Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 6 Issue 1

Observables physics general formalism

Rajan Iyer

Engineeringinc International Operational Teknet Earth Global, Department of Physical Mathematics Sciences Engineering Project Technologies, United States America

Correspondence: Rajan Iyer, Engineeringinc International Operational Teknet Earth Global, Department of Physical Mathematics Sciences Engineering Project Technologies, Tempe, Arizona, United States America, Tel 4802870663

Received: January 31, 2022 | Published: February 22, 2022

Citation: Iyer R. Observables physics general formalism. Phys Astron Int J. 2022;6(1):17-20. DOI: 10.15406/paij.2022.06.00244

Download PDF

Abstract

Observables form the most important real physics proof processes that will make normal science. Since mathematics have integral part in quantifying physical phenomena, theory involves modeling hypothetical logic borne within observations. A proper theory will need to show pulling out observables from parameters using abstractions. These processes that have gotten derived elsewhere are reviewed here in a gist manner that author has been able to configure as a fundamentally grand unifying realistic physics without assumptive inconsistencies. Review here also shows corrections of errata in earlier publications to help applications to wider areas of not only physical sciences but also mathematical computing information technology algorithms’ developments.

Iyer-Markoulakis formalism to gage micro to macro by applying Coulomb-Hilbert gage from mechanics of gradient vortex fields to electromagnetic fields and then to gravitational aspects have been explained. Quantitative derivation of a general potential wave quantum density commutator matrix physics, with subsequent gauge equivalent expressions have been advanced. Mathematical modeling has been briefed on theorizing point dynamics Helmholtz decomposition fields’ quantum Hamiltonian matrix evolving with time. Partial differential equations that have gotten derived from these characteristic matrices for zero-point as well as microblackhole aspects of a point in sense-time-space dimensions have highlighted addressing real world complexity manifested by these pure logical equations. Gaging with algorithmically elaboratively extended analysis with observables provide fitting completions to the partial differential equations (P.D.E.) of energy and quantum field metrix within Iyer-Markoulakis-Hodge-O’Neill-Malaver-Zhang-Taylor formalisms that provide best hope towards grand unification of the four super forces that physics portrays to natural workings of the universe. Retrofitting Iyer Markoulakis gradient vortex gage fields eigen matrix formalism to Wenzhong Hodge scalar frictional vacuum theory of hod-Plenum, dissipative discontinuity of modeling gage physics, giving an Integral Model Astro Quantum PHYSICS has shown to be achievable. Matrix general form algorithm equation, having gage functional, signal/noise ratio, gage fields, wavefunction inner outer products, quantum density matrix as a function of gage time configured successfully. Application to observables practically for analysis has been exemplified to mesoscopic population pattern with gage fields of pressure and temperature.

Introductory remarks

Primary theoretical modeling reported elsewhere1 brought out fundamental point dynamics Helmholtz decomposition fields’ quantum Hamiltonian matrix evolving with time. Partial differential equations were derived from these characteristic matrices for zero-point as well as microblackhole aspects of a point in sense-time-space dimensions. However, modifications would hereby be noted as regarding “icħ” and “2- icħ” terms, specifically in the partial differential equations (P.D.E.) of energy and quantum field metrix within Iyer-Markoulakis-Hodge-O’Neill-Malaver-Zhang-Taylor formalisms.2

Keynote algorithms equations highlights are given below with brief explanations. Refer to the citations provided at REFERENCE LIST PHYSICS LITERATURE2-4 for complete derivations, analyses, as well as explanations with applicative interpretations.

Characterization of eigenstate energetics of zero-point vacuum quagmire P.D.E. is shown to be: 3 E g μν . 2 E g,μν = 3 E g,μν . 2 E g μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIe9damaaCaaaleqabaWdbiaaiodaaaGccaWGfbWdamaaBaaa leaapeGaam4zaaWdaeqaaOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4 gaaOGaaiOlaiabgEGir=aadaahaaWcbeqaa8qacaaIYaaaaOGaamyr a8aadaWgaaWcbaWdbiaadEgacaGGSaGaeqiVd0MaeqyVd4gapaqaba GcpeGaeyypa0Jaey4bIe9damaaCaaaleqabaWdbiaaiodaaaGccaWG fbWdamaaBaaaleaapeGaam4zaiaacYcacqaH8oqBcqaH9oGBa8aabe aak8qacaGGUaGaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGccaWG fbWdamaaBaaaleaapeGaam4zaaWdaeqaaOWaaWbaaSqabeaapeGaeq iVd0MaeqyVd4gaaaaa@5C1E@  giving gradient energy up and down fields, represented by the upper and lower indices of general reference frame “μν”, per1. This equation shows that energy transfers between up field and down fields, with energy gradients varying correspondingly manifesting point dynamical actions. Such active point dynamical fields then can provide as sources, like white holes, that may exhibit quantum time reversal symmetries,5 which in the case of point dynamics essentially micro-white holes, acting like micro-sources.

