Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 1

Nonlinear celestial mechanics orbits revisited: an effective relativistic lagrangean approach

Filipe Leoncio Braga, Spalenza W, Lemos Filhot KC

Department of Coordination of Physics, Federal Institute of Esp

Correspondence: Filipe Leoncio Braga, Department of Coordination of Physics, Federal Institute of Esp

Received: July 13, 2017 | Published: August 8, 2017

Citation: Braga FL, Spalenza W, Filhot KCL. Nonlinear celestial mechanics orbits revisited: an effective relativistic lagrangean approach. Phys Astron Int J.2017;1(1):26-30. DOI: 10.15406/paij.2017.01.00004

Download PDF

Abstract

In this article we have revisited the orbital calculations for a celestial mechanical system using the relativistic Lagrangean formalism. The differential equations obtained through this procedure, involving a perturbative expansion of the relativistic Lagrangean constituted on an effective gravitational potential based on the classical gravitational potential, presented good solutions for planetary orbits at our solar system. The validity of the trajectories obtained was carefully observed for Mercury, interacting only with the sun, a typical two body problem. Its natural precession, predicted by general relativity, can be recovered with the perturbed Lagrangean, and Mercury trajectory seems to be chaotic in the sense of KAM theorem when we analyzed the Poincare Map in planet phase space.

Keywords: relativistic mechanic, euler-lagrange, effective potential, chaotic motion

Introduction

The measurements studies associated with plan¬etary orbits for our solar system has been casted as main task for many scientists and natural philoso¬phers before Tycho Brahe and Johannes Kepler, but all of them used a geometric description in their works. However, from the XVII century, with the advent of Newtonian mechanical laws and differential and integral calculus, it was established the unification of geometry with the dynamical prescription, now known as celestial mechanics.1 Nowadays, the the¬ory of special and general relativity are used to de¬scribe with greater precision the planets motion and cosmological entities. Motions that, in generally, given the nonlinear features of the differential equations in¬volved seems to present chaotic behavior.27 The complexity of these systems, become more evident when numerical techniques are used to solve the nonlinear relativistic equations8,9 that arises for example at studies of galaxies dynamics; universe expansion; orbital precession; besides several other phenomena in different scales. In this article we revisited the Mercury perihe¬lion issue. This problem is widely known and there are some works regarding this subject,10,11 as observed by Peters12 in 1987 using only special relativity. In addition we take into account some information"s about the chaotic aspect of the system beyond the use of a Lagrangean formalism with a more simple mathematical approach considering an effective gravitational potential based on the classical gravitational potential, similar to the one proposed by Phipps13 inspire that for simplicity we consid-ered that the system center of mass is coincident with the sun position.. In order to achieve this, our article is organized as: a brief overview on the Newtonian (non relativistic) problem, later we deal with the rela¬tivistic Lagrangean formulation of the problem, pre¬senting the perturbative Lagrangean obtained and the correspondent motion equations that were numeri¬cally solved and discussed from the chaotic point of view.

Newtonian and relativistic lagrangean formal­ism

The Newtonian model for objects under the ac­tion of a central potential has been known for cen­turies and can be found in appropriate literature14,15 The fundamental equation that is used in order to obtain orbits, and also for solving countless other problems in physics, is Newton’s, well-known, second law F =d p /dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqae aaceWGgbGbaSaacqGH9aqpcaWGKbGabmiCayaalaGaai4laiaadsga caWG0bGaaiOlaaqabeqacqGHris5aaaa@3F9A@

The solution of this equation under the influence of the gravitational potential gives us the equation for r(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOCai aabIcacqaH4oqCcaqGPaaaaa@3A86@ (using polar coordinates with the sun or the most massive object at the center of the reference frame) and, consequently, Kepler’s 1st Law, the orbits law. We can note this by observing that the equation of r(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeOCai aabIcacqaH4oqCcaqGPaaaaa@3A86@ , which follows below and is a solution for the newtonian motion equation in this case, is an ellipse equation

r( θ )= L 2 GM m 2 1+Acos( θ θ 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGYbqcfa4aaeWaa8aabaWdbiabeI7aXbGaayjkaiaawMcaaiab g2da9maalaaapaqaa8qadaWcaaWdaeaapeGaamita8aadaahaaqabK qbGeaapeGaaGOmaaaaaKqba+aabaWdbiaadEeacaWGnbGaamyBa8aa daahaaqcfasabeaapeGaaGOmaaaaaaaajuaGpaqaa8qacaaIXaGaey 4kaSIaamyqaiaadogacaWGVbGaam4Camaabmaapaqaa8qacqaH4oqC cqGHsislcqaH4oqCpaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaa WdbiaawIcacaGLPaaaaaGaaiilaaaa@512C@

Where A,e,θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGbbGaaiilaiaadwgacaGGSaGaeqiUdehaaa@3B6B@ are integration constants, L is the object (planet) conserved total angular momentum, G is the gravitational constant, M is most massive object mass, and m is the other(smaller) mass. This solution depends only on system constants, but we can write them from the elliptical geometrical parameters, as well as, eccentricity, semi major-axis and semi minor-axis. Thus, applying NASA website planetary data of our solar system16 on equation (1) and adjusting the respective parameters, the graphic in Figure 1 is obtained.

