Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 3 Issue 2

Possible model of forming relativistic jets and disks in astrophysical objects

GN Kichigin

Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences, Russia

Correspondence: GN Kichigin, Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences, PO Box 291, Irkutsk 664033, Russia, Tel 7(3952)564547, Fax 7(3952)425557

Received: March 20, 2019 | Published: March 29, 2019

Citation: Kichigin GN. Possible model of forming relativistic jets and disks in astrophysical objects. Phys Astron Int J. 2019;3(2):90-92. DOI: 10.15406/paij.2019.03.00163

Download PDF

Abstract

I analyze the solution of the problem concerning ejection of charged particles from a sphere, outside which there is the Parker magnetic field. Depending on the magnetic field polarity, the particles escaping the sphere are shown to be either focused along the field symmetry axis, or drift from the axis along the equatorial plane. From this analysis, it follows that the obtained solutions may appear useful to understand the process of forming relativistic jets and disks observed in many space objects.

Keywords: astrophysics, relativistic jets and disks, magnetic field polarity, equatorial plane

Introduction

Recently, astrophysicists have paid a special attention to such observational events in space as supernova, gamma-ray bursts (GRB), bursters, processes in active galactic nuclei (AGNs), quasars, etc. They are considered to emerge due to catastrophic processes in space, as a result of which a compact region forms, wherefrom a powerful electro-magnetic radiation emits, and fluxes of various energetic particles eject. We assume that the latter are cosmic rays (CRs). In this paper, I focus on the quasi-spherical region produced at the catastrophe site. This region is a source of relativistic and ultrarelativistic particles. This region existence time is determined by the processes occurring inside that may be either short-, or long-term. For example, to elucidate the formation of pulsing GRB,1 the popular fireball model Piran2 is used. This model presupposes that there forms a compact ball (with the initial size of about 100 km) expanding at a relativistic velocity and comprising the quanta locked in it and electron-positron pairs. At an instant, quanta dramatically leave the ball thus forming a short gamma burst. Further, charged relativistic particles eject. They are accelerated in shocks (inner and outer) produced as a result of the ball shell "bloating" in a plasma medium at a near-light velocity, and of fast motion of substance in the ball.

Problem statement and input equations

In this study, I attempt to clarify to what consequences a CR ejection from an expanding spherical formation (that is assumed to form as a result of catastrophic phenomena in space) will lead. To describe the dynamics of high-energy particles ejected from the addressed shell, the following problem is stated. Let there be a sphere from which CR eject radially, and let there be space plasma and Parker magnetic field (further - Parker field). The Parker field is chosen on the grounds that for most stars, due to their rotation and emitting plasma wind from their surfaces, the structure of electromagnetic fields in their vicinity is similar to that inherent in the plasma heliosphere of the Sun.3 I term the electromagnetic field and plasma outside a star the heliosphere, whose spatial scale considerably surpasses the size of the sphere from which particles eject. I will use the terminology accepted in the solar heliosphere: if the magnetic field is directed away from the Sun in the Northern hemisphere, then it is positive; if the field is directed to the Sun surface in the same hemisphere, it is considered negative. In the cylindrical coordinate system (r,z,j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikaa baaaaaaaaapeGaamOCaiaacYcacaWG6bGaaiilaiaadQgapaGaaiyk aaaa@3C4E@ that I use, the distance from the star will be designated through R=  r 2 + z 2 1/2 (R >>  r where r is the star radius) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0Jaaeiia8aadaqadaqaa8qacaWGYbWdamaa Caaabeqaa8qacaaIYaaaaiabgUcaRiaadQhapaWaaWbaaeqabaWdbi aaikdaaaaapaGaayjkaiaawMcaamaaCaaabeqaa8qacaaIXaGaai4l aiaaikdaaaWdaiaacIcapeGaamOuaiaabccacqGH+aGpcqGH+aGpca qGGaGaamOCa8aadaWgaaqaa8qacqWIzksza8aabeaapeGaam4Daiaa dIgacaWGLbGaamOCaiaadwgacaWGYbWdamaaBaaabaWdbiablMPiLb Wdaeqaa8qacaWGPbGaam4CaiaabccacaWG0bGaamiAaiaadwgacaqG GaGaam4CaiaadshacaWGHbGaamOCaiaabccacaWGYbGaamyyaiaads gacaWGPbGaamyDaiaadohapaGaaiykaaaa@628F@ . Then, the Parker electromagnetic field components in the heliosphere for the star magnetic field positive polarity takes the form:

