Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 1

Non dark hyperbolic universe

Salah A Mabkhout

Department of Mathematics, Thamar University, Yemen

Correspondence: Salah A Mabkhout, Department of Mathematics, Thamar University, Yemen, Tel 8129 8796 088

Received: September 27, 2018 | Published: January 2, 2019

Citation: Mabkhout SA. Non dark hyperbolic universe. Phys Astron Int J. 2019;3(1):1-12. DOI: 10.15406/paij.2019.03.00148

Download PDF

Abstract

A pressure-less flat-dust universe model is an oversimplification solution to the Einstein's Field equations. This led to a drastic failure in predicting the missing mass and the accelerating expansion of the universe. Geometry is the study of the local structures of the manifold, by means of measurement and observations. Topology is the study of the global structures of the manifold, mathematically. In General Relativity Theory, gravity is geometry. In order to modify the laws of gravity; a natural first step is to modify the geometry itself. Hence, we develop the modified laws of gravity from the updated non-Euclidean geometry. We propose that the geometry of the universe is globally hyperbolic. We develop the laws of gravity in the hyperbolic space-time. Such laws fit the current observed data and ruling out both dark matter and dark energy. Hence, the universe is not dark.

Keywords: hyperbolic universe modified gravity, dark matter, dark energy

Introduction

Cosmology, in its broadest definition, is the study of the cosmos. It aims to provide an accurate description of the universe. Throughout much of the history of science, the development of cosmology was hampered by the lack of a universal physical theory. Observational tools were extremely limited, and there was no mathematical formulation for physical laws. Cosmology depends upon a fundamental premise. As a science, it must deal strictly with what can be observed, but the observable universe forms only a fraction of the whole cosmos. One is forced to make the fundamental but unverifiable assumption that the portion of the universe which can be observed is representative of the whole universe, and that the laws of physics are the same throughout the whole universe. Once we make this assumption, we can construct a model of the universe based on a description of its observable part.1 The satellite"s observations of the cosmic microwave background radiation (CMB) indicate that the universe is geometrically –locally- flat, or pretty close to it. Not even perfectly flat. In the flat Universe where the curvature is zero and the density is the critical density, new hypothetical objects, dark energy and dark matter are essential to bridge the gap between theory and observation. It is clear that these new ingredients, dark energy and dark matter, arose as a consequence to the false flat universe paradigm. Without them, there would be a fatal contradiction between the observations made by astronomers and the predictions of the Big Bang Theory.2 The realization from the rotation curves of galaxies that there is considerably more matter with attractive gravity, called dark matter, than we can see via electromagnetic radiation (the visible matter) complicates things. With attractive gravity between the components of the universe the expectation was that the expansion velocity of the universe, the so called Hubble velocity, would decrease with time, i.e. a decelerating universe. The recent discovery that the Hubble velocity is increasing with time, an accelerating universe, was an immense surprise. This led to the postulation of the existence of a new component of the universe, dark energy, with some very unusual properties, not the least among which is that it has, in some sense of the word, repulsive gravity that drives the acceleration. A flat-dust universe with zero pressure models is an oversimplification solution to the Einstein's Field equations. This led to drastic failure in predicting the missing mass and the accelerating expansion of the universe. We may question the accuracy of our solutions to the equations of General Relativity, which depend on some approximation scheme. These approximations provided analytical solutions which enabled most of the early progress in General Relativistic cosmology and astrophysics. We may question whether General Relativity is valid, given that the universe cannot be modeled sufficiently accurately by General Relativity without invoking either a cosmological constant, or some additional, unknown component of the universe. We modify the laws of gravity based on a hyperbolic spacetime rather than a flat spacetime.3 Such a modification explains the accelerating expansion of the Universe without need for dark energy and inflation and also explains the flat rotation curve without need for dark matter. Although perspective for nearby objects in hyperbolic space is very nearly identical to Euclidean space (i.e. the geometry of the Universe locally is approximately flat consistent with local observations), the apparent angular size of distant objects falls off much more rapidly, in fact exponentially. The topology of the Universe globally is hyperbolic as proposed and analysed mathematically "The Hyperbolic Geometry of the Universe and the wedding of General Relativity Theory to Quantum Theory”.4 The Hyperbolic Universe solution predicts the equation of state of cosmology, P = −ρ, consistent with accelerating expansion. The hyperbolic structure of the spacetime causes the accelerated expansion of the universe equivalent to its negative pressure.

