Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 2

On mathematical analysis for bianchi type–I string cosmological model in modified theory of relativity

Dubey RK,1 Brajesh Vikram Shukla,2 Neelam Yadav3

1Department of Mathematics, Government Model Science College Rewa, India
2APS University, Rewa, India
3Govt PG College Magaraha, Mirzapur, India

Correspondence: RK Dubey, Department of Mathematics, Government Model Science College Rewa, Madhya Pradesh, India

Received: January 21, 2017 | Published: March 5, 2018

Citation: Dubey RK, Shukla BV, Yadav N. On mathematical analysis for bianchi type–I string cosmological model in modified theory of relativity. Phys Astron Int J. 2018;2(2):127-130. DOI: 10.15406/paij.2018.02.00058

Download PDF

Abstract

The present paper deals with a spatially homogenous Bianchi Type- I massive string cosmological model with bulk viscosity and decaying vacuum energy density. The Einstein's field equations are solved by applying a special law of variation of Hubble parameter that yields a constant deceleration parameter. Assuming the constant deceleration parameter negative and suitable form of decaying vacuum energy density, an accelerating model of the universe is derived in the presence of string scenario. The strings eventually disappear from the universe for sufficiently large-times. The physical and geometric properties of the models are also discussed.

Keywords: cosmic strings Bianchi type–I model, bulk viscosity, accelerated expansion

Introduction

The study of cosmic strings has been a subject of much interest for cosmologists. It is believed that these strings give rise to density perturbations leading to the formation of galaxies.1 String theory is a hypothetical framework in which the point-like particles are replaced by one-dimensional objects called strings. On distance scales larger than the string scale, a string in believed to work just like an ordinary particle. In the early universe (strings dominated era), the strings produce fluctuations in the density of particles. We may speculate that as strings vanish and particles become important, then the fluctuations grow in such a way that finally we shall end up with galaxies. The presence of string in the early universe can be explained using grand unified theories (GUT) as already discussed.2‒4 These strings have stress energy and are classified as geometric and massive strings.

Letelier PS5,6 studied a gauge on variant model of a cloud formed by geometric strings and used the model as a source of gravitational field. Stachel J7 has developed the classical theory of geometric strings as a theory of simple surface forming time-like bivector field in an arbitrary background space-time. Letelier PS5 has formulated the energy-momentum tensor for massive strings and explained that the massive strings are formed by geometric strings with particles attached its extension. Further, Letelier PS8 used this idea for deriving cosmological models of Bianchi type- I and Kantowski-Sachs space-times in the presence of massive strings. Matraverse DR9 has presented a class of exact solutions of Einstein's field equations with a two-parameter family of classical strings. Krori KD et al.10 have obtained some exact solutions in string cosmology for homogenous spaces for Bianchi type II, VI, VIII and IX. Banerjee et al.11 have studied Bianchi type-I string cosmological models with and without the source-free magnetic field. Tikekar R & Patel LK12 have obtained some Bianchi type III cosmological solutions of massive strings in the presence of a magnetic field. Shri Ram & Singh JK13 have presented some spatially homogenous type-I Bianchi massive string models with and without source free magnetic field. Chakraborty S14 has discussed string cosmology in Bianchi type VIo space-time. Bali R et al.15,16 have studied spatially homogenous string cosmological models in different physical contexts. Wang has investigated a Bianchi type III massive string cosmological model with magnetic field. Pradhan A17 has discussed anisotropic Bianchi type I magnetized string cosmological models with decaying vacuum energy density MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizdaa@3AFC@ (t). Saha B & Visinescu M18 and Saha B et al.19 have studied Bianchi Type I models with cosmic strings in the presence of magnetic flux.

In general relativity, cosmological models are usually constructed under the assumption that the matter content is an idealized prefect fluid. This assumption may be a good approximation to the actual matter content of the universe at present time. The evolution of isotropic cosmological models filled with perfect fluids has been extensively studied by many workers. It is certainly of considerable interest to study cosmologies with richer structure both geometrically and physically than the standard prefect fluid FRW models. It is of interest to take into account dissipative process such as viscosity and heat conduction in cosmological models. Misner CW20 has studied the effect of viscosity on the evolution of cosmological models.

Several authors viz. Belinski VA & Khalatnikov IM,21 Banerjee A & Santos NO,22 Beesham A,23 Bali et al.24 Shri Ram et al.25 have obtained exact solutions of Einstein's field equations by taking viscous effects in isotropic as well as anisotropic space-times. The recent observations of Riess AG et al.26 and Perlmutter S27 have led to the belief that a cosmological constant in a kind of repulsive pressure, dubbed as dark energy, and is most suitable candidate to explain the recent observations that the universe is not only expanding but also accelerating. The cosmological term MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizdaa@3AFC@ is also interpreted as the vacuum energy density. Cosmological models with time-dependent MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizdaa@3AFC@ term have been investigated so far by many authors. Recently, Bali R & Swati28 have investigated a Bianchi type-I massive string cosmological model with bulk viscosity and vacuum energy density.

In this paper, we obtain a new spatially homogenous Bianchi type-I massive string cosmological models with bulk viscosity and vacuum energy density. The plan of the paper is as follows. In Section 2, we present the metric and field equations by assuming a special law of variation of Hubble parameter. We discuss the physical and kinematical properties of the model are Section 4. In Section 5 we outline some concluding remarks.

Metric and field equations

We consider the spatially homogenous Bianchi type-I line element given by
d s 2 =d t 2 + A 2 d x 2 + B 2 d y 2 + C 2 d z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqGH9aqpcqGHsislcaWGKbGaamiDaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIaamyqaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaamizaiaadIhalmaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiabgUcaRiaadkealmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiaadsgacaWG5bWcdaahaaqcbasabeaajugWaiaaikdaaa qcLbsacqGHRaWkcaWGdbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaWGKbGaamOEaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaa@5FA5@                  (1)
Where the metric potentials A, B and C are functions of cosmic time t.

