypa0JaaGimaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaWGdbGaeyiyIKRaaGimaiaacYcaaaa@42A6@   (10)

Z( z=H )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaadQfakmaabm aabaqcLbsacaWG6bGaeyypa0JaamisaaGccaGLOaGaayzkaaqcLbsa cqGH9aqpcaaIWaGaaiOlaaaa@402C@   (11)

Given the first boundary condition (10), the solution for the function Z(z) has the form

Z( z )=C cos( λz ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQfadaqada qaaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWGdbaeaaaaaaaaa8qa caGGGcGaci4yaiaac+gacaGGZbWaaeWaaeaacqaH7oaBcaWG6baaca GLOaGaayzkaaGaaiOlaaaa@4665@   (12)

Using the second boundary condition (11), we find

λ n = π/2+πn H ,  n=0,1.... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacqaH apaCcaGGVaGaaGOmaiabgUcaRiabec8aWjaad6gaaeaacaWGibaaai aacYcacaGGGcGaaiiOaiaad6gacqGH9aqpcaaIWaGaaiilaiaaigda caGGUaGaaiOlaiaac6cacaGGUaGaeyOhIukaaa@4F18@   (13)

The first equation in (8) is a first-order Bessel differential equation; replacing the first equation in (26) is a first-order Bessel differential equation; replacing, we rewrite it as, we rewrite it as

1 r r [ r S r ]+S( K 2 1 r 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIXaaabaGaamOCaaaapaWaaSaaaeaacqGHciITaeaa cqGHciITcaWGYbaaamaadmaabaGaamOCamaalaaabaGaeyOaIyRaam 4uaaqaaiabgkGi2kaadkhaaaaacaGLBbGaayzxaaGaey4kaSIaam4u amaabmaabaGaam4samaaCaaaleqabaGaaGOmaaaakiabgkHiTmaala aabaGaaGymaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaGccaGL OaGaayzkaaGaeyypa0JaaGimaaaa@4FEB@   (14)

To solve (14), we use the boundary conditions for the function S(r)

S( r 0 )=0,   d dr S| r=0 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadkhadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacqGH 9aqpcaaIWaGaaiilaabaaaaaaaaapeGaaiiOaiaacckadaWcaaqaai aadsgaaeaacaWGKbGaamOCaaaacaWGtbWaaqqaaeaadaWgaaWcbaGa amOCaiabg2da9iaaicdaaeqaaaGccaGLhWoacqGH9aqpcaaIWaGaai ilaaaa@4BED@   (15)

Taking into account (14), solution of the equation (14) can be written as an infinite sum of first-order Bessel functions

S( r 0 )= j=1 C j J 1 ( μ j ( 1 ) r r 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadkhadaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacqGH 9aqpdaaeWbqaaiaadoeadaWgaaWcbaGaamOAaaqabaGccaWGkbWaaS baaSqaaiaaigdaaeqaaaqaaiaadQgacqGH9aqpcaaIXaaabaGaeyOh IukaniabggHiLdGcdaqadaqaaiabeY7aTnaaDaaaleaacaWGQbaaba WaaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaOWaaSaaaeaacaWGYbaa baGaamOCamaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaaca GGUaaaaa@51C7@   (16)

Where μ j 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaWGQbaabaGaaGymaaaaaaa@3BB8@  are the zeros of the first-order Bessel function J 1 ( K r 0 )= J 1 ( μ j ( 1 ) )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsamaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4saiaadkha daWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacqGH9aqpcaWGkb WaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaapaGaeqiVd02aa0baaSqa aiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaaak8qaca GLOaGaayzkaaGaeyypa0JaaGimaaaa@4999@

