Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 3 Issue 2

On levy-walk model for correlations in spatial galaxy distribution

VV Uchaikin

Ulyanovsk State University, 42 Lev Tolstoy Str., Ulyanovsk 432700, Russia

Correspondence: VV Uchaikin, Ulyanovsk State University, 42 Lev Tolstoy Str., Ulyanovsk 432700, Russia

Received: March 14, 2019 | Published: March 29, 2019

Citation: Uchaikin VV. On levy-walk model for correlations in spatial galaxy distribution. Phys Astron Int J. 2019;3(2):82-88. DOI: 10.15406/paij.2019.03.00162

Download PDF

Abstract

The model of stochastic fractal is briefly described, basic results regarding properties of spatial structures with long-range correlations of power-law type are reviewed, and some applications to galaxy distribution in the Universe are discussed.

Introduction

One of important problems complicating the extraction of information from cosmological surveys, is necessity to supplement observational data subtracted of foreground or for some (i.e. technical) reasons removed from the survey. This particularly affects the extraction of information from the largest observable scales. Maximum-likelihood estimators are not quite applicable for reconstructing the full-sky because of non-Caussian character of observed matter distribution. To solve this problem, many authors modify implementations of such estimators which are robust to the leakage of contaminants from within masked regions. The trouble arises from the need to satisfy the cosmological principle of an arbitrary choice of the reference frame and long-distant correlations in spatial galaxy distribution observed. We are going to discuss here one а such approach and to show some results of its application. The discussion about homogeneity (or inhomogeneity) of the large-scale visible matter distribution in the Universe is attracting the attention of both the astronomers and theoreticians of cosmology.14 In recent years the more complete and deeper galaxy surveys become available,5,6 however, this does not eliminate the question about fractality of the large-scale structure. The fractal concept, introduced by Mandelbrot,7 applied to the galaxy distribution means the presence of the overdence regions and voids extending to all scales, at least to those could be reached by now. Mathematically, it formulates as

NRRD (1)

for the ensemle averaged number of galaxies inside a sphere of radius R centered at any galaxy, D is the fractal dimension. Such a relation naturally originates from the model of self-similar ( hierarchical clustering.3 The aim of this work is not to prove or disapprove the fractality of the matter distribution in the Universe but only to deduce some conclusions about statistical properties of the structures with the long-range correlations of power type. The paper is organized as follows: Section I deals with the power spectrum being the Fourier transformation of two-point correlation function found in the galaxy distribution. From approximation of the real galaxy power spectrum it follows that galaxy distribution can be simulated within the frame of random walk model (Section II). Section III concerns the cosmological monopole and dipole which are the characteristics of large-scale homogeneity and isotropy. Here is also present the distribution of gravitational force magnitude (Holtsmark distribution). Section IV presents the distribution of number of points inside the spherical cells in the stochastic fractal model. In Section V the question about the global mass density of the fractal Universe is investigated with the empirical distribution density over masses adopted. In Section VI the ergodic problem in observational cosmology is discussed.

Power spectrum

The important statistical characteristic of the large-scale structure of the Universe is the two-point spatial galaxy correlation function,1 which determines the joint probability

δP=n21+ξrδV1δV2

to find two galaxies in volumes δV1 and δ V 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGwbWaaSbaaeaacaaIYaaabeaacaGGSaaaaa@3AAE@ placed at the distance r= x 2 x 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaeyypa0ZaaqWaa8aabaacbmWdbiaa=HhapaWaaSba aeaapeGaaGOmaaWdaeqaa8qacqGHsislcaWF4bWdamaaBaaabaWdbi aaigdaa8aabeaaa8qacaGLhWUaayjcSdaaaa@4100@ from each other (n is the mean galaxy number per unite volume, i.e. the concentration). According to the assumption about homogeneity and isotropy of matter distribution in the Universe the mean galaxy number density n should not depend on coordinates and ξ r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaaa @3B04@  depends only on distance between the points chosen. Instead of ξ r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaaa @3B04@  it is often used its Fourier transformation P k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaaaaa@3A0E@ called power spectrum1

nPk=V1ξreik.rd3r,(2)

ξr=V/8π3Preikrd3r. (3)

 Figure 1 shows the power spectrum obtained from from the Lick Observatory catalog of Shane and Wirtanen,8,9 where k is expressed in units of “waves per box", physical wavelengths are λ=260 h 1  Mpc/k. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBcqGH9aqpcaaIYaGaaGOnaiaaicdacaWGObWdamaa Caaabeqaa8qacqGHsislcaaIXaaaaiaabckacaWGnbGaamiCaiaado gacaGGVaGaam4Aaiaac6caaaa@448E@  There exists several approximations of power spectrum. The most simple of them is

P k =A k γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaacqGH 9aqpcaWGbbGaam4Aa8aadaahaaqabeaapeGaeq4SdCgaaaaa@3EB2@ (4)

with A  being the amplitude of the spectrum and γ3, 0 in order to allow for the convergence of the integral of P k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaaaaa@3A0E@ at large wavelength. The value  γ=1 for the spectral index corresponds to the scale-free Harrison–Zel’dovich spectrum10 that describes the fluctuations generated in the framework of the canonical inflationary scenario.1113 Substituting (4) into (3), we get

ξr=AV/2π2Γγ+3γ+2sinγ+2π2r3+γ.

Figure 1 Power spectrum P(k)  (dots with error bars). The solid curve is approximate formula for α=1.5, , c = 0.018, A=10-5 and q = 0.99. The dashed curve corresponds to the law P(k) ~k-1.41.

Thus, the detected power law shape for the correlation function ξ r ~ r α ,      α ~ 1.8 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaiaa c6hacaWGYbWdamaaCaaabeqaa8qacqGHsislcqaHXoqyaaGaaiilai aabckacaqGGcGaaeiOaiaabckacqaHXoqycaGG+bGaaGymaiaac6ca caaI4aGaaiilaaaa@4A85@

turns into a constant logarithmic slope of the power spectrum with spectral index γ=3α at least at scales r?10 h (1) Mpc[1,14]: MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbGaai4paiaaigdacaaIWaGaamiAa8aadaahaaqabeaa peGaaiikaiabgkHiTiaaigdacaGGPaaaaiaad2eacaWGWbGaam4yai aacUfacaaIXaGaaiilaiaaigdacaaI0aGaaiyxaiaacQdaaaa@4610@  

P k =A k 3+α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaacqGH 9aqpcaWGbbGaam4Aa8aadaahaaqabeaapeGaeyOeI0IaaG4maiabgU caRiabeg7aHbaacaGGUaaaaa@41E8@

Here the exponent a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbaaaa@3787@ is equivalent to the fractal dimension D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebaaaa@376A@ . As one can see from Figure 1, the formula is in agreement with observed results in the region 3k30, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIZaGaeyizImQaam4AaiabgsMiJkaaiodacaaIWaGaaiil aaaa@3DDF@ but it may be improved in the region of small values of k which affects the ξ r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaaaa @3B03@ at large distances. Obviously, there are many appropriate representations of it, but one of them leads us to a very useful and significant analogy:

P k =A e (ck) α 1q e (ck) α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaeWaa8aabaWdbiaadUgaaiaawIcacaGLPaaacqGH 9aqpcaWGbbWaaSaaa8aabaWdbiaabwgapaWaaWbaaeqabaWdbiabgk HiTiaacIcacaWGJbGaam4AaiaacMcapaWaaWbaaeqabaWdbiabeg7a Hbaaaaaapaqaa8qacaaIXaGaeyOeI0IaamyCaiaabwgapaWaaWbaae qabaWdbiabgkHiTiaacIcacaWGJbGaam4AaiaacMcapaWaaWbaaeqa baWdbiabeg7aHbaaaaaaaiaacYcaaaa@4DC4@  (5)

where c>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaeyOpa4JaaGimaaaa@394B@ and 0q1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIWaGaeyizImQaamyCaiabgsMiJkaaigdaaaa@3C76@ can be chosen in appropriate way (see Figure 1). The point is that the inverse Fourier transformation of expression (5) leads to the integral equation

ξ r = A V p r / c 3 + q / c 3 ξ x x ' p x ' / c d 3 x ' , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaiab g2da9iaadgeacaWGwbGaamiCamaabmaapaqaa8qacaWGYbGaai4lai aadogapaWaaWbaaeqabaWdbiaaiodaaaaacaGLOaGaayzkaaGaey4k aSYaaeWaa8aabaWdbiaadghacaGGVaGaam4ya8aadaahaaqabeaape GaaG4maaaaaiaawIcacaGLPaaapaWaaubiaeqabeqaaiaaygW7aeaa peGaey4kIipaaiaab2aicqaH+oaEdaqadaWdaeaapeWaaqWaa8aaba acbmWdbiaa=HhacqGHsislcaWF4bGaae4jaaGaay5bSlaawIa7aaGa ayjkaiaawMcaaiaadchadaqadaWdaeaapeGaa8hEaiaabEcacaGGVa Gaam4yaaGaayjkaiaawMcaaiaadsgapaWaaWbaaeqabaWdbiaaioda aaGaamiEaiaabEcacaGGSaaaaa@62AC@ (6)

 where

p x = 1 8 π 3 e ik.x k α d 3 k,   k= k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaacbmWdbiaa=HhaaiaawIcacaGLPaaa cqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGioaiabec8aW9 aadaahaaqabeaapeGaaG4maaaaaaWdamaavacabeqabeaacaaMb8oa baWdbiabgUIiYdaacaqGnaIaaeyza8aadaahaaqabeaapeGaeyOeI0 IaamyAaiaadUgacaGGUaGaa8hEaiabgkHiTiaadUgapaWaaWbaaeqa baWdbiabeg7aHbaaaaGaamiza8aadaahaaqabeaapeGaaG4maaaaca WFRbGaaiilaiaabckacaqGGcGaaeiOaiaadUgacqGH9aqpdaabdaWd aeaapeGaaC4AaaGaay5bSlaawIa7aiaac6caaaa@5B56@  (7)

The equation obtained is one form of the Ornstein-Zernike equation17 and can be used to clear up the relationship between statistical mechanics and the concepts under consideration. On the other hand, this equation leads us directly to the random walks model as a tool for construction of random point distribution with given correlations.