Figure 1 A typical elliptical planet orbit, for the case L 2 GM m 2 =1.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGmbWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWGhbGaamyt aiaad2gadaahaaqabKqbGeaacaaIYaaaaaaajuaGcqGH9aqpcaaIXa GaaiOlaiaaicdaaaa@4056@ and A = 0.5.

Einstein’s Special Relativity (SR), established since 1905, shows that the orbits of the planets, which are very close to highly massive objects, as our sun, cannot be described as perfect ellipses.

The success of the SR is detected by its application in various fields of modern technology, such as in telecommunications, mobile devices, supercomputers, the Internet, even in the great theories of elementary particles, currently tested in the LHC-CERN. Einstein established that the velocity of light in the vacuum c = 299.792.458m/s, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaae4yai aabccacaqG9aGaaeiiaiaabkdacaqG5aGaaeyoaiaab6cacaqG3aGa aeyoaiaabkdacaqGUaGaaeinaiaabwdacaqG4aGaaeyBaiaab+caca qGZbGaaeilaaaa@449B@  is a limiting speed of the universe, and nothing could travel with a velocity higher than it, and no massive bodies can be accelerated to this value. In order to carry out this information the Lorentz transformations of coordinates must be used. At that configuration, the Lorentz factor,17,18 plays an important role.

We have considered a conservative system where the relativistic Lagrangean associated with the classical Newtonian potential is written as

L=m c 2 [ 1 v 2 c 2 ] 1/2 + GMm r .                                                           ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiab =jrimjabg2da9iabgkHiTiaad2gacaWGJbWdamaaCaaajuaibeqaa8 qacaaIYaaaaKqbaoaadmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aa baWdbiaadAhapaWaaWbaaKqbGeqabaWdbiaaikdaaaaajuaGpaqaa8 qacaWGJbWdamaaCaaajuaibeqaa8qacaaIYaaaaaaaaKqbakaawUfa caGLDbaapaWaaWbaaeqajuaibaWdbiaaigdacaGGVaGaaGOmaaaaju aGcqGHRaWkdaWcaaWdaeaapeGaam4raiaad2eacaWGTbaapaqaa8qa caWGYbaaaiaac6cacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOamaabmaapaqaa8qacaaIXaaa caGLOaGaayzkaaaaaa@9E54@

Here v is the module of its velocity. Here again the most massive object is at rest, positioned at the system center of mass, and the other orbits around it. The proposed lagrangean implies on a correction to the original classical Lagrangean in similar terms to the one developed in perturbation theory.19,20

This type of derivation was previously performed in details by Lemmon21 and D’Elisio22 separately. Considering the following change of variables

γ R 0 =x,  r ˙ R 0 = x ˙ ,  L m c 2 = L ˜ , α= GM R 0 c 2 , τ= R 0 c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqcfaYdaeaapeGaeq4SdCgapaqaa8qacaWGsbqcfa4d amaaBaaajuaibaWdbiaaicdaa8aabeaaaaqcfa4dbiabg2da9iaadI hacaGGSaGaaiiOamaalaaapaqaa8qaceWGYbWdayaacaaabaWdbiaa dkfapaWaaSbaaKqbGeaapeGaaGimaaqcfa4daeqaaaaapeGaeyypa0 JabmiEa8aagaGaa8qacaGGSaGaaiiOamaalaaapaqaamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=jrimbWdaeaape GaamyBaiaadogapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaKqbakab g2da98aadaWfGaqaa8qacuWFsectgaacaaWdaeqabaaaa8qacaGGSa GaaiiOaiabeg7aHjabg2da9maalaaapaqaa8qacaWGhbGaamytaaWd aeaapeGaamOua8aadaWgaaqcfasaa8qacaaIWaaajuaGpaqabaWdbi aadogapaWaaWbaaKqbGeqabaWdbiaaikdaaaaaaKqbakaacYcacaGG GcGaeqiXdqNaeyypa0ZaaSaaa8aabaWdbiaadkfapaWaaSbaaKqbGe aapeGaaGimaaqcfa4daeqaaaqaa8qacaWGJbaaaaaa@6CE9@

Converting the original Lagrangean into

L ˜ = [ 1 τ 2 ( x ˙ 2 + x 2 θ ˙ 2 ) ] 1/2 +α 1 x                                                      ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbiae aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaa aaaapeGaf8NeHWKbaGaaa8aabeqaaaaapeGaeyypa0JaeyOeI0Yaam Waa8aabaWdbiaaigdacqGHsislcqaHepaDpaWaaWbaaKqbGeqabaWd biaaikdaaaqcfa4aaeWaa8aabaWdbiqadIhapaGbaiaadaahaaqcfa sabeaapeGaaGOmaaaajuaGcqGHRaWkcaWG4bWdamaaCaaajuaibeqa a8qacaaIYaaaaKqbakqbeI7aX9aagaGaamaaCaaajuaibeqaa8qaca aIYaaaaaqcfaOaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaqa bKqbGeaapeGaaGymaiaac+cacaaIYaaaaKqbakabgUcaRiabeg7aHn aalaaapaqaa8qacaaIXaaapaqaa8qacaWG4baaaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcWaaeWaa8aabaWdbiaaikdaaiaawIcacaGLPaaaaa a@9CC5@

Here, we assume that R 0 =1A.U. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWaaSbaaeaajuaicaaIWaaajuaGbeaacqGH9aqpcaaI XaGaamyqaiaac6cacaWGvbGccaGGUaaaaa@3DE1@ (Astronomical Unity-A.U.), hence the equation (2) is partially dimensionless since τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@3849@ is the necessary time to the light to cover 1A.U.