Similarly, microblackhole Hamiltonian operator eigenfields’ rotational “r” tensor differential equations with Helmholtz rotational fields are given by two forms of P.D.E.s’ of vortex fields’ solutions. Quantum up and down fields are represented by the upper and lower indices of general reference frame “μν”, with initial, i and the final, f time “t” evolution terms, with ħ: Planck constant

2 ε r,μν  { i( t f   t i )/ħ }[ ε r,μν ( 1+ln| ε r,μν | ] 1 ( ε r,μν ) 2 + { i( t f   t i )/ħ }[ ε r,μν /( 1+ln| ε r,μν | ] = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGccqaH1oqzpaWaaSba aSqaa8qacaWGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOWdbiaaco bicaqGGaWdamaacmaabaWdbiaadMgapaWaaeWaaeaapeGaamiDa8aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHsislcaqGGaGaamiDa8 aadaWgaaWcbaWdbiaadMgaa8aabeaaaOGaayjkaiaawMcaa8qacaGG VaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8 3jbaWdaiaawUhacaGL9baacaGGBbWdbiabew7aL9aadaWgaaWcbaWd biaadkhacaGGSaGaeqiVd0MaeqyVd4gapaqabaGcdaqcWaqaa8qaca aIXaGaey4kaSIaamiBaiaad6gapaWaaqWaaeaapeGaeqyTdu2damaa BaaaleaapeGaamOCaiaacYcacqaH8oqBcqaH9oGBa8aabeaaaOGaay 5bSlaawIa7aaGaayjkaiaaw2faamaaCaaaleqabaWdbiabgkHiTiaa igdaaaGcpaGaaiika8qacqGHhis0cqaH1oqzpaWaaSbaaSqaa8qaca WGYbGaaiilaiabeY7aTjabe27aUbWdaeqaaOGaaiykamaaCaaaleqa baWdbiaaikdaaaGccqGHRaWkcaqGGaWdamaacmaabaWdbiaadMgapa WaaeWaaeaapeGaamiDa8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qa cqGHsislcaqGGaGaamiDa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaO GaayjkaiaawMcaa8qacaGGVaGaa83jbaWdaiaawUhacaGL9baacaGG BbWdbiabew7aL9aadaWgaaWcbaWdbiaadkhacaGGSaGaeqiVd0Maeq yVd4gapaqabaGcpeGaai4la8aadaqcWaqaa8qacaaIXaGaey4kaSIa amiBaiaad6gapaWaaqWaaeaapeGaeqyTdu2damaaBaaaleaapeGaam OCaiaacYcacqaH8oqBcqaH9oGBa8aabeaaaOGaay5bSlaawIa7aaGa ayjkaiaaw2faa8qacaqGGaGaeyypa0Jaaeiiaiaaicdaaaa@A8A6@

2 ε r μν  { i( t f   t i )/ħ }[ ε r μν ( 1+ln| ε r μν | ] 1 ( ε r μν ) 2 + { i( t f   t i )/ħ }[ ε r μν /( 1+ln| ε r μν | ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4bIe9damaaCaaaleqabaWdbiaaikdaaaGccqaH1oqzpaWaaSba aSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcqaH9o GBaaGccaGGtaIaaeiia8aadaGadaqaa8qacaWGPbWdamaabmaabaWd biaadshapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyOeI0Iaae iiaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqabaaakiaawIcacaGL PaaapeGaai4lamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL 2yaGqbaiaa=Dsaa8aacaGL7bGaayzFaaGaai4wa8qacqaH1oqzpaWa aSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcq aH9oGBaaGcpaWaaKamaeaapeGaaGymaiabgUcaRiaadYgacaWGUbWd amaaemaabaWdbiabew7aL9aadaWgaaWcbaWdbiaadkhaa8aabeaakm aaCaaaleqabaWdbiabeY7aTjabe27aUbaaaOWdaiaawEa7caGLiWoa aiaawIcacaGLDbaadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOWdai aacIcapeGaey4bIeTaeqyTdu2damaaBaaaleaapeGaamOCaaWdaeqa aOWaaWbaaSqabeaapeGaeqiVd0MaeqyVd4gaaOWdaiaacMcadaahaa Wcbeqaa8qacaaIYaaaaOGaey4kaSIaaeiia8aadaGadaqaa8qacaWG PbWdamaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWGMbaapaqaba GcpeGaeyOeI0IaaeiiaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqa baaakiaawIcacaGLPaaapeGaai4laiaa=Dsaa8aacaGL7bGaayzFaa Gaai4wa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGYbaapaqabaGcdaah aaWcbeqaa8qacqaH8oqBcqaH9oGBaaGccaGGVaWdamaajadabaWdbi aaigdacqGHRaWkcaWGSbGaamOBa8aadaabdaqaa8qacqaH1oqzpaWa aSbaaSqaa8qacaWGYbaapaqabaGcdaahaaWcbeqaa8qacqaH8oqBcq aH9oGBaaaak8aacaGLhWUaayjcSdaacaGLOaGaayzxaaGaeyypa0Zd biaaicdaaaa@A506@

Each description associated to “(2- icħ)/icħ”, such as value 1026 metric units will have to be modified to gage unitarization results that are briefly given below. Refer to the citations2-4 provided at REFERENCE LIST PHYSICS LITERATURE for complete derivations, analyses, as well as explanations with applicative interpretations. These equations manifest mathematical aspects with event physics at the point micro-blackholes, that act as sinks. Transcendental nature of these functions talks about complex nature of vortex actions, that get energy from the zero-point sources acting like micro-white holes, briefly explained above. The first equation represents vortex down and the second equation represents vortex up fields actions. To solve these equations, specific examples of physical mechanisms have been considered to get algebra of the process physics, for example.6

Problem Solving Equation of zero_point with having energy function of the form with attractive-repulsive energy field constants yielded algebraic results:6