H φ r  =  H r r 2 /(u R 2 ),        H r r  = H r r 2 / R 3 , H z r,z  = H z r 2 / R 3 ,                   E r r,z   = ( r /c)rz H r / R 3 ,   E z r   =( r /c) r 2 H r / R 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabu qaaaaabaaeaaaaaaaaa8qacaWGibWdamaaBaaabaWdbiabeA8aQbWd aeqaamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaabccacq GH9aqpcaqGGaGaeyOeI0Iaamisa8aadaWgaaqaa8qacqWIzksza8aa beaatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacfaWdbiaa=zsica WGYbGaamOCa8aadaWgaaqaa8qacqWIzksza8aabeaadaahaaqabeaa peGaaGOmaaaacaGGVaWdaiaacIcapeGaamyDaiaadkfapaWaaWbaae qabaWdbiaaikdaaaWdaiaacMcapeGaaiilaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckaa8aabaWdbiaadIeapaWaaSbaae aapeGaamOCaaWdaeqaamaabmaabaWdbiaadkhaa8aacaGLOaGaayzk aaWdbiaabccacqGH9aqpcaWGibWdamaaBaaabaWdbiablMPiLbWdae qaa8qacaWGYbGaamOCa8aadaWgaaqaa8qacqWIzksza8aabeaadaah aaqabeaapeGaaGOmaaaacaGGVaGaamOua8aadaahaaqabeaapeGaaG 4maaaacaGGSaaapaqaa8qacaWGibWdamaaBaaabaWdbiaadQhaa8aa beaadaqadaqaa8qacaWGYbGaaiilaiaadQhaa8aacaGLOaGaayzkaa WdbiaabccacqGH9aqpcaWGibWdamaaBaaabaWdbiablMPiLbWdaeqa a8qacaWG6bGaamOCa8aadaWgaaqaa8qacqWIzksza8aabeaadaahaa qabeaapeGaaGOmaaaacaGGVaGaamOua8aadaahaaqabeaapeGaaG4m aaaacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaaWdaeaapeGaaiiOaiaadweapaWaaSbaaeaapeGaamOCaa WdaeqaamaabmaabaWdbiaadkhacaGGSaGaamOEaaWdaiaawIcacaGL PaaadaWgaaqaa8qacaGGGcaapaqabaWdbiabg2da9iabgkHiTiaabc capaGaaiika8qacaWFMeIaamOCa8aadaWgaaqaa8qacqWIzksza8aa beaapeGaai4laiaadogapaGaaiyka8qacaWGYbGaamOEaiaadIeapa WaaSbaaeaapeGaeSyMIugapaqabaWdbiaadkhapaWaaSbaaeaapeGa eSyMIugapaqabaWdbiaac+cacaWGsbWdamaaCaaabeqaa8qacaaIZa aaaiaacYcaa8aabaWdbiaacckacaWGfbWdamaaBaaabaWdbiaadQha a8aabeaadaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaamaaBaaaba Wdbiaacckaa8aabeaapeGaeyypa0ZdaiaacIcapeGaa8NjHiaadkha paWaaSbaaeaapeGaeSyMIugapaqabaWdbiaac+cacaWGJbWdaiaacM capeGaamOCa8aadaahaaqabeaapeGaaGOmaaaacaWGibWdamaaBaaa baWdbiablMPiLbWdaeqaa8qacaWGYbWdamaaBaaabaWdbiablMPiLb Wdaeqaa8qacaGGVaGaamOua8aadaahaaqabeaapeGaaG4maaaacaGG Uaaaaaaa@CD29@    (1)

For the star magnetic field negative polarity, all the components are recorded with the reverse sign. Further, we assume that, by order of magnitude, r q  u, H r 2   H o r q 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9 gzLbvyNv2CaeHbcfgDH52zaGqbcKqbacbaaaaaaaaapeGaa8NjHiaa dkhapaWaaSbaaeaapeGaamyCaaWdaeqaa8qacqGHijYUcaqGGaGaam yDaiaacYcacaWGibWdamaaBaaabaWdbiablMPiLbWdaeqaa8qacaWG YbWdamaaBaaabaWdbiablMPiLbWdaeqaamaaCaaabeqaa8qacaaIYa aaaiabgIKi7kaabccacaWGibWdamaaBaaabaWdbiaad+gaa8aabeaa peGaamOCa8aadaWgaaqaa8qacaWGXbaapaqabaWaaWbaaeqabaWdbi aaikdaaaaaaa@544B@ , where r q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWdamaaBaaabaWdbiaadghaa8aabeaaaaa@38DD@  is a characteristicdistance from the star, at which the radial and azimuthal components of the magnetic field are equal to each other: H r r q ,0  = H φ r q ,0  = H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaabaWdbiaadkhaa8aabeaadaqadaqaa8qa caWGYbWdamaaBaaabaWdbiaadghaa8aabeaapeGaaiilaiaaicdaa8 aacaGLOaGaayzkaaWdbiaabccacqGH9aqpcaWGibWdamaaBaaabaWd biabeA8aQbWdaeqaamaabmaabaWdbiaadkhapaWaaSbaaeaapeGaam yCaaWdaeqaa8qacaGGSaGaaGimaaWdaiaawIcacaGLPaaapeGaaeii aiabg2da9iaadIeapaWaaSbaaeaapeGaam4BaaWdaeqaaaaa@4BCB@ .