The energy-momentum tensor for a cloud of massive string dust with a bulk viscous fluid of string in given by Letelier PS8 as
T μ υ =ρ υ μ υ ν λ x μ x ν ξθ( δ μ υ + v μ v υ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaDaaajeaibaqcLbmacqaH8oqBaKqaGeaajugW aiabew8a1baajugibiabg2da9iabeg8aYjabew8a1LqbaoaaBaaaje aibaqcLbmacqaH8oqBaSqabaqcLbsacqaHfpqDlmaaCaaajeaibeqa aKqzadGaeqyVd4gaaKqzGeGaeyOeI0Iaeq4UdWMaamiEaSWaaSbaaK qaGeaajugWaiabeY7aTbqcbasabaqcLbsacaWG4bWcdaahaaqcbasa beaajugWaiabe27aUbaajugibiabgkHiTiabe67a4jabeI7aXLqbao aabmaakeaajugibiabes7aKTWaa0baaKqaGeaajugWaiabeY7aTbqc basaaKqzadGaeqyXduhaaKqzGeGaey4kaSIaamODaSWaaSbaaKqaGe aajugWaiabeY7aTbqcbasabaqcLbsacaWG2bWcdaahaaqcbasabeaa jugWaiabew8a1baaaOGaayjkaiaawMcaaaaa@75A6@                              (2)
Where υ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew8a1TWaaSbaaKqaGeaajugWaiabeY7aTbqcbasabaaa aa@3E79@ and x μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacqaH8oqBaKqaGeqaaaaa @3DAF@ satisfy conditions
υ μ υ μ = x μ x μ =1, υ μ x μ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew8a1TWaaSbaaKqaGeaajugWaiabeY7aTbqcbasabaqc LbsacqaHfpqDlmaaCaaajeaibeqaaKqzadGaeqiVd0gaaKqzGeGaey ypa0JaeyOeI0IaamiEaKqbaoaaBaaajeaibaqcLbmacqaH8oqBaSqa baqcLbsacaWG4bWcdaahaaqcbasabeaajugWaiabeY7aTbaajugibi abg2da9iaaigdacaGGSaGaeqyXdu3cdaWgaaqcbasaaKqzadGaeqiV d0gajeaibeaajugibiaadIhalmaaCaaajeaibeqaaKqzadGaeqiVd0 gaaKqzGeGaeyypa0JaaGimaiaac6caaaa@600B@                                                              (3)
Here ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYbaa@3B0E@ is the proper energy density for a could of strings with particles attached to them, λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSbaa@3B02@ is the string tension density, υ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew8a1TWaaWbaaKqaGeqabaqcLbmacqaH8oqBaaaaaa@3E50@ is the four-velocity of the particles, x μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaCaaajeaibeqaaKqzadGaeqiVd0gaaaaa@3D86@  is a unit space- like vector representing the direction of string, ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4baa@3B11@ is the coefficient of bulk viscosity and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXbaa@3B04@ is the expansion scalar. If the particle density of the configuration is denoted by ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaadchaaKqaGeqaaaaa @3DB1@ , then we have
ρ= ρ p +λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjabg2da9iabeg8aYLqbaoaaBaaajeaibaqcLbma caWGWbaaleqaaKqzGeGaey4kaSIaeq4UdWgaaa@4400@                                                                                             (4)
Einstein's field equations for a system of strings with vacuum energy density are given by
R μ υ 1 2 R δ μ υ = T μ υ + δ μ υ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaDaaajeaibaqcLbmacqaH8oqBaKqaGeaajugW aiabew8a1baajugibiabgkHiTKqbaoaalaaakeaajugibiaaigdaaO qaaKqzGeGaaGOmaaaacaWGsbGaeqiTdq2cdaqhaaqcbasaaKqzadGa eqiVd0gajeaibaqcLbmacqaHfpqDaaqcLbsacqGH9aqpcqGHsislca WGubWcdaqhaaqcbasaaKqzadGaeqiVd0gajeaibaqcLbmacqaHfpqD aaqcLbsacqGHRaWkcqGHNis2cqaH0oazlmaaDaaajeaibaqcLbmacq aH8oqBaKqaGeaajugWaiabew8a1baaaaa@62EB@                                                      (5)
Where R μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaBaaajeaibaqcLbmacqaH8oqBcqaH9oGBaKqa Geqaaaaa@3F41@ is the Ricci tensor and R is the scalar curvature in the gravitational unit 8πG=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIdacqaHapaCcaWGhbGaeyypa0JaaGymaaaa@3E5A@ , c=1

