Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 4

Some new relativistic charged models with anisotropic pressure

Manuel Malaver,1 Rajan Iyer2

1Maritime University of the Caribbean, Department of Basic Sciences,Venezuela
2Environmental Materials Theoretical Physicist, Department of Physical Mathematics Sciences Engineering Project Technologies, Engineering International Operational Teknet Earth Global, United States of America

Correspondence: Manuel Malaver, 1Maritime University of the Caribbean, Department of Basic Sciences, Catia la Mar, Venezuela

Received: October 26, 2023 | Published: November 10, 2023

Citation: Malaver M, Iyer R. Some new relativistic charged models with anisotropic pressure. Phys Astron Int J. 2023;7(1):240-249. DOI: 10.15406/paij.2023.07.00315

Download PDF

Abstract

In this paper, we found new classes of solutions to the Einstein-Maxwell field equations with matter anisotropic distribution incorporating a particular form of electric field intensity within the framework of general relativity. We use a metric potential or ansatz that depends on an adjustable parametern  in order to get the new solutions. We generated new models of compact stars with n=1 and n=2. Graphical analysis allows us to conclude that the new models satisfy all the physical characteristics for astrophysical objects and can be very useful in the study and description of compact structures. We obtained models consistent with the pulsars PSR J1311-3430 and PSR J0952–0607.

Keywords: matter anisotropic distribution, general relativity, metric potential, compact stars, adjustable parameter

Introduction

Research on compact objects and strange stars within the framework of the general theory of relativity is a central issue of great importance in theoretical astrophysics in the last decades.1,2 The obtained models in general relativity have been used to describe fluid spheres with strong gravitational fields as is the case in strange stars and neutron stars. The physics of ultrahigh densities is not well understood and many of the strange stars studies have been performed within the framework of the MIT bag model where the matter equation of state has the following linear form   P= 1 3 (ρ4B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaGaaiikaiab eg8aYjabgkHiTiaaisdacaWGcbGaaiykaaaa@401A@ . In this equation ρ is the energy density, P is the isotropic pressure and B is the bag constant. The first detailed models of strange stars based on a strange quark matter equation of state were modeled by Haensel et al.3 who considered specific features of accretion on strange stars. Also Alcock et al.4 analyzed strange stars with the normal crust and proposed scenarios for the formation of these compact objects.

Researches as Komathiraj and Maharaj,5 Thirukkanesh and Maharaj,6 Sharma et al.,7 Maharaj et al.,8 Thirukkanesh and Ragel,9,10 Feroze and Siddiqui,11,12 Sunzu et al.,13 Pant et al.14 and Malaver,15−19 Sunzu and Danford,20 Komathiraj and Maharaj21  have used numerous mathematical strategies to try to obtain exact solutions which indicates that the Einstein-Maxwell field equations  is of great importance to describe compact objects.

The presence of an electric field within a fluid sphere has been a subject of great interest because it has allowed studying the effect of electromagnetic fields on astrophysical stellar objects. According Bhar and Murad22 the existence of charge affects the values of redshifts, luminosities and mass for stars. Gupta and Maurya23 have developed some stellar models with a well-defined electric field and Pant et al.14 studied various solutions for charged matter with finite pressure.

In order to propose physical models of interest that behave well it is important to consider an adequate equation of state. Many researchers have developed exact analytical models of strange stars within the framework of linear equation of state based on MIT bag model together with a particular choice of metric potentials or mass function.24−34 Mafa Takisa and Maharaj35 obtained new exact solutions to the Einstein-Maxwell system of equations with a polytropic equation of state.  Thirukkanesh and Ragel36 have obtained particular models of anisotropic fluids with polytropic equation of state which are consistent with the reported experimental observations. Feroze and Siddiqui11 and Malaver15 consider a quadratic equation of state for the matter distribution and specify particular forms for the gravitational potential and electric field intensity. Bhar and Murad22 obtained new relativistic stellar models with a particular type of metric function and a generalized Chaplygin equation of state. Tello-Ortiz et al.37 also found an anisotropic fluid sphere solution of the Einstein-Maxwell field equations with a modified version of the Chaplygin equation. More recently Malaver and Iyer38 generated new models of compact stars considering the new version of Chaplygin equation of state proposed for Errehymy and Daoud.39

In recent decades, the theoretical research40−50 in realistic stellar models show that the nuclear matter may be locally anisotropic in certain very high density ranges ( ρ> 10 15 gc m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaaeaacqaHbpGCcqGH+aGpcaaIXaGaaGimamaaCaaaleqabaGa aGymaiaaiwdaaaGccaaMc8ocbaqcLbsacaWFNbGaa83yaiaa=1gakm aaCaaaleqabaGaeyOeI0IaaG4maaaaaOGaayjkaiaawMcaaaaa@456B@ , where the relativistic treatment of nuclear interactions in the stellar matter becomes important. From the pioneering work of Bowers and Liang40 that generalized the equation of hydrostatic equilibrium for the case local anisotropy, there has been an extensive literature devoted to study the effect of local anisotropy on the bulk properties of spherically symmetric static general relativistic compact objects.51−54 Therefore, it is always interesting to explore the consequences produced by the appearance of local anisotropy under variety of circumstances.

Presently there are efforts underway to understand the underlying quantum aspects with astrophysical charged Stellar models.55−60

Shape of the metric potential depends on energy matter quantum wavefunction that can affect local anisotropy with interior criteria to be satisfied by the interior solution as to present a realistic stellar model, especially strange quark stars as well have been key in Quantum Astrophysical projects ongoing, including discontinuum physics.58−64 There is also study of the quantum particle group theory with authors advancing that will help to classify general field-particle metrics that will match interior spacetime to the exterior spacetime linking also Standard Model and String Theories with Hubble and James Webb Telescope observations of the earlier genesis of galactical stars.59−61,65,66

The principal motivation of this work is to develop some new analytical relativistic stellar models by obtaining of solutions of Einstein-Maxwell field equations with a linear equation of state with a particular shape of metric potential Z(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwaiaacIcacaWG4bGaaiykaaaa@3A61@ dependent on an adjustable parameter n. The solutions obtained by satisfying applicable physical boundary conditions provide a mathematically simple family of electrically charged strange stars. The paper is structured as follows: the next section, Sect.2, are presented the interior solutions of Einstein-Maxwell field equations of anisotropic fluid. In Sect. 3, we present the elementary criteria to be satisfied by the interior solution as to present a realistic stellar model. In Sect. 4, physical acceptability conditions are discussed. The interior spacetime will be matched to the exterior spacetime described by the unique Reissner-Nordstrom metric, physically realistic fluid models will be constructed and analysis will be made on the obtained models in Sect. 5. Finally, Sect. 6 discusses and concludes the work.

The einstein-maxwell field equations

In this research the interior metric in Schwarzschild coordinates x μ =( t,r,θ,φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaaCaaaleqabaGaeqiVd0gaaOGaeyypa0ZaaeWaaeaacaWG 0bGaaiilaiaaykW7caWGYbGaaiilaiaaykW7cqaH4oqCcaGGSaGaaG PaVlabeA8aQbGaayjkaiaawMcaaaaa@48B9@ 68,69 is given in the following form:

d s 2 = e 2v(r) d t 2 + e 2λ( r ) d r 2 + r 2 (d θ 2 + sin 2 θd φ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadohadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcqGHsisl caWGLbWaaWbaaSqabeaacaaIYaGaamODaiaacIcacaWGYbGaaiykaa aakiaaykW7caWGKbGaamiDamaaCaaaleqabaGaaGOmaaaakiaaykW7 cqGHRaWkcaWGLbWaaWbaaSqabeaacaaIYaGaeq4UdW2aaeWaaeaaca WGYbaacaGLOaGaayzkaaaaaOGaaGPaVlaadsgacaWGYbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaamOCamaaCaaaleqabaGaaGOmaaaaki aaykW7caGGOaGaamizaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaykW7ciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaa GccaaMc8UaeqiUdeNaamizaiabeA8aQnaaCaaaleqabaGaaGOmaaaa kiaacMcaaaa@68AB@   (1)

Let us further assume that the matter distribution inside the compact star is locally anisotropic whose energy momentum tensor T ν μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqaaiaadsfada qhaaWcbaGaeqyVd4gabaGaeqiVd0gaaaaaaa@3C7F@ is given by the following:

T v μ =[ ρ+ E 2 8π 0 0 0 0 p r + E 2 8π 0 0 0 0 p t E 2 8π 0 0 0 0 p + t E 2 8π ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaDaaaleaacaWG2baabaGaeqiVd0gaaOGaeyypa0JaaGPa VpaadmaabaGaaGPaVxaabeqaeqaaaaaabaGaeqyWdiNaey4kaSYaaS aaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGioaiabec8a WbaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaey OeI0IaamiCamaaBaaaleaacaWGYbaabeaakiabgUcaRmaalaaabaGa amyramaaCaaaleqabaGaaGOmaaaaaOqaaiaaiIdacqaHapaCaaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiaa dchadaWgbaWcbaGaamiDaaqabaGccqGHsisldaWcaaqaaiaadweada ahaaWcbeqaaiaaikdaaaaakeaacaaI4aGaeqiWdahaaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislcaWGWbWaaS raaSqaaiaadshaaeqaaOGaey4kaSYaaSaaaeaacaWGfbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGioaiabec8aWbaaaaaacaGLBbGaayzxaa aaaa@6989@   (2)

where  is the energy density, p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaaaaa@3944@ is the radial pressure, E is electric field intensity, p t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBeaaleaacaWG0baabeaaaaa@3947@  is the tangential pressure of the fluid distribution.22

For the metric (1), the Einstein-Maxwell field equations may be expressed as the following system of differential equations [6] :

1 r 2 ( 1 e 2λ )+ 2λ' 8π e 2λ =ρ+ 1 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIXaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGc daqadaqaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislca aIYaGaeq4UdWgaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaaI YaGaeq4UdWMaai4jaaqaaiaaiIdacqaHapaCaaGaamyzamaaCaaale qabaGaeyOeI0IaaGOmaiabeU7aSbaakiabg2da9iabeg8aYjabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaGaamyramaaCaaaleqabaGaaG Omaaaaaaa@537C@   (3)

1 r 2 ( 1 e 2λ )+ 2v' 8π e 2λ = p r 1 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIXaaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGc daqadaqaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacqGHsislca aIYaGaeq4UdWgaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaacaaI YaGaamODaiaacEcaaeaacaaI4aGaeqiWdahaaiaadwgadaahaaWcbe qaaiabgkHiTiaaikdacqaH7oaBaaGccqGH9aqpcaWGWbWaaSbaaSqa aiaadkhaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaca WGfbWaaWbaaSqabeaacaaIYaaaaaaa@5330@   (4)

e 2λ ( v"+v ' 2 + v' r v'λ' λ' r )=p + t 1 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiabeU7aSbaakmaabmaa baGaamODaiaackcacqGHRaWkcaWG2bGaai4jamaaCaaaleqabaGaaG OmaaaakiabgUcaRmaalaaabaGaamODaiaacEcaaeaacaWGYbaaaiab gkHiTiaadAhacaGGNaGaeq4UdWMaai4jaiabgkHiTmaalaaabaGaeq 4UdWMaai4jaaqaaiaadkhaaaaacaGLOaGaayzkaaGaeyypa0JaamiC amaaBeaaleaacaWG0baabeaakiabgUcaRmaalaaabaGaaGymaaqaai aaikdaaaGaamyramaaCaaaleqabaGaaGOmaaaaaaa@566A@   (5)

σ= 1 r 2 e λ ( r 2 E ) ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4WdmNaeyypa0ZaaSaaaeaacaaIXaaabaGaamOCamaaCaaaleqa baGaaGOmaaaaaaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH7oaBaa GcdaqadaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGfbaacaGL OaGaayzkaaWaaWbaaSqabeaacaGGNaaaaaaa@4581@   (6)

where prime (') denotes the derivate with respect to r and again ρ, p r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakiaacYcaaaa@39FE@ p , t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBeaaleaacaWG0baabeaakiaacYcaaaa@3A01@ E, σ denote the energy density, radial pressure, tangential pressure, electric field intensity and charge density of the fluid distribution respectively.