The goal of my study is to calculate the particle motion trajectories escaping from the sphere and further moving in the Parker field. I assume that the ejected particle density is much less than the density of plasma surrounding the sphere. Therefore, the particle dynamics may be considered in a one-particle approximation. I present the equations describing the particle motion in the Parker field (Formulas (1)) in the view

d(γdr/dt)/dt=γ v φ 2 /r+q E r /m+q[ H z v φ   H φ v z ]/ mc , d(γr v φ )/dt= qr[ H r v z   H z v r ]/ mc , d(γdz/dt)/dt= q E z /m + q[ H r v φ     H r v φ ]/ mc ,  m c 2 dγ/dt= q( E r v r +  E z v z ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabq qaaaaabaaeaaaaaaaaa8qacaWGKbWdaiaacIcacqaHZoWzpeGaamiz aiaadkhacaGGVaGaamizaiaadshapaGaaiyka8qacaGGVaGaamizai aadshacqGH9aqppaGaeq4SdC2dbiaadAhapaWaaSbaaeaapeGaeqOX dOgapaqabaWaaWbaaeqabaWdbiaaikdaaaGaai4laiaadkhacqGHRa WkcaWGXbGaamyra8aadaWgaaqaa8qacaWGYbaapaqabaWdbiaac+ca caWGTbGaey4kaSIaamyCa8aacaGGBbWdbiaadIeapaWaaSbaaeaape GaamOEaaWdaeqaa8qacaWG2bWdamaaBaaabaWdbiabeA8aQbWdaeqa a8qacqGHsislcaqGGaGaamisa8aadaWgaaqaa8qacqaHgpGAa8aabe aapeGaamODa8aadaWgaaqaa8qacaWG6baapaqabaGaaiyxa8qacaGG VaWdamaabmaabaWdbiaad2gacaWGJbaapaGaayjkaiaawMcaa8qaca GGSaaapaqaa8qacaWGKbWdaiaacIcacqaHZoWzpeGaamOCaiaadAha paWaaSbaaeaapeGaeqOXdOgapaqabaGaaiyka8qacaGGVaGaamizai aadshacqGH9aqpcaqGGaGaamyCaiaadkhapaGaai4wa8qacaWGibWd amaaBaaabaWdbiaadkhaa8aabeaapeGaamODa8aadaWgaaqaa8qaca WG6baapaqabaWdbiabgkHiTiaacckacaWGibWdamaaBaaabaWdbiaa dQhaa8aabeaapeGaamODa8aadaWgaaqaa8qacaWGYbaapaqabaGaai yxa8qacaGGVaWdamaabmaabaWdbiaad2gacaWGJbaapaGaayjkaiaa wMcaa8qacaGGSaaapaqaa8qacaWGKbWdaiaacIcacqaHZoWzpeGaam izaiaadQhacaGGVaGaamizaiaadshapaGaaiyka8qacaGGVaGaamiz aiaadshacqGH9aqpcaqGGaGaamyCaiaadweapaWaaSbaaeaapeGaam OEaaWdaeqaa8qacaGGVaGaamyBaiaacckacqGHRaWkcaqGGaGaamyC a8aacaGGBbWdbiaadIeapaWaaSbaaeaapeGaamOCaaWdaeqaa8qaca WG2bWdamaaBaaabaWdbiabeA8aQbWdaeqaamaaBaaabaWdbiaaccka a8aabeaapeGaeyOeI0IaaiiOaiaadIeapaWaaSbaaeaapeGaamOCaa Wdaeqaa8qacaWG2bWdamaaBaaabaWdbiabeA8aQbWdaeqaaiaac2fa peGaai4la8aadaqadaqaa8qacaWGTbGaam4yaaWdaiaawIcacaGLPa aapeGaaiilaiaacckaa8aabaWdbiaad2gacaWGJbWdamaaCaaabeqa a8qacaaIYaaaaiaadsgapaGaeq4SdC2dbiaac+cacaWGKbGaamiDai abg2da9iaabccacaWGXbWdaiaacIcapeGaamyra8aadaWgaaqaa8qa caWGYbaapaqabaWdbiaadAhapaWaaSbaaeaapeGaamOCaaWdaeqaa8 qacqGHRaWkcaqGGaGaamyra8aadaWgaaqaa8qacaWG6baapaqabaWd biaadAhapaWaaSbaaeaapeGaamOEaaWdaeqaaiaacMcapeGaaiOlaa aaaaa@C7D2@   (2)