The accelerating expansion of the Universe

"The accelerating expansion of the universe was discovered when astronomers were doing research on type 1a supernova events.5 Because all type 1a supernova explosions are remarkably similar in brightness, if we know how bright a star should be, we can compare the apparent luminosity with the intrinsic luminosity, and we get a reliable figure for how far any given object is from us. Incidentally, along with helping us make these key determinations about the locations of objects in the universe, these supernova explosions also gave us a sneak preview of one of the strangest observations ever made about the universe. To measure the approximate distance of an object, like a star, and how that distance has changed, astronomers analyze the spectrum of light emitted. Scientists were able to tell that the universe is increasing in expansion because, as the light waves make a long journey to Earth−billions of light-years away−the universe continues to expand. And as it expands, it stretches light and all electromagnetic waves through the process of redshifting towards longer wavelengths (“red” by analogy with the longest wavelength of visible light). The more redshifted this light is, the faster the expansion is inferred to be”. Many years of painstaking observations (made by many different astronomers) have confirmed that this expansion is still ongoing and increasing because (as previously mentioned) the farther away an object is, the more redshifted it is, and (thus) the faster it is moving away from us".6 The 1990's two teams of astronomers, the Supernova Cosmology Project (Lawrence Berkeley National Laboratory) and the High-Z Supernova Search (international) were looking for distant Type Ia supernovae in order to measure the expansion rate of the Universe with time.79 They expected that the expansion would be slowing, which would be indicated by the supernovae being brighter than their redshifts would indicate. Instead, they found the supernovae to be fainter than expected from a uniformly expanding universe. Hence, the expansion of the Universe was accelerating! Anyone with even a passing interest in space science is familiar with this unforeseen development that occurred in 1998. In that year the research focuses into the decay of distant supernovae events revealed that these objects are actually considerably farther from us than had been expected. The findings were so contrary to theory that at first there was considerable doubt. It was only after another study, by an independent team " High-Z Supernova Search (international)",9 came to the same conclusion (that these "standard candle" exploding stars were 20% to 25% farther than expected) that the crisis hit home. The standard theories of the universe, the hot big bang model and inflationary big bang model, had predicted that the matter in the universe thrown out by the "big bang" should decelerate as gravity acts to slow down this matter and eventually pull it all inward in a "big crunch." But now, it seems, the opposite is true: the speed of expansion of the universe is increasing! Mysteriously, the universe is now accelerating −or so it is believed. And so, in 1998 astronomers and physicists convinced themselves that the universe is accelerating −getting bigger and bigger, faster and faster. Now there is a new mystery! What"s driving this thing? Why is the universe accelerating? You can coast along on "expansion" but you need a force when you bring in "acceleration." No exception. Forget the minimal mystery of why the universe is expanding in the first place; now there is the utterly baffling mystery of why it is expanding with a vengeance! In other ways this new dark [acceleration leads to dilution which leads to darkness] universe is utterly baffling, a road map to new mysteries. Dr. Marc Davis, a cosmologist at the University of California at Berkeley, called it "a universe chock full of exotics that don"t make sense to anybody (Figure 1)."8

Figure 1 Type 1a supernova depicted here at the lower left hand corner. Image credit: High-Z Supernova Search Team, HST, NASA.9