Random walk model

Let us consider the integral equation

g x =p x +q g xx' p x' d 3 x', MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaacbmWdbiaa=HhaaiaawIcacaGLPaaa cqGH9aqpcaWGWbWaaeWaa8aabaWdbiaa=HhaaiaawIcacaGLPaaacq GHRaWkcaWGXbWdamaavacabeqabeaacaaMb8oabaWdbiabgUIiYdaa caqGnaIaam4zamaabmaapaqaa8qacaWF4bGaeyOeI0Iaa8hEaiaabE caaiaawIcacaGLPaaacaWGWbWaaeWaa8aabaWdbiaa=HhacaqGNaaa caGLOaGaayzkaaGaamiza8aadaahaaqabeaapeGaaG4maaaacaWF4b Gaae4jaiaacYcaaaa@53A7@  (8)

so that

ξ r = AV/ c 3 g x ,    r=c x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEdaqadaWdaeaapeGaamOCaaGaayjkaiaawMcaaiab g2da9maabmaapaqaa8qacaWGbbGaamOvaiaac+cacaWGJbWdamaaCa aabeqaa8qacaaIZaaaaaGaayjkaiaawMcaaiaadEgadaqadaWdaeaa ieWapeGaa8hEaaGaayjkaiaawMcaaiaacYcacaqGGcGaaeiOaiaabc kacaqGGcGaamOCaiabg2da9iaadogadaabdaWdaeaapeGaa8hEaaGa ay5bSlaawIa7aiaac6caaaa@5291@

The positive function g x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaacbmWdbiaa=HhaaiaawIcacaGLPaaa aaa@3A3A@ can be interpreted as a density of collisions of some particle starting its moving at the origin and performing the first collision in dx' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbacbmGaa8hEaiaabEcaaaa@3939@ with probability p x' d 3 x' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaacbmWdbiaa=HhacaqGNaaacaGLOaGa ayzkaaGaamiza8aadaahaaqabeaapeGaaG4maaaacaWF4bGaae4jaa aa@3E77@ where it stops with the probability 1q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaeyOeI0IaamyCaaaa@393F@ or performs the next jump into dx'' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbacbmGaa8hEaiaabEcacaqGNaaaaa@39E3@ with the probability qp( x x ) d 3 x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaamiCaiaacIcaceWG4bGbayaacqGHsislceWG4bGb auaacaGGPaGaamiza8aadaahaaqabeaapeGaaG4maaaaceWG4bGbay aacaGGSaaaaa@4086@ and so forth. So in this way of interpretation the points of collisions are positions of galaxies considered to be the point-like objects. The random walk model applied to simulation of galaxy distribution was firstly proposed by B.Mandelbrot.7 In his version the transition probability has the form of the pure power law p(x)α r (?) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaaiikaiaadIhacaGGPaGaeqySdeMaamOCa8aadaah aaqabeaapeGaaiikaiabgkHiTiaac+dacaGGPaaaaiaac6caaaa@407E@

The integral

g x d 3 x=1/ 1q ,    q<1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubiae qabeqaaiaaygW7aeaaqaaaaaaaaaWdbiabgUIiYdaacaqGnaIaae4z amaabmaapaqaaGqad8qacaWF4baacaGLOaGaayzkaaGaamiza8aada ahaaqabeaapeGaaG4maaaacaWF4bGaeyypa0JaaGymaiaac+cadaqa daWdaeaapeGaaGymaiabgkHiTiaadghaaiaawIcacaGLPaaacaGGSa GaaeiOaiaabckacaqGGcGaaeiOaiaadghacqGH8aapcaaIXaGaaiil aaaa@50B6@  (9)

gives the mean number of all collisions of the particle including the final one, and the function g(x) itself can be expressed by its Neumann’s series expansion

g x = j=1 q j1 p j x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaacbmWdbiaa=HhaaiaawIcacaGLPaaa cqGH9aqpdaGfWbqab8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8 qacqaHEisPa8aabaWdbiabggHiLdaacaqGnaIaamyCa8aadaahaaqa beaapeGaamOAaiabgkHiTiaaigdaaaGaamiCa8aadaWgaaqaa8qaca WGQbaapaqabaWdbmaabmaapaqaa8qacaWF4baacaGLOaGaayzkaaGa aiilaaaa@4C00@  (10)

where

p 1 x p x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiaaigdaa8aabeaapeWaaeWaa8aa baacbmWdbiaa=HhaaiaawIcacaGLPaaacqGHHjIUcaWGWbWaaeWaa8 aabaWdbiaa=HhaaiaawIcacaGLPaaaaaa@40BC@  (11)

and

p j+1 x = p j xx' p x' d 3 x' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiaadQgacqGHRaWkcaaIXaaapaqa baWdbmaabmaapaqaaGqad8qacaWF4baacaGLOaGaayzkaaGaeyypa0 ZdamaavacabeqabeaacaaMb8oabaWdbiabgUIiYdaacaqGnaIaamiC a8aadaWgaaqaa8qacaWGQbaapaqabaWdbmaabmaapaqaa8qacaWF4b GaeyOeI0Iaa8hEaiaabEcaaiaawIcacaGLPaaacaWGWbWaaeWaa8aa baWdbiaa=HhacaqGNaaacaGLOaGaayzkaaGaamiza8aadaahaaqabe aapeGaaG4maaaacaWF4bGaae4jaaaa@51D4@  (12)

is the multiple convolution of the distribution density p(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaaiikaiaadIhacaGGPaaaaa@39EC@ . Here it should be noted that the probability density (7) with α(0,2] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGHiiIZcaGGOaGaaGimaiaacYcacaaIYaGaaiyx aaaa@3D77@ belongs to the set of symmetrical three-dimensional stable distributions.16 One of them, with α=2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH9aqpcaaIYaGaaiilaaaa@3AB2@ is the famous Gauss’ law, but the others are utilized by physicists rarely enough, although in probability theory they play the same role in the problem of summation of independent random values with infinite variance. Generally, the densities are not expressed in terms of elementary functions and must be calculated numerically. Two properties of the laws are very important for the problem. First, the stable density with α<2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH8aapcaaIYaaaaa@3A00@ has an inverse power tail at large distances,

p(x) ~ 1 2 π 2 Γ(2+α)sin πa 2 r (?3) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaaiikaiaadIhacaGGPaGaaiiOaiaac6hadaWcaaqa aiaaigdaaeaacaaIYaGaeqiWda3aaWbaaeqabaGaaGOmaaaaaaGaae 4KdiaacIcacaaIYaGaey4kaSIaeqySdeMaaiykaiaadohacaWGPbGa amOBamaabmaabaWaaSaaaeaacqaHapaCcaWGHbaabaGaaGOmaaaaai aawIcacaGLPaaacaWGYbWdamaaCaaabeqaa8qacaGGOaGaeyOeI0Ia ai4paiabgkHiTiaaiodacaGGPaaaaiaacYcaaaa@544F@

and second, multiple convolutions of this density are expressed in terms of original density with rescaled argument:

p j x = 1 8 π 3 e ik.xj k α d 3 k= j 3/α p x j 1/α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiaadQgaa8aabeaapeWaaeWaa8aa baacbmWdbiaa=HhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaape GaaGymaaWdaeaapeGaaGioaiabec8aW9aadaahaaqabeaapeGaaG4m aaaaaaWdamaavacabeqabeaacaaMb8oabaWdbiabgUIiYdaacaqGna Iaaeyza8aadaahaaqabeaapeGaeyOeI0IaamyAaiaa=TgacaWFUaGa amiEaiabgkHiTiaadQgacaWGRbWdamaaCaaabeqaa8qacqaHXoqyaa aaaiaadsgapaWaaWbaaeqabaWdbiaaiodaaaGaa83Aaiabg2da9iaa dQgapaWaaWbaaeqabaWdbiabgkHiTiaaiodacaGGVaGaeqySdegaai aadchadaqadaWdaeaapeGaa8hEaiaadQgapaWaaWbaaeqabaWdbiab gkHiTiaaigdacaGGVaGaeqySdegaaaGaayjkaiaawMcaaiaac6caaa a@623E@

Now we consider an infinite set of independent trajectories of such kind starting from different random points of birth distributed by Poisson uniform law with the mean density n 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbWdamaaBaaabaWdbiaaicdaa8aabeaacaGGUaaaaa@394F@ Using the generating functional technique, we obtained in our work,18 that in this case

g x = n c 3 2q ξ r , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGNbWaaeWaa8aabaacbmWdbiaa=HhaaiaawIcacaGLPaaa cqGH9aqpdaWcaaWdaeaapeGaamOBaiaabogapaWaaWbaaeqabaWdbi aaiodaaaaapaqaa8qacaaIYaGaamyCaaaacqaH+oaEdaqadaWdaeaa peGaamOCaaGaayjkaiaawMcaaiaacYcaaaa@4529@  (13)

where

n= n 0 1q  . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbGaeyypa0ZaaSaaa8aabaWdbiaad6gapaWaaSbaaeaa peGaaGimaaWdaeqaaaqaa8qacaaIXaGaeyOeI0IaamyCaaaacaqGGc GaaiOlaaaa@3F48@