[ w μν ( r ) ] 2 +  q μν ( r )  w μν ( r ) +  ( t f   t i ) 2 / ħ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaWG3bWdamaaBaaaleaapeGaeqiVd0MaeqyVd4gapaqa baGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaaaGaay5waiaaw2 faamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaqGGaGaamyCa8aa daWgaaWcbaWdbiabeY7aTjabe27aUbWdaeqaaOWaaeWaaeaapeGaam OCaaWdaiaawIcacaGLPaaapeGaaeiiaiaadEhapaWaaSbaaSqaa8qa cqaH8oqBcqaH9oGBa8aabeaakmaabmaabaWdbiaadkhaa8aacaGLOa GaayzkaaWdbiaabccacqGHRaWkcaqGGaWdamaabmaabaWdbiaadsha paWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyOeI0Iaaeiiaiaads hapaWaaSbaaSqaa8qacaWGPbaapaqabaaakiaawIcacaGLPaaadaah aaWcbeqaa8qacaaIYaaaaOGaai4lamXvP5wqSX2qVrwzqf2zLnhary qtHX2z15gih9gDOL2yaGqbaiaa=DsapaWaaWbaaSqabeaapeGaaGOm aaaakiabg2da9iaabccacaaIWaaaaa@6D4E@

[ w μν ( r ) ] 2 +  q μν ( r )  w μν ( r ) +  ( t f   t i ) 2 / ħ 2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaWG3bWdamaaCaaaleqabaWdbiabeY7aTjabe27aUbaa k8aadaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaaaGaay5waiaaw2 faamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaqGGaGaamyCa8aa daahaaWcbeqaa8qacqaH8oqBcqaH9oGBaaGcpaWaaeWaaeaapeGaam OCaaWdaiaawIcacaGLPaaapeGaaeiiaiaadEhapaWaaWbaaSqabeaa peGaeqiVd0MaeqyVd4gaaOWdamaabmaabaWdbiaadkhaa8aacaGLOa GaayzkaaWdbiaabccacqGHRaWkcaqGGaWdamaabmaabaWdbiaadsha paWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeyOeI0Iaaeiiaiaads hapaWaaSbaaSqaa8qacaWGPbaapaqabaaakiaawIcacaGLPaaadaah aaWcbeqaa8qacaaIYaaaaOGaai4lamXvP5wqSX2qVrwzqf2zLnhary qtHX2z15gih9gDOL2yaGqbaiaa=DsapaWaaWbaaSqabeaapeGaaGOm aaaakiabg2da9iaabccacaaIWaaaaa@6D51@

where w’s are characterizing variables representing algebraic transcendental combinatorics to combine specifically the form of realistic attractive and the repulsive forces having quagmire vacuum quanta. These are equated as usually employed summations of algebra with typical proportionality of 1/r^2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac+cacaWGYbGaaiOxaiaaikdaaaa@3B31@ and 1/r^3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac+cacaWGYbGaaiOxaiaaiodaaaa@3B32@ , where r is the distance action of field exerting force. Using the standard original definitions of the field to be equal to spatial differential of the force, the energy functional form has been written having combined attractive and repulsive force terms in energy form like E =  k α /r +  k ρ / r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaabccacqGH9aqpcaqGGaGaam4Aa8aadaWgaaWcbaWdbiab eg7aHbWdaeqaaOWdbiaac+cacaWGYbGaaeiiaiabgUcaRiaabccaca WGRbWdamaaBaaaleaapeGaeqyWdihapaqabaGcpeGaai4laiaadkha paWaaWbaaSqabeaapeGaaGOmaaaaaaa@46EF@ . Equivalent action field-distance equation has been written as: ε=  k 3 /r^3 +  k 4 /r^4+  k 5 /r^5 +  k 6 /r^6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaaeiiaiaadUgapaWaaSbaaSqaa8qacaaIZaaa paqabaGcpeGaai4laiaadkhacaGGEbGaaG4maiaabccacqGHRaWkca qGGaGaam4Aa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaGGVaGa amOCaiaac6facaaI0aGaey4kaSIaaeiiaiaadUgapaWaaSbaaSqaa8 qacaaI1aaapaqabaGcpeGaai4laiaadkhacaGGEbGaaGynaiaabcca cqGHRaWkcaqGGaGaam4Aa8aadaWgaaWcbaWdbiaaiAdaa8aabeaak8 qacaGGVaGaamOCaiaac6facaaI2aaaaa@5607@ , which has been obtained by having twice differentiation of E with respect to r. It is quite noticeable to have complex algebra intertwined onto above equations, even for the simple case of attractive and repulsive force terms. We can surmise that complexities are expected, since they are dissipative evolutionary aspects that stem from point level, and thus can represent adequately mesoscopic to astrophysical nature of the universe. We can grapple with these equations only after proper transformations that will include gaging, that will be also specifically considered below, reviewing recent works author obtained after careful step-by-steps approaches undertaken by collaborating internationally with physicists, scientists, and particle astrophysicists around many continents. Related citations appear in the REFERENCE LIST PHYSICS LITERATURE, herein provided at the end of this mini review.2,4

These problem-solving approaches enable algebraically to substitute specifically this functionality into P.D.E.s of energy and field of the zero-point-microblackhole Helmholtz-Hamiltonian gradient vortex quantum dynamics. Basis of these forms arise out of that quintessence of the Iyer-Markoulakis formalism characterizing Dissipative Evolution Theory of a Superluminous Vacuum quanta, the fabric of space. Simulation programming with experimental measurements works is in the developmental stages presently to proof verify validating applicability with real systems of formalisms, pointing to observables at the quantum, micro, mesoscopic, astrophysical levels.