The normalized Lagrangean with respect to the rest energy of the planet L ˜ = L ˜ (x,θ, x ˙ , θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiqb =jrimzaaiaGae8ha33Jaeyypa0Jaf8NeHWKbaGaacqWFaCFpcaGGOa GaamiEaiaacYcacqaH4oqCcaGGSaGabmiEa8aagaGaa8qacaGGSaWa aCbiaeaacqaH4oqCaeqabaGaeyyXICnaaaaa@519E@ was proposed in order to have the associated Euler-Lagrange equations where is possible to define the associated momentum with respect to the variable θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385A@  as L ˜ θ = P ˜ θ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaqaaiabgkGi2orr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfaGaf8NeHWKbaGaaaeaacqGHciITcqaH4oqCaaGaey ypa0JabmiuayaaiaWaaSbaaKqbGeaacqaH4oqCaeqaaKqbakaac6ca aaa@4B02@

For the proposed analysis we have set P ˜ θ =L/m c 2 =l/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGqbGbaGaadaWgaaqcfasaaiabeI7aXbqcfayabaGaeyyp a0Jaamitaiaac+cacaWGTbGaam4yamaaCaaajuaibeqaaiaaikdaaa qcfaOaeyypa0JaamiBaiaac+cacaWGJbWcdaahaaqcfasabeaajugW aiaaikdaaaaaaa@45F0@ , where l=L/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbGaeyypa0Jaamitaiaac+cacaWGTbaaaa@3B11@ . Notice that, the angular equation associated with the motion can be casted as

L ˜ θ ˙ = θ ˙ τ 2 x 2 1 τ 2 ( x ˙ 2 + x 2 θ ˙ 2 ) = P ˜ θ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaeyOaIy7efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacuWFsectgaacaaWdaeaapeGaeyOaIyRafq iUde3dayaacaaaa8qacqGH9aqpdaWcaaWdaeaapeGafqiUde3dayaa caWdbiabes8a09aadaahaaqabKqbGeaapeGaaGOmaaaajuaGcaWG4b WdamaaCaaajuaibeqaa8qacaaIYaaaaaqcfa4daeaapeWaaOaaa8aa baWdbiaaigdacqGHsislcqaHepaDpaWaaWbaaKqbGeqabaWdbiaaik daaaqcfa4aaeWaa8aabaWdbiqadIhapaGbaiaadaahaaqcfasabeaa peGaaGOmaaaajuaGcqGHRaWkcaWG4bWdamaaCaaabeqcfasaa8qaca aIYaaaaKqbakqbeI7aX9aagaGaamaaCaaajuaibeqaa8qacaaIYaaa aaqcfaOaayjkaiaawMcaaaqabaaaaiabg2da9iqadcfagaacamaaBa aajuaibaGaeqiUdehajuaGbeaacaGGUaaaaa@659A@

Hence,

θ ˙ = P ˜ θ τx 1 τ 2 x ˙ 2 [ τ 2 x 2 + P ˜ θ 2 ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaH4oqCpaGbaiaapeGaeyypa0ZaaSaaa8aabaGabmiuayaa iaGaeqiUdehabaWdbiabes8a0jaadIhaaaWaaOaaa8aabaWdbmaala aapaqaa8qacaaIXaGaeyOeI0IaeqiXdq3damaaCaaajuaibeqaa8qa caaIYaaaaKqbakqadIhapaGbaiaadaahaaqcfasabeaapeGaaGOmaa aaaKqba+aabaWdbmaadmaapaqaa8qacqaHepaDpaWaaWbaaeqajuai baWdbiaaikdaaaqcfaOaamiEa8aadaahaaqabKqbGeaapeGaaGOmaa aajuaGcqGHRaWkceWGqbGbaGaadaqhaaqcfasaaiabeI7aXbqaaiaa ikdaaaaajuaGcaGLBbGaayzxaaaaaaqabaGaaiOlaaaa@5582@

We may use this relation to adjust L ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiqb =jrimzaaiaaaaa@4141@ as

L ˜ = [ 1 τ 2 ( x ˙ 2 + P ˜ θ 2 τ 2 ( 1 τ 2 x ˙ 2 ) [ τ 2 x 2 + P ˜ θ 2 ] ) ] 1/2 +α 1 x .                                            (3) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajuaGqaaaaaaaaaWdbiqb =jrimzaaiaGaeyypa0JaeyOeI0YaamWaa8aabaWdbiaaigdacqGHsi slcqaHepaDpaWaaWbaaeqajuaibaWdbiaaikdaaaqcfa4aaeWaa8aa baWdbiqadIhapaGbaiaadaahaaqcfasabeaapeGaaGOmaaaajuaGcq GHRaWkdaWcaaWdaeaaceWGqbGbaGaadaqhaaqcfasaaiabeI7aXbqa aiaaikdaaaaajuaGbaWdbiabes8a09aadaahaaqcfasabeaapeGaaG Omaaaaaaqcfa4aaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOe I0IaeqiXdq3damaaCaaajuaibeqaa8qacaaIYaaaaKqbakqadIhapa GbaiaadaahaaqcfasabeaapeGaaGOmaaaaaKqbakaawIcacaGLPaaa a8aabaWdbmaadmaapaqaa8qacqaHepaDpaWaaWbaaKqbGeqabaWdbi aaikdaaaqcfaOaamiEa8aadaahaaqcfasabeaapeGaaGOmaaaajuaG cqGHRaWkpaGabmiuayaaiaWaa0baaKqbGeaacqaH4oqCaeaacaaIYa aaaaqcfa4dbiaawUfacaGLDbaaaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaWdamaaCaaajuaibeqaa8qacaaIXaGaai4laiaaikdaaaqcfa Oaey4kaSIaeqySde2aaSaaa8aabaWdbiaaigdaa8aabaWdbiaadIha aaGaaiOlaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiikaiaaiodacaGGPaaa aa@AB91@