From Eqs. (4) and (5), we can obtain

p t p r = e 2λ ( v"+v ' 2 + v' r v'λ' λ' r )+ 1 r 2 ( 1 e 2λ ) 2v' r e 2λ E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBeaaleaacaWG0baabeaakiabgkHiTiaadchadaWgaaWc baGaamOCaaqabaGccqGH9aqpcaWGLbWaaWbaaSqabeaacqGHsislca aIYaGaeq4UdWgaaOWaaeWaaeaacaWG2bGaaiOiaiabgUcaRiaadAha caGGNaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWG2b Gaai4jaaqaaiaadkhaaaGaeyOeI0IaamODaiaacEcacqaH7oaBcaGG NaGaeyOeI0YaaSaaaeaacqaH7oaBcaGGNaaabaGaamOCaaaaaiaawI cacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbWaaWbaaSqa beaacaaIYaaaaaaakmaabmaabaGaaGymaiabgkHiTiaadwgadaahaa WcbeqaaiabgkHiTiaaikdacqaH7oaBaaaakiaawIcacaGLPaaacqGH sisldaWcaaqaaiaaikdacaWG2bGaai4jaaqaaiaadkhaaaGaamyzam aaCaaaleqabaGaeyOeI0IaaGOmaiabeU7aSbaakiabgkHiTiaadwea daahaaWcbeqaaiaaikdaaaaaaa@6C17@   (7)

Using the transformations, x=C r 2 ,Z(x)= e 2λ (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaadoeacaWGYbWaaWbaaSqabeaacaaIYaaaaOGa aiilaiaaykW7caWGAbGaaiikaiaadIhacaGGPaGaeyypa0Jaamyzam aaCaaaleqabaGaeyOeI0IaaGOmaiabeU7aSbaakmaaCaaaleqabaGa aiikaiaadkhacaGGPaaaaaaa@4952@  and A 2 y 2 (x)= e 2v (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqamaaCaaaleqabaGaaGOmaaaakiaaykW7caWG5bWaaWbaaSqa beaacaaIYaaaaOGaaGPaVlaacIcacaWG4bGaaiykaiabg2da9iaadw gadaahaaWcbeqaaiaaikdacaWG2baaaOWaaWbaaSqabeaacaGGOaGa amOCaiaacMcaaaaaaa@469D@ suggested by Durgapal and Bannerji,70 Eqs. (2)-(6) take the following forms:

1Z x 2 Z ˙ = ρ C + E 2 2C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIXaGaeyOeI0IaamOwaaqaaiaadIhaaaGaeyOeI0Ia aGOmaiqadQfagaGaaiabg2da9maalaaabaGaeqyWdihabaGaam4qaa aacqGHRaWkdaWcaaqaaiaadweadaahaaWcbeqaaiaaikdaaaaakeaa caaIYaGaam4qaaaaaaa@4522@   (8)

4Z y ˙ y 1Z x = p r C E 2 2C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiaadQfadaWcaaqaaiqadMhagaGaaaqaaiaadMhaaaGaeyOe I0YaaSaaaeaacaaIXaGaeyOeI0IaamOwaaqaaiaadIhaaaGaeyypa0 ZaaSaaaeaacaWGWbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaam4qaaaa cqGHsisldaWcaaqaaiaadweadaahaaWcbeqaaiaaikdaaaaakeaaca aIYaGaam4qaaaaaaa@479D@   (9)

4xZ y ¨ y +( 4Z+2x Z ˙ ) y ˙ y + Z ˙ = p t C + E 2 2C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaiaadIhacaWGAbWaaSaaaeaaceWG5bGbamaaaeaacaWG5baa aiabgUcaRmaabmaabaGaaGinaiaadQfacqGHRaWkcaaIYaGaamiEai qadQfagaGaaaGaayjkaiaawMcaamaalaaabaGabmyEayaacaaabaGa amyEaaaacqGHRaWkceWGAbGbaiaacqGH9aqpdaWcaaqaaiaadchada WgaaWcbaGaamiDaaqabaaakeaacaWGdbaaaiabgUcaRmaalaaabaGa amyramaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGdbaaaaaa@4F7B@   (10)

Δ C =4xZ y ¨ y + Z ˙ ( 1+2x y ˙ y )+ 1Z x E 2 C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacqqHuoaraeaacaWGdbaaaiabg2da9iaaisdacaWG4bGa amOwamaalaaabaGabmyEayaadaaabaGaamyEaaaacqGHRaWkceWGAb GbaiaadaqadaqaaiaaigdacqGHRaWkcaaIYaGaamiEamaalaaabaGa bmyEayaacaaabaGaamyEaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiaaigdacqGHsislcaWGAbaabaGaamiEaaaacqGHsisldaWcaaqa aiaadweadaahaaWcbeqaaiaaikdaaaaakeaacaWGdbaaaaaa@4FD6@   (11)

σ 2 = 4CZ x ( x E ˙ +E ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI 0aGaam4qaiaadQfaaeaacaWG4baaamaabmaabaGaamiEaiqadweaga GaaiabgUcaRiaadweaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaaaa@4448@   (12)

With the transformations of 70, the mass within a sphere of radius r can be written as

M(x)= 1 4 C 3/2 0 x x ρ(x)d(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqa aiaaisdacaWGdbWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaaaaO Waa8qCaeaadaGcaaqaaiaadIhaaSqabaaabaGaaGimaaqaaiaadIha a0Gaey4kIipakiabeg8aYjaacIcacaWG4bGaaiykaiaadsgacaGGOa GaamiEaiaacMcaaaa@4C9A@   (13)

where dots denotes the derivate with respect to x, A>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaiabg6da+iaaicdaaaa@39B4@ and C>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg6da+iaaicdaaaa@39B6@ are arbitrary constants and Δ= p t p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaeyypa0JaamiCamaaBaaaleaacaWG0baabeaakiabgkHi TiaadchadaWgaaWcbaGaamOCaaqabaaaaa@3EC1@ is the anisotropic factor which measures the pressure anisotropy within the star. The system of equations (8)-(12) governs the gravitational behavior for an anisotropic fluid.

In order to obtain physically realistic stellar models, in this paper we assume that the radial pressure and the energy density are related by the following equation:

p r =mρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakiabg2da9iaad2gacqaHbpGC aaa@3D06@   (14)

here m is a real constant.

The new models

To solve the system of equations we take the following metric potential

Z(x)= 1 ( 1+ax ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqa amaabmaabaGaaGymaiabgUcaRiaadggacaWG4baacaGLOaGaayzkaa WaaWbaaSqabeaacaWGUbaaaaaaaaa@425B@   (15)

a is a real constant and n is an adjustable parameter. The equation (16) for the metric potential is physically realistic because it allows to obtain a monotonic increasing mass function, regular at the centre of the star and also results in deduction of a monotonic decreasing energy density. According Lighuda et al.71 we also assume for the electric field intensity.

E 2 2C =kxZ(x)= kx ( 1+ax ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGfbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaa doeaaaGaeyypa0Jaam4AaiaadIhacaWGAbGaaiikaiaadIhacaGGPa Gaeyypa0ZaaSaaaeaacaWGRbGaamiEaaqaamaabmaabaGaaGymaiab gUcaRiaadggacaWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaWGUb aaaaaaaaa@49D1@   (16)

with k>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg6da+iaaicdaaaa@39DE@ . This form of electric field gives us a monotonic increasing function, regular at the centre, positive and remains continuous inside of the star. In this paper, we take the specific values of the adjustable parameter as n=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaigdacaGGSaGaaGPaVlaaikdaaaa@3CD7@ .

With n=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaigdaaaa@39E0@ , by introducing the Eqs. (15)-(16) into the Eq. (8) we obtain.

ρ=C ( akx )( 1+ax )+2a ( 1+ax ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0Jaam4qamaalaaabaWaaeWaaeaacaWGHbGaeyOe I0Iaam4AaiaadIhaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHRa WkcaWGHbGaamiEaaGaayjkaiaawMcaaiabgUcaRiaaikdacaWGHbaa baWaaeWaaeaacaaIXaGaey4kaSIaamyyaiaadIhaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaaaaaa@4D92@   (17)

and for the Eq. (14) we can written for the radial pressure

p r =mC ( akx )( 1+ax )+2a ( 1+ax ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakiabg2da9iaad2gacaWGdbWa aSaaaeaadaqadaqaaiaadggacqGHsislcaWGRbGaamiEaaGaayjkai aawMcaamaabmaabaGaaGymaiabgUcaRiaadggacaWG4baacaGLOaGa ayzkaaGaey4kaSIaaGOmaiaadggaaeaadaqadaqaaiaaigdacqGHRa WkcaWGHbGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa aaaaaa@4EE6@   (18)

Substituting z and Eqs. (16)-(18) in Eq. (9) we obtain.

y ˙ y =m ( akx )( 1+ax )+2a 4 ( 1+ax ) 2 kx 4 + a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaaceWG5bGbaiaaaeaacaWG5baaaiabg2da9iaad2gadaWc aaqaamaabmaabaGaamyyaiabgkHiTiaadUgacaWG4baacaGLOaGaay zkaaWaaeWaaeaacaaIXaGaey4kaSIaamyyaiaadIhaaiaawIcacaGL PaaacqGHRaWkcaaIYaGaamyyaaqaaiaaisdadaqadaqaaiaaigdacq GHRaWkcaWGHbGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaGccqGHsisldaWcaaqaaiaadUgacaWG4baabaGaaGinaaaacq GHRaWkdaWcaaqaaiaadggaaeaacaaI0aaaaaaa@5517@   (19)

Integrating Eq. (19)

y(x)= c 1 ( 1+ax ) 1 2 m e 1 8 x( m+1 )( kx+2a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiaacIcacaWG4bGaaiykaiabg2da9iaadogadaWgaaWcbaGa aGymaaqabaGcdaqadaqaaiaaigdacqGHRaWkcaWGHbGaamiEaaGaay jkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa caWGTbaaaOGaamyzamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG ioaaaacaWG4bWaaeWaaeaacaWGTbGaey4kaSIaaGymaaGaayjkaiaa wMcaamaabmaabaGaeyOeI0Iaam4AaiaadIhacqGHRaWkcaaIYaGaam yyaaGaayjkaiaawMcaaaaaaaa@53B8@   (20)

where c 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yamaaBaaaleaacaaIXaaabeaaaaa@38FB@  is the constant of integration.