A brief overview of theoretical formalism with application to observables achieved by recent formalism author has advanced collaborating with international scientists will be examined below, Annotations of key guiding principles, quantifying equations, explanatory interpretations, exemplified observables, verifiable techniques with programming simulations algorithms, as well as future emphasis are further reviewed. Progressive sciences, technology, engineering, mathematics, automation, gage, and problem solving simplifying physical philosophies will start to get more attention in popular communications.

Problem solving with interpretive insights results, discussions, and conclusions

Proof formalism with pure metrix mathematical approach to physics formalism applications that have been recently presented at an international conference on combinatorics physics, as well as associated peer reviewed publications subsequently to it7,8 have demonstrated ability of the Iyer-Markoulakis formalism to gage from micro to macro physics mathematically with quantum to mesoscopic to astroscopic nature describing algorithmically. These are achieved by applying Coulomb-Hilbert gage from mechanics of gradient vortex fields to electromagnetic fields and then to gravitational aspects, explained extensively in the author’s REFERENCE LIST PHYSICS LITERATURE. For example, key result with such Coulomb-Hilbert gaging generates stringmetrics such as per: 7,8  

showing matrix graphic construct equation of charge asymmetry gauge metrics key, with G ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabC4ra8aagaqcamaaDaaaleaaaeaapeGaeyOeI0IaaGymaaaaaaa@3A02@ -> G ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabC4ra8aagaqcaaaa@381D@  representing Coulomb gauge fermion charge of microblackhole from infinity of vacuum to real space of the gauge field of radiation wave; 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaaaaa@36D1@ -> , M ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabCyta8aagaqcaaaa@3823@ the diagonal Hilbert Higgs metrics maybe quantifying mass Higgs mechanistic field operator generator, signifying action to matter inertia effectively operating with gravitational field moving from vacuum to matter per. 7,8

PDP circuit model has been illustrating essential monopoles-particles assemblage, providing like “perpetual motion machine” mechanism of quantum dark to light level universe!! This was made possible with the Helmholtz Hamiltonian mechanics electromagnetic physics gaging charge fields having novel quantum circuitry model, per REFERENCE LIST PHYSICS LITERATURE.3 PDP circuit, i. e. Pauli Dirac Planck circuit assembly is like with e-: electron, and e+: positron particles; N: north, and S: south monopoles – flow of arrow shows gradient vortex matrix circuit has system corresponding Coulomb Hilbert gage like ( M ^ r,μν  G ^ g μν G ^ g,μν  M ^ r μν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaa8aabaqbaeqabiGaaaqaa8qaceWHnbWdayaajaWaa0ba aeaapeGaaCOCaiaacYcaiiqacqWF8oqBcqWF9oGBcaGGGcaapaqaaa aaaeaapeGabC4ra8aagaqcamaaDaaabaWdbiaahEgaa8aabaWdbiab =X7aTjab=17aUbaaa8aabaWdbiqahEeapaGbaKaadaqhaaqaa8qaca WHNbGaaiilaiab=X7aTjab=17aUjaacckaa8aabaaaaaqaa8qaceWH nbWdayaajaWaa0baaeaapeGaaCOCaaWdaeaapeGae8hVd0Mae8xVd4 gaaaaaaiaawIcacaGLPaaaaaa@53B8@ { G ^ g,μν  , G ^ g μν } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiqahEeapaGbaKaadaqhaaWcbaWdbiaahEgacaGGSaacceGa e8hVd0Mae8xVd4MaaiiOaaWdaeaaaaGcpeGaaiilaiqahEeapaGbaK aadaqhaaWcbaWdbiaahEgaa8aabaWdbiab=X7aTjab=17aUbaak8aa caGG9baaaa@471E@   Coulomb gage, having Gilbertian nature with branching to Hilbert gauge down and up rotational vortex fields; also, { M ^ r,μν  , M ^ r μν } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiqah2eapaGbaKaadaqhaaWcbaWdbiaahkhacaGGSaacceGa e8hVd0Mae8xVd4MaaiiOaaWdaeaaaaGcpeGaaiilaiqah2eapaGbaK aadaqhaaWcbaWdbiaahkhaa8aabaWdbiab=X7aTjab=17aUbaak8aa caGG9baaaa@4740@ , having M’s like Higgs metrics mass of Higgs-Boson matter, quantifying inertia with gravitational field manifestations, having Amperian nature. These aspects have already been explained per Iyer O’Neill Malaver formalism,3 conforming to partial differential equations of vortex and the gradient fields obtained per Iyer Markoulakis original formalism.4