We assume that the string's direction is along the x-axis, so that x μ =( 1 A ,0,0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaCaaajeaibeqaaKqzadGaeqiVd0gaaKqzGeGa eyypa0tcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaK qzGeGaamyqaaaacaGGSaGaaGimaiaacYcacaaIWaGaaiilaiaaicda aOGaayjkaiaawMcaaaaa@48D5@ . In commoving coordinate system v μ =( 0,0,0,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhajuaGdaahaaWcbeqcbasaaKqzadGaeqiVd0gaaKqz GeGaeyypa0tcfa4aaeWaaOqaaKqzGeGaaGimaiaacYcacaaIWaGaai ilaiaaicdacaGGSaGaaGymaaGccaGLOaGaayzkaaqcLbsacaGGSaaa aa@4899@ the field equations (5) together with (2) and (3) lead to the following system of equations.
B ¨ B + C ¨ C + B ˙ C ˙ BC =λ+ξθ+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGcbGbamaaaOqaaKqzGeGaamOqaaaa cqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGdbGbamaaaOqaaKqzGeGaam 4qaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGcbGbaiaaceWGdbGb aiaaaOqaaKqzGeGaamOqaiaadoeaaaGaeyypa0Jaeq4UdWMaey4kaS IaeqOVdGNaeqiUdeNaey4kaSIaey4jIKTaaiilaaaa@50AA@                                                    (6)
A ¨ A + C ¨ C + A ˙ C ˙ AC =ξθ+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGbbGbamaaaOqaaKqzGeGaamyqaaaa cqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGdbGbamaaaOqaaKqzGeGaam 4qaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGbbGbaiaaceWGdbGb aiaaaOqaaKqzGeGaamyqaiaadoeaaaGaeyypa0JaeqOVdGNaeqiUde Naey4kaSIaey4jIKTaaiilaaaa@4E10@                                                          (7)
A ¨ A + B ¨ B + A ˙ B ˙ AB =ξθ+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGbbGbamaaaOqaaKqzGeGaamyqaaaa cqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGcbGbamaaaOqaaKqzGeGaam OqaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGbbGbaiaaceWGcbGb aiaaaOqaaKqzGeGaamyqaiaadkeaaaGaeyypa0JaeqOVdGNaeqiUde Naey4kaSIaey4jIKTaaiilaaaa@4E0C@                                                          (8)
A ˙ B ˙ AB + A ˙ C ˙ AC + B ˙ C ˙ BC =ρ+. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGbbGbaiaaceWGcbGbaiaaaOqaaKqz GeGaamyqaiaadkeaaaGaey4kaSscfa4aaSaaaOqaaKqzGeGabmyqay aacaGabm4qayaacaaakeaajugibiaadgeacaWGdbaaaiabgUcaRKqb aoaalaaakeaajugibiqadkeagaGaaiqadoeagaGaaaGcbaqcLbsaca WGcbGaam4qaaaacqGH9aqpcqaHbpGCcqGHRaWkcqGHNis2caGGUaaa aa@4F85@                                                       (9)
Where an over dot denotes ordinary derivative with respect to t. For the model (1), the spatial volume (V) and average scale factor a are given by
V= a 3 =ABC. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfacqGH9aqpcaWGHbWcdaahaaqcbasabeaajugWaiaa iodaaaqcLbsacqGH9aqpcaWGbbGaamOqaiaadoeacaGGUaaaaa@42F3@                                                                        (10)
The expansion scalar ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacqaH4oqCaOGaayjkaiaawMcaaaaa@3D2F@ , shear scalar ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsacqaHdpWCaOGaayjkaiaawMcaaaaa@3D3C@ , the anisotropy parameter (Am) and, Hubble parameter H are given by
θ= A ˙ A + B ˙ B + C ˙ C , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjabg2da9KqbaoaalaaakeaajugibiqadgeagaGa aaGcbaqcLbsacaWGbbaaaiabgUcaRKqbaoaalaaakeaajugibiqadk eagaGaaaGcbaqcLbsacaWGcbaaaiabgUcaRKqbaoaalaaakeaajugi biqadoeagaGaaaGcbaqcLbsacaWGdbaaaiaacYcaaaa@48B3@                                                                     (11)
σ= 1 2 ( A ˙ 2 A 2 + B ˙ 2 B + C ˙ 2 C ) 1 6 θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZjabg2da9KqbaoaalaaakeaajugibiaaigdaaOqa aKqzGeGaaGOmaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGabm yqayaacaWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaa dgealmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWkju aGdaWcaaGcbaqcLbsaceWGcbGbaiaajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaOqaaKqzGeGaamOqaaaacqGHRaWkjuaGdaWcaaGcba qcLbsaceWGdbGbaiaalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOqa aKqzGeGaam4qaaaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0scfa4aaS aaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI2aaaaiabeI7aXTWaaWba aKqaGeqabaqcLbmacaaIYaaaaaaa@6061@ ,                                           (12)
Am= 1 3 μ=1 3 ( H μ H H ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacaWGTbGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGym aaGcbaqcLbsacaaIZaaaaKqbaoaaqahakeaajuaGdaqadaGcbaqcfa 4aaSaaaOqaaKqzGeGaamisaSWaaSbaaKqaGeaajugWaiabeY7aTbqc basabaqcLbsacqGHsislcaWGibaakeaajugibiaadIeaaaaakiaawI cacaGLPaaaaKqaGeaajugWaiabeY7aTjabg2da9iaaigdaaKqaGeaa jugWaiaaiodaaKqzGeGaeyyeIuoalmaaCaaajeaibeqaaKqzadGaaG Omaaaaaaa@570C@ ,                                                       (13)
H= 1 3 ( H 1 + H 2 + H 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacqGH9aqpjuaGdaWcaaGcbaqcLbsacaaIXaaakeaa jugibiaaiodaaaqcfa4aaeWaaOqaaKqzGeGaamisaSWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaamisaSWaaSbaaKqa GeaajugWaiaaikdaaKqaGeqaaKqzGeGaey4kaSIaamisaSWaaSbaaK qaGeaajugWaiaaiodaaKqaGeqaaaGccaGLOaGaayzkaaqcLbsacaGG Uaaaaa@4EEB@                                                         (14)
Where H 1 = A ˙ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeajuaGdaWgaaqcfasaaiaaigdaaeqaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGabmyqayaacaaakeaajugibiaadgeaaa aaaa@40AD@ , H 2 = B ˙ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiqadkeagaGaaaGcbaqcLbsaca WGcbaaaaaa@4181@ and H 3 = C ˙ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiqadoeagaGaaaGcbaqcLbsaca WGdbaaaaaa@4184@  are the directional Hubble parameters in the direction of x, y and z-axes respectively. An important observational quantity in cosmology is the deceleration parameter (q) defined by
q= a a ¨ a ˙ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacqGH9aqpcqGHsisljuaGdaWcaaGcbaqcLbsacaWG HbGabmyyayaadaaakeaajugibiqadggagaGaaKqbaoaaCaaaleqaje aibaqcLbmacaaIYaaaaaaaaaa@439B@ .                                                                                               (15)
The sign of q indicates whether the model inflates or not. The positive value of q corresponds to the standard decelerating universe and the negative value indicates inflation.