Hyperbolic universe and cosmological constant

The hyperbolic universe inflates exponentially producing an accelerated expansion of the universe without cosmological constant or scalar field. We have shown that general relativity doesn"t break down at large cosmological scale since it predicts both the accelerated expansion of the universe (without invoking dark energy) and predicts the galaxy flat rotation curve (without invoking dark matter). General relativity didn"t break down at Planck scale as we had shown.4 The Type 1a supernova as standard candles can be used to measure the expansion history of the universe i.e. the plot of the scale factor of the universe when the supernova light was emitted versus the time in the past when the supernova explosion occurred. This is done by measuring the apparent brightness L of the supernova and its redshift z. Comparing the apparent brightness to the presumably known intrinsic brightness of the supernova determines its distance and from the distance the time in the past when the supernova exploded can be inferred knowing the velocity of light. The redshift gives the scale factor of the universe at the time of the supernova explosion via a(t) = 1/(1+z). Each supernova then yields a point in the a(t) versus t plot, and a large sample of supernovae thus measure the expansion history of the universe. Given the high level of interest in understanding the underlying reasons for the acceleration of the universe and the nature of dark energy, a vigorous program is planned worldwide to measure the cosmological parameters to a higher level of precision. In particular there is a focus on the measurement of the equation of state parameter w, which can distinguish between a cosmological constant (w= − 1) or some other form of dark energy with w<1/3 but not exactly −1. The present dependence of w, which would be inconsistent with a cosmological constant, is very poorly constrained by the present data. It is results, w = −0.93±0.16 is consistent with the cosmological constant but higher precision may yet show a deviation from −1. The parameter wa that dark energy is due to a nonzero cosmological constant, a value of ΩΛ in the vicinity of 0.7 would be implied. Such a small value of ΩΛ would lead to one of the most dramatic inconsistencies in modern physics called the cosmological constant problem. Modern field theory of particle physics predicts that the energy density of the vacuum contributes to the cosmological constant with a value 120 orders of magnitude larger than the experimentally observed value. Actually this problem would persist even if the dark energy turned out to be something else than the cosmological constant, with Λ = 0. Even though many theorists have tried, there is no explanation in sight to this fundamental disagreement. Accelerating, ruling out a nonaccelerating universe and a zero cosmological constant with a very high level of confident. All of the surveys are consistent with w = −1, assuming a constant w and a flat universe. We exhibit the hyperbolic structure of the universe that explains the accelerating expansion of the universe without need for an additional components, dark energy and dark matter (Figure 2).10

Figure 2 In the Euclidean geometry space is divided into cubes and one experiences the ordinary, familiar perspective: the apparent angular size of objects is proportional to the inverse of their distance. Stuart Levy of the University of Illinois, Urbana-Champaign and Tamara Munzer of Stanford University.10

In addition, measurements of the cosmic microwave background indicate that the Universe has a flat geometry on large scales. Because there is not enough matter in the Universe either ordinary or dark matter to produce this flatness, the difference must be attributed to a "dark energy". This same dark energy causes the acceleration of the expansion of the Universe. In addition, the effect of dark energy seems to vary, with the expansion of the Universe slowing down and speeding up over different times. One explanation for dark energy is that it is a property of space. The simplest explanation for dark energy is that it is simply the "cost of having space": that is, a volume of space has some intrinsic, fundamental energy.

Cosmological constant and Dark Energy

Some astronomers identify dark energy with Einstein`s Cosmological Constant. In the context of dark energy, the cosmological constant represents (mathematically) energy that scales as the Universe expand, like dark energy. Applied to the supernova data, it would distinguish effects due to the matter in the Universe from those due to the dark energy. Another explanation for how space acquires energy comes from the quantum theory of matter. In this theory, "empty space" is actually full of temporary ("virtual") particles that continually form and then disappear. But when physicists tried to calculate how much energy this would give empty space, the answer came out wrong-wrong by a lot. The number came out 10120times too big. Particle physics predicts a natural value of 1 in reduced Planck units, leading to a large discrepancy. It's hard to get an answer that bad. More recently, the WMAP seven-year analysis gave an estimate of 72.8% dark energy, 22.7% dark matter and 4.6% ordinary matter. The cosmological constant has negative pressure equal to its energy density and so causes the expansion of the universe to accelerate. The reason why a cosmological constant implies has negative pressure can be seen from classical thermodynamics; Energy must be lost from inside a container to do work on the container. A change in volume dV requires work done equal to a change of energy −P dV, where P is the pressure. But the amount of energy in a container full of vacuum actually increases when the volume increases (dV is positive), because the energy is equal to ρV, where ρ is the energy density of the cosmological constant. Therefore, P is negative and, in fact, P = ρ.