Now it is possible to determine the correspondent radial equation associated with the planet motion as

x ¨ = 1 Ξ { [ x τ 2 ( 1 x ˙ 2 τ 2 ) γ 2 ( x 2 τ 2 + P ˜ θ 2 ) 1 x ] P ˜ θ 2 x ˙ 2 ( P ˜ θ 2 + τ 2 x 2 ) + P ˜ θ 2 ( P ˜ θ 2 + τ 2 x 2 )x τ 2 α( x 2 τ 2 + P ˜ θ 2 )γ τ 4 x 4 }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xMi=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqabeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabmiEa8aagaWaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWd aeaaieaapeGaa8NNdaaadaGadaqaamaadmaabaWaaSaaa8aabaWdbi aadIhacqaHepaDpaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfa4aaeWa a8aabaWdbiaaigdacqGHsislceWG4bWdayaacaWaaWbaaKqbGeqaba WdbiaaikdaaaqcfaOaeqiXdq3damaaCaaajuaibeqaa8qacaaIYaaa aaqcfaOaayjkaiaawMcaaaWdaeaapeGaeq4SdC2damaaCaaajuaibe qaa8qacaaIYaaaaKqbaoaabmaapaqaa8qacaWG4bWdamaaCaaajuai beqaa8qacaaIYaaaaKqbakabes8a09aadaahaaqcfasabeaapeGaaG OmaaaajuaGcqGHRaWkceWGqbGbaGaadaqhaaqcfasaaiabeI7aXbqa aiaaikdaaaaajuaGcaGLOaGaayzkaaaaaiabgkHiTmaalaaapaqaa8 qacaaIXaaapaqaa8qacaWG4baaaaGaay5waiaaw2faamaalaaapaqa a8qaceWGqbGbaGaadaqhaaqcfasaaiabeI7aXbqaaiaaikdaaaqcfa OabmiEa8aagaGaamaaCaaajuaibeqaa8qacaaIYaaaaaqcfa4daeaa peWaaeWaa8aabaWdbiqadcfagaacamaaDaaajuaibaGaeqiUdehaba GaaGOmaaaajuaGcqGHRaWkcqaHepaDpaWaaWbaaKqbGeqabaWdbiaa ikdaaaqcfaOaamiEa8aadaahaaqcfasabeaapeGaaGOmaaaaaKqbak aawIcacaGLPaaaaaGaey4kaSYaaSaaa8aabaWdbiqadcfagaacamaa DaaajuaibaGaeqiUdehabaGaaGOmaaaaaKqba+aabaWdbmaabmaapa qaa8qaceWGqbGbaGaadaqhaaqcfasaaiabeI7aXbqaaiaaikdaaaqc faOaey4kaSIaeqiXdq3damaaCaaabeqcfasaa8qacaaIYaaaaKqbak aadIhapaWaaWbaaKqbGeqabaWdbiaaikdaaaaajuaGcaGLOaGaayzk aaGaamiEaiabes8a09aadaahaaqcfasabeaapeGaaGOmaaaaaaqcfa OaeyOeI0YaaSaaa8aabaWdbiabeg7aHnaabmaapaqaa8qacaWG4bWd amaaCaaabeqcfasaa8qacaaIYaaaaKqbakabes8a09aadaahaaqcfa sabeaapeGaaGOmaaaajuaGcqGHRaWkceWGqbGbaGaadaqhaaqcfasa aiabeI7aXbqaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaeq4SdCgapa qaa8qacqaHepaDpaWaaWbaaKqbGeqabaWdbiaaisdaaaqcfaOaamiE a8aadaahaaqabKqbGeaapeGaaGinaaaaaaaajuaGcaGL7bGaayzFaa Gaaiilaaaa@A3B8@

Where

γ= 1 τ 2 ( x ˙ 2 + P ˜ θ 2 τ 2 ( 1 τ 2 x ˙ 2 ) [ τ 2 x 2 + P ˜ θ 2 ] ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzcqGH9aqpdaGcaaWdaeaapeGaaGymaiabgkHiTiab es8a09aadaahaaqabKqbGeaapeGaaGOmaaaajuaGdaqadaWdaeaape GabmiEa8aagaGaamaaCaaajuaibeqaa8qacaaIYaaaaKqbakabgUca RmaalaaapaqaaiqadcfagaacaSWaa0baaKqbagaajugWaiabeI7aXb qcfayaaKqzadGaaGOmaaaaaKqbagaapeGaeqiXdq3damaaCaaajuai beqaa8qacaaIYaaaaaaajuaGdaWcaaWdaeaapeWaaeWaa8aabaWdbi aaigdacqGHsislcqaHepaDpaWaaWbaaKqbGeqabaWdbiaaikdaaaqc faOabmiEa8aagaGaamaaCaaabeqcfasaa8qacaaIYaaaaaqcfaOaay jkaiaawMcaaaWdaeaapeWaamWaa8aabaWdbiabes8a09aadaahaaqc fasabeaapeGaaGOmaaaajuaGcaWG4bWdamaaCaaajuaibeqaa8qaca aIYaaaaKqbakabgUcaR8aaceWGqbGbaGaadaqhaaqcfasaaiabeI7a XbqaaiaaikdaaaaajuaGpeGaay5waiaaw2faaaaaaiaawIcacaGLPa aaaeqaaaaa@667B@