Solutions of the field equations

We now obtain exact solutions of (6)-(9) which are four equations in seven unknowns A, B, C, ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYbaa@3B0E@ , λ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjaacYcaaaa@3BB2@ ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4baa@3B11@  and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizdaa@3AFC@ . Therefore to obtain a deterministic model, we need extra conditions depending upon the physical nature of the problem.

Subtracting (8) from (7), we get
B ¨ B C ¨ C + A ˙ A ( B ˙ B C ˙ C )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGcbGbamaaaOqaaKqzGeGaamOqaaaa cqGHsisljuaGdaWcaaGcbaqcLbsaceWGdbGbamaaaOqaaKqzGeGaam 4qaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsaceWGbbGbaiaaaOqaaKqz GeGaamyqaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGabmOqay aacaaakeaajugibiaadkeaaaGaeyOeI0scfa4aaSaaaOqaaKqzGeGa bm4qayaacaaakeaajugibiaadoeaaaaakiaawIcacaGLPaaajugibi abg2da9iaaicdaaaa@50FC@ .                                                     (16)
Equation (16), on integration, provides
B ˙ B C ˙ C = k a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGcbGbaiaaaOqaaKqzGeGaamOqaaaa cqGHsisljuaGdaWcaaGcbaqcLbsaceWGdbGbaiaaaOqaaKqzGeGaam 4qaaaacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGRbaakeaajugibiaa dggajuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaaaaaa@47F8@                                                                                           (17)
Where k is an arbitrary constant. To treat (17) we consider the following relation
A n =BC, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgealmaaCaaajeaibeqaaKqzadGaamOBaaaajugibiab g2da9iaadkeacaWGdbGaaiilaaaa@4060@ n0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacqGHGjsUcaaIWaaaaa@3CC2@  (Constant)                                                               (18)
As suggested by Goswami et al.29 Future, we set
B= A n 2 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeacqGH9aqpcaWGbbWcdaahaaqcbasabeaalmaaliaa jeaibaqcLbmacaWGUbaajeaibaqcLbmacaaIYaaaaaaajugibiaads eaaaa@420C@ , C= A n 2 D 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoeacqGH9aqpcaWGbbqcfa4aaWbaaSqabKqaGeaalmaa liaajeaibaqcLbmacaWGUbaajeaibaqcLbmacaaIYaaaaaaajugibi aadsealmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaaaaa@45C8@                                                        (19)
Where D(t) is an arbitrary function. Substituting (19) in (17) and integrating of the resulting equation we get
D ˙ D = K a 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsaceWGebGbaiaaaOqaaKqzGeGaamiraaaa cqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGlbaakeaajugibiaadggaju aGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaaqcLbsacaGGSaaaaa@44C5@                                                                                                 (20)
Where K= k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUeacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGRbaakeaa jugibiaaikdaaaaaaa@3EA0@ . From (10) and (18), we find that
V= a 3 = A n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfacqGH9aqpcaWGHbWcdaahaaqcbasabeaajugWaiaa iodaaaqcLbsacqGH9aqpcaWGbbWcdaahaaqcbasabeaajugWaiaad6 gacqGHRaWkcaaIXaaaaaaa@44C7@                                                                                         (21)

We can determine the function D(t) from (20) if the average scale factor a is a known function of time. Hence to obtain an expression for the average scale factor a, we can apply the special law of variation of Hubble parameter proposed by Berman (1983) that yields constant value of the deceleration parameter. It may be noted that here most- of the well known models in general relativity and alternative theories including inflationary models are model with constant deceleration parameter. For accelerating models of the universe, we take the constant negative. Then (15) gives the solution
a= ( ct+d ) 1 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacqGH9aqpjuaGdaqadaGcbaqcLbsacaWGJbGaamiD aiabgUcaRiaadsgaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaWcda WcaaqcbasaaKqzadGaaGymaaqcbasaaKqzadGaaGymaiabgUcaRiaa dghaaaaaaaaa@4810@                                                                                      (22)
Where c0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacqGHGjsUcaaIWaaaaa@3CB7@ and d are integration constants. This equation implies that the condition of expansion is 1+q>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacqGHRaWkcaWGXbGaeyOpa4JaaGimaiaac6caaaa@3E55@