Quintessence

An alternative hypothesis is provided by a time-dependent homogeneous minimally coupled scalar field (t) called Quintessence It is well known that such a field can be viewed as a commoving perfect fluid with

ρ ϕ = 1 2 ϕ ˙ +V ϕ and p ϕ = 1 2 ϕ ˙ V ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbiqaaGaafaqabeqadaaabaGaeqyWdi 3aaSbaaSqaaiabew9aMbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa caaIYaaaaiqbew9aMzaacaGaey4kaSIaamOvamaabmaabaGaeqy1dy gacaGLOaGaayzkaaaabaGaamyyaiaad6gacaWGKbaabaGaamiCamaa BaaaleaacqaHvpGzaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG OmaaaacuaHvpGzgaGaaiabgkHiTiaadAfadaqadaqaaiabew9aMbGa ayjkaiaawMcaaaaaaaa@5176@      (1)

Where p is the pressure and ρ is the energy density. Hence the corresponding equation of state parameter is

w ϕ = p ϕ ρ ϕ = 1 2 ϕ ˙ V ϕ / 1 2 ϕ ˙ +V ϕ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaqbaeqabeGaaaqaaiaadEhadaWgaa WcbaGaeqy1dygabeaakiabg2da9maalaaabaGaamiCamaaBaaaleaa cqaHvpGzaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiabew9aMbqabaaaaO Gaeyypa0dabaWaaSGbaeaadaqadaqaamaalaaabaGaaGymaaqaaiaa ikdaaaGafqy1dyMbaiaacqGHsislcaWGwbWaaeWaaeaacqaHvpGzai aawIcacaGLPaaaaiaawIcacaGLPaaaaeaadaqadaqaamaalaaabaGa aGymaaqaaiaaikdaaaGafqy1dyMbaiaacqGHRaWkcaWGwbWaaeWaae aacqaHvpGzaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaaaaaaa@54D9@          (2)

We see that w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqG3bWdamaaBa aaleaapeGaeqybIymapaqabaaaaa@37F1@  can be sufficiently negative in this case provided the kinetic energy is small enough compared to the potential energy. This mechanism is actually used in implementing the inflationary scenario in the very early universe. Though w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqG3bWdamaaBa aaleaapeGaeqybIymapaqabaaaaa@37F1@  is generically dynamical, it can never cross the boundary w=−1 a. Hence time-varying equation of state parameter is a natural outcome for quintessence models with the important restriction that there is no phantom phase.11

f(R) gravity

f(R) gravity is a class of effective theories representing a new approach to the gravitational interaction. The paradigm is that Einstein's General Relativity has to be extended in order to address several shortcomings emerging at ultraviolet and infrared scales. These are essentially due to the lack of a final, self-consistent theory of quantum gravity. From the astrophysical and cosmological viewpoints, the goal is to encompass phenomena like dark energy and dark matter under a geometric standard related to the possibility that gravitational interaction depends on the scales. This geometric view, in principle, does not need the introduction of further particle ingredients and preserves all the well-posed results of General Relativity, being based on the same fundamental principles (Equivalence Principle, diffeomorphism invariance, gauge invariance, etc.). The main criticism to this approach is that, until now, no f(R) model, or any Extended Theory of Gravity, succeeds in addressing the whole phenomenology ranging from quantum to cosmological scales. Besides, the f(R) description of dark side of the universe is substantially equivalent to that related to the hypothesis of dark material constituents. The recently reported gravitational wave detection, GW170817, was accompanied by electromagnetic radiation.11 Both signals arrived on Earth almost simultaneously, within a time-window of a few seconds. The observation is difficult to explain with some variants of modified gravity because in these models electromagnetic and gravitational radiation travel differently. This is a big problem for some alternatives to dark matter (such as Bekenstein"s TeVeS and Moffat"s Scalar-Vector-Tensor theory) as this new paper lays out: GW170817 Falsifies Dark Matter Emulators (Figure 3).12

Figure 3 Hyperbolic space shown here is tiled with regular dodecahedra. In Euclidean space such a regular tiling is impossible. The size of the cells is of the same order as the curvature scale. Although perspective for nearby objects in hyperbolic space is very nearly identical to Euclidean space, the apparent angular size of distant objects falls off much more rapidly, in fact exponentially, as can be seen in the figure. Stuart Levy of the University of Illinois, Urbana-Champaign and by Tamara Munzer of Stanford University.10