Substituting the solutions found for (12) and (16) into (8), for the azimuthal velocity component, we obtain (17)

uφ( r,z )= n=0 j=1 C jn J 1 ( μ j ( 1 ) r R ) cos( λ n z ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiabeA8aQnaabmaabaGaamOCaiaacYcacaWG6baacaGLOaGa ayzkaaGaeyypa0ZaaabCaeaapaWaaabCaeaacaWGdbWaaSbaaSqaai aadQgacaWGUbaabeaakiaadQeadaWgaaWcbaGaaGymaaqabaaabaGa amOAaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoakmaabmaaba GaeqiVd02aa0baaSqaaiaadQgaaeaadaqadaqaaiaaigdaaiaawIca caGLPaaaaaGcdaWcaaqaaiaadkhaaeaacaWGsbaaaaGaayjkaiaawM caaaWcpeqaaiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHi LdGcciGGJbGaai4BaiaacohadaqadaqaaiabeU7aSnaaBaaaleaaca WGUbaabeaakiaadQhaaiaawIcacaGLPaaacaGGUaaaaa@632F@   (17)

Knowing the values μ j 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaDa aaleaacaWGQbaabaGaaGymaaaaaaa@3BB8@ and λ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaaa@3B1E@ , we find k jn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOAaiaad6gaaeqaaaaa@3B29@

k in = ( μ j ( 1 ) R ) 2 + ( π/2+πn H ) 2 ,  j=1,2,...,  n=0,1,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AamaaBaaaleaacaWGPbGaamOBaaqabaGccqGH9aqpdaGcaaqa amaabmaabaWaaSaaaeaapaGaeqiVd02aa0baaSqaaiaadQgaaeaada qadaqaaiaaigdaaiaawIcacaGLPaaaaaaak8qabaGaamOuaaaaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaam aalaaabaGaeqiWdaNaai4laiaaikdacqGHRaWkcqaHapaCcaWGUbaa baGaamisaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGcca GGSaGaaiiOaiaacckacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGa aiilaiaac6cacaGGUaGaaiOlaiabg6HiLkaacYcacaGGGcGaaiiOai aad6gacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaiOlaiaac6ca cqGHEisPcaGGUaaaleqaaaaa@66A6@

The radial velocity is obtained from the first equation of system (4).

u r ( r,z )= n=0 j=1 C jn λ n k jn J 1 ( μ j ( 1 ) r R ) sin( λ n z ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaaBaaaleaacaWGYbaabeaakmaabmaabaGaamOCaiaacYca caWG6baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaapaWaaabCaeaaca WGdbWaaSbaaSqaaiaadQgacaWGUbaabeaakmaalaaabaWdbiabeU7a SnaaBaaaleaacaWGUbaabeaaaOWdaeaacaWGRbWaaSbaaSqaaiaadQ gacaWGUbaabeaaaaGccaWGkbWaaSbaaSqaaiaaigdaaeqaaaqaaiaa dQgacqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdGcdaqadaqaai abeY7aTnaaDaaaleaacaWGQbaabaWaaeWaaeaacaaIXaaacaGLOaGa ayzkaaaaaOWaaSaaaeaacaWGYbaabaGaamOuaaaaaiaawIcacaGLPa aaaSWdbeaacaWGUbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5 aOGaci4CaiaacMgacaGGUbWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccaWG6baacaGLOaGaayzkaaGaaiOlaaaa@68B8@   (18)

Using from the third equation of system (4), the ratio

   r u φ r = n=0 j=1 C jn μ j 1 r R J 0   μ j 1 r R   cos   λ n z   , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacqGHciITcaGGGcGaaiiOaiaacckacaWGYbGaamyDamaa BaaaleaacqaHgpGAaeqaaaGcbaGaeyOaIyRaamOCaaaacqGH9aqpda aeWbqaa8aadaaeWbqaaiaadoeadaWgaaWcbaGaamOAaiaad6gaaeqa aOGaeqiVd02aa0baaSqaaiaadQgaaeaacaaIXaaaaOWaaSaaaeaaca WGYbaabaGaamOuaaaacaWGkbWaaSbaaSqaaiaaicdaaeqaaOWdbiaa cckapaGaeqiVd02aa0baaSqaaiaadQgaaeaacaaIXaaaaOWaaSaaae aacaWGYbaabaGaamOuaaaapeGaaiiOaiaacckacaGGJbGaai4Baiaa cohacaGGGcGaaiiOaiabeU7aSnaaBaaaleaacaWGUbaabeaakiaadQ haaSWdaeaacaWGQbGaeyypa0JaaGymaaqaaiabg6HiLcqdcqGHris5 aaWcpeqaaiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLd GccaGGGcGaaiiOaiaacYcaaaa@7086@