Substituting (22) in (20) and integrating, we obtain
D=Nexp{ K(1+q) c(2q) ( ct+d ) q2 1+q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadseacqGH9aqpcaWGobGaciyzaiaacIhacaGGWbqcfa4a aiWaaOqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaam4saiaacI cacaaIXaGaey4kaSIaamyCaiaacMcaaOqaaKqzGeGaam4yaiaacIca caaIYaGaeyOeI0IaamyCaiaacMcaaaqcfa4aaeWaaOqaaKqzGeGaam 4yaiaadshacqGHRaWkcaWGKbaakiaawIcacaGLPaaajuaGdaahaaWc beqcbasaaSWaaSaaaKqaGeaajugWaiaadghacqGHsislcaaIYaaaje aibaqcLbmacaaIXaGaey4kaSIaamyCaaaaaaaakiaawUhacaGL9baa aaa@5DCE@                                   (23)
Where N is integration constant. Without loss of generality we can take N=1. Therefore from (19), (21), (22) and (23), the solutions for the scale factor A, B and C are obtained as
A= ( ct+d ) 3 (n+1)(1+q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacqGH9aqpjuaGdaqadaGcbaqcLbsacaWGJbGaamiD aiabgUcaRiaadsgaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaWcda ahaaqccasabeaalmaalaaajiaibaqcLbmacaaIZaaajiaibaqcLbma caGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiikaiaaigdacqGHRa WkcaWGXbGaaiykaaaaaaaaaaaa@4D8E@                                                                             (24)
B= ( ct+d ) 3n 2(n+1)(1+q) exp{ K(1+q) c(2q) (ct+d) q2 1+q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeacqGH9aqpjuaGdaqadaGcbaqcLbsacaWGJbGaamiD aiabgUcaRiaadsgaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaWcda ahaaqccasabeaalmaalaaajiaibaqcLbmacaaIZaGaamOBaaqccasa aKqzadGaaGOmaiaacIcacaWGUbGaey4kaSIaaGymaiaacMcacaGGOa GaaGymaiabgUcaRiaadghacaGGPaaaaaaaaaqcLbsaciGGLbGaaiiE aiaacchajuaGdaGadaGcbaqcLbsacqGHsisljuaGdaWcaaGcbaqcLb sacaWGlbGaaiikaiaaigdacqGHRaWkcaWGXbGaaiykaaGcbaqcLbsa caWGJbGaaiikaiaaikdacqGHsislcaWGXbGaaiykaaaacaGGOaGaam 4yaiaadshacqGHRaWkcaWGKbGaaiykaSWaaWbaaKqaGeqabaWcdaWc aaqcbasaaKqzadGaamyCaiabgkHiTiaaikdaaKqaGeaajugWaiaaig dacqGHRaWkcaWGXbaaaaaaaOGaay5Eaiaaw2haaaaa@6FBC@         (25)
C= (ct+d) 3n 2(n+1)(1+q) exp{ K(1+q) c(2q) (ct+d) q2 1+q } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoeacqGH9aqpcaGGOaGaam4yaiaadshacqGHRaWkcaWG KbqcLbmacaGGPaWcdaahaaqcbasabeaalmaaCaaajiaibeqaaSWaaW baaKGaGeqabaWcdaWcaaqccasaaKqzadGaaG4maiaad6gaaKGaGeaa jugWaiaaikdacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaGaaiikai aaigdacqGHRaWkcaWGXbGaaiykaaaaaaaaaaaajugibiGacwgacaGG 4bGaaiiCaKqbaoaacmaakeaajuaGdaWcaaGcbaqcLbsacaWGlbGaai ikaiaaigdacqGHRaWkcaWGXbGaaiykaaGcbaqcLbsacaWGJbGaaiik aiaaikdacqGHsislcaWGXbGaaiykaaaacaGGOaGaam4yaiaadshacq GHRaWkcaWGKbGaaiykaSWaaWbaaKqaGeqabaWcdaWcaaqcbasaaKqz adGaamyCaiabgkHiTiaaikdaaKqaGeaajugWaiaaigdacqGHRaWkca WGXbaaaaaaaOGaay5Eaiaaw2haaaaa@6E66@             (26)
To get a deterministic model of universe, we assume that
= α a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizlabg2da9Kqbaoaalaaakeaajugibiabeg7aHbGc baqcLbsacaWGHbWcdaahaaqcbasabeaajugWaiaaiodaaaaaaaaa@4299@                                                                                (27)
Where α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ is a constant. Then, from (22) and (27), the vacuum energy density MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizdaa@3AFC@  has the value given by
= α (ct+d) 3 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgEIizlabg2da9Kqbaoaalaaakeaajugibiabeg7aHbGc baqcLbsacaGGOaGaam4yaiaadshacqGHRaWkcaWGKbGaaiykaSWaaW baaKqaGeqabaWcdaWcaaqcbasaaKqzadGaaG4maaqcbasaaKqzadGa aGymaiabgUcaRiaadghaaaaaaaaaaaa@4AE8@                                                               (28)