The hyperbolic universe does not need dark energy

Although perspective for nearby objects in hyperbolic space is very nearly identical to Euclidean space (i.e. the Universe locally is approximately flat consistent with local observations), the apparent angular size of distant objects falls off much more rapidly, in fact exponentially. The Universe is globally hyperbolic as we proposed and analysed mathematically. Such a solution predicts the equation of state of cosmology. We solved the dynamical equations of cosmology (Friedmann`s equation)4

R ˙ 2 +k=(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaam4Aaiabg2da9iaacIcacaaI4aGaeqiWdaNa ai4laiaaiodacaGGPaGaeqyWdiNaamOuamaaCaaaleqabaGaaGOmaa aaaaa@4279@       (3)

2R R ¨ + R ˙ 2 +k=8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG RbGaeyypa0JaeyOeI0IaaGioaiabec8aWjaadchacaWGsbWaaWbaaS qabeaacaaIYaaaaaaa@4328@    (4)

Where R is the scale factor, p is the pressure, ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdihaaa@36C6@ is the energy density of the cosmological fluid and k is the curvature. We use c=G=1. The solution of Eq. (3), is

R=i 3k/8π ρ j sinht 8π ρ j /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuaiabg2da9iabgkHiTiaadM gadaGcaaqaaiaaiodacaWGRbGaai4laiaaiIdacqaHapaCcqaHbpGC daWgaaWcbaGaamOAaaqabaaabeaakiGacohacaGGPbGaaiOBaiaacI gacaWG0bWaaOaaaeaacaaI4aGaeqiWdaNaeqyWdi3aaSbaaSqaaiaa dQgaaeqaaOGaai4laiaaiodaaSqabaaaaa@4C3E@

A simple analysis shows that R(t), the scale factor, represented in the last equation is complex if k is positive, vanishes if k is zero and positive if k is negative. Since k is normalized, k = -1 in order R(t) to be positive, real and nonzero.

k=-1 R= 3/8π ρ j sinht 8π ρ j /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiaadUgacqGH9aqpca qGTaGaaGymaaqaaiaadkfacqGH9aqpdaGcaaqaaiaaiodacaGGVaGa aGioaiabec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaaaeqaaOGaci 4CaiaacMgacaGGUbGaaiiAaiaadshadaGcaaqaaiaaiIdacqaHapaC cqaHbpGCdaWgaaWcbaGaamOAaaqabaGccaGGVaGaaG4maaWcbeaaaa aa@4CE6@          (5)

Hence the universe is hyperbolic.

Note that the solution represented by Eq. (5) is evaluated only for the values simultaneously associated with,

ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadQgaae qaaaaa@37E1@ namely R j , t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaWGsbWaaSbaaSqaai aadQgaaeqaaOGaaiilaiaadshadaWgaaWcbaGaamOAaaqabaaakiaa wIcacaGLPaaaaaa@3B59@

R j = 3/8π ρ j sinh t j 8π ρ j /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWGQbaabe aakiabg2da9maakaaabaGaaG4maiaac+cacaaI4aGaeqiWdaNaeqyW di3aaSbaaSqaaiaadQgaaeqaaaqabaGcciGGZbGaaiyAaiaac6gaca GGObGaamiDamaaBaaaleaacaWGQbaabeaakmaakaaabaGaaGioaiab ec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaakiaac+cacaaIZaaale qaaaaa@4BBD@               (6)

Eq. (6) is valid at the Planck scale, since it exactly predicts the Planck length. Substitute Planck density (3.8789×1062cm) and Planck time (5.4×10-44 ×2.997×1010cm) ,in geometrical units, in the RHS of Eq. (6):