Remark. As one can see from the latter expression, passage to infinitely long trajectories (q to1) саn be realized only in accompaniment with rarifying seed distribution n 0  to 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaWdaeaapeGaamOBa8aadaWgaaqaa8qacaaIWaaapaqa baWdbiaabckacaqG0bGaae4BaiaabckacaaIWaaacaGLOaGaayzkaa GaaiOlaaaa@3FF0@ is the density of all points of collisions. Moreover, correlation functions of all orders ξ m , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaamyBaaWdaeqaaiaacYcaaaa@3A55@ m>2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaeyOpa4JaaGOmaiaacYcaaaa@3A07@ are expressed through ξ 2 r ξ r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaaGOmaaWdaeqaa8qadaqadaWd aeaapeGaamOCaaGaayjkaiaawMcaaiabggMi6kabe67a4naabmaapa qaa8qacaWGYbaacaGLOaGaayzkaaaaaa@4249@ as follows

ξ m r 1 ,, r m m! Q m ξ 12 ξ m1,m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaamyBaaWdaeqaa8qadaqadaWd aeaapeGaamOCa8aadaWgaaqaa8qacaaIXaaapaqabaWdbiaacYcacq GHMacVcaGGSaGaamOCa8aadaWgaaqaa8qacaWGTbaapaqabaaapeGa ayjkaiaawMcaaiablcLicjaad2gacaGGHaGaamyua8aadaWgaaqaa8 qacaWGTbaapaqabaWdbiabe67a49aadaWgaaqaa8qacaaIXaGaaGOm aaWdaeqaa8qacqGHMacVcqaH+oaEpaWaaSbaaeaapeGaamyBaiabgk HiTiaaigdacaGGSaGaamyBaaWdaeqaaaaa@531C@

where

ξ ij =ξ x i x j ,     Q m = (1/2) m2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaamyAaiaadQgaa8aabeaapeGa eyypa0JaeqOVdG3aaeWaa8aabaWdbmaaemaapaqaaGqad8qacaWF4b WdamaaBaaabaWdbiaadMgaa8aabeaapeGaeyOeI0Iaa8hEa8aadaWg aaqaa8qacaWGQbaapaqabaaapeGaay5bSlaawIa7aaGaayjkaiaawM caaiaacYcacaqGGcGaaeiOaiaabckacaqGGcGaamyua8aadaWgaaqa a8qacaWGTbaapaqabaWdbiabg2da9iaacIcacaaIXaGaai4laiaaik dacaGGPaWdamaaCaaabeqaa8qacaWGTbGaeyOeI0IaaGOmaaaacaGG Saaaaa@5750@

And MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqWIqjIqaaa@37E6@  means the symmetryzation operator.Thus, three-point and four-point correlation functions are of the forms

ξ 3 r 1 , r 2 , r 3 = Q 3 ξ 12 ξ 23 + ξ 21 ξ 13 + ξ 13 ξ 32 Q 3 ξ 12 ξ 23 +cycl. 3  terms MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaaG4maaWdaeqaa8qadaqadaWd aeaapeGaamOCa8aadaWgaaqaa8qacaaIXaaapaqabaWdbiaacYcaca WGYbWdamaaBaaabaWdbiaaikdaa8aabeaapeGaaiilaiaadkhapaWa aSbaaeaapeGaaG4maaWdaeqaaaWdbiaawIcacaGLPaaacqGH9aqpca WGrbWdamaaBaaajuaybaWdbiaaiodaa8aabeaajuaGpeWaaiWaa8aa baWdbiabe67a49aadaWgaaqcfauaa8qacaaIXaGaaGOmaaqcfa4dae qaa8qacqaH+oaEpaWaaSbaaKqbafaapeGaaGOmaiaaiodaaKqba+aa beaapeGaey4kaSIaeqOVdG3damaaBaaajuaqbaWdbiaaikdacaaIXa aajuaGpaqabaWdbiabe67a49aadaWgaaqcfauaa8qacaaIXaGaaG4m aaqcfa4daeqaa8qacqGHRaWkcqaH+oaEpaWaaSbaaKqbafaapeGaaG ymaiaaiodaaKqba+aabeaapeGaeqOVdG3damaaBaaajuaqbaWdbiaa iodacaaIYaaajuaGpaqabaaapeGaay5Eaiaaw2haaiablcLicjaadg fapaWaaSbaaKqbafaapeGaaG4maaqcfa4daeqaa8qadaGadaWdaeaa peGaeqOVdG3damaaBaaajuaqbaWdbiaaigdacaaIYaaajuaGpaqaba Wdbiabe67a49aadaWgaaqcfauaa8qacaaIYaGaaG4maaqcfa4daeqa a8qacqGHRaWkcaWGJbGaamyEaiaadogacaWGSbGaaiOlamaabmaapa qaa8qacaaIZaGaaiiOaiaacckacaWG0bGaamyzaiaadkhacaWGTbGa am4CaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@839D@  (14)

and

ξ 4 q 1,2,3,4 Q 4 ξ 12 ξ 23 ξ 34 +cycl. 12  terms . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaa0baaeaapeGaaGinaaWdaeaapeWaamWaa8aa baWdbiaadghaaiaawUfacaGLDbaaaaWaaeWaa8aabaWdbiaaigdaca GGSaGaaGOmaiaacYcacaaIZaGaaiilaiaaisdaaiaawIcacaGLPaaa cqWIqjIqcaWGrbWdamaaBaaabaWdbiaaisdaa8aabeaapeWaaiWaa8 aabaWdbiabe67a49aadaWgaaqaa8qacaaIXaGaaGOmaaWdaeqaa8qa cqaH+oaEpaWaaSbaaeaapeGaaGOmaiaaiodaa8aabeaapeGaeqOVdG 3damaaBaaabaWdbiaaiodacaaI0aaapaqabaWdbiabgUcaRiaadoga caWG5bGaam4yaiaadYgacaGGUaWaaeWaa8aabaWdbiaaigdacaaIYa GaaiiOaiaacckacaWG0bGaamyzaiaadkhacaWGTbGaam4CaaGaayjk aiaawMcaaaGaay5Eaiaaw2haaiaac6caaaa@63BC@  (15)

 It is well known that the observed function ξ3 for the galaxy distribution, denoted usually as η, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH3oaAcaGGSaaaaa@38FD@ has really the form (14), but the factor Q3obs is in the neighborhood of 1 0.8 Q 3 obs 1.3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaqadaqaaiaaicdacaGGUaGaaGioaiabgsMiJkaadgfapaWa a0baaeaapeGaaG4maaWdaeaapeGaae4BaiaabkgacaqGZbaaaiabgs MiJkaaigdacaGGUaGaaG4maaGaayjkaiaawMcaaaaa@44AC@ . It is noted that the lower limit may be even less than indicated.1 The observed function ξ 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaeaapeGaaGinaaWdaeqaaaaa@3971@ denoted by ζ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH2oGEcaGGSaaaaa@390E@  contains additional terms like ξ 12 ξ 13 ξ 14 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH+oaEpaWaaSbaaKqbafaapeGaaGymaiaaikdaaKqba+aa beaapeGaeqOVdG3damaaBaaajuaqbaWdbiaaigdacaaIZaaajuaGpa qabaWdbiabe67a49aadaWgaaqcfauaa8qacaaIXaGaaGinaaqcfa4d aeqaaaaa@43F3@ being absent in (15). Thus the model dealing with non-branching trajectories doesn’t give exhaustive description of all statistical properties of galaxies distribution although the two-point function (13) is in good agreement with observed data.115 Possibly, the way out of this situation can be found in involving the branching trajectories into the model. In this case a random number of secondary particles arises in every collision and then all of them move independently of each other.

Cosmological monopole and dipole

The current value of the average mass density in the Universe is estimated as

ρ 0 =1.88 10 29  Ω 0   h 2     g  cm  3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCpaWaaSbaaeaapeGaaGimaaWdaeqaa8qacqGH9aqp caaIXaGaaiOlaiaaiIdacaaI4aGaeyyXICTaaGymaiaaicdapaWaaW baaeqabaWdbiabgkHiTiaaikdacaaI5aaaaiaabckacaqGPoWdamaa BaaabaWdbiaaicdaa8aabeaapeGaaeiOaiaadIgapaWaaWbaaeqaba WdbiaaikdaaaGaaeiOaiaabckacaqGGcGaaeiOaiaabEgacaqGGcGa aeiOaiaabogacaqGTbGaaeiOa8aadaahaaqabeaapeGaeyOeI0IaaG 4maaaapaGaaiilaaaa@57B4@

Where h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiAaa aa@376E@ is the dimensionless parameter connected with the uncertainty of Hubble’s constant H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisaa aa@374E@ ,

0.5h1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIWaGaaiOlaiaaiwdacqGHKjYOcaWGObGaeyizImQaaGym aiaacYcaaaa@3E8E@

And Ω 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoWdamaaBaaabaWdbiaaicdaa8aabeaaaaa@38D9@ stands for the cosmological density parameter. It is customary to consider that the modern value of the parameter lies in the interval

0.03 Ω 0 1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIWaGaaiOlaiaaicdacaaIZaGaeyizImQaaeyQd8aadaWg aaqaa8qacaaIWaaapaqabaWdbiabgsMiJkaaigdacaGGUaaaaa@40A3@

As a first approximation the Universe looks like a uniform Hubble flow with the relative velocity

v=H t r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF2bGaeyypa0Jaamisamaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaGaa8NCaiaacYcaaaa@3DBB@

forming the background for observations of peculiar motions of galaxies. Assuming that gravitational instability is the cause of the observed peculiar motions, these local deviations from a uniform Hubble flow provide a powerful tool for studying the local mass distribution and hence estimating the cosmological parameter Ω 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoWdamaaBaaabaWdbiaaicdaa8aabeaaaaa@38D9@ .