Physical feature of cosmological model

For the present model, we obtain
H 1 = 3c ( 1+q )( n+1 )( ct+d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaiodacaWGJbaakeaajuaGda qadaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaGccaGLOaGaayzkaaqc fa4aaeWaaOqaaKqzGeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawM caaKqbaoaabmaakeaajugibiaadogacaWG0bGaey4kaSIaamizaaGc caGLOaGaayzkaaaaaaaa@51FC@ ,                                                             (29)
H 2 = 3nc 2( 1+q )( n+1 )( ct+d ) + K (ct+d) 3 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaiodacaWGUbGaam4yaaGcba qcLbsacaaIYaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRiaadgha aOGaayjkaiaawMcaaKqbaoaabmaakeaajugibiaad6gacqGHRaWkca aIXaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGJbGaamiD aiabgUcaRiaadsgaaOGaayjkaiaawMcaaaaajugibiabgUcaRKqbao aalaaakeaajugibiaadUeaaOqaaKqzGeGaaiikaiaadogacaWG0bGa ey4kaSIaamizaiaacMcajuaGdaahaaWcbeqcbasaaSWaaSaaaKqaGe aajugWaiaaiodaaKqaGeaajugWaiaaigdacqGHRaWkcaWGXbaaaaaa aaaaaa@6451@ ,                   (30)
H 3 = 3nc 2( 1+q )( n+1 )( ct+d ) K (ct+d) 3 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIealmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaiodacaWGUbGaam4yaaGcba qcLbsacaaIYaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgUcaRiaadgha aOGaayjkaiaawMcaaKqbaoaabmaakeaajugibiaad6gacqGHRaWkca aIXaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGJbGaamiD aiabgUcaRiaadsgaaOGaayjkaiaawMcaaaaajugibiabgkHiTKqbao aalaaakeaajugibiaadUeaaOqaaKqzGeGaaiikaiaadogacaWG0bGa ey4kaSIaamizaiaacMcalmaaCaaajeaibeqaaSWaaSaaaKqaGeaaju gWaiaaiodaaKqaGeaajugWaiaaigdacqGHRaWkcaWGXbaaaaaaaaaa aa@63CF@ ,                   (31)
H= c ( 1+q )( ct+d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIeacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGJbaakeaa juaGdaqadaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaGccaGLOaGaay zkaaqcfa4aaeWaaOqaaKqzGeGaam4yaiaadshacqGHRaWkcaWGKbaa kiaawIcacaGLPaaaaaaaaa@48FD@ .                                                                           (32)
The expansion scalar, shear scalar and anisotropy parameter are obtained as
θ= 3c ( 1+q )( ct+d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeI7aXjabg2da9KqbaoaalaaakeaajugibiaaiodacaWG JbaakeaajuaGdaqadaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaGcca GLOaGaayzkaaqcfa4aaeWaaOqaaKqzGeGaam4yaiaadshacqGHRaWk caWGKbaakiaawIcacaGLPaaaaaaaaa@4AA3@ ,                                                                            (33)
σ 2 = 9 c 2 ( 2 n 2 2n+5 ) 2 ( 1+q ) 2 ( n+1 ) 2 ( ct+d ) 2 + 2 K 2 (ct+d) 6 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eyypa0tcfa4aaSaaaOqaaKqzGeGaaGyoaiaadogalmaaCaaajeaibe qaaKqzadGaaGOmaaaajuaGdaqadaGcbaqcLbsacaaIYaGaamOBaKqb aoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaGOmai aad6gacqGHRaWkcaaI1aaakiaawIcacaGLPaaaaeaajugibiaaikda juaGdaqadaGcbaqcLbsacaaIXaGaey4kaSIaamyCaaGccaGLOaGaay zkaaWcdaahaaqcbasabeaajugWaiaaikdaaaqcfa4aaeWaaOqaaKqz GeGaamOBaiabgUcaRiaaigdaaOGaayjkaiaawMcaaSWaaWbaaKqaGe qabaqcLbmacaaIYaaaaKqbaoaabmaakeaajugibiaadogacaWG0bGa ey4kaSIaamizaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaajugWai aaikdaaaaaaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGOmaiaa dUealmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaiikai aadogacaWG0bGaey4kaSIaamizaiaacMcalmaaCaaajeaibeqaaSWa aSGaaKqaGeaajugWaiaaiAdaaKqaGeaajugWaiaaigdacqGHRaWkca WGXbaaaaaaaaaaaa@7BA3@                             (34)
Δ= 1 2 ( n2 n+1 ) 2 + 2 3 K 2 c 2 (1+q) 2 (ct+d) 42q 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aejabg2da9KqbaoaalaaakeaajugibiaaigdaaOqa aKqzGeGaaGOmaaaajuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaam OBaiabgkHiTiaaikdaaOqaaKqzGeGaamOBaiabgUcaRiaaigdaaaaa kiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abgUcaRKqbaoaalaaakeaajugibiaaikdaaOqaaKqzGeGaaG4maaaa juaGdaWcaaGcbaqcLbsacaWGlbqcfa4aaWbaaSqabKqaGeaajugWai aaikdaaaqcLbsacaWGJbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaGGOaGaaGymaiabgUcaRiaadghacaGGPaWcdaahaaqcbasabe aajugWaiaaikdaaaaakeaajugibiaacIcacaWGJbGaamiDaiabgUca RiaadsgacaGGPaqcfa4aaWbaaSqabKqaGeaalmaaliaajeaibaqcLb macaaI0aGaeyOeI0IaaGOmaiaadghaaKqaGeaajugWaiaaigdacqGH RaWkcaWGXbaaaaaaaaaaaa@6DAD@                                     (35)
The energy density, string tensor density, particle density and bulk viscosity coefficient are given by
ρ= 9n(n+4) c 2 4 (1+q) 2 (n+1) 2 (ct+d) 2 K 2 (ct+d) 6 1+q α (ct+d) 3 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjabg2da9KqbaoaalaaakeaajugibiaaiMdacaWG UbGaaiikaiaad6gacqGHRaWkcaaI0aGaaiykaiaadogalmaaCaaaje aibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGinaiaacIcacaaIXaGa ey4kaSIaamyCaiaacMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaacIcacaWGUbGaey4kaSIaaGymaiaacMcalmaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiaacIcacaWGJbGaamiDaiabgUcaRiaads gacaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaeyOe I0scfa4aaSaaaOqaaKqzGeGaam4saSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaGcbaqcLbsacaGGOaGaam4yaiaadshacqGHRaWkcaWGKbGa aiykaSWaaWbaaKqaGeqabaWcdaWcaaqcbasaaKqzadGaaGOnaaqcba saaKqzadGaaGymaiabgUcaRiaadghaaaaaaaaajugibiabgkHiTKqb aoaalaaakeaajugibiabeg7aHbGcbaqcLbsacaGGOaGaam4yaiaads hacqGHRaWkcaWGKbGaaiykaKqbaoaaCaaaleqajeaibaWcdaWcaaqc basaaKqzadGaaG4maaqcbasaaKqzadGaaGymaiabgUcaRiaadghaaa aaaaaaaaa@7EEF@ ,                                           (36)
λ= 9 c 2 ( n 2 n2) 2 (1+q) 2 (n+1) 2 (ct+d) 2 + 3 c 2 (2n) 2(1+q)(n+1) (ct+d) 2 α (ct+d) 3 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabg2da9KqbaoaalaaakeaajugibiaaiMdacaWG JbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaGGOaGaamOBaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaamOB aiabgkHiTiaaikdacaGGPaaakeaajugibiaaikdacaGGOaGaaGymai abgUcaRiaadghacaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaWcdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacaGGOaGaam4yaiaadshacqGHRaWkcaWG KbGaaiykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiabgU caRKqbaoaalaaakeaajugibiaaiodacaWGJbWcdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacaGGOaGaaGOmaiabgkHiTiaad6gacaGGPa aakeaajugibiaaikdacaGGOaGaaGymaiabgUcaRiaadghacaGGPaGa aiikaiaad6gacqGHRaWkcaaIXaGaaiykaiaacIcacaWGJbGaamiDai abgUcaRiaadsgacaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaaaa aKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeqySdegakeaajugibi aacIcacaWGJbGaamiDaiabgUcaRiaadsgacaGGPaWcdaahaaqcbasa beaalmaalaaajeaibaqcLbmacaaIZaaajeaibaqcLbmacaaIXaGaey 4kaSIaamyCaaaaaaaaaaaa@8CE1@ ,       (37)
ρ p = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadchaaeqaaOGaeyypa0daaa@39E7@ 9 c 2 (4+6n n 2 ) 4 (1+q) 2 (n+1) 2 (ct+d) 2 + 3 c 2 (n2) c 2 2(1+q)(n+1) (ct+d) 2 K 2 (ct+d) 6 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaaI5aGaam4yaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaaiikaiaaisdacqGHRaWkcaaI2aGaamOBai abgkHiTiaad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaa cMcaaOqaaKqzGeGaaGinaiaacIcacaaIXaGaey4kaSIaamyCaiaacM cajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaacIcacaWG UbGaey4kaSIaaGymaiaacMcajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaajugibiaacIcacaWGJbGaamiDaiabgUcaRiaadsgacaGGPaWc daahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaey4kaSscfa4aaS aaaOqaaKqzGeGaaG4maiaadogalmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiaacIcacaWGUbGaeyOeI0IaaGOmaiaacMcacaWGJbWcda ahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaaikdacaGGOaGa aGymaiabgUcaRiaadghacaGGPaGaaiikaiaad6gacqGHRaWkcaaIXa GaaiykaiaacIcacaWGJbGaamiDaiabgUcaRiaadsgacaGGPaqcfa4a aWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaeyOeI0scfa4aaS aaaOqaaKqzGeGaam4saSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGc baqcLbsacaGGOaGaam4yaiaadshacqGHRaWkcaWGKbGaaiykaKqbao aaCaaaleqajeaibaWcdaWcaaqcbasaaKqzadGaaGOnaaqcbasaaKqz adGaaGymaiabgUcaRiaadghaaaaaaaaaaaa@9099@ , (38)
ξ= 3c( n 2 +2n+4) 4(1+q) (n+1) 2 (ct+d) c(n+2) 2(n+1)(ct+d) + K 2 (1+q) 3c (ct+d) 5q 1+q α( 1+q ) (ct+d) 2q 1+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe67a4jabg2da9KqbaoaalaaakeaajugibiaaiodacaWG JbGaaiikaiaad6galmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abgUcaRiaaikdacaWGUbGaey4kaSIaaGinaiaacMcaaOqaaKqzGeGa aGinaiaacIcacaaIXaGaey4kaSIaamyCaiaacMcacaGGOaGaamOBai abgUcaRiaaigdacaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaGGOaGaam4yaiaadshacqGHRaWkcaWGKbGaaiykaaaacqGHsi sljuaGdaWcaaGcbaqcLbsacaWGJbGaaiikaiaad6gacqGHRaWkcaaI YaGaaiykaaGcbaqcLbsacaaIYaGaaiikaiaad6gacqGHRaWkcaaIXa GaaiykaiaacIcacaWGJbGaamiDaiabgUcaRiaadsgacaGGPaaaaiab gUcaRKqbaoaalaaakeaajugibiaadUealmaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiaacIcacaaIXaGaey4kaSIaamyCaiaacMcaaOqa aKqzGeGaaG4maiaadogacaGGOaGaam4yaiaadshacqGHRaWkcaWGKb GaaiykaSWaaWbaaKqaGeqabaWcdaWcaaqcbasaaKqzadGaaGynaiab gkHiTiaadghaaKqaGeaajugWaiaaigdacqGHRaWkcaWGXbaaaaaaaa qcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacqaHXoqyjuaGdaqadaGc baqcLbsacaaIXaGaey4kaSIaamyCaaGccaGLOaGaayzkaaaabaqcLb sacaGGOaGaam4yaiaadshacqGHRaWkcaWGKbGaaiykaSWaaWbaaeqa baWaaSaaaeaajugWaiaaikdacqGHsislcaWGXbaaleaajugWaiaaig dacqGHRaWkcaWGXbaaaaaaaaaaaa@9AC2@ .            (39)