we find the vertical component of the flow velocity in the vortex

u z ( r,z )= n=0 j=1 C jn μ j ( 1 ) k jn R J 0 ( μ j ( 1 ) r R ) cos( λ n z ) 2 Ω k k jn . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDamaaBaaaleaacaWG6baabeaakmaabmaabaGaamOCaiaacYca caWG6baacaGLOaGaayzkaaGaeyypa0ZaaabCaeaapaWaaabCaeaaca WGdbWaaSbaaSqaaiaadQgacaWGUbaabeaakmaalaaabaGaeqiVd02a a0baaSqaaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPaaaaa aakeaacaWGRbWaaSbaaSqaaiaadQgacaWGUbaabeaakiaadkfaaaGa amOsamaaBaaaleaacaaIWaaabeaaaeaacaWGQbGaeyypa0JaaGymaa qaaiabg6HiLcqdcqGHris5aOWaaeWaaeaacqaH8oqBdaqhaaWcbaGa amOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakmaalaaaba GaamOCaaqaaiaadkfaaaaacaGLOaGaayzkaaaal8qabaGaamOBaiab g2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiGacogacaGGVbGaai 4CamaabmaabaGaeq4UdW2aaSbaaSqaaiaad6gaaeqaaOGaamOEaaGa ayjkaiaawMcaaiabgkHiTmaalaaabaGaaGOmaiabfM6axnaaBaaale aacaWGRbaabeaaaOqaaiaadUgadaWgaaWcbaGaamOAaiaad6gaaeqa aaaakiaac6caaaa@732A@   (19)

Vortices of this type can be initiated by intense evaporation of moisture in a limited area F of the water surface. So to find constants in the (19), we use equation

2π 0 R ρ w u z ( r,z=0 )rdr=2π 0 R ρ w { n=0 j=1 C jn μ j ( 1 ) k jn R J 0 ( μ j ( 1 ) r R ) 2 Ω k k jn ]rdr=G=const   . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabec8aWnaapehabaGaeqyWdi3aaSbaaSqaaiaadEhaaeqa aOGaamyDamaaBaaaleaacaWG6baabeaaaeaacaaIWaaabaGaamOuaa qdcqGHRiI8aOWaaeWaaeaacaWGYbGaaiilaiaadQhacqGH9aqpcaaI WaaacaGLOaGaayzkaaGaamOCaiaadsgacaWGYbGaeyypa0JaaGOmai abec8aWnaapehabaGaeqyWdi3aaSbaaSqaaiaadEhaaeqaaaqaaiaa icdaaeaacaWGsbaaniabgUIiYdGccaGG7bWaaabCaeaapaWaaabCae aacaWGdbWaaSbaaSqaaiaadQgacaWGUbaabeaakmaalaaabaGaeqiV d02aa0baaSqaaiaadQgaaeaadaqadaqaaiaaigdaaiaawIcacaGLPa aaaaaakeaacaWGRbWaaSbaaSqaaiaadQgacaWGUbaabeaakiaadkfa aaGaamOsamaaBaaaleaacaaIWaaabeaaaeaacaWGQbGaeyypa0JaaG ymaaqaaiabg6HiLcqdcqGHris5aOWaaeWaaeaacqaH8oqBdaqhaaWc baGaamOAaaqaamaabmaabaGaaGymaaGaayjkaiaawMcaaaaakmaala aabaGaamOCaaqaaiaadkfaaaaacaGLOaGaayzkaaaal8qabaGaamOB aiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabgkHiTmaala aabaGaaGOmaiabfM6axnaaBaaaleaacaWGRbaabeaaaOqaaiaadUga daWgaaWcbaGaamOAaiaad6gaaeqaaaaakiaac2facaWGYbGaamizai aadkhacqGH9aqpcaWGhbGaeyypa0Jaam4yaiaad+gacaWGUbGaam4C aiaadshacaGGGcGaaiiOaiaacckacaGGUaaaaa@91F8@   (20)