For metric potentials e and e2v we have, respectively.

e 2λ =1+ax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiabeU7aSbaakiabg2da9iaaigda cqGHRaWkcaWGHbGaamiEaaaa@3F43@   (21)

e 2v = A 2 c 1 2 ( 1+ax ) m e x 4 ( m+1 )( kx+2a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaGccqGH9aqpcaWGbbWa aWbaaSqabeaacaaIYaaaaOGaam4yamaaBaaaleaacaaIXaaabeaakm aaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGymaiabgUcaRiaadgga caWG4baacaGLOaGaayzkaaWaaWbaaSqabeaacaWGTbaaaOGaamyzam aaCaaaleqabaWaaSaaaeaacaWG4baabaGaaGinaaaadaqadaqaaiaa d2gacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacqGHsislca WGRbGaamiEaiabgUcaRiaaikdacaWGHbaacaGLOaGaayzkaaaaaaaa @53A2@   (22)

From the Eq. (13), the mass function takes the form   

M(x)= x 2 C [ ax 1+ax + k(3ax) 3 a 2 ] karctan( ax ) 2 a 2 ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaOaaaeaa caWG4baaleqaaaGcbaGaaGOmamaakaaabaGaam4qaaWcbeaaaaGcda WadaqaamaalaaabaGaamyyaiaadIhaaeaacaaIXaGaey4kaSIaamyy aiaadIhaaaGaey4kaSYaaSaaaeaacaWGRbGaaiikaiaaiodacqGHsi slcaWGHbGaamiEaiaacMcaaeaacaaIZaGaamyyamaaCaaaleqabaGa aGOmaaaaaaaakiaawUfacaGLDbaacqGHsisldaWcaaqaaiaadUgaca aMc8UaciyyaiaackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaa daGcaaqaaiaadggacaWG4baaleqaaaGccaGLOaGaayzkaaaabaGaaG OmaiaadggadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaadggacaWG Jbaaleqaaaaaaaa@6012@   (23)

Inserting and Eq. (16) in Eq. (12) we have for the charge density

σ 2 = 8 C 2 k ( ax+2 ) 2 ( 1+ax ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI 4aGaam4qamaaCaaaleqabaGaaGOmaaaakiaadUgadaqadaqaaiaadg gacaWG4bGaey4kaSIaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaOqaamaabmaabaGaaGymaiabgUcaRiaadggacaWG4baaca GLOaGaayzkaaWaaWbaaSqabeaacaaI0aaaaaaaaaa@4A56@   (24)

From the Eq.(20) and substituting the Eqs.(15) and (16) into the Eq.(11) we obtain for the anisotropy

Δ= 4x 1+ax [ ( m 2 2m ) a 2 4 ( ax+1 ) 2 + ma 8( ax+1 ) ( ( m+1 )( kx+2a )kx( m+1 ) ) k( m+1 ) 4 + ( ( m+1 )( kx+2a )kx( m+1 ) 8 ) 2 ] a ( 1+ax ) 2 1+x[ ma ( ax+1 ) + ( m+1 )( kx+2a )kx( m+1 ) 4 ]+ a 1+ax 2kx 1+ax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqqHuoarcqGH9aqpdaWcaaqaaiaaisdacaWG4baabaGaaGym aiabgUcaRiaadggacaWG4baaamaadmaaeaqabeaadaWcaaqaamaabm aabaGaamyBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG TbaacaGLOaGaayzkaaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaai aaisdadaqadaqaaiaadggacaWG4bGaey4kaSIaaGymaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaad2 gacaWGHbaabaGaaGioamaabmaabaGaamyyaiaadIhacqGHRaWkcaaI XaaacaGLOaGaayzkaaaaamaabmaabaWaaeWaaeaacaWGTbGaey4kaS IaaGymaaGaayjkaiaawMcaamaabmaabaGaeyOeI0Iaam4AaiaadIha cqGHRaWkcaaIYaGaamyyaaGaayjkaiaawMcaaiabgkHiTiaadUgaca WG4bWaaeWaaeaacaWGTbGaey4kaSIaaGymaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaqaaiaaykW7caaMc8UaaGPaVlaaykW7cqGHsislda WcaaqaaiaadUgadaqadaqaaiaad2gacqGHRaWkcaaIXaaacaGLOaGa ayzkaaaabaGaaGinaaaacqGHRaWkdaqadaqaamaalaaabaWaaeWaae aacaWGTbGaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeyOe I0Iaam4AaiaadIhacqGHRaWkcaaIYaGaamyyaaGaayjkaiaawMcaai abgkHiTiaadUgacaWG4bWaaeWaaeaacaWGTbGaey4kaSIaaGymaaGa ayjkaiaawMcaaaqaaiaaiIdaaaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaaaakiaawUfacaGLDbaaaeaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHsisldaWcaa qaaiaadggaaeaadaqadaqaaiaaigdacqGHRaWkcaWGHbGaamiEaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGccaaIXaGaey4kaS IaamiEamaadmaabaWaaSaaaeaacaWGTbGaamyyaaqaamaabmaabaGa amyyaiaadIhacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabgUcaRm aalaaabaWaaeWaaeaacaWGTbGaey4kaSIaaGymaaGaayjkaiaawMca amaabmaabaGaeyOeI0Iaam4AaiaadIhacqGHRaWkcaaIYaGaamyyaa GaayjkaiaawMcaaiabgkHiTiaadUgacaWG4bWaaeWaaeaacaWGTbGa ey4kaSIaaGymaaGaayjkaiaawMcaaaqaaiaaisdaaaaacaGLBbGaay zxaaGaey4kaSYaaSaaaeaacaWGHbaabaGaaGymaiabgUcaRiaadgga caWG4baaaiabgkHiTmaalaaabaGaaGOmaiaadUgacaWG4baabaGaaG ymaiabgUcaRiaadggacaWG4baaaaaaaa@D00C@   (25)

For n=2 we can obtain the following analytical model  

ρ=C ( a 3 +ak ) x 2 +( 3 a 2 k )x+6a ( 1+ax ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0Jaam4qamaalaaabaWaaeWaaeaacaWGHbWaaWba aSqabeaacaaIZaaaaOGaey4kaSIaamyyaiaadUgaaiaawIcacaGLPa aacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaacaaI ZaGaamyyamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgaaiaawI cacaGLPaaacaWG4bGaey4kaSIaaGOnaiaadggaaeaadaqadaqaaiaa igdacqGHRaWkcaWGHbGaamiEaaGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaaaaaa@532A@   (26)

p r =mC ( a 3 ak ) x 2 +( 3 a 2 k )x+6a ( 1+ax ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakiabg2da9iaad2gacaWGdbWa aSaaaeaadaqadaqaaiaadggadaahaaWcbeqaaiaaiodaaaGccqGHsi slcaWGHbGaam4AaaGaayjkaiaawMcaaiaadIhadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkdaqadaqaaiaaiodacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaadIhacqGHRaWk caaI2aGaamyyaaqaamaabmaabaGaaGymaiabgUcaRiaadggacaWG4b aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa@548A@   (27)

e 2λ = ( 1+ax ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiabeU7aSbaakiabg2da9maabmaa baGaaGymaiabgUcaRiaadggacaWG4baacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaaa@41B5@   (28)

y(x)= c 2 ( 1+ax ) m e 1 8 x( m+1 )( a 2 xkx+4a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiaacIcacaWG4bGaaiykaiabg2da9iaadogadaWgaaWcbaGa aGOmaaqabaGcdaqadaqaaiaaigdacqGHRaWkcaWGHbGaamiEaaGaay jkaiaawMcaamaaCaaaleqabaGaamyBaaaakiaadwgadaahaaWcbeqa amaalaaabaGaaGymaaqaaiaaiIdaaaGaamiEamaabmaabaGaamyBai abgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadggadaahaaad beqaaiaaikdaaaWccaWG4bGaeyOeI0Iaam4AaiaadIhacqGHRaWkca aI0aGaamyyaaGaayjkaiaawMcaaaaaaaa@550C@   (29)

e 2v = A 2 C 2 2 ( 1+ax ) 2m e x 4 ( m+1 )( a 2 xkx+4a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaGccqGH9aqpcaWGbbWa aWbaaSqabeaacaaIYaaaaOGaam4qamaaDaaaleaacaaIYaaabaGaaG OmaaaakmaabmaabaGaaGymaiabgUcaRiaadggacaWG4baacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaGaamyBaaaakiaadwgadaahaaWcbe qaamaalaaabaGaamiEaaqaaiaaisdaaaWaaeWaaeaacaWGTbGaey4k aSIaaGymaaGaayjkaiaawMcaamaabmaabaGaamyyamaaCaaameqaba GaaGOmaaaaliaadIhacqGHsislcaWGRbGaamiEaiabgUcaRiaaisda caWGHbaacaGLOaGaayzkaaaaaaaa@56E3@   (30)