Putting together Iyer Markoulakis O’Neill Malaver quantum astrophysics formalism with Wenzhong Hodge scalar frictional vacuum theory of hod-Plenum, dissipative discontinuity of modeling gage physics has been quite possible, as proved by a published recent article2 in the Canadian Journal of Pure and Applied SCIENCES, listed here. Grand unifying algorithm with having parametrically system quantum density matrix, scalar potential matrix, and the wavefunction inner product as well as connecting functional gaged to vacuum solutions of magnetic hod Plenum* PDP assemblage transforms have been achieved. An Integrated Model quantum cosmological algorithm vacuum gage fields equation will have: 2 . | | [ Gg ]Pg  [ ε GR ] 1 ( <[ Ψ E ( t g )] | [ Ψ M ( t g ) ]> )[ ε GR ] | |=||[ ρ P ( t g )] * [ ε GR ]|| =  Λ gv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaWaaq WaaeaadaWadaqaaabaaaaaaaaapeGaam4raiaadEgaa8aacaGLBbGa ayzxaaWdbiaadcfacaWGNbGaaeiia8aadaWadaqaa8qacqaH1oqzpa WaaSbaaSqaa8qacaWGhbGaamOuaaWdaeqaaaGccaGLBbGaayzxaaWa aWbaaSqabeaapeGaai4eGiaaigdaaaGcpaWaaeWaaeaapeGaeyipaW ZdamaadmaabaWdbiabfI6az9aadaWgaaWcbaWdbiaadweaa8aabeaa kmaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWGNbaapaqabaaaki aawIcacaGLPaaadaqcJaqaaiaacYhaaiaaw2facaGLBbaapeGaeuiQ dK1damaaCaaaleqabaWdbiaad2eaaaGcpaWaaeWaaeaapeGaamiDa8 aadaWgaaWcbaWdbiaadEgaa8aabeaaaOGaayjkaiaawMcaaaGaay5w aiaaw2faa8qacqGH+aGpa8aacaGLOaGaayzkaaWaamWaaeaapeGaeq yTdu2damaaBaaaleaapeGaam4raiaadkfaa8aabeaaaOGaay5waiaa w2faaaGaay5bSlaawIa7aaGaay5bSlaawIa7a8qacqGH9aqppaGaai iFaiaacYhacaGGBbWdbiabeg8aY9aadaWgaaWcbaWdbiaadcfaa8aa beaakmaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWGNbaapaqaba aakiaawIcacaGLPaaadaqcJaqaa8qacaGGQaaapaGaayzxaiaawUfa a8qacqaH1oqzpaWaaSbaaSqaa8qacaWGhbGaamOuaaWdaeqaaOGaai yxaiaacYhacaGG8bWdbiaacckacqGH9aqpcaGGGcGaeu4MdW0damaa BaaaleaapeGaam4zaiaadAhaa8aabeaaaaa@82A1@   Here, [ G g ] Pg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaWGhbWdamaaBaaaleaapeGaam4zaaWdaeqaaaGccaGL BbGaayzxaaWaaSbaaSqaa8qacaWGqbGaam4zaaWdaeqaaaaa@3D48@ is gage wavefunction inner product of the electric and magnetic tensor fields; ( < Ψ μ ( t g )| Ψ μ ( t g )> ) = ( <[ Ψ E ( t g )] | [ Ψ M ( t g ) ]> ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaaeaa aaaaaaa8qacqGH8aapcqqHOoqwpaWaaSbaaSqaa8qacqaH8oqBa8aa beaakmaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWGNbaapaqaba aakiaawIcacaGLPaaacaGG8bWdbiabfI6az9aadaahaaWcbeqaa8qa cqaH8oqBaaGcpaWaaeWaaeaapeGaamiDa8aadaWgaaWcbaWdbiaadE gaa8aabeaaaOGaayjkaiaawMcaa8qacqGH+aGpa8aacaGLOaGaayzk aaWdbiaabccacqGH9aqpcaqGGaWdamaabmaabaWdbiabgYda88aada Wadaqaa8qacqqHOoqwpaWaaSbaaSqaa8qacaWGfbaapaqabaGcdaqa daqaa8qacaWG0bWdamaaBaaaleaapeGaam4zaaWdaeqaaaGccaGLOa GaayzkaaWaaKWiaeaacaGG8baacaGLDbGaay5waaWdbiabfI6az9aa daahaaWcbeqaa8qacaWGnbaaaOWdamaabmaabaWdbiaadshapaWaaS baaSqaa8qacaWGNbaapaqabaaakiaawIcacaGLPaaaaiaawUfacaGL DbaapeGaeyOpa4dapaGaayjkaiaawMcaaaaa@63B8@ is Plenum* gradient functional; [ ρ P ( t g ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacqaHbpGCpaWaaSbaaSqaa8qacaWGqbaapaqabaGcdaqa daqaa8qacaWG0bWdamaaBaaaleaapeGaam4zaaWdaeqaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@3FFB@ is gage Plenum* quantum density matrix, and [ ε GR ]  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGhbGaamOuaaWdaeqa aaGccaGLBbGaayzxaaWdbiaacckaaaa@3E02@ stands for the  quantum  gage  fields. This formula thereby gives description of magnetic tensor action on electric tensor fields point gradient vortex discontinuity dissipative physics.