R p = 3/8π×3.8789× 10 62 sinh[5.4× 10 44 ×2.997× 10 10 × 8π×3.8789× 10 62 /3 ]=1.62× 10 33 cm= L p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiaadkfadaWgaaWcba GaamiCaaqabaGccqGH9aqpdaGcaaqaaiaaiodacaGGVaGaaGioaiab ec8aWjabgEna0kaaiodacaGGUaGaaGioaiaaiEdacaaI4aGaaGyoai abgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaI2aGaaGOmaaaaaeqa aOGaci4CaiaacMgacaGGUbGaaiiAaiaacUfacaaI1aGaaiOlaiaais dacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaiaa isdaaaGccqGHxdaTcaaIYaGaaiOlaiaaiMdacaaI5aGaaG4naiabgE na0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGimaaaaaOqaaiab gEna0oaakaaabaGaaGioaiabec8aWjabgEna0kaaiodacaGGUaGaaG ioaiaaiEdacaaI4aGaaGyoaiabgEna0kaaigdacaaIWaWaaWbaaSqa beaacaaI2aGaaGOmaaaakiaac+cacaaIZaaaleqaaOGaaiyxaiabg2 da9iaaigdacaGGUaGaaGOnaiaaikdacqGHxdaTcaaIXaGaaGimamaa CaaaleqabaGaeyOeI0IaaG4maiaaiodaaaGccaWGJbGaamyBaiabg2 da9iaadYeadaWgaaWcbaGaamiCaaqabaaaaaa@81B2@    (7)

We shall see that the solution of equation (4) satisfies the second order differential equation (5) in order to be consistent. We have from the solution of Eq. (4) for any chosen value ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadQgaae qaaaaa@37E1@ .

R= 3 8π ρ j sinht 8π ρ j 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuaiabg2da9maakaaabaWaaS aaaeaacaaIZaaabaGaaGioaiabec8aWjabeg8aYnaaBaaaleaacaWG QbaabeaaaaaabeaakiGacohacaGGPbGaaiOBaiaacIgacaWG0bWaaO aaaeaadaWcaaqaaiaaiIdacqaHapaCcqaHbpGCdaWgaaWcbaGaamOA aaqabaaakeaacaaIZaaaaaWcbeaaaaa@482D@    (8)

R ˙ =cosht 8π ρ j 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaGaeyypa0Jaci4yai aac+gacaGGZbGaaiiAaiaadshadaGcaaqaamaalaaabaGaaGioaiab ec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaaaOqaaiaaiodaaaaale qaaaaa@41F0@                                                                              (9)

R ¨ = 8π ρ j 3 sinht 8π ρ j 3 = 8π ρ j 3 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaadaGaeyypa0ZaaOaaae aadaWcaaqaaiaaiIdacqaHapaCcqaHbpGCdaWgaaWcbaGaamOAaaqa baaakeaacaaIZaaaaaWcbeaakiGacohacaGGPbGaaiOBaiaacIgaca WG0bWaaOaaaeaadaWcaaqaaiaaiIdacqaHapaCcqaHbpGCdaWgaaWc baGaamOAaaqabaaakeaacaaIZaaaaaWcbeaakiabg2da9maalaaaba GaaGioaiabec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaaaOqaaiaa iodaaaGaamOuaaaa@5064@        (10)

Substitute these values in Eq. (2), and put k=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaWHRbGaeyypa0 JaeyOeI0IaaCymaaaa@38C7@ , yields:

2R R .. + R ˙ 2 1=8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfadaWfGaqaaiaadk faaSqabeaacaGGUaGaaiOlaaaakiabgUcaRiqadkfagaGaamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaigdacqGH9aqpcqGHsislcaaI4a GaeqiWdaNaamiCaiaadkfadaahaaWcbeqaaiaaikdaaaaaaa@44AB@       (11)

2R 8π ρ j 3 R + cosh 2 8π ρ j 3 1=8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfadaqadaqaamaala aabaGaaGioaiabec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaaaOqa aiaaiodaaaGaamOuaaGaayjkaiaawMcaaiabgUcaRiGacogacaGGVb Gaai4CaiaacIgadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaamaalaaa baGaaGioaiabec8aWjabeg8aYnaaBaaaleaacaWGQbaabeaaaOqaai aaiodaaaaaleqaaOGaeyOeI0IaaGymaiabg2da9iabgkHiTiaaiIda cqaHapaCcaWGWbGaamOuamaaCaaaleqabaGaaGOmaaaaaaa@53E3@         (12)