We observe that the spatial volume is zero at t=-b/a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabggMi6caa@3B17@ to. As t t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabgkziUkaadshajuaGpaWaaSba aKqaGeaajugWa8qacaWGVbaal8aabeaaaaa@4081@ . The Hubble parameter, the scalar expansion and shear scalar assume infinitely large values whereas with the growth of cosmic time they decrease to null values as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabgkziU+aacqGHEisPaaa@3DD4@ . At the instant t= t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabg2da9iaadshajuaGpaWaaSba aKqaGeaajugWa8qacaWGVbaal8aabeaaaaa@3F9A@ , p,λ, ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaGGSaGaeq4UdWMaaiilaiabeg8aYTWaaSbaaKqa GeaajugWaiaadchaaKqaGeqaaaaa@41BA@  are all infinite. Thus, the model starts evolving with a big-bang singularity at t= t o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabg2da9iaadshajuaGpaWaaSba aKqaGeaajugWa8qacaWGVbaal8aabeaaaaa@3F9A@ . As t tends to infinity, the spatial becomes infinite and the physical and kinematical parameter all tend to zero. Therefore, the model essentially gives an empty space-time for large time. The anisotropy parameters Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfs5aebaa@3AB4@ being infinite initially, tends to a constant as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabgkziU+aacqGHEisPaaa@3DD4@ . This means that the anisotropy of the model is maintained throughout the passage of time. Since the deceleration parameter is negative, the present model represents an accelerating phase of the universe. The strings eventually disappear from the universe for sufficiently large time. The model is compatible with the results of recent observations on present-day universe from type Ia supernova.26,27