Here, q, m are charge and rest mass of particles, velocity components v ϕ = r dj/dt, v r =dr/dt, v z =dz/dt,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWdamaaBaaabaWdbiabew9aMbWdaeqaa8qacqGH9aqp caqGGaGaamOCaiaabccacaWGKbGaamOAaiaac+cacaWGKbGaamiDai aacYcacaWG2bWdamaaBaaabaWdbiaadkhaa8aabeaapeGaeyypa0Ja amizaiaadkhacaGGVaGaamizaiaadshacaGGSaGaamODa8aadaWgaa qaa8qacaWG6baapaqabaWdbiabg2da9iaadsgacaWG6bGaai4laiaa dsgacaWG0bGaaiilaiaadogaaaa@5413@ is the speed of light, γ= [1 ( v φ 2 + v r 2 + v z 2 )/ c 2 ] 1/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC geaaaaaaaaa8qacqGH9aqppaGaai4wa8qacaaIXaGaaeiiaiabgkHi T8aacaGGOaWdbiaadAhapaWaaSbaaeaapeGaeqOXdOgapaqabaWaaW baaeqabaWdbiaaikdaaaGaey4kaSIaamODa8aadaWgaaqaa8qacaWG YbaapaqabaWaaWbaaeqabaWdbiaaikdaaaGaey4kaSIaamODa8aada Wgaaqaa8qacaWG6baapaqabaWaaWbaaeqabaWdbiaaikdaaaWdaiaa cMcapeGaai4laiaadogapaWaaWbaaeqabaWdbiaaikdaaaWdaiaac2 fadaahaaqabeaapeGaeyOeI0IaaGymaiaac+cacaaIYaaaaaaa@511E@ is the dimensionless energy normalized to the particle rest energy mc2. Due to the azimuthal symmetry, the generalized pulse moment persists:

mgr v φ +q  A φ r/c=Const, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaam4zaiaadkhacaWG2bWdamaaBaaabaWdbiabeA8a QbWdaeqaa8qacqGHRaWkcaWGXbGaaeiiaiaadgeapaWaaSbaaeaape GaeqOXdOgapaqabaWdbiaadkhacaGGVaGaam4yaiabg2da9iaadoea caWGVbGaamOBaiaadohacaWG0bGaaiilaaaa@4AD2@

Where A φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbWdamaaBaaabaWdbiabeA8aQbWdaeqaaaaa@3973@ is the vector potential azimuthal component. As test particles, I address protons, for which the charge is equal to the electron charge, q =е MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaaeiiaiabg2da9iaadwdbaaa@39FE@ . Let us designate the radius of the sphere, from which protons eject, through R o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaad+gaa8aabeaaaaa@38BB@ . Then, let us introduce the dimensionless variables χ= r/ R o ,x=z/ R o ,τ=ωt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHhpWycqGH9aqpcaqGGaGaamOCaiaac+cacaWGsbWdamaa BaaabaWdbiaad+gaa8aabeaapeGaaiilaiaadIhacqGH9aqpcaWG6b Gaai4laiaadkfapaWaaSbaaeaapeGaam4BaaWdaeqaa8qacaGGSaGa eqiXdqNaeyypa0JaeqyYdCNaamiDaiaacYcaaaa@4B55@ where ω= e H o /mc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpcaqGGaGaamyzaiaadIeapaWaaSbaaeaa peGaam4BaaWdaeqaa8qacaGGVaGaamyBaiaadogaaaa@3FAE@ , and designations a= R o / r q ,β = u/c,λ=  ( χ 2 + ξ 2 ) 1/2 ,ψ= dφ/dτ,ε=m c 2 / e H o R o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaeyypa0JaamOua8aadaWgaaqaa8qacaWGVbaapaqa baWdbiaac+cacaWGYbWdamaaBaaabaWdbiaadghaa8aabeaapeGaai ilaiabek7aIjaabccacqGH9aqpcaqGGaGaamyDaiaac+cacaWGJbGa aiilaiabeU7aSjabg2da9iaabccapaGaaiika8qacqaHhpWypaWaaW baaeqabaWdbiaaikdaaaGaey4kaSIaeqOVdG3damaaCaaabeqaa8qa caaIYaaaa8aacaGGPaWaaWbaaeqabaWdbiaaigdacaGGVaGaaGOmaa aacaGGSaGaeqiYdKNaeyypa0JaaeiiaiaadsgacqaHgpGAcaGGVaGa amizaiabes8a0jaacYcacqaH1oqzcqGH9aqpcaWGTbGaam4ya8aada ahaaqabeaapeGaaGOmaaaacaGGVaWdamaabmaabaWdbiaadwgacaWG ibWdamaaBaaabaWdbiaad+gaa8aabeaapeGaamOua8aadaWgaaqaa8 qacaWGVbaapaqabaaacaGLOaGaayzkaaaaaa@6B0F@ , by using which we obtain relations for accelerations along the axes r, φ, z