M(x)= x 2 C [ ax( ax+2 ) ( ax+1 ) 2 + 2k(ax+1)+k 2 a 2 ( ax+1 ) ] 3karctan( ax ) 4 a 2 ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacIcacaWG4bGaaiykaiabg2da9maalaaabaWaaOaaaeaa caWG4baaleqaaaGcbaGaaGOmamaakaaabaGaam4qaaWcbeaaaaGcda WadaqaamaalaaabaGaamyyaiaadIhadaqadaqaaiaadggacaWG4bGa ey4kaSIaaGOmaaGaayjkaiaawMcaaaqaamaabmaabaGaamyyaiaadI hacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaaakiabgUcaRmaalaaabaGaaGOmaiaadUgacaGGOaGaamyyaiaadI hacqGHRaWkcaaIXaGaaiykaiabgUcaRiaadUgaaeaacaaIYaGaamyy amaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamyyaiaadIhacqGHRa WkcaaIXaaacaGLOaGaayzkaaaaaaGaay5waiaaw2faaiabgkHiTmaa laaabaGaaG4maiaadUgacaaMc8UaciyyaiaackhacaGGJbGaaiiDai aacggacaGGUbWaaeWaaeaadaGcaaqaaiaadggacaWG4baaleqaaaGc caGLOaGaayzkaaaabaGaaGinaiaadggadaahaaWcbeqaaiaaikdaaa GcdaGcaaqaaiaadggacaWGJbaaleqaaaaaaaa@6FE0@   (31)

σ 2 = 2 C 2 k (2 a 2 x 2 +3ax+3) 2 ( 1+ax ) 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaI YaGaam4qamaaCaaaleqabaGaaGOmaaaakiaadUgacaGGOaGaaGOmai aadggadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaG4maiaadggacaWG4bGaey4kaSIaaG4maiaacM cadaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaaiaaigdacqGHRaWk caWGHbGaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOnaaaaaa aaaa@5047@   (32)

Δ= 4x 1+a x 2 [ ( m 2 m ) a 2 ( ax+1 ) 2 + ma 4( ax+1 ) ( ( m+1 )( a 2 xkx+4a )+x( m+1 )( a 2 k ) ) + ( m+1 )( a 2 k ) 4 + ( ( m+1 )( a 2 xkx+4a )x( m+1 )( a 2 k ) 8 ) 2 ] 2a ( 1+ax ) 3 [ 1+2x( ma ax+1 + ( m+1 )( a 2 xkx+4a )x( m+1 )( a 2 k ) 8 ) ]+ a(ax+2) (1+ax) 2 2kx (1+ax) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaqcaageaa aaaaaaa8qacqqHuoarcqGH9aqpdaWcaaqaaiaaisdacaWG4baabaGa aGymaiabgUcaRiaadggacaWG4bWaaWbaaKqaGfqabaGaaGOmaaaaaa qcaa2aamWaaqaabeqaamaalaaabaWaaeWaaeaacaWGTbWaaWbaaKqa GfqabaGaaGOmaaaajaaycqGHsislcaWGTbaacaGLOaGaayzkaaGaam yyamaaCaaajeaybeqaaiaaikdaaaaajaaybaWaaeWaaeaacaWGHbGa amiEaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaqcbawabeaaca aIYaaaaaaajaaycqGHRaWkdaWcaaqaaiaad2gacaWGHbaabaGaaGin amaabmaabaGaamyyaiaadIhacqGHRaWkcaaIXaaacaGLOaGaayzkaa aaamaabmaabaWaaeWaaeaacaWGTbGaey4kaSIaaGymaaGaayjkaiaa wMcaamaabmaabaGaamyyamaaCaaajeaybeqaaiaaikdaaaqcaaMaam iEaiabgkHiTiaadUgacaWG4bGaey4kaSIaaGinaiaadggaaiaawIca caGLPaaacqGHRaWkcaWG4bWaaeWaaeaacaWGTbGaey4kaSIaaGymaa GaayjkaiaawMcaamaabmaabaGaamyyamaaCaaajeaybeqaaiaaikda aaqcaaMaeyOeI0Iaam4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaa qaaiaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkdaWcaaqaamaabmaa baGaamyBaiabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadg gadaahaaqcbawabeaacaaIYaaaaKaaGjabgkHiTiaadUgaaiaawIca caGLPaaaaeaacaaI0aaaaiabgUcaRmaabmaabaWaaSaaaeaadaqada qaaiaad2gacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWG HbWaaWbaaKqaGfqabaGaaGOmaaaajaaycaWG4bGaeyOeI0Iaam4Aai aadIhacqGHRaWkcaaI0aGaamyyaaGaayjkaiaawMcaaiabgkHiTiaa dIhadaqadaqaaiaad2gacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaae WaaeaacaWGHbWaaWbaaKqaGfqabaGaaGOmaaaajaaycqGHsislcaWG RbaacaGLOaGaayzkaaaabaGaaGioaaaaaiaawIcacaGLPaaadaahaa qcbawabeaacaaIYaaaaaaajaaycaGLBbGaayzxaaaakeaajaaycaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7cqGHsisldaWcaaqaaiaaikdacaWGHbaabaWaaeWaaeaacaaIXaGa ey4kaSIaamyyaiaadIhaaiaawIcacaGLPaaadaahaaqcbawabeaaca aIZaaaaaaajaaydaWadaqaaiaaigdacqGHRaWkcaaIYaGaamiEamaa bmaabaWaaSaaaeaacaWGTbGaamyyaaqaaiaadggacaWG4bGaey4kaS IaaGymaaaacqGHRaWkdaWcaaqaamaabmaabaGaamyBaiabgUcaRiaa igdaaiaawIcacaGLPaaadaqadaqaaiaadggadaahaaqcbawabeaaca aIYaaaaKaaGjaadIhacqGHsislcaWGRbGaamiEaiabgUcaRiaaisda caWGHbaacaGLOaGaayzkaaGaeyOeI0IaamiEamaabmaabaGaamyBai abgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiaadggadaahaaqc bawabeaacaaIYaaaaKaaGjabgkHiTiaadUgaaiaawIcacaGLPaaaae aacaaI4aaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUcaRmaa laaabaGaamyyaiaacIcacaWGHbGaamiEaiabgUcaRiaaikdacaGGPa aabaGaaiikaiaaigdacqGHRaWkcaWGHbGaamiEaiaacMcadaahaaqc bawabeaacaaIYaaaaaaajaaycqGHsisldaWcaaqaaiaaikdacaWGRb GaamiEaaqaaiaacIcacaaIXaGaey4kaSIaamyyaiaadIhacaGGPaWa aWbaaKqaGfqabaGaaGOmaaaaaaaaaaa@FFB3@   (33)

Elementary criteria for physical acceptability    

A physically acceptable interior solution of the gravitational field equations must comply with the certain physical conditions:36,72

  1. The solution should be free from physical and geometric singularities, i.e., e v >0, e λ >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaamODaaaakiabg6da+iaaicdacaGGSaGa aGPaVlaadwgadaahaaWcbeqaaiabeU7aSbaakiabg6da+iaaicdaaa a@41DC@ and pr, pt, ρ are finite in the range 0rR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadkhacqGHKjYOcaWGsbaaaa@3D1E@ .
  2. The radial and tangential pressures and density are non-negative pr, pt, ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyyzImRaaiiOaiaaicdaaaa@3C90@
  3. Radial pressure pr should be zero at the boundary r=R, i.e., p r (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakiaaykW7caGGOaGaamOCaiab g2da9iaadkfacaGGPaGaeyypa0JaaGimaaaa@40C6@ , the  energy density and tangential pressure may follow ρ r (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadkhaaeqaaOGaaGPaVlaacIcacaWGYbGa eyypa0JaamOuaiaacMcacqGH9aqpcaaIWaaaaa@4191@ and ρ t (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadshaaeqaaOGaaGPaVlaacIcacaWGYbGa eyypa0JaamOuaiaacMcacqGH9aqpcaaIWaaaaa@4193@ .
  4. The condition 0 v sr 2 = d p r dp 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadAhadaqhaaWcbaGaam4CaiaadkhaaeaacaaI YaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamiCamaaBaaaleaacaWGYb aabeaaaOqaaiaadsgacaWGWbaaaiabgsMiJkaaigdaaaa@45E7@ be the condition that the speed of sound v sr 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODamaaDaaaleaacaWGZbGaamOCaaqaaiaaikdaaaaaaa@3AFF@  not exceeds that of light.
  5. Pressure and density should be maximum at the center and monotonically decreasing towards the pressure free interface (i.e., boundary of the fluid sphere). Mathematically d p r dp 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbGaamiCamaaBaaaleaacaWGYbaabeaaaOqaaiaa dsgacaWGWbaaaiabgsMiJkaaicdaaaa@3E94@ and dp dp 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbGaamiCaaqaaiaadsgacaWGWbaaaiabgsMiJkaa icdaaaa@3D67@  for 0rR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadkhacqGHKjYOcaWGsbaaaa@3D1E@ .
  6. Pressure anisotropy vanishes at the centre, i.e., Δ ( 0 )=0  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaaeiia8aadaqadaqaa8qacaaIWaaapaGaayjkaiaawMca a8qacqGH9aqpcaaIWaGaaiiOaaaa@3E9A@ .40
  7. The charged interior solution should be matched with the Reissner–Nordström     exterior solution, for which the metric is given by:

d s 2 =( 1 2M r + Q 2 r 2 )d t 2 + ( 1 2M r + Q 2 r 2 ) 1 d r 2 + r 2 (d θ 2 +sin θ 2 +dφ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadohadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcqGHsisl daqadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacaWGnbaabaGaam OCaaaacqGHRaWkdaWcaaqaaiaadgfadaahaaWcbeqaaiaaikdaaaaa keaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaai aadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaa caaIXaGaeyOeI0YaaSaaaeaacaaIYaGaamytaaqaaiaadkhaaaGaey 4kaSYaaSaaaeaacaWGrbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOC amaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccaWGKbGaamOCamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaadkhadaahaaWcbeqaaiaaikdaaaGccaaMc8Uaai ikaiaadsgacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkciGG ZbGaaiyAaiaac6gacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGKbGaeqOXdOMaaiykaaaa@6C5F@   (34)

through the boundary r=R where M and Q are the total mass and the total charge of the star , respectively.