Using linear perturbation theory, the peculiar velocity v p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF2bWdamaaBaaabaWdbiaadchaa8aabeaaaaa@38E8@ can be related to the peculiar acceleration g via

v p w Ω 0 g, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF2bWdamaaBaaabaWdbiaadchaa8aabeaapeGaeyyh IuRaam4Damaabmaapaqaa8qacaqGPoWdamaaBaaabaWdbiaaicdaa8 aabeaaa8qacaGLOaGaayzkaaGaa83zaiaacYcaaaa@40FC@

Where w Ω 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqG3bWaaeWaaeaacaqGPoWdamaaBaaabaWdbiaaicdaa8aa beaaa8qacaGLOaGaayzkaaaaaa@3B6C@ measures the logarithmic rate of growth of the mass fluctuation at the present epoch.1 Calculations yield19

v p = d conv Ω 0 0.6 3b D M   d conv , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWF2bWdamaaBaaabaWdbiaadchaa8aabeaapeGaeyyp a0Jaamiza8aadaWgaaqaa8qacaqGJbGaae4Baiaab6gacaqG2baapa qabaWdbmaalaaapaqaa8qacaqGPoWdamaaDaaabaWdbiaaicdaa8aa baWdbiaaicdacaGGUaGaaGOnaaaaa8aabaWdbiaaiodacaWGIbaaam aalaaapaqaa8qacaWFebaapaqaa8qacaWGnbaaaiaabckadaqadaWd aeaapeGaeyizImQaamiza8aadaWgaaqaa8qacaqGJbGaae4Baiaab6 gacaqG2baapaqabaaapeGaayjkaiaawMcaaiaacYcaaaa@518E@

Where M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3753@ and D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiraa aa@374A@ are the monopole and dipole moments obtained from observations via relations

M= 1 4π i=1 n 1 ϕ r i 1 r i 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa isdacqaHapaCaaWaaybCaeqapaqaa8qacaWGPbGaeyypa0JaaGymaa WdaeaapeGaamOBaaWdaeaapeGaeyyeIuoaaiaab2aidaWcaaWdaeaa peGaaGymaaWdaeaapeGaeqy1dy2aaeWaa8aabaWdbiaadkhapaWaaS baaeaapeGaamyAaaWdaeqaaaWdbiaawIcacaGLPaaaaaWaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadkhapaWaa0baaeaapeGaamyAaaWdae aapeGaaGOmaaaaaaaaaa@4DA5@

and

D= 3 4π i=1 n 1 ϕ r i x i r i 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFebGaeyypa0ZaaSaaa8aabaWdbiaaiodaa8aabaWd biaaisdacqaHapaCaaWaaybCaeqapaqaa8qacaWGPbGaeyypa0JaaG ymaaWdaeaapeGaamOBaaWdaeaapeGaeyyeIuoaaiaab2aidaWcaaWd aeaapeGaaGymaaWdaeaapeGaeqy1dy2aaeWaa8aabaWdbiaadkhapa WaaSbaaeaapeGaamyAaaWdaeqaaaWdbiaawIcacaGLPaaaaaWaaSaa a8aabaWdbiaa=HhapaWaaSbaaeaapeGaamyAaaWdaeqaaaqaa8qaca WGYbWdamaaDaaabaWdbiaadMgaa8aabaWdbiaaiodaaaaaaiaac6ca aaa@4FC5@

Here x i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWaaSbaaeaacaWGPbaabeaaaaa@38AD@ are positions of galaxies, ϕ x i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHvpGzdaqadaWdaeaaieWapeGaa8hEa8aadaWgaaqaa8qa caWGPbaapaqabaaapeGaayjkaiaawMcaaaaa@3C63@ is a selection function to take into account the fact that at different distances we sample different portions of the luminosity function, d conv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWdamaaBaaabaWdbiaadogacaWGVbGaamOBaiaadAha a8aabeaaaaa@3BA3@ is the depth at which the dipole converges to its final value and b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyaa aa@3768@ is the bias factor that relates galaxy to mass overdensities. The Ω 0 0.6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGPoWdamaaDaaabaWdbiaaicdaa8aabaWdbiaaicdacaGG UaGaaGOnaaaaaaa@3B16@ factor comes in when one uses the theory of linear gravitational instability to relate the peculiar velocity to the gravitational acceleration.1

Supposing for simplicity

M R = 1 4π i 1 r i 2 1 x i ; U R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWaaSbaaeaacaWGsbaabeaacqGH9aqpdaWcaaWdaeaa peGaaGymaaWdaeaapeGaaGinaiabec8aWbaadaGfqbqab8aabaWdbi aadMgaaeqapaqaa8qacqGHris5aaGaaeydGmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGYbWdamaaBaaabaWdbiaadMgaa8aabeaadaahaa qabeaapeGaaGOmaaaaaaGaaGymamaabmaapaqaaGqad8qacaWF4bWd amaaBaaabaWdbiaadMgaa8aabeaapeGaai4oaiaadwfapaWaaSbaae aapeGaamOuaaWdaeqaaaWdbiaawIcacaGLPaaaaaa@4C93@

and

D R = 3 4π i x i r i 3 1 x i ; U R , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFebWdamaaBaaabaWdbiaadkfaa8aabeaapeGaeyyp a0ZaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaisdacqaHapaCaaWaay buaeqapaqaa8qacaWGPbaabeWdaeaapeGaeyyeIuoaaiaab2aidaWc aaWdaeaapeGaa8hEa8aadaWgaaqaa8qacaWGPbaapaqabaaabaWdbi aadkhapaWaa0baaeaapeGaamyAaaWdaeaapeGaaG4maaaaaaGaaGym amaabmaapaqaa8qacaWF4bWdamaaBaaabaWdbiaadMgaa8aabeaape Gaai4oaiaadwfapaWaaSbaaeaapeGaamOuaaWdaeqaaaWdbiaawIca caGLPaaacaGGSaaaaa@4EC2@

Where 1 x i ; U R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaWaaeWaa8aabaacbmWdbiaa=HhapaWaaSbaaeaapeGa amyAaaWdaeqaa8qacaGG7aGaamyva8aadaWgaaqaa8qacaWGsbaapa qabaaapeGaayjkaiaawMcaaaaa@3E25@ is the indicator function of the ball U R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbWdamaaBaaabaWdbiaadkfaa8aabeaaaaa@38A1@ with radius R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@3778@ centered at the observation point x=0, and assuming uncorrelated homogeneous Poisson distribution of galaxies (q to 1, n 0  to 0)., MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGUbWdamaaBaaabaWdbiaaicdaa8aabeaapeGaaeiOaiaa bshacaqGVbGaaeiOaiaaicdacaGGPaGaaiOlaiaacYcaaaa@3FA5@ one can write the joint characteristic function

f q,k = e iq M R + k . D R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaadghacaGGSaacbmGaa83AaaGa ayjkaiaawMcaaiabg2da9iaadwgapaWaaWbaaeqabaWdbiaadMgaca WGXbGaamyta8aadaWgaaqaa8qacaWGsbaapaqabaWdbiabgUcaRiaa =TgadaWgaaqaamaaCaaabeqaaiaa=5caaaaabeaacaWFebWdamaaBa aabaWdbiaadkfaa8aabeaaaaaaaa@469A@

in the form:

f q,k =exp n U R 1 e i q M R +k. D R d 3 x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGMbWaaeWaa8aabaWdbiaadghacaGGSaacbmGaa83AaaGa ayjkaiaawMcaaiabg2da9iaabwgacaqG4bGaaeiCamaacmaapaqaa8 qacqGHsislcaWGUbWaaybuaeqapaqaa8qacaWGvbWdamaaBaaabaWd biaadkfaa8aabeaaa8qabeWdaeaapeGaey4kIipaaiaab2aidaWada WdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaeqabaWdbiaadMga daqadaWdaeaapeGaamyCaiaad2eapaWaaSbaaeaapeGaamOuaaWdae qaa8qacqGHRaWkcaWFRbGaa8Nlaiaa=reapaWaaSbaaeaapeGaamOu aaWdaeqaaaWdbiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaamiza8 aadaahaaqabeaapeGaaG4maaaacaWF4baacaGL7bGaayzFaaGaaiOl aaaa@5B98@