d 2 χ/d τ 2 =χ ψ 2  +ξχψ/(γ a 2 λ 3 )+χdξ/dτ/(γa λ 2 )  (dχ/dτ).(dγ/dτ)/γβεχξ/(γa λ 3 ), d 2 φ/d τ 2 = (χdξ/dτξdχ/dτ)/(χγ a 2 λ 3 )  2ψ(dχ/dτ)/χψ(dγ/dτ)/γ, d 2 ξ/d τ 2 =βε χ 2 /(γa λ 3 )  (dξ/dτ).(dγ/dτ)/γ χ(dχ/dτ)/(γa λ 2 )  χ 2 ψ/(γ a 2 λ 3 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqa aaaaaaaaWdbiaadsgapaWaaWbaaeqabaWdbiaaikdaaaGaeq4XdmMa ai4laiaadsgacqaHepaDpaWaaWbaaeqabaWdbiaaikdaaaGaeyypa0 Jaeq4XdmMaeqiYdK3damaaCaaabeqaa8qacaaIYaaaaiaacckacqGH RaWkcqaH+oaEcqaHhpWycqaHipqEcaGGVaWdaiaacIcacqaHZoWzpe Gaamyya8aadaahaaqabeaapeGaaGOmaaaacqaH7oaBpaWaaWbaaeqa baWdbiaaiodaaaWdaiaacMcapeGaey4kaSIaeq4XdmMaamizaiabe6 7a4jaac+cacaWGKbGaeqiXdqNaai4la8aacaGGOaGaeq4SdC2dbiaa dggacqaH7oaBpaWaaWbaaeqabaWdbiaaikdaaaWdaiaacMcapeGaae iiaiabgkHiTiaabccapaGaaiika8qacaWGKbGaeq4XdmMaai4laiaa dsgacqaHepaDpaGaaiykaiaac6cacaGGOaWdbiaadsgapaGaeq4SdC 2dbiaac+cacaWGKbGaeqiXdq3daiaacMcapeGaai4la8aacqaHZoWz peGaeyOeI0IaeqOSdiMaeqyTduMaeq4XdmMaeqOVdGNaai4la8aaca GGOaGaeq4SdC2dbiaadggacqaH7oaBpaWaaWbaaeqabaWdbiaaioda aaWdaiaacMcapeGaaiilaaqaaiaadsgapaWaaWbaaeqabaWdbiaaik daaaGaeqOXdOMaai4laiaadsgacqaHepaDpaWaaWbaaeqabaWdbiaa ikdaaaGaeyypa0Jaaeiia8aacaGGOaWdbiabeE8aJjaadsgacqaH+o aEcaGGVaGaamizaiabes8a0jabgkHiTiabe67a4jaadsgacqaHhpWy caGGVaGaamizaiabes8a09aacaGGPaWdbiaac+capaGaaiika8qacq aHhpWypaGaeq4SdC2dbiaadggapaWaaWbaaeqabaWdbiaaikdaaaGa eq4UdW2damaaCaaabeqaa8qacaaIZaaaa8aacaGGPaWdbiaabccacq GHsislcaqGGaGaaGOmaiabeI8a59aacaGGOaWdbiaadsgacqaHhpWy caGGVaGaamizaiabes8a09aacaGGPaWdbiaac+cacqaHhpWycqGHsi slcqaHipqEpaGaaiika8qacaWGKbWdaiabeo7aN9qacaGGVaGaamiz aiabes8a09aacaGGPaWdbiaac+capaGaeq4SdC2dbiaacYcaaeaaca WGKbWdamaaCaaabeqaa8qacaaIYaaaaiabe67a4jaac+cacaWGKbGa eqiXdq3damaaCaaabeqaa8qacaaIYaaaaiabg2da9iabek7aIjabew 7aLjabeE8aJ9aadaahaaqabeaapeGaaGOmaaaacaGGVaWdaiaacIca cqaHZoWzpeGaamyyaiabeU7aS9aadaahaaqabeaapeGaaG4maaaapa Gaaiyka8qacaqGGaGaeyOeI0Iaaeiia8aacaGGOaWdbiaadsgacqaH +oaEcaGGVaGaamizaiabes8a09aacaGGPaGaaiOlaiaacIcapeGaam iza8aacqaHZoWzpeGaai4laiaadsgacqaHepaDpaGaaiyka8qacaGG VaWdaiabeo7aN9qacaGGGcGaeyOeI0Iaeq4Xdm2daiaacIcapeGaam izaiabeE8aJjaac+cacaWGKbGaeqiXdq3daiaacMcapeGaai4la8aa caGGOaGaeq4SdC2dbiaadggacqaH7oaBpaWaaWbaaeqabaWdbiaaik daaaWdaiaacMcapeGaaeiiaiabgkHiTiabeE8aJ9aadaahaaqabeaa peGaaGOmaaaacqaHipqEcaGGVaWdaiaacIcacqaHZoWzpeGaamyya8 aadaahaaqabeaapeGaaGOmaaaacqaH7oaBpaWaaWbaaeqabaWdbiaa iodaaaWdaiaacMcapeGaaiilaaaaaa@183C@