Physical features of the new models

For each choice of adjustable parameter n, we now show physical features of the new models.  For the case n=1, the metric functions e 2λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipG0di9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqaaiaadwgada ahaaWcbeqaaiaaikdacqaH7oaBaaaaaaa@38C5@   and e 2ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaeaacaWGLbWaaW baaSqabeaacaaIYaGaeqyVd4gaaaaaaa@3A9B@ are free from physical and geometric singularities, i.e., e 2v >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaGccqGH+aGpcaaIWaaa aa@3BC6@ , e 2λ >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiabeU7aSbaakiabg6da+iaaicda aaa@3C7F@  for 0rR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadkhacqGHKjYOcaWGsbaaaa@3D1E@ and in r=0,  e λ (0) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaeq4UdWgaaOWaaWbaaSqabeaacaGGOaGa aGimaiaacMcaaaGccqGH9aqpcaaIXaaaaa@3E0C@ , e 2v(0) = A 2 c 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhacaGGOaGaaGimaiaacMca aaGccqGH9aqpcaWGbbWaaWbaaSqabeaacaaIYaaaaOGaam4yamaaDa aaleaacaaIXaaabaGaaGOmaaaakiaac6caaaa@421E@  The radial pressure and energy density are non-negative in the stellar interior and at the boundary r=R , ρ r (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaadkhacaaMc8oabeaakiaacIcacaWGYbGa eyypa0JaamOuaiaacMcacqGH9aqpcaaIWaaaaa@4191@  and ρ (r=R)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaaykW7aeqaaOGaaiikaiaadkhacqGH9aqp caWGsbGaaiykaiabgwMiZkaaicdaaaa@415A@ . Also, we also have for central density and radial central pressure ρ=3aC, p r =3maC. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGPaVlabeg8aYjabg2da9iaaiodacaWGHbGaam4qaiaacYcacaaM c8UaaGPaVlaadchadaWgaaWcbaGaamOCaaqabaGccqGH9aqpcaaIZa GaamyBaiaadggacaWGdbGaaiOlaaaa@48E5@ ,. As on the surface of the star ρ (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaSbaaSqaaiaaykW7aeqaaOGaaiikaiaadkhacqGH9aqp caWGsbGaaiykaiabg2da9iaaicdaaaa@409A@  we have

R= 2aCk( a 2 k+ a 4 +10 a 2 k+ k 2 ) 2aCk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maalaaabaWaaOaaaeaacaaIYaGaamyyaiaadoea caWGRbGaaiikaiaadggadaahaaWcbeqaaiaaikdaaaGccqGHsislca WGRbGaey4kaSYaaOaaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaOGa ey4kaSIaaGymaiaaicdacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaam 4AaiabgUcaRiaadUgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaleqa aaqabaaakeaacaaIYaGaamyyaiaadoeacaWGRbaaaaaa@4FB3@   (35)

Energy density and radial pressure gradients, dp dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbGaamiCaaqaaiaadsgacaWGYbaaaaaa@3AFA@  and d p r dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbGaamiCamaaBaaaleaacaWGYbaabeaaaOqaaiaa dsgacaWGYbaaaaaa@3C27@  respectively, are monotonically decreasing functions with the radial coordinate r. For this case we obtain in the range 0rR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadkhacqGHKjYOcaWGsbaaaa@3D1E@

dp dr = 2kCr( 1+aC r 2 )2aCr( akC r 2 ) (1+aC r 2 ) 2 4aCr[ ( aKC r 2 )( 1+aC r 2 )+2a ] ( 1+aC r 2 ) 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaGfaaqaaaaaaaaa WdbmaalaaabaGaamizaiaadchaaeaacaWGKbGaamOCaaaacqGH9aqp cqGHsisldaWcaaqaamaakaaabaGaaGOmaiaadUgacaWGdbGaamOCam aabmaabaGaaGymaiabgUcaRiaadggacaWGdbGaamOCamaaCaaajeay beqaaiaaikdaaaaajaaycaGLOaGaayzkaaGaeyOeI0IaaGOmaiaadg gacaWGdbGaamOCamaabmaabaGaamyyaiabgkHiTiaadUgacaWGdbGa amOCamaaCaaajeaybeqaaiaaikdaaaaajaaycaGLOaGaayzkaaaaje aybeaaaKaaGfaacaGGOaGaaGymaiabgUcaRiaadggacaWGdbGaamOC amaaCaaajeaybeqaaiaaikdaaaqcaaMaaiykamaaCaaajeaybeqaai aaikdaaaaaaKaaGjabgkHiTmaalaaabaGaaGinaiaadggacaWGdbGa amOCamaadmaabaWaaeWaaeaacaWGHbGaeyOeI0Iaam4saiaadoeaca WGYbWaaWbaaKqaGfqabaGaaGOmaaaaaKaaGjaawIcacaGLPaaadaqa daqaaiaaigdacqGHRaWkcaWGHbGaam4qaiaadkhadaahaaqcbawabe aacaaIYaaaaaqcaaMaayjkaiaawMcaaiabgUcaRiaaikdacaWGHbaa caGLBbGaayzxaaaabaWaaeWaaeaacaaIXaGaey4kaSIaamyyaiaado eacaWGYbWaaWbaaKqaGfqabaGaaGOmaaaaaKaaGjaawIcacaGLPaaa daahaaqcbawabeaacaaIZaaaaaaajaaycqGHKjYOcaaIWaGaaGPaVl aaykW7caaMc8oaaa@8659@   (36)

d p r dr = 2kmCr( 1+aC r 2 )2aCr( akC r 2 ) (1+aC r 2 ) 2 4am[ ( aKC r 2 )( 1+aC r 2 )+2a ] ( 1+aC r 2 ) 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaGfaaqaaaaaaaaa WdbmaalaaabaGaamizaiaadchadaWgaaqcbawaaiaadkhaaeqaaaqc aawaaiaadsgacaWGYbaaaiabg2da9iabgkHiTmaalaaabaWaaOaaae aacaaIYaGaam4Aaiaad2gacaWGdbGaamOCamaabmaabaGaaGymaiab gUcaRiaadggacaWGdbGaamOCamaaCaaajeaybeqaaiaaikdaaaaaja aycaGLOaGaayzkaaGaeyOeI0IaaGOmaiaadggacaWGdbGaamOCamaa bmaabaGaamyyaiabgkHiTiaadUgacaWGdbGaamOCamaaCaaajeaybe qaaiaaikdaaaaajaaycaGLOaGaayzkaaaajeaybeaaaKaaGfaacaGG OaGaaGymaiabgUcaRiaadggacaWGdbGaamOCamaaCaaajeaybeqaai aaikdaaaqcaaMaaiykamaaCaaajeaybeqaaiaaikdaaaaaaKaaGjab gkHiTmaalaaabaGaaGinaiaadggacaWGTbWaamWaaeaadaqadaqaai aadggacqGHsislcaWGlbGaam4qaiaadkhadaahaaqcbawabeaacaaI YaaaaaqcaaMaayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiaadg gacaWGdbGaamOCamaaCaaajeaybeqaaiaaikdaaaaajaaycaGLOaGa ayzkaaGaey4kaSIaaGOmaiaadggaaiaawUfacaGLDbaaaeaadaqada qaaiaaigdacqGHRaWkcaWGHbGaam4qaiaadkhadaahaaqcbawabeaa caaIYaaaaaqcaaMaayjkaiaawMcaamaaCaaajeaybeqaaiaaiodaaa aaaKaaGjabgsMiJkaaicdacaaMc8UaaGPaVlaaykW7aaa@8869@   (37)

From the equations (36) and (37) is deduced that the pressure and density should be maximum at the center and monotonically decreasing towards the surface of the star.

The mass function in r=R can be obtained from the Eq. (23) and we get

M(r=R)= R 2 [ aC R 2 ( 1+aC R 2 ) + k( 3aC R 2 ) 3 a 2 ] karctan( aCR ) 2 a 2 aC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacIcacaWGYbGaeyypa0JaamOuaiaacMcacqGH9aqpdaWc aaqaaiaadkfaaeaacaaIYaaaamaadmaabaWaaSaaaeaacaWGHbGaam 4qaiaadkfadaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaaiaaigda cqGHRaWkcaWGHbGaam4qaiaadkfadaahaaWcbeqaaiaaikdaaaaaki aawIcacaGLPaaaaaGaey4kaSYaaSaaaeaacaWGRbWaaeWaaeaacaaI ZaGaeyOeI0IaamyyaiaadoeacaWGsbWaaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaaabaGaaG4maiaadggadaahaaWcbeqaaiaaikda aaaaaaGccaGLBbGaayzxaaGaeyOeI0YaaSaaaeaacaWGRbGaciyyai aackhacaGGJbGaaiiDaiaacggacaGGUbWaaeWaaeaadaGcaaqaaiaa dggacaWGdbGaamOuaaWcbeaaaOGaayjkaiaawMcaaaqaaiaaikdaca WGHbWaaWbaaSqabeaacaaIYaaaaOWaaOaaaeaacaWGHbGaam4qaaWc beaaaaaaaa@6620@   (38)

In this model, the radial speed of sound of anisotropic star will be given by

0 v sr 2 = d p r dr =m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadAhadaqhaaWcbaGaam4CaiaadkhaaeaacaaI YaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamiCamaaBaaaleaacaWGYb aabeaaaOqaaiaadsgacaWGYbaaaiabg2da9iaad2gacqGHKjYOcaaI Xaaaaa@47E1@   (39)

The interior solution should match continuously with an exterior Reissner-Nordström solution.

d s 2 =( 1 2M r + Q 2 r 2 )d t 2 + ( 1 2M r + Q 2 r 2 ) 1 d r 2 + r 2 (d θ 2 +sin θ 2 +dφ)rR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadohadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcqGHsisl daqadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacaWGnbaabaGaam OCaaaacqGHRaWkdaWcaaqaaiaadgfadaahaaWcbeqaaiaaikdaaaaa keaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawMcaai aadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaaeaa caaIXaGaeyOeI0YaaSaaaeaacaaIYaGaamytaaqaaiaadkhaaaGaey 4kaSYaaSaaaeaacaWGrbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOC amaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaGccaWGKbGaamOCamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaadkhadaahaaWcbeqaaiaaikdaaaGccaaMc8Uaai ikaiaadsgacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkciGG ZbGaaiyAaiaac6gacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaWGKbGaeqOXdOMaaiykaiaaykW7caaMc8UaamOCaiabgwMiZkaa dkfaaaa@7309@

This requires the continuity of e v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaamODaaaaaaa@393E@ , e λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaeq4UdWgaaaaa@39F7@ and q across the boundary r=R ,  

e 2v = e 2 λ =1 2M R + Q 2 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaGccqGH9aqpcaWGLbWa aWbaaSqabeaacqGHsislcaaIYaaaaOWaaWbaaSqabeaacqaH7oaBaa GccqGH9aqpcaaIXaGaeyOeI0YaaSaaaeaacaaIYaGaamytaaqaaiaa dkfaaaGaey4kaSYaaSaaaeaacaWGrbWaaWbaaSqabeaacaaIYaaaaa GcbaGaamOuamaaCaaaleqabaGaaGOmaaaaaaaaaa@495D@   (40)

where M and Q represent the total mass and charge inside the fluid sphere, respectively. By matching the interior metric function Z(x) with the exterior Reissner-Nordström metric at the boundary r=R we obtain

2M R = ( aC+2k C 2 ) R 2 1+aC r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIYaGaamytaaqaaiaadkfaaaGaeyypa0ZaaSaaaeaa daqadaqaaiaadggacaWGdbGaey4kaSIaaGOmaiaadUgacaWGdbWaaW baaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamOuamaaCaaaleqa baGaaGOmaaaaaOqaaiaaigdacqGHRaWkcaWGHbGaam4qaiaadkhada ahaaWcbeqaaiaaikdaaaaaaaaa@492C@   (41)