Here ρ w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadEhaaeqaaaaa@3B33@  is the density of moist air; G is the moisture evaporation rate.

To find the pressure distribution in the vortex, we use equation (4a), which implies p( r,z )=ρ u 2 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaabaGaamOCaiaacYcacaWG6baacaGLOaGaayzkaaGa eyypa0Jaey4dIuTaeyOeI0IaeqyWdi3aaSaaaeaacaWG1bWaaWbaaS qabeaacaaIYaaaaaGcbaGaaGimaaaacaGGUaaaaa@461D@ and using the condition

r=R,  p( r,z )= p 0 ( z ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiOCaiabg2da9iaadkfacaGGSaGaaiiOaiaacckacaWGWbWaaeWa aeaacaWGYbGaaiilaiaadQhaaiaawIcacaGLPaaacqGH9aqpcaWGWb WaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWG6baacaGLOaGaayzk aaGaaiilaaaa@495D@   (21)

Here p 0 ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaaIWaaabeaakmaabmaabaGaamOEaaGaayjk aiaawMcaaaaa@3CB8@  is the atmospheric pressure varying with altitude/ To plot the graphs, we conduct the dimensioning:

u ˜ = uk Ω k = Ω ˜ = Ω Ω k ,   ξ= r R ,     p ˜ = p p 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaaiaGaeyypa0ZaaSaaaeaacaWG1bGaam4AaaqaaiabfM6a xnaaBaaaleaacaWGRbaabeaaaaGccqGH9aqpcuqHPoWvgaacaiabg2 da9maalaaabaGaeuyQdCfabaGaeuyQdC1aaSbaaSqaaiaadUgaaeqa aaaakiaacYcacaGGGcGaaiiOaiaacckacqaH+oaEcqGH9aqpdaWcaa qaaiaadkhaaeaacaWGsbaaaiaacYcacaGGGcGaaiiOaiaacckacaGG GcGabmiCayaaiaGaeyypa0ZaaSaaaeaacaWGWbaabaGaamiCamaaBa aaleaacaaIWaaabeaaaaGccaGGUaaaaa@5AAC@   (22)

Figure 1 shows the distribution of dimensionless velocities, vorticities along the vortex radius at H=1000    M . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisaiabg2da9iaaigdacaaIWaGaaGimaiaaicdacaGGGcGaaiiO amaaBaaaleaacaqGnbaabeaakiaac6caaaa@4107@  Figure 2 presents distribution of dimensionless pressure at altitudes z=0.1  ( 1 ),0,5  ( 2 ),1  ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiOEaiabg2da9iaaicdacaGGUaGaaGymaiaacckacaGGGcWaaeWa aeaacaaIXaaacaGLOaGaayzkaaGaaiilaiaaicdacaGGSaGaaGynai aacckacaGGGcWaaeWaaeaacaaIYaaacaGLOaGaayzkaaGaaiilaiaa igdacaGGGcGaaiiOamaabmaabaGaaG4maaGaayjkaiaawMcaaaaa@4E61@ .

Figure 1 Distributions of the radial (1), angular (2) and vertical (3) components of velocity and vorticity at z =H/2 =const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaabQhacaqGGa GaaeypaiaabIeacaqGVaGaaeOmaiaabccacaqG9aGaam4yaiaad+ga caWGUbGaam4CaiaadshacaGGUaaaaa@42B5@

Figure 2 Distribution of dimensionless pressure at altitudes z = 0.1 (1), 0.5 (2), 1 (3) for a vortex with three velocity components and for a vortex with two velocity components (4).