These equations were solved numerically at the following values of the parameters (characteristic of the Sun's heliosphere):

  1. At the r q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWaaSbaaeaacaWGXbaabeaaaaa@38AF@ radius, the magnetic field value H o = 2.2  10 5 G, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaabaWdbiaad+gaa8aabeaapeGaeyypa0Ja aeiiaiaaikdacaGGUaGaaGOmaiaabccacaaIXaGaaGima8aadaahaa qabeaapeGaai4eGiaaiwdaaaGaam4raiaacYcaaaa@41DF@
  2. The relation of the star wind velocity to the speed of light β = u/c = 0.001.

Parameter a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbaaaa@3787@ varies within 10a1000 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGimaiabgsMiJkaadggacqGHKjYOcaaIXaGaaGim aiaaicdacaaIWaaaaa@3F4F@ , parameter ε=  10 2 /a, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH1oqzcqGH9aqpcaqGGaGaaGymaiaaicdapaWaaWbaaeqa baWdbiaacobiaaWdamaaCaaabeqaa8qacaaIYaaaaiaac+cacaWGHb Gaaiilaaaa@3FA4@ the value of energy is confined to values γ 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzcqGHKjYOcaqGGaGaaGymaiaaicdaaaa@3C15@ .

From the particle motion equations, one can see that the magnetic field value, H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaabaWdbiaad+gaa8aabeaaaaa@38B1@ , and the energy value, γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzaaa@3848@ , are included in the equations in the γ/ H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzcaGGVaGaamisa8aadaWgaaqaa8qacaWGVbaapaqa baaaaa@3B0B@ combination. From this it follows that, at changes in values H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaabaWdbiaad+gaa8aabeaaaaa@38B1@ and γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzaaa@3848@ , the particle trajectories in the heliosphere calculated from the motion equations are identical as long as γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzaaa@3848@ and H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGibWdamaaBaaabaWdbiaad+gaa8aabeaaaaa@38B1@ vary in such a manner that the γ/ H o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzcaGGVaGaamisa8aadaWgaaqaa8qacaWGVbaapaqa baaaaa@3B0B@  relation persists constants. I consider the addressed star to be similar to the Sun, but it may have other parameters (magnetic field, rotational speed, mass, radius, etc.). I assume that the values of the magnetic fields and of the proton energy are such that the Larmor radius of particles in the heliosphereismuch less than the characteristic size r q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWaaSbaaeaacaWGXbaabeaaaaa@38AF@ therefore, one may qualitatively analyze the proton motion in the heliosphere in the drift approximation. As known from the particle motion analysis in the solar heliosphere, particles in the Parker field experience two drift types: centrifugal and gradient, under whose effect particles eventually drift against the heliosphere electric field direction.