Putting here q=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbGaeyypa0JaaGimaaaa@3957@ and then R, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyOKH4QaeqOhIuQaaiilaaaa@3B84@ we arrive at the known Holtsmark distribution for D, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaieaa aaaaaaa8qacaWFebGaa8hlaaaa@381F@  and in the case k=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGimaaaa@3951@ we obtain the one-sided one-dimensional stable distribution with α=3/2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycqGH9aqpcaaIZaGaai4laiaaikdacaGGSaaaaa@3C22@  for M R E M R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWdamaaBaaabaWdbiaadkfaa8aabeaapeGaeyOeI0Ia amyraiaad2eapaWaaSbaaeaapeGaamOuaaWdaeqaaaaa@3C58@ . Note that the fact

lim R M R = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaqaaaaaaaaaWdbiaabYgacaqGPbGaaeyBaaWdaeaapeGaamOuaiab gkziUkabe6HiLcWdaeqaa8qacaWGnbWdamaaBaaabaWdbiaadkfaa8 aabeaapeGaeyypa0JaeqOhIukaaa@4288@

is known as Olbers’ paradox and unfortunately its solution is obtained without using stable laws (see [20]).20 A number of authors analyze the dependence of observed cosmological dipole D R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaabaaeaaaaaaaaa8qacaWGsbaapaqabaaaaa@3871@ on R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@3778@ interpreting its saturation as an evidence for homogeneity of the Universe, some authors interpret the saturation as an evidence for isotropy of the Universe. For a complete review of this discussion we refer the reader to works.323 In any case this quantity bears a direct relation to the Cosmological Principle which can be formulated in the following way: “Except for local irregularities, the Universe presents the same aspect, from whatever point it is observed”.24 The dependence D R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiram aaBaaabaaeaaaaaaaaa8qacaWGsbaapaqabaaaaa@3871@ on R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@3778@ for some fractal models of the Universe has been investigated in the works.2125 We performed Monte-Karlo simulations of the distribution of the absolute value of summarized gravitational force of galaxies in two cases: homogeneous Poisson galaxy distribution (in result we get Holtsmark distribution) and in the case of fractal galaxy distribution, which we obtain using Mandelbrot trajectory. As one can see from the Figure 2 in fractal case the distribution is greatly wider than in Poisson case.

Figure 2 The distribution of absolute value of gravitational force. (a) – Poisson galaxy distribution, (b) – fractal galaxy distribution with D = 1.5

Cell-count distribution for the fractal Universe

The characteristics of the fractal distribution is the count of the number of galaxies in the spherical volume of radius R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@3778@ . The average value obeys the relation (1). The numerical calculations performed in,26 yield the following distribution of N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0F irpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaaaaa@39F3@ for the stochastic fractal model:

P N R =n ~ 1 N R Ψ n N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaiWaa8aabaWdbiaad6eadaqadaWdaeaapeGaamOu aaGaayjkaiaawMcaaiabg2da9iaad6gaaiaawUhacaGL9baacaGG+b WaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6eadaqadaWdaeaapeGa amOuaaGaayjkaiaawMcaaaaacaqGOoWaaeWaa8aabaWdbmaalaaapa qaa8qacaWGUbaapaqaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaa wIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@4BD7@ (16)

where

Ψ z = 1 Γ λ λ λ z λ1 e λz MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGOoWaaeWaa8aabaWdbiaadQhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaae4Kdmaabmaapaqaa8 qacqaH7oaBaiaawIcacaGLPaaaaaGaeq4UdW2damaaCaaabeqaa8qa cqaH7oaBaaGaamOEa8aadaahaaqabeaapeGaeq4UdWMaeyOeI0IaaG ymaaaacaWGLbWdamaaCaaabeqaa8qacqGHsislcqaH7oaBcaWG6baa aaaa@4E0A@  (17)

is the gamma-distribution. Distributions of N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaaaaa@39F3@ called cell-count distributions are obtained from galaxy catalogs by means of not very reliable procedure. Nevertheless it is interesting to compare the fractal cell-count distribution (4) with observed data. To do this we have taken the Lick sample data presented in the paper [27]. Computing N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPms4caWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGL PaaacqGHQms8aaa@3D76@ we have found Ψ obs z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGOoWdamaaCaaabeqaa8qacaqGVbGaaeOyaiaabohaaaWa aeWaa8aabaWdbiaadQhaaiaawIcacaGLPaaaaaa@3D84@ and calculation of N 2 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPms4caWGobWaaWbaaeqabaGaaGOmaaaadaqadaWdaeaa peGaamOuaaGaayjkaiaawMcaaiabgQYiXdaa@3E54@ has given us a possibility to find the parameter λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBaaa@3855@ in approximation formula (17). The two distributions presented in Figure 3 have turned out to be very close to each other.

Figure 3 Distributions Ψz(solid curve) and Ψobsz(step diagram).

Global mass density for the fractal universe

One of important parameters characterizing models of the Universe is the global mass density 

ρ= lim R M R /V R , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCcqGH9aqppaWaaCbeaeaacaWGSbGaamyAaiaad2ga aeaapeGaamOuaiabgkziUkabg6HiLcWdaeqaa8qadaWadaWdaeaape Gaamytamaabmaapaqaa8qacaWGsbaacaGLOaGaayzkaaGaai4laiaa dAfadaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaaGaay5waiaaw2 faaiaacYcaaaa@4AF8@  (18)

Where M R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaaaaa@39F2@ is the total mass within a sphere of radius R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@3778@ and V R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGwbWaaeWaaeaacaWGsbaacaGLOaGaayzkaaaaaa@39DC@  is the volume of the sphere. For models being homogeneous (at least on large scales) this limit exists and is not zero. Let us see what kind of results one can get for fractal models. At first we consider the deterministic fractal described in the paper.3 Starting from a point occupied by an object and counting how many objects are present within a volume characterized by a certain length scale, we get N 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaaicdaa8aabeaaaaa@387D@ pointlike objects within a radius R 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaabaaeaaaaaaaaa8qacaaIWaaapaqabaGaaiilaaaa@3912@ N 1 =q N 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaaigdaa8aabeaapeGaeyypa0Ja amyCaiaad6eapaWaaSbaaeaapeGaaGimaaWdaeqaaaaa@3C66@ objects within a radius R 1 =k R 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaaigdaa8aabeaapeGaeyypa0Ja am4AaiaadkfapaWaaSbaaeaapeGaaGimaaWdaeqaaiaacYcaaaa@3D18@  

N 2 =q N 1 = q 2 N 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaaikdaa8aabeaapeGaeyypa0Ja amyCaiaad6eapaWaaSbaaeaapeGaaGymaaWdaeqaa8qacqGH9aqpca WGXbWdamaaCaaabeqaa8qacaaIYaaaaiaad6eapaWaaSbaaeaapeGa aGimaaWdaeqaaaaa@414D@ objects within R 2 =k R 1 = k 2 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaaikdaa8aabeaapeGaeyypa0Ja am4AaiaadkfapaWaaSbaaeaapeGaaGymaaWdaeqaa8qacqGH9aqpca WGRbWdamaaCaaabeqaa8qacaaIYaaaaiaadkfapaWaaSbaaeaapeGa aGimaaWdaeqaaaaa@414D@ and so on. In general we have

N n = q n N 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaad6gaa8aabeaapeGaeyypa0Ja amyCa8aadaahaaqabeaapeGaamOBaaaacaWGobWdamaaBaaabaWdbi aaicdaa8aabeaaaaa@3DD2@  (19)

 and

R n = k n R 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaad6gaa8aabeaapeGaeyypa0Ja am4Aa8aadaahaaqabeaapeGaamOBaaaacaWGsbWdamaaBaaabaWdbi aaicdaa8aabeaapeGaaiilaaaa@3E94@  (20)

Where q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGXbaaaa@3797@ and k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbaaaa@3791@ are constants. By taking the logarithm of equations (19) and (20) and dividing one by the other we get

N n =C R n D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaad6gaa8aabeaapeGaeyypa0Ja am4qaiaadkfapaWaa0baaeaapeGaamOBaaWdaeaapeGaamiraaaaaa a@3D87@  (21)

with

C= N 0 R 0 D , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbGaeyypa0JaamOta8aadaWgaaqaa8qacaaIWaaapaqa baWdbiaadkfapaWaa0baaeaapeGaaGimaaWdaeaapeGaeyOeI0Iaam iraaaacaGGSaaaaa@3EB2@

D= lnq lnk , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebGaeyypa0ZaaSaaa8aabaWdbiaadYgacaWGUbGaamyC aaWdaeaapeGaamiBaiaad6gacaWGRbaaaiaacYcaaaa@3F1C@

Where C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGdbaaaa@3769@ is a prefactor of proportionality related to the lower cutoffs N 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWdamaaBaaabaWdbiaaicdaa8aabeaaaaa@387D@ and R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaaicdaa8aabeaaaaa@3881@ of the fractal system, that is, the inner limit where the fractal system ends, and D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebaaaa@376A@ is the fractal dimension (D<3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aacseacqGH8aapcaaIZaGaaiykaaaa@3A63@ . If we smooth out the point structure we get the continuum limit of equation (21)

N R =C R D . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaacqGH 9aqpcaWGdbGaamOua8aadaahaaqabeaapeGaamiraaaacaGGUaaaaa@3E54@  (22)

Supposing that all the objects have the same mass , we get

ρ R M R /V R = 3mC/ 4π R γ ,    γ=3D. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCdaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaiab ggMi6kaad2eadaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaiaac+ cacaWGwbWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaacqGH9aqp daWadaWdaeaapeGaaG4maiaad2gacaWGdbGaai4lamaabmaapaqaa8 qacaaI0aGaeqiWdahacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamOu a8aadaahaaqabeaapeGaeyOeI0Iaeq4SdCgaaiaacYcacaqGGcGaae iOaiaabckacaqGGcGaeq4SdCMaeyypa0JaaG4maiabgkHiTiaadsea caGGUaaaaa@5D25@