With n=2 , again the metric functions e 2 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaaaakmaaCaaaleqabaGaeq4UdWga aaaa@3AEA@ and e 2v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaaaaa@39FA@ are free from singularities and in the origin e λ (0) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaeq4UdWgaaOWaaWbaaSqabeaacaGGOaGa aGimaiaacMcaaaGccqGH9aqpcaaIXaaaaa@3E0C@ , e 2v (0) = A 2 c 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaGcdaahaaWcbeqaaiaa cIcacaaIWaGaaiykaaaakiabg2da9iaadgeadaahaaWcbeqaaiaaik daaaGccaWGJbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaaa@419A@ . The radial pressure and the energy density are monotonically decreasing functions and at the boundary r=R, p r (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakmaaBaaaleaacaaMc8oabeaa kiaacIcacaWGYbGaeyypa0JaamOuaiaacMcacqGH9aqpcaaIWaaaaa@40FC@ and ρ(r=R) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaaiikaiaadkhacqGH9aqpcaWGsbGaaiykaiabgwMiZkaa cckacaaIWaaaaa@40BD@ ≥ 0. In the center ρ=6aC, p r =6amC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaaGOnaiaadggacaWGdbGaaiilaiaaykW7caaM c8UaamiCamaaBaaaleaacaWGYbaabeaakmaaBaaaleaacaaMc8oabe aakiabg2da9iaaiAdacaWGHbGaamyBaiaadoeaaaa@486F@ and are positive if a,m,C ˃ 0. As p r (r=R)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWGYbaabeaakmaaBaaaleaacaaMc8oabeaa kiaacIcacaWGYbGaeyypa0JaamOuaiaacMcacqGH9aqpcaaIWaaaaa@40FC@ we have

R= 2aC( a 2 +k)(3 a 2 k+ 15 a 4 +18 a 2 k+ k 2 ) 2aC( a 2 +k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9maalaaabaWaaOaaaeaacaaIYaGaamyyaiaadoea caGGOaGaeyOeI0IaamyyamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadUgacaGGPaGaaiikaiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0Iaam4AaiabgUcaRmaakaaabaGaeyOeI0IaaGymaiaaiw dacaWGHbWaaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaaiIda caWGHbWaaWbaaSqabeaacaaIYaaaaOGaam4AaiabgUcaRiaadUgada ahaaWcbeqaaiaaikdaaaGccaGGPaaaleqaaaqabaaakeaacaaIYaGa amyyaiaadoeadaqadaqaaiabgkHiTiaadggadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWGRbaacaGLOaGaayzkaaaaaaaa@5D11@   (42)

For the pressure and density gradients within the stellar interior 0 ≤  r R  we obtain

dρ dr = 4 C 3 r 3 ( a 3 +ak)+2Cr(3 a 2 k) (1+aC r 2 ) 3 6a C 4 r 5 ( a 3 ak)+6a C 3 r 3 (3 a 2 k)+36 a 2 C 2 r (1+aC r 2 ) 4 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaGfaaqaaaaaaaaa WdbmaalaaabaGaamizaiaaykW7cqaHbpGCaeaacaWGKbGaamOCaaaa cqGH9aqpcqGHsisldaWcaaqaaiaaisdacaWGdbWaaWbaaKqaGfqaba GaaG4maaaajaaycaWGYbWaaWbaaKqaGfqabaGaaG4maaaajaaycaGG OaGaeyOeI0IaamyyamaaCaaajeaybeqaaiaaiodaaaqcaaMaey4kaS IaamyyaiaadUgacaGGPaGaey4kaSIaaGOmaiaadoeacaWGYbGaaiik aiaaiodacaWGHbWaaWbaaKqaGfqabaGaaGOmaaaajaaycqGHsislca WGRbGaaiykaaqaaiaacIcacaaIXaGaey4kaSIaamyyaiaadoeacaWG YbWaaWbaaKqaGfqabaGaaGOmaaaajaaycaGGPaWaaWbaaKqaGfqaba GaaG4maaaaaaqcaaMaeyOeI0YaaSaaaeaacaaI2aGaamyyaiaadoea daahaaqcbawabeaacaaI0aaaaKaaGjaadkhadaahaaqcbawabeaaca aI1aaaaKaaGjaacIcacaWGHbWaaWbaaKqaGfqabaGaaG4maaaajaay cqGHsislcaWGHbGaam4AaiaacMcacqGHRaWkcaaI2aGaamyyaiaado eadaahaaqcbawabeaacaaIZaaaaKaaGjaadkhadaahaaqcbawabeaa caaIZaaaaKaaGjaacIcacaaIZaGaamyyamaaCaaajeaybeqaaiaaik daaaqcaaMaeyOeI0Iaam4AaiaacMcacqGHRaWkcaaIZaGaaGOnaiaa dggadaahaaqcbawabeaacaaIYaaaaKaaGjaadoeadaahaaqcbawabe aacaaIYaaaaKaaGjaadkhaaeaacaGGOaGaaGymaiabgUcaRiaadgga caWGdbGaamOCamaaCaaajeaybeqaaiaaikdaaaqcaaMaaiykamaaCa aajeaybeqaaiaaisdaaaaaaKaaGjabgsMiJkaaicdacaaMc8UaaGPa VlaaykW7aaa@9534@   (43)

d p r dr = 4m C 3 r 3 ( a 3 +ak)+2Cr(3 a 2 k) (1+aC r 2 ) 3 6am C 4 r 5 ( a 3 ak)+6a C 3 r 3 (3 a 2 k)+36 a 2 C 2 r (1+aC r 2 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaKaaGfaaqaaaaaaaaa WdbmaalaaabaGaamizaiaadchadaWgaaqcbawaaiaadkhaaeqaaaqc aawaaiaadsgacaWGYbaaaiabg2da9iabgkHiTmaalaaabaGaaGinai aad2gacaWGdbWaaWbaaKqaGfqabaGaaG4maaaajaaycaWGYbWaaWba aKqaGfqabaGaaG4maaaajaaycaGGOaGaeyOeI0IaamyyamaaCaaaje aybeqaaiaaiodaaaqcaaMaey4kaSIaamyyaiaadUgacaGGPaGaey4k aSIaaGOmaiaadoeacaWGYbGaaiikaiaaiodacaWGHbWaaWbaaKqaGf qabaGaaGOmaaaajaaycqGHsislcaWGRbGaaiykaaqaaiaacIcacaaI XaGaey4kaSIaamyyaiaadoeacaWGYbWaaWbaaKqaGfqabaGaaGOmaa aajaaycaGGPaWaaWbaaKqaGfqabaGaaG4maaaaaaqcaaMaeyOeI0Ya aSaaaeaacaaI2aGaamyyaiaad2gacaWGdbWaaWbaaKqaGfqabaGaaG inaaaajaaycaWGYbWaaWbaaKqaGfqabaGaaGynaaaajaaycaGGOaGa amyyamaaCaaajeaybeqaaiaaiodaaaqcaaMaeyOeI0IaamyyaiaadU gacaGGPaGaey4kaSIaaGOnaiaadggacaWGdbWaaWbaaKqaGfqabaGa aG4maaaajaaycaWGYbWaaWbaaKqaGfqabaGaaG4maaaajaaycaGGOa GaaG4maiaadggadaahaaqcbawabeaacaaIYaaaaKaaGjabgkHiTiaa dUgacaGGPaGaey4kaSIaaG4maiaaiAdacaWGHbWaaWbaaKqaGfqaba GaaGOmaaaajaaycaWGdbWaaWbaaKqaGfqabaGaaGOmaaaajaaycaWG YbaabaGaaiikaiaaigdacqGHRaWkcaWGHbGaam4qaiaadkhadaahaa qcbawabeaacaaIYaaaaKaaGjaacMcadaahaaqcbawabeaacaaI0aaa aaaaaaa@8F34@   (44)

Gradients are negative as expected for a realistic star

For the mass function in r=R  we have 

M(r=R)= R 2 [ aC R 2 ( aC R 2 +2 ) ( aC R 2 +1 ) 2 + 2k( aC R 2 +1 )+k 2 a 2 ( aC R 2 +1 ) ] karctan( aCR ) 4 a 2 aC MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytaiaacIcacaWGYbGaeyypa0JaamOuaiaacMcacqGH9aqpdaWc aaqaaiaadkfaaeaacaaIYaaaamaadmaabaWaaSaaaeaacaWGHbGaam 4qaiaadkfadaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaadggacaWG dbGaamOuamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdaaiaawI cacaGLPaaaaeaadaqadaqaaiaadggacaWGdbGaamOuamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYaGaam4Aamaabmaa baGaamyyaiaadoeacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGymaaGaayjkaiaawMcaaiabgUcaRiaadUgaaeaacaaIYaGaamyy amaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamyyaiaadoeacaWGsb WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaayjkaiaawMca aaaaaiaawUfacaGLDbaacqGHsisldaWcaaqaaiaadUgaciGGHbGaai OCaiaacogacaGG0bGaaiyyaiaac6gadaqadaqaamaakaaabaGaamyy aiaadoeacaWGsbaaleqaaaGccaGLOaGaayzkaaaabaGaaGinaiaadg gadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaadggacaWGdbaaleqa aaaaaaa@76D2@   (45)

Also, in this model the condition 0 v sr 2 = d p r dr =m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadAhadaqhaaWcbaGaam4CaiaadkhaaeaacaaI YaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamiCamaaBaaaleaacaWGYb aabeaaaOqaaiaadsgacaWGYbaaaiabg2da9iaad2gacqGHKjYOcaaI Xaaaaa@47E1@ is satisfied.

Again, by matching the interior metric function Z(x) with the exterior Reissner-Nordström metric at the boundary r=R we can obtain

2M R = 2aC R 2 +( a 2 +2k ) C 2 R 4 ( 1+aC R 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIYaGaamytaaqaaiaadkfaaaGaeyypa0ZaaSaaaeaa caaIYaGaamyyaiaadoeacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaey 4kaSYaaeWaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiaadUgaaiaawIcacaGLPaaacaWGdbWaaWbaaSqabeaacaaIYa aaaOGaamOuamaaCaaaleqabaGaaGinaaaaaOqaamaabmaabaGaaGym aiabgUcaRiaadggacaWGdbGaamOuamaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@50CB@   (46)

Table 1 shows the values of the chosen physical parameters k, a, m and the masses of the corresponding stellar objects for n=1.

k

a

m

M(M)

0.0010

0.2

1/3

4.30

0.0013

0.2

1/3  

4.0

0.0015

0.2

1/3

3.75

Table 1 Parameters k, a, m and stellar masses for n=1

Figures 1, 2, 3, 4, 5, 6 and 7 represent the plots of   M, σ 2 ,ρ, p r ,Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3aaWbaaSqabeaacaaIYaaaaOGaaiilaiaaykW7caaMc8Ua eqyWdiNaaiilaiaaykW7caaMc8UaamiCamaaBaaaleaacaWGYbaabe aakiaacYcacaaMc8UaaGPaVlabfs5aebaa@4A7C@ and e 2v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaaaaa@39FA@ with the radial parameter for n=1.  In all the graphs we considered C=1.