Calculation results, discussion and conclusions

Considering the heliosphere axially symmetric relative to the axis around which the star rotates, and addressing the proton motion in the absence of collisions in the relativistic approximation, the equation set (2) closed form solution is presented in detail in (Kichigin 2014). All the particle dynamics regularities obtained from qualitative analysis in the positive and negative Parker field prove to be true in the numerical calculations below. The results of CR trajectory calculations are provided in the heliosphere meridional cut only in one quadrant of the Northern Hemisphere, because in all the adjacent quadrants the pattern of trajectories is reflection symmetric. In all the calculations, the correctness of calculations was tested through checking the values of the persisting values: total energy ([g+βξ/(λαε)]= Const), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aacUfaqaaaaaaaaaWdbiaadEgacqGHRaWkcqaHYoGycqaH+oaEcaGG VaWdaiaacIcapeGaeq4UdWMaeqySdeMaeqyTdu2daiaacMcacaGGDb Wdbiabg2da9iaabccacaWGdbGaam4Baiaad6gacaWGZbGaamiDa8aa caGGPaWdbiaacYcaaaa@4D48@  and total momentum ([g c 2 ψξ/(λ α 2 )]= Const) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aacUfaqaaaaaaaaaWdbiaadEgacaWGJbWdamaaCaaabeqaa8qacaaI YaaaaiabeI8a5jaacobicqaH+oaEcaGGVaWdaiaacIcapeGaeq4UdW MaeqySde2damaaCaaabeqaa8qacaaIYaaaa8aacaGGPaGaaiyxa8qa cqGH9aqpcaqGGaGaam4qaiaad+gacaWGUbGaam4CaiaadshapaGaai ykaaaa@4DC5@ . The accuracy of these values' persistence was not worse 10 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGima8aadaahaaqabeaapeGaai4eGiaaigdacaaI Xaaaaaaa@3A84@ . Figure 1 shows the 5-GeV CR trajectories for the magnetic field positive polarity. CRs radially escape from the sphere points with initial distances from axis z  χ 0 =  r o / R o = 0.01, 0.1, 0.3, 0.5, 0.7, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bGaaiiOaiabeE8aJ9aadaWgaaqaa8qacaaIWaaapaqa baWdbiabg2da9iaabccacaWGYbWdamaaBaaabaWdbiaad+gaa8aabe aapeGaai4laiaadkfapaWaaSbaaeaapeGaam4BaaWdaeqaa8qacqGH 9aqpcaqGGaGaaGimaiaac6cacaaIWaGaaGymaiaacYcacaqGGaGaaG imaiaac6cacaaIXaGaaiilaiaabccacaaIWaGaaiOlaiaaiodacaGG SaGaaeiiaiaaicdacaGGUaGaaGynaiaacYcacaqGGaGaaGimaiaac6 cacaaI3aGaaiilaaaa@5592@ parameter a= 100 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaaaa@3B5F@ , and the initial coordinates along the z axis are determined from relations ξ 0 =  z o/ R o =  (1  χ 0 2 ) 1/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaaGimaaWdaeqaa8qacqGH9aqp caqGGaGaamOEa8aadaWgaaqaa8qacaWGVbGaai4laaWdaeqaa8qaca WGsbWdamaaBaaabaWdbiaad+gaa8aabeaapeGaeyypa0Jaaeiia8aa caGGOaWdbiaaigdacaqGGaGaai4eGiabeE8aJ9aadaWgaaqaa8qaca aIWaaapaqabaWaaWbaaeqabaWdbiaaikdaaaWdaiaacMcadaahaaqa beaapeGaaGymaiaac+cacaaIYaaaaaaa@4BA4@ . As it follows from Figure 1, all the particles escaping from the sphere drift towards the equatorial plane, reach the latter, and further drift along it moving away from the z axis.

Figure 1 Trajectories of the 5-GeV proton ejected from the sphere (dotted line) with the initial distances from the z axis χ0= 0.01, 0.1, 0.3, 0.5, 0.7 indicated near the curves. Particles escape from the sphere, then, drifting along the arc, reach the equatorial plane, and further drift along this plane moving away from the z axis. Parameter a= 100.