As one can see from here,

ρ= lim R ρ R =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCcqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqG Tbaapaqaa8qacaWGsbGaeyOKH4QaeqOhIukapaqabaWdbiabeg8aYn aabmaapaqaa8qacaWGsbaacaGLOaGaayzkaaGaeyypa0JaaGimaiaa cYcaaaa@479F@  (23)

for the fractal structure. This fact is known as the third postulate of the pure hierarchy fractal conception: "for a pure hierarchy the global mass density is zero everywhere".4 The situation stays the same if masses m i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbWdamaaBaaabaWdbiaadMgaa8aabeaaaaa@38D0@ are independent identically distributed random variables with E m i =m<: MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbGaamyBa8aadaWgaaqaa8qacaWGPbaapaqabaWdbiab g2da9iabgMYiHlaad2gacqGHQms8cqGH8aapcqaHEisPcaGG6aaaaa@4256@

ρ R M R /V R = 3mC/ 4π R γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPms4cqaHbpGCdaqadaWdaeaapeGaamOuaaGaayjkaiaa wMcaaiabgQYiXlabggMi6kabgMYiHlaad2eadaqadaWdaeaapeGaam OuaaGaayjkaiaawMcaaiaac+cacaWGwbWaaeWaa8aabaWdbiaadkfa aiaawIcacaGLPaaacqGHQms8cqGH9aqpdaWadaWdaeaapeGaaG4mai abgMYiHlaad2gacqGHQms8caWGdbGaai4lamaabmaapaqaa8qacaaI 0aGaeqiWdahacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamOua8aada ahaaqabeaapeGaeyOeI0Iaeq4SdCgaaiaac6caaaa@5D52@

However, astronomical observations show that in a very large range of masses the probability density p m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaWdbiaad2gaaiaawIcacaGLPaaaaaa@3A30@ has the form

p m =βA m β1 ,        0< m 0 <m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaWdbiaad2gaaiaawIcacaGLPaaacqGH 9aqpcqaHYoGycaWGbbGaamyBa8aadaahaaqabeaapeGaeyOeI0Iaeq OSdiMaeyOeI0IaaGymaaaacaGGSaGaaeiOaiaabckacaqGGcGaaeiO aiaabckacaqGGcGaaeiOaiaabckacaaIWaGaeyipaWJaamyBa8aada Wgaaqaa8qacaaIWaaapaqabaWdbiabgYda8iaad2gacaGGSaaaaa@533D@  (24)

 where β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGyaaa@3842@ is less than 1.28 We will suppose further that (17) holds true for all m> m 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbGaeyOpa4JaamyBa8aadaWgaaqaa8qacaaIWaaapaqa baGaaiOlaaaa@3B48@ Introducing the random value

ρ R = i=1 N R m i /V R = 3/ 4π R 3 i=1 N R m i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCdaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaiab g2da9maaqadabaGaamyBa8aadaWgaaqaa8qacaWGPbaapaqabaaape qaaiaadMgacqGH9aqpcaaIXaaabaGaamOtamaabmaapaqaa8qacaWG sbaacaGLOaGaayzkaaaacqGHris5aiaab2aicaGGVaGaamOvamaabm aapaqaa8qacaWGsbaacaGLOaGaayzkaaGaeyypa0ZaamWaa8aabaWd biaaiodacaGGVaWaaeWaa8aabaWdbiaaisdacqaHapaCaiaawIcaca GLPaaaaiaawUfacaGLDbaacaWGsbWdamaaCaaabeqaa8qacqGHsisl caaIZaaaamaaqadabaGaamyBa8aadaWgaaqaa8qacaWGPbaapaqaba aapeqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtamaabmaapaqaa8qa caWGsbaacaGLOaGaayzkaaaacqGHris5aiaacYcaaaa@6113@ (25)

 one can transform the problem of finding ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPms4cqaHbpGCcqGHQms8aaa@3BE4@ which is infinite now into the problem of investigation of the distribution of the random variable (25). In the case β<1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH8aapcaaIXaGaaiilaaaa@3AB1@ the distribution (24) belongs to the domain of normal attraction of a one-dimensional standardized stable law p x;β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaWdbiaadIhacaGG7aGaeqOSdigacaGL OaGaayzkaaaaaa@3C9B@ with the characteristic exponent β, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycaGGSaaaaa@38F2@ so that

Prob i=1 N m i / b N <x G x;β ,    N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGqbGaaeOCaiaab+gacaqGIbWaaiWaa8aabaWdbmaaqada baGaamyBa8aadaWgaaqaa8qacaWGPbaapaqabaaapeqaaiaadMgacq GH9aqpcaaIXaaabaGaamOtaaGaeyyeIuoacaGGVaGaamOya8aadaWg aaqaa8qacaWGobaapaqabaWdbiabgYda8iaadIhaaiaawUhacaGL9b aacqGHshI3caWGhbWaaeWaa8aabaWdbiaadIhacaGG7aGaeqOSdiga caGLOaGaayzkaaGaaiilaiaabckacaqGGcGaaeiOaiaabckacaWGob GaeyOKH4QaeqOhIukaaa@5AA1@ (26)

Where G x;β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbWaaeWaa8aabaWdbiaadIhacaGG7aGaeqOSdigacaGL OaGaayzkaaaaaa@3C72@ is the distribution function and

b N = b 1 N 1/β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaBaaabaWdbiaad6eaa8aabeaapeGaeyypa0Ja amOya8aadaWgaaqaa8qacaaIXaaapaqabaWdbiaad6eapaWaaWbaae qabaWdbiaaigdacaGGVaGaeqOSdigaaaaa@3FE4@ (27)

and

b 1 = [A 1β cos βπ/2 ] 1/β . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGIbWdamaaBaaabaWdbiaaigdaa8aabeaapeGaeyypa0Ja ai4waiaadgeadaqadaWdaeaapeGaaGymaiabgkHiTiabek7aIbGaay jkaiaawMcaaiaabogacaqGVbGaae4Camaabmaapaqaa8qacqaHYoGy cqaHapaCcaGGVaGaaGOmaaGaayjkaiaawMcaaiaac2fapaWaaWbaae qabaWdbiaaigdacaGGVaGaeqOSdigaaiaac6caaaa@4E64@

Denoting the probability density of the random variable (25) by p ρ x;R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaaaaa@3DF0@ and using (26), one can obtain the following asymptotical expression for large values of N R : MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaacaGG 6aaaaa@3AB1@

p ρ x;R ~ 4π R 3 / 3 b N R p 4π R 3 x/ 3 b N R ;β , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaGaaiOFamaadm aapaqaa8qacaaI0aGaeqiWdaNaamOua8aadaahaaqabeaapeGaaG4m aaaacaGGVaWaaeWaa8aabaWdbiaaiodacaWGIbWdamaaBaaabaWdbi aad6eadaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaaWdaeqaaaWd biaawIcacaGLPaaaaiaawUfacaGLDbaacaWGWbWaaeWaa8aabaWdbi aaisdacqaHapaCcaWGsbWdamaaCaaabeqaa8qacaaIZaaaaiaadIha caGGVaWaamWaa8aabaWdbiaaiodacaWGIbWdamaaBaaabaWdbiaad6 eadaqadaWdaeaapeGaamOuaaGaayjkaiaawMcaaaWdaeqaaaWdbiaa wUfacaGLDbaacaGG7aGaeqOSdigacaGLOaGaayzkaaGaaiilaaaa@6016@

N R . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaacqGH sgIRcqaHEisPcaGGUaaaaa@3E01@  (28)

Substituting (22) into (27) and inserting result into (28), we get

p ρ x;R ~Q R 3D/β p Q R 3D/β x;β , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaGaaiOFaiaadg facaWGsbWdamaaCaaabeqaa8qacaaIZaGaeyOeI0Iaamiraiaac+ca cqaHYoGyaaGaamiCamaabmaapaqaa8qacaWGrbGaamOua8aadaahaa qabeaapeGaaG4maiabgkHiTiaadseacaGGVaGaeqOSdigaaiaadIha caGG7aGaeqOSdigacaGLOaGaayzkaaGaaiilaaaa@5306@ (29)

R, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyOKH4QaeqOhIuQaaiilaaaa@3B84@

where

Q=4π/ 3 b 1 C 1/β . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbGaeyypa0JaaGinaiabec8aWjaac+cadaqadaWdaeaa peGaaG4maiaadkgapaWaaSbaaeaapeGaaGymaaWdaeqaa8qacaWGdb WdamaaCaaabeqaa8qacaaIXaGaai4laiabek7aIbaaaiaawIcacaGL PaaacaGGUaaaaa@44DB@

As one can see from (28), the probability density of the random conditional mass density has a nondegenerated limit by R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyOKH4QaeqOhIukaaa@3AD4@ for β=D/3: MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaWGebGaai4laiaaiodacaGG6aaaaa@3C3F@

p ρ x;R R p ρ x Qp Qx;β , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaWdamaaxababa WdbiabgkziUcWdaeaapeGaamOuaiabgkziUkabe6HiLcWdaeqaa8qa caWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWdaeaape GaamiEaaGaayjkaiaawMcaaiabggMi6kaadgfacaWGWbWaaeWaa8aa baWdbiaadgfacaWG4bGaai4oaiabek7aIbGaayjkaiaawMcaaiaacY caaaa@5473@  (30)

β=D/3. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaWGebGaai4laiaaiodacaGGUaaaaa@3C33@