Figure 1 Mass function against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 2 Electric field intensity against the radial coordinate for k=0.0010 (solid line), k=0.0013, (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 3 Charge density σ2 against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 4 Energy density against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 5 Radial pressure against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 6 Anisotropy against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long-dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Figure 7 Metric potential e2v against the radial coordinate for k=0.0010 (solid line), k=0.0013 (long- dash line) and k=0.0015 (dash-dot line). For all the cases a=0.2 and m=1/3.

Table 2 are shown the values of the chosen physical parameters k, a, m and the masses of the corresponding stellar objects for n=2.

k

a

m

M(M)

0.0109

0.102

1/3

2.55

0.0110

0.102

1/3  

2.55

0.0111

0.102

1/3

2.55

Table 2 Parameters k, a, m and stellar masses for n=2

Figures 8, 9, 10, 11, 12, 13 and 14 represent the plots of   M, E 2 2C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaeaadaWcaaqaai aadweadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaam4qaaaaaaaa @3A60@ , σ2, ρ, p r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaeaacaWGWbWaaS baaSqaaiaadkhaaeqaaaaaaa@3927@ , Δ e 2ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaeaacaWGLbWaaW baaSqabeaacaaIYaGaeqyVd4gaaaaaaa@3A9A@  with the radial parameter for n=2.  Figure 15 shows the variation of the metric function e 2 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaaaakmaaCaaaleqabaGaeq4UdWga aaaa@3AEA@ with the radial parameter for a=0.2 and a=0.102.  In all the graphs we considered C=1.

Figure 8 Mass function against the radial coordinate for k=0.0109 (solid line), k=0.011 (long- dash line) and k=0.011 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 9 Electric field intensity against the radial coordinate for k=0.0109 (solid line), k=0.011, (long-dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 10 Charge density σ2 against the radial coordinate for k=0.0109 (solid line), k=0.011 (long-dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 11 Energy density against the radial coordinate for k=0.0109 (solid line), k=0.011 (long-dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 12 Radial pressure against the radial coordinate for k=0.0109 (solid line), k=0.011 (long- dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 13 Anisotropy against the radial coordinate for k=0.0109 (solid line), k=0.011 (long-dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 14 Metric potential e2v against the radial coordinate for k=0.0109 (solid line), k=0.011 (long- dash line) and k=0.0111 (dash-dot line). For all the cases a=0.102 and m=1/3.

Figure 15 Metric potential e against the radial coordinate for a=0.2 (solid line) and a=0.102 (long- dash line).

For the case n=1, the behavior of mass function, electric field intensity and charge density with the radial parameter inside the star are presented in Figures 1,2,3, respectively. The Figures show that these physical variables are non-negative, the mass function and electric field are monotonically increasing throughout the fluid distribution while the charge density shows a decrease for all the chosen k values. Higher values of k mean an increase in electric field intensity and charge density, that is dE/dr>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadweacaGGVaGaamizaiaadkhacqGH+aGpcaaIWaaaaa@3D34@ for 0rR, and a decrease in the values associated with the mass function. Figures 4 and 5 is noted that energy density and radial pressure are monotonically decreasing and non-negative functions and not show an appreciable variation with the radial coordinate for the different k values. The variation of anisotropy with the radial parameter is presented in Figure 6. The anisotropy factor initially has an increase, reaches a maximum and then decreases monotonically. High values of k cause a decrease in values of anisotropy with the radial coordinate. In Figure 7, the metric function e 2v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaaaaa@39FA@ is continuous, well behaved, increases monotonically but shows a decrease when k values increase.

With n=2, again the mass function is regular and strictly growing from the center to the surface of the star and not show appreciable variation when k values increase as noted in Figure 8. In Figure 9, the electric field intensity has an initial increase reached a maximum and then decrease monotonically for all values of k and in the Figure 10 is noted that the charge density also is free of singularities, non-negative and decreases with the radial parameter. In Figures 11 and 12 again the energy density and radial pressure have a monotonic decrease with the radial coordinate for the chosen values of k.  In Figure 13 the behavior of pressure anisotropy also presents a preliminary growth to reach a maximum and then decrease monotonically. Anisotropy decreases when k values increase. The metric function e 2v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaiaadAhaaaaaaa@39FA@  shows continuous growth and well behaved for all k values as noted in Figure 14 and in the Figure 15 the gravitational  potential e 2 λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyzamaaCaaaleqabaGaaGOmaaaakmaaCaaaleqabaGaeq4UdWga aaaa@3AEA@  is increased for lower values of a which corresponds to higher values of the parameter n, i.e.,  for n=2 we have a=0.102 and when  n=1, a=0.2.

We can compare the values calculated for the mass function with observational data. For n=1 the values of k and a allow us to obtain an approximate mass of 4 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaGaeSyMIugabeaaaaa@39EA@  which does not correspond to any known compact star object. With n=2, we have obtained masses very similar to the pulsar PSR J1311-3430 with a mass of 2.7. M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaGaeSyMIugabeaaaaa@39EA@ 73 or it could also be related to the pulsar PSR J0952–0607.74 whose mass is 2.35 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaGaeSyMIugabeaaaaa@39EA@ . Both pulsars are classified as black widow pulsars, which is a type of pulsar hosting a close-orbiting stellar companion that is being consumed by the intense high-energy solar winds of the pulsar and gamma-ray emissions.73−75  The values of the masses for these compact stars are tabulated is Table 3.

Compact Star

Masses M(M)

PSR J1311-3430

2.70

PSR J0952-0607

2.35

Table 3 The approximate values of the masses for the compact stars

There is also quantum contribution to these mass functions that may shed light on how pulsars close-orbiting stellar companion gets consumed by solar winds and gamma-ray emissions switching quaternion operation of gauge fields of light as well as sound outputs quantum activities.72−82 The underlying anisotropy mass effects on compact structures like pulsars perhaps will explain their variability with energy density, pressure, mass function, charge density, anisotropy, electric intensity of field, as well as the exterior metric across boundary correlating results observed here; discontinuous physics may be applied to explain consumption by high energy solar winds and gamma-ray emissions.55−70

Conclusion

In this work we have developed some simple relativistic charged stellar models obtained by solving Einstein-Maxwell field equations for a static spherically symmetric locally anisotropic fluid distribution. By choice of metric potential and the electric charge distribution together with the linear equation of state we have studied the behavior of fluid distribution. With the positive anisotropy, p t > p r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaaBaaaleaacaWG0baabeaakmaaBaaaleaacaaMc8oabeaa kiabg6da+iaadchadaWgaaWcbaGaamOCaaqabaaaaa@3E31@ the stability of the new solutions is examined by the condition 0 v sr 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadAhadaqhaaWcbaGaam4CaiaadkhaaeaacaaI YaaaaOGaeyizImQaaGymaaaa@3FE8@ and it is found that the model developed is potentially stable for the parameters considered. An analytical stellar model with such physical features could play a significant role in the description of internal structure of electrically charged strange stars. The newly obtained models match smoothly with the Schwarzschild exterior metric across the boundary r=R because matter variables and the gravitational potentials of this research are consistent with the physical analysis of these stars.

The new solutions can be related to stellar compact objects such as PSR J1311-3430.73   and PSR J0952–0607.74,75 Physical features associated with the matter, radial pressure, density, anisotropy, charge density and the plots generated suggest that the model with n=2 is like the pulsar PSR J0952–0607 and well behaved. We have ansatz formalisms that connect astrophysics with the quantum nature of these anisotropic matter in stellar compact objects, with observable parameters derived from theoretical modeling to experimental measurements. These have all been necessitated by especially current findings of the James Webb Telescope of six earlier formed massive galaxies to peek into quantum nature with our newly developed point-to-point signal/noise matrix measurements of vibrational or sound and photonic or light gauge fields.

Shape of the metric potential depends on energy matter quantum wave function that can affect local anisotropy with interior to exterior metric across boundary in compact stellar structures like pulsars. The underlying mass functions have effect on behavior of pressure anisotropy variability alongside energy density, charge density, electric intensity of field, as well as radial metric potential in the interior regions extending to exterior of these stellar objects, consumed by the intense high-energy solar winds of the pulsar and gamma-ray emissions, which are manifesting quantum particle wave function astrophysical events, explainable with advancing discontinuum physics with table of realities.

Acknowledgments

None.

Conflicts of interest

The authors declare there is no conflict of interest.