Figure 2 Trajectories of the 1.2-, 1.5- and 5-GeV protons ejected from the sphere with the initial distance from the z axisχ0 = 0.5 for the magnetic field negative polarity. The coordinates on the axes are presented in the logarithmic scale. Particles escape from the sphere, then they drift toward the z axis,and further move along this axis away from the equatorial plane. The population of the points belonging to the coordinates of the particle guiding centers is approximatedby the plot of the function z = Const r2 shown in Figure (solid line). Parameter a =   100 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaeyypa0JaaeiiaiaaigdacaaIWaGaaGimaaaa@3B5F@ . Figure 2 shows the trajectories of the 1.2-, 1.5- and 5-GeV protons ejected from the sphere with the initial distance from the z axis χ0 = 0.5 for the magnetic field negative polarity, with the coordinates on the axes presented in the logarithmic scale. As one can see in Figure 2, the particle departure of the particle guiding center from the z axis is low. Analyzing the calculation results shows that the particle guiding centers moving along the z axis form the surface, whose projection onto the quadrant is well approximated by the z   =   C o n s t   r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG6bGaaeiiaiabg2da9iaabccacaWGdbGaam4Baiaad6ga caWGZbGaamiDaiaabccacaWGYbWdamaaCaaabeqaa8qacaaIYaaaaa aa@4123@ dependence shown in Figure 2 (solid line).

Figure 2 Trajectories of the 1.2-, 1.5- and 5-GeV protons ejected from the sphere with the initial distance from the z axis χ0= 0.5 for the magnetic field negative polarity. The coordinates on the axes are presented in the logarithmic scale. Particles escape from the sphere, and then they drift toward the z axis,and further move along this axis away from the equatorial plane. The population of the points belonging to the coordinates of the particle guiding centers is approximatedby the plot of the function z= Const r2 shown in Figure (solid line). Parameter a= 100.

From the obtained analytical estimates in Kichigin4 and also from the results of the above numerical calculations, it follows that the Parker field possesses focusing properties, i.e., it play the role of a lens having the next properties plays: 1) the positive field collects all the energetic protons released radially from the sphere in the equatorial plane, 2) for the negative field, protons are focused in two thin rays with the divergence angle of several degrees that are directed away from the sphere along the field symmetry axis (star rotation axis). These properties of the Parker field have a satisfactory explanation, if one takes into account, that, eventually, in one case the particle drift leads to its moving into the equatorial plane, and, in the other, particles ejected from both Northern and Southern hemispheres further move away from the equatorial plane being close to the symmetry axis. In this paper, I generalize and develop the results of the analytical estimates obtained in Kichigin4 and the above numerical calculations. Let us start with analyzing the set of Equations (2) describing the particle dynamics in the Parker field. From the structure of the Equations (2), it follows that the particle trajectories calculated through these equations remain the same; even one interchanges simultaneously the particle charge signs and the electromagnetic field component signs in Equations (2). This implies that antiprotons (or electrons of the same energies) ejected from the sphere into the negative Parker field, eventually, (as well as protons ejected into the positive Parker field) will get to the equatorial plane scattering fanlike from the symmetry axis, thus forming a disk. Further, if one assumes that both positive and negative charged particles are simultaneously ejected from the sphere into the Parker field, then, eventually, for the positive field, protons will scatter fanlike along the equatorial plane moving away from the field symmetry axis, whereas antiprotons (and electrons of the same energies) will move away from the sphere along the field symmetry axis, thus forming two thin rays (jets).

All of these grounds allow me to formulate the principal result of this study: charged particles ejected radially from the sphere, outside which there is the Parker field are split by the field into two separate groups having different charge signs. One group moving away from the field symmetry axis will move in the equatorial plane. The other represents two thin rays of the particles moving away from the sphere along the field symmetry axis. Hence, it follows that, at radial ejection of particles from the sphere outside which there is the Parker field of any polarity, we will eventually see a pattern comprising two basic details: 1) two rays (jets) of the same-sign particles that moving away in two opposite directions from the sphere along the field symmetry axis, and 2) a disk (perpendicular to the field symmetry axis) formed by the opposite-sign particles that move along the disk withdrawing from the symmetry axis. The disk and jets are supposed to visually manifest themselves due to the emission of the electromagnetic waves excited by relativistic and ultrarelativistic charged particles in the presence of a magnetic field. One may assume that the addressed specific focusing properties of the Parker field may appear useful to understand the formation of relativistic jets and disks observed in the regions of the space where explosive phenomena occur. The study was performed with a support from the Program of the Presidium of the Russian Academy of Sciences No. 31 «High Energy Physics and Neutrino Astrophysics» within the «Cosmic Rays in Heliospheric Processes from Ground-based Observations» Project.

Acknowledgments

None.

Conflict of interest

The author declares there is no conflicts of interest.

References

Creative Commons Attribution License

©2019 Kichigin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.