Key examples successfully have analogized mesoscopic observables. Example of an applied problem-solving physics observable mesoscopic analogy quantum aspects has appeared at the Canadian Journal also listed here.2 General form algorithm equation, having [ G g ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaWGhbWdamaaBaaaleaapeGaam4zaaWdaeqaaaGccaGL BbGaayzxaaaaaa@3B3C@ : gage functional; Γ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaaDa aaleaacaWGPbGaamOAaaqaaaaaaaa@3A80@ signal/noise ratio of i-j element of duck-swan population pattern matrix; ( ε GR)gv ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiabew7aL9aadaWgaaWcbaWdbiaadEeacaWGsbWdaiaacMca peGaam4zaiaadAhaa8aabeaakiaacUdaaaa@3EFA@ gage fields of gradient and the vortex actions; ( <[ Ψ d ( t g ) ]|[ Ψ s ( t g )]>): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaajadabaaeaa aaaaaaa8qacqGH8aappaGaai4wa8qacqqHOoqwpaWaaSbaaSqaa8qa caWHKbaapaqabaGcdaqadaqaa8qacaWG0bWdamaaBaaaleaapeGaam 4zaaWdaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzxaaGaaiiFaiaa cUfapeGaeuiQdK1damaaCaaaleqabaWdbiaahohaaaGcpaWaaeWaae aapeGaamiDa8aadaWgaaWcbaWdbiaadEgaa8aabeaaaOGaayjkaiaa wMcaaiaac2fapeGaeyOpa4ZdaiaacMcapeGaaiOoaaaa@4E28@ wave function inner outer products; [ ρ ds ]: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUfaiiqaqa aaaaaaaaWdbiab=f8aY9aadaWgaaWcbaWdbiaahsgacaWHZbaapaqa baGccaGGDbWdbiaacQdaaaa@3DCF@ quantum density matrix as a function of gage time, tg, all applied to ducks-swans population patterns, with complete algorithmic equation in compact form like matrix:

[ G g ] Γ ij   [ ( ε GR ) gv ] 1 ( <[ Ψ d ( t g ) ]|[ Ψ s ( t g )]>)[ ( ε GR ) gv ]=[ ρ ds ( t g )] * [ ( ε GR ) gv ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaaeaa aaaaaaa8qacaWHhbWdamaaBaaaleaapeGaam4zaaWdaeqaaaGccaGL BbGaayzxaaGaeu4KdC0aa0baaSqaaiaadMgacaWGQbaabaaaaOWaaS baaSqaa8qacaGGGcaapaqabaGccaGGBbGaaiika8qacqaH1oqzpaWa aSbaaSqaa8qacaWGhbGaamOuaaWdaeqaaOGaaiykamaaBaaaleaape Gaam4zaiaadAhaa8aabeaakiaac2fadaahaaWcbeqaa8qacqGHsisl caaIXaaaaOWdamaajadabaWdbiabgYda88aacaGGBbWdbiaahI6apa WaaSbaaSqaa8qacaWHKbaapaqabaGcdaqadaqaa8qacaWG0bWdamaa BaaaleaapeGaam4zaaWdaeqaaaGccaGLOaGaayzkaaaacaGLOaGaay zxaaGaaiiFaiaacUfapeGaaCiQd8aadaahaaWcbeqaa8qacaWHZbaa aOWdamaabmaabaWdbiaadshapaWaaSbaaSqaa8qacaWGNbaapaqaba aakiaawIcacaGLPaaacaGGDbWdbiabg6da+8aacaGGPaWaamWaaeaa daqadaqaa8qacqaH1oqzpaWaaSbaaSqaa8qacaWGhbGaamOuaaWdae qaaaGccaGLOaGaayzkaaWaaSbaaSqaa8qacaWGNbGaamODaaWdaeqa aaGccaGLBbGaayzxaaWdbiabg2da98aadaWadaqaa8qacaWHbpWdam aaBaaaleaapeGaaCizaiaahohaa8aabeaakmaaBaaaleaaaeqaaOWa aeWaaeaapeGaamiDa8aadaWgaaWcbaWdbiaadEgaa8aabeaaaOGaay jkaiaawMcaamaajmcabaWdbiaacQcaa8aacaGLDbGaay5waaWaaeWa aeaapeGaeqyTdu2damaaBaaaleaapeGaam4raiaadkfaa8aabeaaaO GaayjkaiaawMcaamaaBaaaleaapeGaam4zaiaadAhaa8aabeaaaOGa ay5waiaaw2faa8qacaGGUaaaaa@8044@