References

  1. Kuhfitting PK. Some remarks on exact wormhole solutions. Adv Stud Theor Phys. 2011;5:365−367.
  2. Bicak J. Einstein equations: exact solutions. Encyclopaedia of Mathematical Physics. 2006;2:165−173.
  3. Haensel P, Zdunik JL, Schaefer R. Strange quark stars. Astrophys J. 1986;160:121−128.
  4. Alcock C, Farhi E, Olinto A. Strange stars. Astrophys J. 1986;310:261.
  5. Komathiraj K, Maharaj SD. Analytical models for quark stars. Int J Mod Phys. 2007;16:1803−1811.
  6. Thirukkanesh S, Maharaj SD. Charged anisotropic matter with a linear equation of state. Class Quantum Gravity. 2008;25(23):235001.
  7. Sharma R, Maharaj SD. A class of relativistic stars with a linear equation of state. Mon Not R Astron Soc. 2007;375:1265−1268.
  8. Maharaj SD, Sunzu JM, Ray S. Some simple models for quark stars. Eur Phys J Plus. 2014;129:3.
  9. Thirukkanesh S, Ragel FC. A class of exact strange quark star model. PRAMANA-J Physics. 2013;81(2):275−286.
  10. Thirukkanesh S, Ragel FC. Strange star model with Tolmann IV type potential. Astrophys Space Sci. 2014;352(2):743−749.
  11. Feroze T, Siddiqui A. Charged anisotropic matter with quadratic equation of state. Gen Rel Grav. 2011;43:1025−1035.
  12. Feroze T, Siddiqui A. Some exact solutions of the einstein-maxwell equations with a quadratic equation of state. Journal of the Korean Physical Society. 2014;65(6):944−947.
  13. Sunzu JM, Maharaj SD, Ray S. Quark star model with charged anisotropic matter. Astrophysics Space Sci. 2014;354:517−524.
  14. Pant N, Pradhan N, Malaver M. Anisotropic fluid star model in isotropic coordinates. International Journal of Astrophysics and Space Science. 2015;3(1):1−5.
  15. Malaver M. Strange quark star model with quadratic equation of sate. Frontiers of Mathematics and Its Applications. 2014;1(1):9−15.
  16. Malaver M. Charged anisotropic models  in a  modified Tolman IV space time. World Scientific News. 2018;101:31−43.
  17. Malaver M. Charged stellar model with a prescribed form of metric function y(x) in a Tolman VII spacetime. World Scientific News. 2018;108:41−52.
  18. Malaver M. Classes of relativistic stars with quadratic equation of state. World Scientific News. 2016;57:70−80.
  19. Malaver M. Análisis comparativo de algunos modelos analíticos para estrellas de quarks. Revista Integración. 2009;27(2): 125−133.
  20. Sunzu J, Danford P. New exact models for anisotropic matter with electric field. Pramana – J Phys. 2017;89:44.
  21. Komathiraj K, Maharaj SD. Classes of exact einstein-maxwell solutions. Gen Rel Grav. 2008;39(12):2079−2093.
  22. Bhar P, Murad MH. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state. Astrophys Space Sci. 2016;361(10):334.
  23. Gupta YK, Kumar M. On the general solution for a class of charged fluid spheres. Gen Relat Gravit. 2005;37:233.
  24. Maharaj SD, Maartens R. Anisotropic spheres with uniform energy density in general relativity. Gen Relativ Gravit. 1989;21:899.
  25. Gokhroo MK, Mehra AL. Anisotropic spheres with variable energy density in general relativity. Gen Relativ Gravit. 1994;26:75.    
  26. Singh T, Singh GP, Srivastava RS. Static anisotropic fluid spheres in general relativity with nonuniform density. Int J Theor Phys. 1992;31:545.
  27. Singh T, Singh GP, Helmi AM. New solutions for charged anisotropic fluid spheres in general relativity. II Nuovo Cimento B. 1995;110:387.   
  28. Patel LK, Vaidya SK. Anisotropic fluid spheres in general relativity. Acta Phys Hung A Heavy Ion Phys. 1996;3:177–188.  
  29. Tikekar R, Thomas VO. Anisotropic fluid distributions on pseudo-spheroidal spacetimes. Pramana J Phys. 1999;52:237.
  30. Mak MK, Harko T. Quark stars admitting a one-parameter group of conformal motions. Int J Mod Phys. 2004;13;149.
  31. Chaisi M, Maharaj SD. Compact anisotropic spheres with prescribed energy density. Gen Relativ Gravit. 2005;37:1177.
  32. Chaisi M, Maharaj SD. Anisotropic static solutions in modelling highly compact bodies. Pramana J Phys. 2006;66(3):609−614.
  33. Chaisi M, Maharaj SD. A new algorithm for anisotropic solutions. Pramana J Phys. 2006;66(2):313−324.  
  34. Chaisi M, Maharaj SD. Equation of state for anisotropic spheres. Gen Relativ Gravit. 2006;38:1723.      
  35. Takisa PM, Maharaj SD. Some charged polytropic models. Gen Rel Grav. 2013;45:1951−1969.
  36. Thirukkanesh S, Ragel FC. Exact anisotropic sphere with polytropic equation of state. Pramana J Phys. 2012;78(5):687−696.
  37. Tello-Ortiz F, Malaver M, Rincón A, et al. Relativistic anisotropic fluid spheres satisfying a non-linear equation of state. Eur Phys J C. 2020;80:371.
  38. Malaver M, Iyer R. Analytical model of compact star with a new version of modified chaplygin equation of state. Applied Physics. 2022;5(1):18−36.
  39. Errehymy A, Daoud M. A new well-behaved class of compact strange astrophysical model consistent with observational data. Eur Phys JC. 2021;81:556.
  40. Bowers RL, Liang EPT. Anisotropic spheres in general relativity. Astrophys J. 1974;188:657−665.
  41. Esculpi M, Malaver M, Aloma E. A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general Relativity. Gen Relat Grav. 2007;39(5):633−652.
  42. Malaver M. Generalized nonsingular model for compact stars electrically charged. World Scientific News. 2018;92(2):327−339.
  43. Malaver M. Some new models of anisotropic compact stars with quadratic equation of state. World Scientific News. 2018;109:180−194.
  44. Malaver M. Models for quark stars with charged anisotropic matter. Research Journal of Modeling and Simulation. 2015;1(4):65−71.
  45. Malaver M. New mathematical models of compact stars with charge distributions. Int J Systems Science and Applied Mathematics. 2017;2(5):93−98.
  46. Cosenza M, Herrera L, Esculpi M, et al. Evolution of radiating anisotropic spheres in general relativity. Phys Rev D. 1982;25(10):2527−2535.
  47. Herrera L. Cracking of self-gravitating compact objects. Phys Lett A. 1992;165:206−210.
  48. Herrera L, Ponce de Leon J. Perfect fluid spheres admitting a one‐parameter group of conformal motions. J Math Phys. 1985;26:778.
  49. Herrera L, Nuñez L. Modeling 'hydrodynamic phase transitions' in a radiating spherically symmetric distribution of matter. Astrophys J. 1989;339(1):339−353.
  50. Herrera L, Ruggeri GJ, Witten L. Adiabatic contraction of anisotropic spheres in general relativity. The Astrophysical Journal. 1979;234:1094−1099.
  51. Herrera L, Jimenez L, Leal L, Ponce de Leon J, et al. Anisotropic fluids and conformal motions in general relativity. J Math Phys. 1984;25:3274.
  52. Sokolov AI. Phase transitions in a superfluid neutron liquid. Sov Phys JETP. 1980;52(4):575−576.
  53. Usov VV. Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys Rev D. 2004;70(6):067301.
  54. Bhar P, Murad MH, Pant N. Relativistic anisotropic stellar models with Tolman VII spacetime. Astrophys Space Sci. 2015;359:13.
  55. Iyer R, Neill CO, Malaver M, et al. Modeling of gage discontinuity dissipative physics. Canadian Journal of Pure and Applied Sciences. 2022;16(1):5367−5377.
  56. Markoulakis E, Konstantaras A, Chatzakis J, et al. Real time observation of a stationary magneton. Results in Physics. 2019;15:102793.
  57. Iyer R, Malaver M, Taylor E. Theoretical to experimental design observables general conjectural modeling transforms measurement instrumented physics compendium. Research Journal of Modern Physics. 2023;2(1):1−14.  
  58. Malaver M, Kasmaei H, Iyer R. Magnetars and stellar objects: Applications in astrophysics, Eliva Press Global Ltd., Moldova, Europe: 2022;274 p.
  59. Iyer R, Malaver M. Some new models of anisotropic relativistic stars in linear and quadratic regime. International Astronomy and Astrophysics Research Journal. 2023;5(1):1−19.
  60. Iyer R, Malaver M. Charged dark energy stars in a finch-skea spacetime. arXiv:2206.13943.
  61. Iyer R, Malaver M, Kar A, et al.  Buchdahl Spacetime with compact body solution of charged fluid and scalar field Theory; 2022.
  62. Malaver M, Kasmaei HD, Iyer R, et al. A theoretical model of dark energy Stars in einstein-gauss bonnet gravity. Applied Physics. 2021;4(3):1−21.
  63. Taylor E, Iyer R. Discontinuum physics leads to a table of realities for making predictions. Physics Essays. 2022;35(4):395−397.
  64. Iyer R. Quantum physical observables with conjectural modeling: Paradigm shifting formalisms II: A review. Oriental Journal of Physical Sciences. 2022;7(2).
  65. Iyer R. Algorithm of time preliminary theoretical results pointing to space geometry physics transforms. Canadian Journal of Pure and Applied Sciences. 2023;17(2):5673−5685.
  66. Iyer R. Strong gravity versus weak gravity: fiber transforms gravity- bundle - strings: preliminary results. Canadian Journal of Pure and Applied Sciences. 2023;17(2):5697−5703.
  67. Iyer R, Malaver M, Khan I. Study of compact stars with buchdahl potential in 5-D einstein-gauss-bonnet gravity. Physical Science International Journal. 2022;26(9-10):1−18.
  68. Tolman RC. Static solutions of einstein's field equations for spheres of fluid. Phys Rev. 1939;55(4):364−373.
  69. Oppenheimer JR, Volkoff G. On massive neutron cores. Phys Rev. 1939;55(4):374−381.
  70. Durgapal MC, Bannerji R. New analytical stellar model in general relativity. Phys Rev. 1983;D27:328−331.
  71. Lighuda AS, Sunzu JM, Maharaj SD, et al. Charged stellar model with three layers. Res Astron Astrophys. 2021;21(12):310.
  72. Bibi R, Feroze T, Siddiqui A. Solution of the einstein-maxwell equations with anisotropic negative pressure as a potential model of a dark energy star. Canadian Journal of Physics. 2016;94(8):758−762.
  73. Ray PS, Ransom SM, Cheung CC, et al. Radio detection of the fermi LAT blind search millisecond pulsar J1311-3430. The Astrophysical Journal Letters. 2013;763(1):L13.
  74. Ho WCG, Heinke CO, Chugunov A. XMM-Newton detection and spectrum of the second fastest spinning pulsar PSR J0952-0607. The Astrophysical Journal. 2019;882(2):128.
  75. Fan YZ, Han MZ, Jiang JL, et al. Maximum gravitational mass MTOV=2.25+0.08−0.07M⊙ inferred at about 3% precision with multimessenger data of neutron stars; 2023.
  76. Razina O, Tsyba P, Meirbekov B, et al. Cosmological einstein–maxwell model with g-essence.International Journal of Modern Physics D. 2019;28(10):1950126.
  77. El-Nabulsi RA. Maxwell brane cosmology with higher-order string curvature corrections, a nonminimally coupled scalar field, dark matter-dark energy interaction and a varying speed of light. International Journal of Modern Physics D. 2009;18(2):289−318.
  78. Podolský J, Papajčík M. All solutions of einstein-maxwell equations with a cosmological constant in 2+1 dimensions. Phys Rev D. 2022;105:064004.
  79. El-Nabulsi RA. Nonstandard lagrangian cosmology. Journal of Theoretical and Applied Physics. 2013;7:58.
  80. El-Nabulsi RA. Phase transitions in the early universe with negatively induced supergravity cosmological constant. Chinese Physics Letters. 2006;23(5):1124.
  81. Easson DA, Manton T, Svesko A. Einstein-maxwell theory and the weyl double copy. Phys Rev D. 2023;107:044063.
  82. Billò M, Frau M, Lerda A, et al. Localization vs holography in 4d N = 2 quiver theories. JHEP; 2022.
Creative Commons Attribution License

©2023 Malaver, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.