The aggregate considered above seems too artificial to be used as a model of mass distribution in the Universe. The stochastic fractal described in Sec. II is more appropriate for this purpose. In this case

p ρ x;R = p ρ x;R,N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaGaeyypa0Jaey ykJeUaamiCa8aadaWgaaqaa8qacqaHbpGCa8aabeaapeWaaeWaa8aa baWdbiaadIhacaGG7aGaamOuaiaacYcacaWGobWaaeWaa8aabaWdbi aadkfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHQms8aaa@4DCA@

Where p ρ x;R,N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbGaaiilaiaad6eadaqadaWdaeaape GaamOuaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@41F2@ is the conditional density by a fixed value N R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGobWaaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaaaaa@39F3@ and MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGHPms4cqGHMacVcqGHQms8aaa@3BB2@ means here averaging over the random variable distributed according the law

P N R =n ~ 1 N R Ψ D n N R , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGqbWaaiWaa8aabaWdbiaad6eadaqadaWdaeaapeGaamOu aaGaayjkaiaawMcaaiabg2da9iaad6gaaiaawUhacaGL9baacaGG+b WaaSaaa8aabaWdbiaaigdaa8aabaWdbiabgMYiHlaad6eadaqadaWd aeaapeGaamOuaaGaayjkaiaawMcaaiabgQYiXdaacaqGOoWdamaaBa aabaWdbiaadseaa8aabeaadaqadaqaa8qadaWcaaWdaeaapeGaamOB aaWdaeaapeGaeyykJeUaamOtamaabmaapaqaa8qacaWGsbaacaGLOa GaayzkaaGaeyOkJepaaaWdaiaawIcacaGLPaaacaGGSaaaaa@54A5@

With

Ψ D z = λ λ z λ1 Γ λ e λz MathType@MTEF@5 @5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGOoWdamaaBaaaleaapeGaamiraaWdaeqaaOWdbmaabmaapaqa a8qacaWG6baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiabeU 7aS9aadaahaaWcbeqaa8qacqaH7oaBaaGccaWG6bWdamaaCaaaleqa baWdbiabeU7aSjabgkHiTiaaigdaaaaak8aabaWdbiaabo5adaqada WdaeaapeGaeq4UdWgacaGLOaGaayzkaaaaaiaadwgapaWaaWbaaSqa beaapeGaeyOeI0Iaeq4UdWMaamOEaaaaaaa@4E34@ (31)

Taking into account (29), we get

p ρ x;R ~Q R 3D/β 0 z 1/β p Q R 3D/β x z 1/β ;β Ψ D z dz. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaiaacUdacaWGsbaacaGLOaGaayzkaaGaaiOFaiaadg facaWGsbWdamaaCaaabeqaa8qacaaIZaGaeyOeI0Iaamiraiaac+ca cqaHYoGyaaWaaybCaeqapaqaa8qacaaIWaaapaqaa8qacqaHEisPa8 aabaWdbiabgUIiYdaacaqGnaIaamOEa8aadaahaaqabeaapeGaeyOe I0IaaGymaiaac+cacqaHYoGyaaGaamiCamaabmaapaqaa8qacaWGrb GaamOua8aadaahaaqabeaapeGaaG4maiabgkHiTiaadseacaGGVaGa eqOSdigaaiaadIhacaWG6bWdamaaCaaabeqaa8qacqGHsislcaaIXa Gaai4laiabek7aIbaacaGG7aGaeqOSdigacaGLOaGaayzkaaGaaeiQ d8aadaWgaaqaa8qacaWGebaapaqabaWdbmaabmaapaqaa8qacaWG6b aacaGLOaGaayzkaaGaamizaiaadQhacaGGUaaaaa@69F5@

Therefore the nondegenerated limit of the distribution of ρ exists under condition β=D/3 again:

p ρ x =Q 0 z 1 β p Qx z 1 β ;β Ψ D z dz. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9iaadgfadaGfWbqab8 aabaWdbiaaicdaa8aabaWdbiabe6HiLcWdaeaapeGaey4kIipaaiaa b2aicaWG6bWdamaaCaaabeqaa8qacqGHsisldaWcaaWdaeaapeGaaG ymaaWdaeaapeGaeqOSdigaaaaacaWGWbWaaeWaa8aabaWdbiaadgfa caWG4bGaamOEa8aadaahaaqabeaapeGaeyOeI0YaaSaaa8aabaWdbi aaigdaa8aabaWdbiabek7aIbaaaaGaai4oaiabek7aIbGaayjkaiaa wMcaaiaabI6apaWaaSbaaeaapeGaamiraaWdaeqaa8qadaqadaWdae aapeGaamOEaaGaayjkaiaawMcaaiaadsgacaWG6bGaaiOlaaaa@5BDB@

Rescaling the independent variable Qxx MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGrbGaamiEaiabgkziUkaadIhaaaa@3B5F@ and substituting here (31) we arrive the following expression

p ρ x = [Γ λ ] 1 λ λ 0 z λ11/β p x z 1/β ;β e λz dz. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9iaacUfacaqGtoWaae Waa8aabaWdbiabeU7aSbGaayjkaiaawMcaaiaac2fapaWaaWbaaeqa baWdbiabgkHiTiaaigdaaaGaeq4UdW2damaaCaaabeqaa8qacqaH7o aBaaWaaybCaeqapaqaa8qacaaIWaaapaqaa8qacqaHEisPa8aabaWd biabgUIiYdaacaqGnaIaamOEa8aadaahaaqabeaapeGaeq4UdWMaey OeI0IaaGymaiabgkHiTiaaigdacaGGVaGaeqOSdigaaiaadchadaqa daWdaeaapeGaamiEaiaadQhapaWaaWbaaeqabaWdbiabgkHiTiaaig dacaGGVaGaeqOSdigaaiaacUdacqaHYoGyaiaawIcacaGLPaaacaWG LbWdamaaCaaabeqaa8qacqGHsislcqaH7oaBcaWG6baaaiaadsgaca WG6bGaaiOlaaaa@69EA@  (32)

 It is easy to check, that this result obeys normalization

0 p ρ x dx=.1. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaGfWbqab8aabaWdbiaaicdaa8aabaWdbiabe6HiLcWdaeaa peGaey4kIipaaiaab2aicaWGWbWdamaaBaaabaWdbiabeg8aYbWdae qaa8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaadsgacaWG 4bGaeyypa0JaaiOlaiaaigdacaGGUaaaaa@46F5@

Astronomical observations show that D1.16÷1.40. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebGaeyisISRaaGymaiaac6cacaaIXaGaaGOnaiabgEpa 4kaaigdacaGGUaGaaGinaiaaicdacaGGUaaaaa@41D6@ .23 Taking for the sake of simplicity D=1.5, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebGaeyypa0JaaGymaiaac6cacaaI1aGaaiilaaaa@3B4D@ we get the value

β=0.5, MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaaIWaGaaiOlaiaaiwdacaGGSaaaaa@3C24@

which coincides approximately with

β obs =0.5÷0.6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGypaWaaSbaaeaapeGaam4BaiaadkgacaWGZbaapaqa baWdbiabg2da9iaaicdacaGGUaGaaGynaiabgEpa4kaaicdacaGGUa GaaGOnaaaa@430D@

obtained from luminosity observations.14 In this case one can use an explicit form of the stable density

p x;1/2 = 1 2π x 3/2 e 1 2x , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWaaeWaa8aabaWdbiaadIhacaGG7aGaaGymaiaac+ca caaIYaaacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8 aabaWdbmaakaaapaqaa8qacaaIYaGaeqiWdahabeaaaaGaamiEa8aa daahaaqabeaapeGaeyOeI0IaaG4maiaac+cacaaIYaaaaiaadwgapa WaaWbaaeqabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qa caaIYaGaamiEaaaaaaGaaiilaaaa@4BBD@

so (32) takes the form

p ρ x = λ λ x λ/21 2π Γ λ 0 t λ3 2 e λ (x/t) 1/2 e 1 2t dt.. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacq aH7oaBpaWaaWbaaeqabaWdbiabeU7aSbaacaWG4bWdamaaCaaabeqa a8qacqaH7oaBcaGGVaGaaGOmaiabgkHiTiaaigdaaaaapaqaa8qada GcaaWdaeaapeGaaGOmaiabec8aWbqabaGaae4Kdmaabmaapaqaa8qa cqaH7oaBaiaawIcacaGLPaaaaaWaaybCaeqapaqaa8qacaaIWaaapa qaa8qacqaHEisPa8aabaWdbiabgUIiYdaacaqGnaIaamiDa8aadaah aaqabeaapeWaaSaaa8aabaWdbiabeU7aSjabgkHiTiaaiodaa8aaba WdbiaaikdaaaaaaiaadwgapaWaaWbaaeqabaWdbiabgkHiTiabeU7a SjaacIcacaWG4bGaai4laiaadshacaGGPaWdamaaCaaabeqaa8qaca aIXaGaai4laiaaikdaaaaaaiaadwgapaWaaWbaaeqabaWdbiabgkHi Tmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaGaamiDaaaaaaGaam izaiaadshacaGGUaGaaiOlaaaa@6C04@