And

Ξ=( 1+ x ˙ 2 γ 2 x 2 τ 4 x 2 τ 2 + P ˜ θ 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGEoGaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHRaWkdaWc aaWdaeaapeGabmiEa8aagaGaamaaCaaabeqcfasaa8qacaaIYaaaaa qcfa4daeaapeGaeq4SdC2damaaCaaajuaibeqaa8qacaaIYaaaaaaa juaGdaWcaaWdaeaapeGaamiEaSWdamaaCaaajuaibeqaaKqzadWdbi aaikdaaaqcfaOaeqiXdq3damaaCaaajuaibeqaa8qacaaI0aaaaaqc fa4daeaapeGaamiEa8aadaahaaqcfasabeaapeGaaGOmaaaajuaGcq aHepaDpaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfaOaey4kaSIabmiu ayaaiaWaa0baaKqbGeaacqaH4oqCaeaacaaIYaaaaaaaaKqbakaawI cacaGLPaaakiaac6caaaa@5644@

The last procedure to convert the related equation into a pure dimensionless form is to redefine t=t=τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaeiDai aab2dacaqG0bGaaeypaiabes8a0baa@3BB7@ , then

t=τ t ˜ ,  d dt = 1 τ d d t ˜ ,  d 2 d t 2 = 1 τ 2 d 2 d t ˜ 2 ,  P θ * = P θ τ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0JaeqiXdqNabmiDayaaiaGaaiilaiaaccka daWcaaWdaeaapeGaamizaaWdaeaapeGaamizaiaadshaaaGaeyypa0 ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiabes8a0baadaWcaaWdaeaa peGaamizaaWdaeaapeGaamizaiqadshagaacaaaacaGGSaGaaiiOam aalaaapaqaa8qacaWGKbWdamaaCaaabeqcfasaa8qacaaIYaaaaaqc fa4daeaapeGaamizaiaadshapaWaaWbaaKqbGeqabaWdbiaaikdaaa aaaKqbakabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaHepaD paWaaWbaaeqajuaibaWdbiaaikdaaaaaaKqbaoaalaaapaqaa8qaca WGKbWdamaaCaaabeqcfasaa8qacaaIYaaaaaqcfa4daeaapeGaamiz aiqadshagaaca8aadaahaaqabKqbGeaapeGaaGOmaaaaaaqcfaOaai ilaiaacckacaWGqbWdamaaDaaajuaibaWdbiabeI7aXbWdaeaapeGa aiOkaaaapaGaeyypa0tcfa4dbmaalaaapaqaaKqbGiaadcfajuaGda Wgaaqcfasaa8qacqaH4oqCa8aabeaaaKqbagaapeGaeqiXdqhaaiaa c6caaaa@6A17@

Now, the equations of motion can be written as

θ ˙ = P θ * x 1 x ˙ 2 [ x 2 + P θ *2 ] .                                                                  ( 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacuaH4oqCpaGbaiaapeGaeyypa0ZaaSaaa8aabaWdbiaadcfa paWaa0baaKqbGeaapeGaeqiUdehapaqaa8qacaGGQaaaaaqcfa4dae aapeGaamiEaaaadaGcaaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGH sislceWG4bWdayaacaWaaWbaaeqajuaibaWdbiaaikdaaaaajuaGpa qaa8qadaWadaWdaeaapeGaamiEa8aadaahaaqabKqbGeaapeGaaGOm aaaajuaGcqGHRaWkcaWGqbWdamaaDaaajuaibaWdbiabeI7aXbWdae aapeGaaiOkaiaaikdaaaaajuaGcaGLBbGaayzxaaaaaaqabaGaaiOl aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOamaabmaapaqaa8qacaaI0aaacaGLOaGaayzkaaaaaa@9D27@

θ0.42rad MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaeyisISRaaGimaiaac6cacaaI0aGaaGOmaiaadkhacaWGHbGaamiz aaaa@3F97@

with

Ξ=( 1+ x ˙ 2 γ 2 x 2 x 2 + P θ *2 )                                                                    ( 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGEoGaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHRaWkdaWc aaWdaeaapeGabmiEa8aagaGaamaaCaaajuaibeqaa8qacaaIYaaaaa qcfa4daeaapeGaeq4SdC2damaaCaaajuaibeqaa8qacaaIYaaaaaaa juaGdaWcaaWdaeaapeGaamiEa8aadaahaaqabKqbGeaapeGaaGOmaa aaaKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaaikdaaaqc faOaey4kaSIaamiua8aadaqhaaqcfasaa8qacqaH4oqCa8aabaWdbi aacQcacaaIYaaaaaaaaKqbakaawIcacaGLPaaacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOamaabmaapaqaa8qacaaI2aaacaGLOaGaayzkaaaaaa@9E26@