Some applications obtained solutions can be found in the works.14–16 We note again that the vortex intensity is directly proportional to the moisture evaporation rate. The solution obtained above can be used to create a series of vortices located in fixed areas, F j =π R j 2 ,   j=1,2,....,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaaBaaaleaacaWGQbaabeaakiabg2da9iabec8aWjaadkfa daqhaaWcbaGaamOAaaqaaiaaikdaaaGccaGGSaGaaiiOaiaacckaca GGGcGaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaGGUaGa aiOlaiaac6cacaGGUaGaaiilaiaad6gaaaa@4D0A@  of the horizontal surface of the water.

Conclusion

The new solution for the problem of a vortex with three components of the velocity vector u =( u r , u φ , u z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmyDayaalaGaeyypa0ZaaeWaaeaacaWG1bWaaSbaaSqaaiaadkha aeqaaOGaaiilaiaadwhadaWgaaWcbaGaeqOXdOgabeaakiaacYcaca WG1bWaaSbaaSqaaiaadQhaaeqaaaGccaGLOaGaayzkaaaaaa@4489@  that is concentrated a limited area F j =π R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaaBaaaleaacaWGQbaabeaakiabg2da9iabec8aWjaadkfa daahaaWcbeqaaiaaikdaaaaaaa@3EBE@  was constructed using a cylindrical coordinate system. Vortices of this type can be initiated by intense evaporation of moisture in a limited area F of the water surface.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Nalivkin DV. Uragany burii smerchi. Geograficheskie osobennosti i geologicheskaya deyatel’nost’ (Hurricanes, Storms, and Tornadoes: Geographical Features and Geological Activity). Leningrad: Nauka, 1969. p. 1–594.
  2. Church C, Burgess D, Doswell C, et al. The Tornado: Its Structure, Dynamics, Prediction and Hazards. Geophysical Monograph Series Am Geophys. 1993;79:637.
  3. Levens PJ, Labrosse N, Fletcher L, et al. Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes. Astron Astrophys. 2015;582:A27.
  4. Doswell CA. Progress toward developing a practical societal response to severe convection (2005 EGU Sergei Soloviev Medal Lecture). Nat Hazards Earth Syst Sci. 2005;5:691–702.
  5. Chefranov SG. Helicity generation in uniform helical flows. J Exp Theor Phys. 2004;99(5):987–997.
  6. Gromeka IS. Sobranie sochinenii (Collected Works). Moscow: Akad. Nauk SSSR. 1952.
  7. Sullivan RD. The Viscous Flow Near a Stagnation Point When the External Flow Has Uniform Vorticity. J Aerosp Sci. 1959;26:767.
  8. Hide R. Helicity, superhelicity and weighted relative potential vorticity: Useful diagnostic pseudoscalars?. QJR Meteorol Soc. 2002;128:1759–1762.
  9. Zhukovskii NE. O prisoedinennykh vikhryakh. Sobranie sochinenii (On the Attached Vortices: Collected Works). Moscow, 1949. p. 4.
  10. Kochin NE, Kibel IA, Roze NV. Teoreticheskaya gidromekhanika (Theoretical Fluid Mechanics). In: Kibel IA editor. Moscow: Fizmatlit, 1963.
  11. Sinkevich OA, Zinchenko GO. Complex Systems of Charged Particles and their Interaction with Electromagnetic Radiation. In Proc. 16th Int. Workshop, Moscow. 2018. p. 55.
  12. Sinkevich OA. On the instability of the electrically charged interface between a two-phase thundercloud and turbulent atmosphere. High Temp. 2016;54(6):775–781.
  13. Sinkevich OA. Exam Mar Biol Oceanogr. 2018;2(2).
Creative Commons Attribution License

©2019 Sinkevich, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.