Expanded matrix shown below has demonstrated analysis showing how the gage fields of pressure and temperature can affect duck-swan population pattern, conceptually brought out by expanded 2x2 matrix form like in the above general form algorithm equation, having gage functional, signal/noise ratio, gage fields, wave function inner outer products, quantum density matrix as a function of gage time, whereby in the Appendix III:2
( [ Gg ]  Γ ij l [ Gg ]  Γ ij ξ )( ε ^ GR,v ε ^ GR g ε ^ GR,g ε ^ GR v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaqbaeqabiqaaaqaa8qadaWadaWdaeaapeGaam4raiaa dEgaaiaawUfacaGLDbaacaGGGcGaeu4KdC0damaaDaaaleaapeGaae yAaiaadQgaa8aabaWdbiaadYgaaaaak8aabaWdbmaadmaapaqaa8qa caWGhbGaam4zaaGaay5waiaaw2faaiaacckacqqHtoWrpaWaa0baaS qaa8qacaqGPbGaamOAaaWdaeaapeGaeqOVdGhaaaaaaOGaayjkaiaa wMcaamaabmaapaqaauaabeqaciaaaeaapeGafqyTdu2dayaajaWaaS baaSqaa8qacaWGhbGaamOuaiaacYcacaWG2baapaqabaaakeaapeGa fqyTdu2dayaajaWaa0baaSqaa8qacaWGhbGaamOuaaWdaeaapeGaam 4zaaaaaOWdaeaapeGafqyTdu2dayaajaWaaSbaaSqaa8qacaWGhbGa amOuaiaacYcacaWGNbaapaqabaaakeaapeGafqyTdu2dayaajaWaa0 baaSqaa8qacaWGhbGaamOuaaWdaeaapeGaamODaaaaaaaakiaawIca caGLPaaaaaa@633F@ 1 ( Ψd1 Ψd2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCaaaleqaba aeaaaaaaaaa8qacqGHsislcaaIXaaaaOWdamaabmaabaWdbiabfI6a zjaadsgacaaIXaGaaeiiaiabfI6azjaadsgacaaIYaaapaGaayjkai aawMcaaaaa@41CE@ ( Ψs1 Ψs2 )( ε ^ GR,v ε ^ GR g ε ^ GR,g ε ^ GR v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaqbaeqabiqaaaqaa8qacqqHOoqwcaWGZbGaaGymaaWd aeaapeGaeuiQdKLaam4CaiaaikdaaaaacaGLOaGaayzkaaqcfa4aae Waa8aabaqbaeqabiGaaaqaa8qacuaH1oqzpaGbaKaadaWgaaqaa8qa caWGhbGaamOuaiaacYcacaWG2baapaqabaaabaWdbiqbew7aL9aaga qcamaaDaaabaWdbiaadEeacaWGsbaapaqaa8qacaWGNbaaaaWdaeaa peGafqyTdu2dayaajaWaaSbaaeaapeGaam4raiaadkfacaGGSaGaam 4zaaWdaeqaaaqaa8qacuaH1oqzpaGbaKaadaqhaaqaa8qacaWGhbGa amOuaaWdaeaapeGaamODaaaaaaaacaGLOaGaayzkaaaaaa@5600@ = ( Γ ij d1 Γ ij s2 Γ ij s1 Γ ij d2 )( ε ^ GR,v ε ^ GR g ε ^ GR,g ε ^ GR v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaqbaeqabiGaaaqaa8qacqqHtoWrpaWaa0baaSqaa8qa caqGPbGaamOAaaWdaeaapeGaamizaiaaigdaaaaak8aabaWdbiabfo 5ah9aadaqhaaWcbaWdbiaabMgacaWGQbaapaqaa8qacaWGZbGaaGOm aaaaaOWdaeaapeGaeu4KdC0damaaDaaaleaapeGaaeyAaiaadQgaa8 aabaWdbiaadohacaaIXaaaaaGcpaqaa8qacqqHtoWrpaWaa0baaSqa a8qacaqGPbGaamOAaaWdaeaapeGaamizaiaaikdaaaaaaaGccaGLOa Gaayzkaaqcfa4aaeWaa8aabaqbaeqabiGaaaqaa8qacuaH1oqzpaGb aKaadaWgaaqaa8qacaWGhbGaamOuaiaacYcacaWG2baapaqabaaaba Wdbiqbew7aL9aagaqcamaaDaaabaWdbiaadEeacaWGsbaapaqaa8qa caWGNbaaaaWdaeaapeGafqyTdu2dayaajaWaaSbaaeaapeGaam4rai aadkfacaGGSaGaam4zaaWdaeqaaaqaa8qacuaH1oqzpaGbaKaadaqh aaqaa8qacaWGhbGaamOuaaWdaeaapeGaamODaaaaaaaacaGLOaGaay zkaaaaaa@654C@

which provide observables amenable to computer programming simulation, extendable to permutating population pattern sequel to get simulation algorithmic equation of the moving population greater than [2 × 2] matrix of mentioned example. Physics conjecture applying discontinuity dissipative models have capability to estimate speed profiles of photon in a vacuum, c; however, graviton may have speeds to c4, while superluminal vacuum quanta may possess speeds more than c4 but less than MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHEisPaaa@3788@ . Measurement of scalar potential matrix operational profile of this algorithm equation matrix will require knowledge of scalar potential matrix that are obtainable with standardized experiment having controlled flow-pressure measurements to simulate analogically mechanics. This would augment construction of standard analog equivalent circuit that will help to translate to current-potential profiles. Statistically, for given population pattern, modulating scalar potential quantum density matrix with dynamic speeds profile helps to compute evolving observable energy density matrix explicitly. Thereby, power density profile computations of the quanta are possible. These are all brought out in published articles, listed here in the REFERENCE LIST PHYSICS LITERATURE.2-4

One may surmise that audio imaging genetic observables communication parity modifying with charging operator with creator generating multiple phases shifted transformations give rise to observable universe with nature of living with nonliving eternally seems evolving cosmos!! We see gradient vortex action fields of point dynamics having dissipative discontinuity superluminal quantum cyclical generation of ordered energy signals forming magnetic Hod Plenum* PDP assemblages. With emergent “curdling” process having “hod photons” to electrons-positrons pairs, upscales then build up protons, neutrons, and atoms, with gluonic links. Globalizing these to mesoscopic and astrophysical spiral elliptical galaxies’ source-sink mechanism will enunciate concept of a cyclic universe. These are essential outcomes that the citations below show further detailed analyses with explanations.

Our ongoing efforts will include scientific methodologies to identify progenitor mechanisms of generation of energy and living existence of life in the universe. There are also paradigm shifts that may happen in terms of magnetic primary forces versus electric primary forces. What mechanisms ensure preventing gravitational collapse to a singularity and matter antimatter asymmetry will be key aspects of further research sciences with theoretical and experimental clever studies. We are encouraged by the PDP circuit model proposing magnetic field dynamics having monopole particle balancing to have like “perpetual motion machine” action that prevents collapse and even singularity. Intrinsically it proposes electrons-positrons inductively creating electric gaging fields, explaining weak nuclear form of the four super forces. These aspects weld together with Hod-STOE model claiming to explain three super forces of electromagnetic, gravitational, as well as strong nuclear forms. We believe that algorithm equation matrix pure mathematical proof formalism [Iyer and Malaver, 2021] has laid solidly foundation for parametric physics verifiable experimental designs obtained logically from formalisms configuring eigen gaging fields, quantum density matrix, coupling functional, probabilistic wavefunctions, signal/noise ratioing time space sense!!