γ= 1( x ˙ 2 + P θ *2 ( 1 x ˙ 2 ) [ x 2 + P θ *2 ] )                                                              ( 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHZoWzcqGH9aqpdaGcaaWdaeaapeGaaGymaiabgkHiTmaa bmaapaqaa8qaceWG4bWdayaacaWaaWbaaeqajuaibaWdbiaaikdaaa qcfaOaey4kaSIaamiua8aadaqhaaqcfasaa8qacqaH4oqCa8aabaWd biaacQcacaaIYaaaaKqbaoaalaaapaqaa8qadaqadaWdaeaapeGaaG ymaiabgkHiTiqadIhapaGbaiaadaahaaqcfasabeaapeGaaGOmaaaa aKqbakaawIcacaGLPaaaa8aabaWdbmaadmaapaqaa8qacaWG4bWdam aaCaaajuaibeqaa8qacaaIYaaaaKqbakabgUcaRiaadcfapaWaa0ba aKqbGeaapeGaeqiUdehapaqaa8qacaGGQaGaaGOmaaaaaKqbakaawU facaGLDbaaaaaacaGLOaGaayzkaaaabeaacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcWaaeWaa8aabaWdbiaaiEdaaiaawIcacaGLPaaaaaa@9E97@

The proposed differential equations are very similar to the first-order orbit equations proposed by D’Eliseo.22 In order to determine the initial values of Ρ θ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuyOdi 1aa0baaKqbGeaacqaH4oqCaeaacaGGQaaaaaaa@3AB9@ firstly, we must determine the correspondent module of the angular momentum

l= L m =b GM a ,  P θ * = 1 τ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGSbGaeyypa0ZaaSaaa8aabaWdbiaadYeaa8aabaWdbiaa d2gaaaGaeyypa0JaamOyamaakaaapaqaa8qadaWcaaWdaeaapeGaam 4raiaad2eaa8aabaWdbiaadggaaaaabeaacaGGSaGaaiiOaiaadcfa paWaa0baaKqbGeaapeGaeqiUdehapaqaa8qacaGGQaaaaKqbakabg2 da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaHepaDcaWGJbWdamaa Caaajuaibeqaa8qacaaIYaaaaaaaaaa@4BAB@

where a is the semimajor-axis of the ellipse and b the semiminor-axis, given by b=a 1 ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOyai abg2da9iaadggadaGcaaqaaiaaigdacqGHsislcqaH1oqzdaahaaqa bKqbGeaacaaIYaaaaaqcfayabaaaaa@3E50@ , with ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu gaaa@382B@ being the elongation of the ellipse. The initial associated radial velocity x ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG4bWdayaacaWdbiabg2da9iaaicdaaaa@398A@ was determined as

x ˙ = ( v 2 τ 2 R 0 2 P θ *2 x 2 + P θ *2 ) 1/2 . ( 1 P θ *2 x 2 + P θ *2 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG4bWdayaacaWdbiabg2da9maabmaapaqaa8qadaWcaaWd aeaapeGaamODa8aadaahaaqabKqbGeaapeGaaGOmaaaajuaGcqaHep aDpaWaaWbaaKqbGeqabaWdbiaaikdaaaaajuaGpaqaa8qacaWGsbWd amaaDaaajuaibaWdbiaaicdaa8aabaWdbiaaikdaaaaaaKqbakabgk HiTmaalaaapaqaa8qacaWGqbWdamaaDaaajuaibaWdbiabeI7aXbWd aeaapeGaaiOkaiaaikdaaaaajuaGpaqaa8qacaWG4bWdamaaCaaabe qcfasaa8qacaaIYaaaaKqbakabgUcaRiaadcfapaWaa0baaKqbGeaa peGaeqiUdehapaqaa8qacaGGQaGaaGOmaaaaaaaajuaGcaGLOaGaay zkaaWdamaaCaaajuaibeqaa8qacaaIXaGaai4laiaaikdaaaqcfaOa aiOlamaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadc fapaWaa0baaKqbGeaapeGaeqiUdehapaqaa8qacaGGQaGaaGOmaaaa aKqba+aabaWdbiaadIhapaWaaWbaaKqbGeqabaWdbiaaikdaaaqcfa Oaey4kaSIaamiua8aadaqhaaqcfasaa8qacqaH4oqCa8aabaWdbiaa cQcacaaIYaaaaaaaaKqbakaawIcacaGLPaaapaWaaWbaaeqajuaiba WdbiabgkHiTiaaigdacaGGVaGaaGOmaaaaaaa@6C0D@

the initial position r(0) was considered as the perihelion where the velocity of the planet is maximum.

At the next section we shall determine some of the orbit trajectories associated with Mercury.

Results

The motion equations integration was performed using numerical techniques Runge Kutta Fehlberg (RKF-45)23 with variable integration step. Given the nonlinearity of the obtained motion equations that are quite different from the ones obtained in literature, for example, by the first-order approximation method proposed by D’amour and Derelle.24 The precision requirement for the RKF45 were chosen as maximum error 10 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGimamaaCaaabeqcfasaaiabgkHiTiaaiIdaaaaa aa@3A19@ per step, and maximum number of iterations of 10 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGimamaaCaaajuaibeqaaiaaiAdaaaaaaa@3929@ per step. The implementation and validation of the code produced was performed with an accurate comparison between the results obtained with similar nonlinear deferential equations solved by the function ODE2 from the WxMaxima software.25

Considering the parameters shown in (Tables 1&2) the motion equations were integrated until the planet complete one revolution1 (1The integration starts at angular position θ(0)=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcaGGOaGaaGimaiaacMcacqGH9aqpcqaHapaCaaa@3D30@ ). A typical result comparing the classical and the relativistic approximation can be observed at Figure 2 and a magnification of the radial difference at the trajectories is presented in Figure 3.