Conclusion

In this paper, a spatially homogenous and anisotropic Bianchi type I model representing massive strings with bulk viscosity and vacuum energy density has been studied. The exact solutions of the field equations have been obtained by applying a special law of variation of Hubble parameter which yields a constant value of the deceleration parameter. By assuming the negative constant deceleration parameter and a time-decaying form vacuum energy density, an accelerating model of the universe has been presented. The model starts evolving from a finite big-bang singularity. The anisotropy in the model is maintained throughout its evolution. The strings dominate in the early universe and eventually disappear from the universe for sufficiently large time. For sufficiently large time, the model would essentially give an empty space-time as ρ,λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaacYcacqaH7oaBaaa@3D72@ and ρ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYTWaaSbaaKqaGeaajugWaiaadchaaKqaGeqaaaaa @3DB1@ all tend to zero as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiabgkziU+aacqGHEisPaaa@3DD4@ . The model presented here is physically meaningful as the associated parameters behave reasonably.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Zeldovich YB. Cosmological fluctuations produced near a singularity. Monthly Notices of the Royal Astronomical Society. 1980;192(4):663–667.
  2. Kibble TWB. Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General. 1976;9(8):1–13.
  3. Everet AE. Cosmic strings in unified gauge theories. Physical Review D. 1981;24(4): 858–868.
  4. Vilenkin A. Cosmic strings. Physical Review D. 1981;24(8).
  5. Letelier PS. Clouds of strings in general relativity. Physical Review D. 1979;20(6):1294–1302.
  6. Stachel J. Thickening the string. I. The string perfect dust. Physical Review D. 1980;21(8):2171–2181.
  7. Stachel J. Physical Review D. 1980;(20):1294.
  8. Letelier PS. String cosmologies. Physical Review D. 1983;28(10).
  9. Matraverse DR. Solutions to Einstein's field equations with Kantowski–Sachs symmetry and string dust source. General Relativity and Gravitation. 1998;20(3):279–288.
  10. Krori KD, Chaudhury T, MahantaCR, et al. Some exact solutions in string cosmology. General Relativity and Gravitation. 1990;22(2):123–130.
  11. Banerjee A, Sanyal AK, Chakraborty SString cosmology in Bianchi I space–time. Pramana.1990;34(1):1–11.
  12. Tikekar R, Patel LK. Some exact solutions of string cosmology in Bianchi III space–time. General Relativity and Gravitation. 1992;24(4):397–404.
  13. Ram S, Singh JK. Some spatially homogeneous string cosmological models. General Relativity and Gravitation. 1995;27(11):1207–1213.
  14. Chakrabotry S. Indian Journal of Pure & Applied Physics. 1991;29.
  15. Bali R, Upadhyay RD. Astrophysics and Space Science. 2003;238:97.
  16. Bali R, Banerjee R, Banerjee SK. Bianchi type VI0 magnetized bulk viscous massive string cosmological model in General Relativity. Astrophysics and Space Science. 2008;317(1–2):21–26.
  17. Pradhan A. Some Magnetized Bulk Viscous String Cosmological Models in Cylindrically Symmetric Inhomogeneous Universe with Variable Λ–Term. Communications in Theoretical Physics. 2011;55(2).
  18. Saha B, Visinescu M. Bianchi Type–I Model with Cosmic String in the Presence of a Magnetic Field: Spinor Description. International Journal of Theoretical Physics. 2010;49(7):1411–1421.
  19. Saha B, Rikhvitsky V, Visinescu M. Bianchi type–I string cosmological model in the presence of a magnetic flux: exact and qualitative solutions. Central European Journal of Physics. 2010;8:113.
  20. Misner CW. The Isotropy of the Universe. Astrophysical Journal. 1968;151.
  21. Belinski VA, Khalatnikov IM. Effect of Scalar and Vector Fields on the Nature of the Cosmological Singularity. Soviet Journal of Experimental and Theoretical Physics. 1973;36(4):591–810.
  22. Banerjee A, Santos NO. Spatially homogeneous cosmological models. General Relativity and Gravitation. 1984;16(3): 217–224.
  23. Beesham A. Cosmological models with a variable cosmological term and bulk viscous models. Physical Review D. 1993;48(8):3539.
  24. Bali R, Singh JP. Bulk Viscous Bianchi Type I Cosmological Models with Time–Dependent Cosmological Term Λ. International Journal of Theoretical Physics. 2008;47(12):3288–3297.
  25. Palcu A. The Electric Charge Assignment In Su(4)L ⊗ U(1)Y Gauge Models. Modern Physics Letters A. 2009;24(16):1247–1255.
  26. Riess AG, Filippenko AV, Challis P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal. 1998;116(3):1009–1038.
  27. Perlmutter S, Aldering G, Valle MD, et al. Discovery of a supernova explosion at half the age of the Universe. Nature. 1998;391:51–54.
  28. Bali R, Bola SC. Bianchi Type I Massive String Cosmological Model with Bulk Viscosity and Vacuum Energy Density. International Journal of Applied Mathematics and Computer Science. 2016;3(6):211–214.
  29. Goswami GK. Dewangan RN, Yadav AK. Anisotropic universe with magnetized dark energy. Astrophysics and Space Science. 2016;361:119.
Creative Commons Attribution License

©2018 Dubey, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.