Using formula (3.462) from the book,29 one can rewrite the result in the form

p ρ x = 2 λ λ x λ/21 π Γ λ Γ λ+1 e λ 2 x /4 D λ+1 λ x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qaca aIYaGaeq4UdW2damaaCaaabeqaa8qacqaH7oaBaaGaamiEa8aadaah aaqabeaapeGaeq4UdWMaai4laiaaikdacqGHsislcaaIXaaaaaWdae aapeWaaOaaa8aabaWdbiabec8aWbqabaGaae4Kdmaabmaapaqaa8qa cqaH7oaBaiaawIcacaGLPaaaaaGaae4Kdmaabmaapaqaa8qacqaH7o aBcqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamyza8aadaahaaqabeaa peWaaeWaa8aabaWdbiabeU7aS9aadaahaaqabeaapeGaaGOmaaaaca WG4baacaGLOaGaayzkaaGaai4laiaaisdaaaGaamira8aadaWgaaqa a8qacqGHsisldaqadaWdaeaapeGaeq4UdWMaey4kaSIaaGymaaGaay jkaiaawMcaaaWdaeqaa8qadaqadaWdaeaapeGaeq4UdW2aaOaaa8aa baWdbiaadIhaaeqaaaGaayjkaiaawMcaaaaa@6818@

Where D x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGebWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@3A10@ is the parabolic cylinder function and λ=1.5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBcqGH9aqpcaaIXaGaaiOlaiaaiwdaaaa@3B88@ for a single fractal and λ=3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH7oaBcqGH9aqpcaaIZaaaaa@3A19@ for a fractal which is a paired Mandelbrot trajectory.26 The graphs of p ρ x MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbWdamaaBaaabaWdbiabeg8aYbWdaeqaa8qadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaaaa@3C5B@ for deterministic fractal, single and coupled stochastic fractals are represented in Figure 4. As we can see the distributions are broad enough with the same asymptotics x 3/2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bWdamaaCaaabeqaa8qacqGHsislcaaIZaGaai4laiaa ikdaaaaaaa@3AF9@ .

Figure 4The Distribution of GMD in the case of deterministic fractal (solid line), single Mandelbrot trajectory (dashed line) and paired Mandelbrot trajectory (dotted line).

Ergodic problem

Among the other problems concerning the large scale structure of the Universe the special place is taken by the some hypotheses which are, maybe implicitly, underlying the standard correlation function analysis. Note that all the descriptive statistics used for analyzing the large-scale structure neglect the curvature of the space and expansion of the Universe, i.e. these statistics work in Euclidean space. Also the next fact is neglected: the galaxies are seen in the past light cone but not in the fixed moment of cosmological time. This is a good approximation since the most available data is obtained from the small part of Hubble distance c H (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaamisa8aadaahaaqabeaapeGaaiikaiabgkHiTiaa igdacaGGPaaaaaaa@3B99@ .1 The Fair Sample Hypothesis is also implied, it states:

  1. it is quite reasonable to treat those parts of the Universe which are sufficiently separated from each other as independent realizations of the one and the same physical process;
  2. within the limits of the visible Universe there are many independent samples which can be gathered into approximate statistical ensemble;
  3. the turning does not change the values averaged over ensemble;

Under such assumptions they usually perform statistical analysis of galaxy distribution. However, in the light of fractal approach to the large scale structure, more attention should be paid to the newly arisen problem which we can call Cosmological Ergodic Problem induced by Ergodic Hypothesis.30 Astronomical observations probe only the spatial distribution in one realization of some physical process. Theory, on the other hand, specifies the probability distribution over an ensemble. For homogeneous random fields Ergodic Hypothesis states: ensemble averages equal spatial averages taken over one realization of the random field. Note that, in contrast with the custom of statistical mechanics, this Ergodic Hypothesis refers to the spatial distribution of the random field at a fixed time rather than to the time evolution of the system. Essentially, the Ergodic Hypothesis requires spatial correlations to decay sufficiently rapidly with increasing the separation so that there exist many statistically independent volumes in one realization. This fact is usually implied when statistically treating the large-scale structure, but is it a real fact ? Can we suppose the available surveys to be big enough to provide us with a certain confidence about presence of independent samples? Anyway, leaving apart the discussion about actual fractality of the Universe3 the conclusions about equivalence of the two averaging methods are of its own interest. In the fractal-like structures the correlations extend at all scales, and the violation of Ergodic Hypothesis may be anticipated. We prove it by performing a Monte Carlo simulation of stochastic fractal which is an infinite Mandelbrot"s trajectory added by a second part, so the trajectory is now coming from infinity and goes to infinity, and all the points on such a trajectory are equivalent in statistical sence. From Figure 5 one can see that counting in spherical cells when performed over one realization is not the same for ensemble of independent realizations. This fact may cause a difference between the theoretical amplitudes of correlation functions and those obtained from observations.

Figure 5 The Distribution of GMD in the case of deterministic fractal (solid line), single Mandelbrot trajectory (dashed line) and paired Mandelbrot trajectory (dotted line).

Conclusion

We have the reason to suppose that the fractal model described above can be used for description of the observable statistical properties of the Universe. In any case the following statement seems to be highly plausible: fractal cosmology should be only stochastic one. It follows simply from the main attribute of a fractal, namely, from its self-similarity. If the fractal is stochastic at some scale then it should be stochastic at all scales. In other words there is not a scale at which the Universe could be described in terms of determined continuous medium. However it is impossible not to admit that the fractal model of the Universe is a very extreme kind of possible models requiring revision of not only the method of usual analysis of observation data but the very Cosmological Principle.

Acknowledgments

I’m grateful to Dr. E.V. Kozhemiakina for her assistance in preparing the manuscript for processing.

Conflict of interest

The author declares there is no conflcit of interest.

References

  1. PJE Peebles. The Large-Scale Structure of the Universe. Princeton. 1980. p. 435.
  2. Yu V Baryshev, F Sylos Labini, M Montuori, et al. Facts and ideas in modern cosmology. Vistas in Astronomy.1994;38(4):419–500.
  3. PH Coleman, L Pietronero. Mathematical modeling of the distribution of galaxies in the universe. Phys Rep. 1992;213:313.
  4. MB Ribeiro. Relativistic fractal cosmologies, in Deterministic Chaos in General Relativity. In: DW Hobil, et al., editor. 1993.
  5. LN da Costa, Michael S Vogeley, Margaret J Geller,et al. The power spectrum of galaxies in the nearby universe. ApJ. 1994;424:L1–L4.
  6. G Vettolani, E Zucca, G Zamorani, et al. The ESO slice project (ESP) galaxy redshift survey. A&A. 1997;325:954–960.
  7. Mandelbrot BB. The Fractal Geometry of Nature. WH Freeman editor. Comptes Rendus company, New York. 1983.
  8. CD Shane, Wirtanen. Publ Lick Obs. 1967;22, part 1.
  9. JN Fry. Gravity, bias, and the galaxy three-point correlation function. Phys Rev Lett. 1994;73(2):215–219.
  10. ER Harrison. Fluctuations at the Threshold of Classical Cosmology. Phys Rev D. 1970;1:2726.
  11. A Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys Rev D. 1981;23:347.
  12. A Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys Lett B. 1982;108:389.
  13. A Linde. The inflationary Universe. Rep Prog Phys. 1984;47:925.
  14. S Borgani. Scaling in the Universe. Phys Rep. 1995;251:1–152.
  15. P Coles. In: Statistical Challenges in Modern Cosmology. E Feigelson, et al., editiors. Spinger-New York Inc. 1992. p. 57–81.
  16. VM Zolotarev. One-Dimensional Stable Distributions. Am Math Soc Providence. 1986.
  17. G Stell. Chance and ST ability Stable Distributions and their Applications. Lectures in Applied Mathematics. 1991;27:109–137.
  18. VV Uchaikin, GG Gusarov. Fractional kinetics in space anomalous transport models.  J Math Phys. 1997;38(5):2453–2464.
  19. M Plionis, P Coles, P Catelan. Chance and stability stable distributions and their applications. R Astron Soc. 1993;262:465–474.
  20. E Harrison. The dark night-sky riddle, “Olbers’ paradox. In The Galactic and Extragalactic Background Radiation. S Bowyer, et al., editors. 1990. p. 3–17.
  21. F Sylos Labini. Isotropy, homogeneity, and dipole saturation. Astrophys J. 1994;433:464–467.
  22. S Borgani, VJ Martinez, MA Pérez, et al. Is there any scaling in the cluster distribution. Astrophys J. 1994;435:37–48.
  23. VT Martinez, BJT Jones, Mon Not. Why the Universe is not a fractal. R Astr Soc. 1990;242(4):517–521.
  24. V Kourganoff. Introduction to Advanced Astrophysics. D Reidel Publishing Company, Dordrecht: Holland, 1980.
  25. Uchaikin VV, Korobko DA, Gismjatov IF, Ulyanovsk State University - the head of the chair of theoretical and mathematical physics. Izv vuzov Fizika. 1997;8:7–13.
  26. Uchaikin V, Gismjatov I, Gusarov G. Paired Lévy–Mandelbrot Trajectory as a Homogeneous Fractal. International Journal of Bifurcation and Chaos. 1998;8(5):977–984.
  27. P Coles, L Moscardini, M Plionis, et al. Topology in two dimensions–IV.CDM models with non-Gaussian initial conditions. Mon Not R Astron Soc. 1993;60:572–588.
  28. WH Press, P Schechter. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. Astrophys J. 1974;187:425–438.
  29. IS Gradshtein, IM Ryzhik. Tables of integrals, series, and products, 4th edn. Fizmatgiz, Moscow, 1963; English transl. Academic Press, 1965.
  30. E Bertschinger. In Lecture Notes in Physics, 408, New Insights into the Universe. VJ Martinez, et al., editors. Springer-Verlag, Berlin, Heidelberg. 1992. p. 88.
Creative Commons Attribution License

©2019 Uchaikin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.