Parameter

Value (I.S.)

c

2.99792458 x 108(m/s)

G

6.67384 x 10-11(m3kg-1s-2)

M

1.98855 x 1030kg

Ro

1A.U. = 1.495978707 x 1011m

Table 1 Fixed values used at the numerical simulations

Parameter

Value

m

3.3022 x 1023kg

a

5.790905 x 1010m

  ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu gaaa@382B@

0.20563

r(0)

4.6 x 1010m

v(0)

5.989 x 104(m/s)

T

87.97days

Table 2 Mercury Parameters

Figure 2 Mercury orbit at Cartesian coordinates system, the red curve represents the classical elliptical orbit, and the black curve represents the orbit with the proposed relativistic correction.

Figure 3 Mercury orbit at cartesian coordinates system, the red curve represents the classical elliptical orbit, and the black curve represents the orbit with the proposed relativistic correction. It is shown a magnification at the region near of angular position 3π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaG4mai abec8aWjaac+cacaaIYaaaaa@3A6D@ , where the separation and divergency between the two orbits are more visible.

We have also determined the radial difference defined δR(θ) R cla (θ) R rel (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGsbGaaiikaiabeI7aXjaacMcacqGHHjIUcaWG sbWaaSbaaKqbGeaacaWGJbGaamiBaiaadggaaKqbagqaaiaacIcacq aH4oqCcaGGPaGaeyOeI0IaamOuamaaBaaajuaibaGaamOCaiaadwga caWGSbaajuaGbeaacaGGOaGaeqiUdeNaaiykaaaa@4DFC@  between the classical R cla MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaam4yaiaadYgacaWGHbaajuaGbeaaaaa@3AF7@ and relativistic corrected trajectories R rel MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWaaSbaaKqbGeaacaWGYbGaamyzaiaadYgaaKqbagqa aaaa@3B2A@ . This result is shown in Figure 4.

Figure 4 Determination of the radial difference between the classical and the relativistic corrected trajectory, as a function of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ for one revolution of Mercury.

The difference between the two trajectories can be detected even for the polar plot of the associated radial position x (t) and at the angular position θ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCpaWaaeWaaeaapeGaamiDaaWdaiaawIcacaGLPaaa aaa@3B0A@  as depicted in Figure 5.

Figure 5 Graphic x(t)×θ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai aacIcacaWG0bGaaiykaiabgEna0kabeI7aXjaacIcacaWG0bGaaiyk aaaa@3FF2@ for one revolution of Mercury. Here is possible to observe the none asymptotic behavior the trajectories. The red curve represents the classical trajectory and the black curve represents the relativistic corrected trajectory.

Another graphic where is possible to visualize the difference between the classical and the relativistic correction at the trajectories is the Phase Space associated with the variable x, this plot x ˙ ×x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWG4bWdayaacaWdbiabgEna0kaadIhaaaa@3ADE@ can be seen in Figure 6. Notice that, for a typical elliptic trajectory the curve at the phase space would be approximately a circle that is completely different from the D-shaped curve observed in Figure 6.

Figure 6 Phase Space Diagram, associated with the variable x(t) one revolution of Mercury

The mercury precession

The precession of a planet occurs taking into account the center of a reference frame, in this case the sun. Similar to the geometrical procedure observed at Figure 7, after some time T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaq Fr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qq Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaada GfGbqabSqabeaacqWI8iIoa0qaaiaadsfaaaaaaa@3B05@ , given the influence of pure relativistic influence, the planet may change the plane of its trajectory realizing a certain precession, with respect to the ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ angle. To determine this precession angle, we get the perihelion and the aphelion belonging to a line that contains the Sun, at the initial orbit (first revolution) and at the final orbit (last revolution) and determine the relative inclination angle.

For Mercury the angle ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ as a function of the revolutions can be observed at Figure 8, where after 400 revolutions are approximately ϕ40043'' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGinaiaaicdacaaIWaGaeyisISRaaGinaiaaiodacaGGNaGaai4j aaaa@3F00@ , which is a very close result when compared to the value predicted by general relativity. Hence, we could say that the perturbation procedure here proposed is a very good approximation to determine the influence of general relativity using a more simple mathematical approach from the point of view of theoretical physics.

Figure 7 Schematic diagram to determine the precession effect at the planets orbits due to the relativistic correction of the orbits.

Figure 8 Determination of the precession angle ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@ as function of the number of revolutions n, for Mercury. The approximate value of ϕ(200)43'' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaiikaiaaikdacaaIWaGaaGimaiaacMcacqGHijYUcaaI0aGaaG4m aiaacEcacaGGNaaaaa@4057@ quite agrees with the expected value predicted by general relativity 0.4

Considering the precession imposed by the relativistic correction term, we can observe that Mercury’s orbit is not intrinsic periodic, since the set of points associated with the Poincare’ map - see Figure 9 - related to the variables (θ,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abeI7aXjaacYcacqaH4oqCcaGGPaaaaa@3BF9@ do not have a finite dimension, on other words, in spite of the huge number of revolutions computed, the object (Mercury) do not recover the exactly same dynamical configuration. As predicted by the KAM theorem,15 it is a purely chaotic dynamical system, even for just one interaction between the planet and the sun. These chaotic approaches have not been discussed by other studies.12,13,21,22 Otherwise, as can be observed, the present work gives rise for new investigations from the perspective of stability and nonlinear phenomena.