Summary remarks

Modeling quanta point dynamical fields per Iyer Markoulakis O’Neill Malaver quantum astrophysics gage formalism provided a way to transform Helmholtz decomposition gradient vortex mechanics actions to electromagnetic events. These have quantitatively been thoroughly characterized by eigen matrices with equivalent partial differential equations of energy and quantum field metrix. Coulomb Hilbert gaging allowed to derive stringmetrics, giving fermions where G ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaHaaabaaeaa aaaaaaa8qacqGHsislcaqGhbaapaGaayPadaWaa0baaSqaaaqaa8qa cqGHsislcaaIXaaaaaaa@3B9B@ will represent a point mirror symmetry of G ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabC4ra8aagaqcamaaDaaaleaaaeaaaaaaaa@384A@ ; using crystal point mathematical formalism “Rotation Matrix” point matrix reflection imaginary parity value may be achievable. Cross diagonal Higgs matter possibly characterize gravity metrics with deeper advancements.

To provide the best hopes towards grand unification of the four super forces that physics portrays of strong, weak, gravity, electromagnetism to natural workings of the universe, extending to higher principles have been achieved recently. Original developed model of Iyer Markoulakis O’Neill Malaver quantum astrophysics formalism has gotten put together with Wenzhong Hodge scalar frictional vacuum theory of hod-Plenum, dissipative discontinuity of modeling gage physics, giving an Integral Model Astro Quantum PHYSICS.

Observables mesoscopic have been extracted from resultant integrated quantitative gage physical formalisms. General form algorithm equation, having gage functional, signal/noise ratio, gage fields, wavefunction inner outer products, quantum density matrix as a function of gage time has been exemplified to mesoscopic example. Gage fields are pressure and temperature of population pattern with 2x2 matrix and a gage functional of modon strings as communicators provide algorithm to experiment with simulation programming.

Statistically, for given population pattern, modulating scalar potential quantum density matrix with dynamic speeds profile helps to compute evolving observable energy density matrix explicitly. Thereby, power density profile computations of the quanta are possible.

Superluminal quantum cyclical generation of ordered energy signals forming magnetic Hod Plenum* PDP assemblages, with emergent “curdling” process having “hod photons” to electrons-positrons pairs can be globalized to mesoscopic and astrophysical spiral elliptical galaxies’ source-sink mechanism to enunciate concept of a cyclic universe.

We are working to achieve Gage Integrated Quantum Astrophysical Model explaining universal mechanism naturally grand unifying forces to explain essence of existence of everything!! We hope to have consistent correlative results that will correspond to measurements and current Standard Model, Theory of Everything, Super String Theories, Symmetry and Entropy Principles that will synchronously link classical to General Relativistic Quantum PHYSICS!!

References

  1. Iyer R, Markoulakis E. Theory of a superluminous vacuum quanta as the fabric of space. Physics and Astronomy International Journal. 2021;5(2):43‒53.
  2. Iyer R, O’Neill C, Malaver M, et al. Modeling of Gage Discontinuity Dissipative Physics. Canadian Journal of Pure and Applied Sciences. 2022;16(1):5367‒5377.
  3. Iyer R, O’Neill C, Malaver M. Helmholtz Hamiltonian mechanics electromagnetic physics gaging charge fields having novel quantum circuitry model. Oriental Journal of Physical Sciences. 2020;5(1‒2):30‒48.  
  4. Iyer R, Malaver M.  Proof formalism general quantum density commutator matrix physics. Physical Sciences and Biophysics Journal. 2021;5(2):000185 (5 pages).
  5. Retter A, Heller S. The revival of white holes as Small Bangs. New Astronomy. 2012;17 (2):73–75.
  6. Iyer R. Problem solving vacuum quanta fields. International Journal of Research and Reviews in Applied Sciences. 2021a;47(1):15‒25.
  7. Iyer R. Physics formalism Helmholtz matrix to Coulomb gage. 6th International Conference on Combinatorics, Cryptography, Computer Science and Computing. 2021b;2021, pp.578‒588.
  8. Iyer R. Physics formalism Helmholtz Iyer Markoulakis Hamiltonian mechanics metrics towards electromagnetic gravitational Hilbert Coulomb gauge string metrics.  Physical Sciences and Biophysics Journal. 2021c;5(2):000195.
  9. Iyer RN. Absolute Genesis Fire Fifth Dimension Mathematical Physics. Engineeringinc.com International Corporation. pp.63. 2000;ISBN‒13: 978‒0‒9706898‒0‒1.
  10. Malaver M, Kasmaei HD, Iyer R, et al. A theoretical model of dark energy stars in Einstein‒Gauss‒Bonnet gravity.  Applied Physics. 2021;4(3):1‒21.
  11. Markoulakis E, Konstantaras A, Chatzakis J, et al. 2019. Real time observation of a stationary magneton. Results in Physics. 2019;15:102793.
Creative Commons Attribution License

©2022 Iyer. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.