Figure 9 Determination of the Poincare Map for the Mercury trajectory over approximately 200 years. Under the position θ0.42rad MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde NaeyisISRaaGimaiaac6cacaaI0aGaaGOmaiaadkhacaWGHbGaamiz aaaa@3F97@ .

A more precise approximation could be performed taking into account the interaction between more than two bodies. For example, considering the interactions with Saturn and Jupiter.

Concluding remarks

The relativistic celestial dynamic correction proposed by an effective relativistic Lagrangean, built with a proper classical gravitational potential, can recover, with a good numerical accuracy, the orbits obtained by general relativity, which calculations are quite more complex to perform. Given the proximity of Mercury to the Sun, the analysis of its perihelion precession through 100 years achieved good agreement with the experimental result ϕ43''s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyisISRaaGinaiaaiodacaGGNaGaai4jaiaacohaaaa@3DC5@ . In addition, from the perspective of nonlinear dynamic, the Poincare’ map with a huge number of points for the same angular orbit plane, shows a non periodic motion by a nonlinear as predicted by the KAM theorem, showing that is possible to investigate this nonlinear phenomena with other numerical and theoretical tools, even when classical interaction potentials are used.

Acknowledgments

We would like to thanks the Federal Institute of Education, Science and Technology of Espírito Santo for the opportunity and the Brazilian agency CNPq for the financial support.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. G Costard. The History of Astronomy. 1976.
  2. M Soffel, SA Klioner, G Petit, et al. The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: Explanatory supplement. The Astronomical Journal. 2003;126(6):2687–2706.
  3. Sambatra Andrianomena, Chris Clarkson, Prina Patel, et al. Non-linear relativistic contributions to the cosmological weak-lensing convergence. Journal of Cosmology and Astroparticle Physics. 2014;(06):023.
  4. Miguel AF Sanjun. Modern dynamics. Contemporary Physics. 2016;57(2):242–245.
  5. Emmanuele Battista, Giampiero Esposito, Luciano Di Fiore, et al. On solar system dynamics in general relativity. International Journal of Geometric Methods in Modern Physics. 2017;14(9):1–39.
  6. Konstantin Batygin, Alessandro Morbidelli, Matthew J Holman. Chaotic disintegration of the inner solar system. The Astrophysical Journal. 2015;799(2):120.
  7. Richard E Zeebe. highly stable evolution of earth’s future orbit despite chaotic behavior of the solar system. The Astrophysical Journal. 2015;811(1):1–11.
  8. Luis Lehner. Numerical relativity: a review. Classical and Quantum Gravity. 2001;18(17):1–67.
  9. Erik Schnetter, Scott H Hawley, Ian Hawke. Evolutions in 3rd numerical relativity using fixed mesh refinement. Classical and Quantum Gravity. 2004;21(6):1465–1488.
  10. Leilei Jia. Approximate kepler’s elliptic orbits with relativistic effects. International Journal of Astronomy and Astrophysics. 2013;3:29–33.
  11. Thomas E Phipps. Mercurys precession according to special relativity. American Journal of Physics. 1986. p. 54.
  12. PC Peters. Comment on mercurys precession according to special relativity. American Journal of Physics. 1987;55(8):757–758.
  13. Thomas E Phipps. Mercurys precession according to special relativity. American Journal of physics. 1986;54(3):245–247.
  14. JB Marion, ST Thornton. Classical Dynamics of Particles and Systems 6th edition. Saunders College Pub, USA. 1995.
  15. H Goldstein, CP Poole, JL Safko. Classical Mechanics: Pearson New International Edition 3rd edn. Pearson Education Limited, UK. 2014.
  16. https://www.nasa.gov/press/2015/march/nasa-spacecraft-nears-historic-dwarf-planet-arrival
  17. W Rindler. Introduction to special relativity. Oxford science publications. Clarendon Press, UK. 1991.
  18. B Schutz. A First Course in General Relativity 2nd edn. Cambridge University Press, UK. 2009.
  19. JG Simmonds, JE Mann. A First Look at Perturbation Theory. Dover Books on Physics. Dover Publications, USA. 1998.
  20. LH Ryder. Introduction to General Relativity. Cambridge University Press. India. 2009.
  21. Tyler J Lemmon, Antonio R Mondragon. Alternative derivation of the relativistic contribution to perihelic precession. American Journal of Physics. 2009;77(10):890–893.
  22. Maurizio M DEliseo. The first-order orbital equation. American Journal of Physics. 2007;75(4):352–355.
  23. WH Press. Numerical Recipes 3rd edn: The Art of Scientific Computing. Cambridge University Press, India. 2007.
  24. Thibault Damour, N Deruelle. General relativistic celestial mechanics of binary systems. i. the post-newtonian motion. Ann Inst Henri Poincare. 1985;43(1):107–132.
  25. http://andrejv.github.io/wxmaxima/
Creative Commons Attribution License

©2017 Braga, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.