2 R 2 8π ρ j 3 + sinh 2 8π ρ j 3 =8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfadaahaaWcbeqaai aaikdaaaGcdaqadaqaamaalaaabaGaaGioaiabec8aWjabeg8aYnaa BaaaleaacaWGQbaabeaaaOqaaiaaiodaaaaacaGLOaGaayzkaaGaey 4kaSIaci4CaiaacMgacaGGUbGaaiiAamaaCaaaleqabaGaaGOmaaaa kmaakaaabaWaaSaaaeaacaaI4aGaeqiWdaNaeqyWdi3aaSbaaSqaai aadQgaaeqaaaGcbaGaaG4maaaaaSqabaGccqGH9aqpcqGHsislcaaI 4aGaeqiWdaNaamiCaiaadkfadaahaaWcbeqaaiaaikdaaaaaaa@525C@          (13)

2 R 2 8π ρ j 3 + 8π ρ j 3 R 2 =8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfadaahaaWcbeqaai aaikdaaaGcdaqadaqaamaalaaabaGaaGioaiabec8aWjabeg8aYnaa BaaaleaacaWGQbaabeaaaOqaaiaaiodaaaaacaGLOaGaayzkaaGaey 4kaSYaaSaaaeaacaaI4aGaeqiWdaNaeqyWdi3aaSbaaSqaaiaadQga aeqaaaGcbaGaaG4maaaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaey ypa0JaeyOeI0IaaGioaiabec8aWjaadchacaWGsbWaaWbaaSqabeaa caaIYaaaaaaa@4F4A@           (14)

8π ρ j R 2 =8πp R 2 p= ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceaqabeaacaaI4aGaeqiWdaNaeqyWdi 3aaSbaaSqaaiaadQgaaeqaaOGaamOuamaaCaaaleqabaGaaGOmaaaa kiabg2da9iabgkHiTiaaiIdacqaHapaCcaWGWbGaamOuamaaCaaale qabaGaaGOmaaaaaOqaaiaadchacqGH9aqpcqGHsislcqaHbpGCdaWg aaWcbaGaamOAaaqabaaaaaa@492F@             (15)

Friedmann`s equation in the presence of the cosmological constant are given by

R ˙ 2 +k Λ R 2 /3 =(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaam4AaiabgkHiTmaalyaabaGaeu4MdWKaamOu amaaCaaaleqabaGaaGOmaaaaaOqaaiaaiodaaaGaeyypa0Jaaiikai aaiIdacqaHapaCcaGGVaGaaG4maiaacMcacqaHbpGCcaWGsbWaaWba aSqabeaacaaIYaaaaaaa@4778@     (16)

2R R ¨ + R ˙ 2 +kΛ R 2 =8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG RbGaeyOeI0Iaeu4MdWKaamOuamaaCaaaleqabaGaaGOmaaaakiabg2 da9iabgkHiTiaaiIdacqaHapaCcaWGWbGaamOuamaaCaaaleqabaGa aGOmaaaaaaa@4754@   (17)

Λ=8π ρ vacuum ,k=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeSynIeLaeu4MdWKaeyypa0JaaG ioaiabec8aWjabeg8aYnaaCaaaleqabaWaaWbaaWqabeaacaWG2bGa amyyaiaadogacaWG1bGaamyDaiaad2gaaaaaaOGaaiilaiaadUgacq GH9aqpcqGHsislcaaIXaaaaa@475B@              (18)

R ˙ 2 1 8π ρ vacuum R 2 /3 =(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaeyOeI0IaaGymaiabgkHiTmaalyaabaGaaGioaiabec8a Wjabeg8aYnaaCaaaleqabaWaaWbaaWqabeaacaWG2bGaamyyaiaado gacaWG1bGaamyDaiaad2gaaaaaaOGaamOuamaaCaaaleqabaGaaGOm aaaaaOqaaiaaiodaaaGaeyypa0JaaiikaiaaiIdacqaHapaCcaGGVa GaaG4maiaacMcacqaHbpGCcaWGsbWaaWbaaSqabeaacaaIYaaaaaaa @502C@         (19)

2R R ¨ + R ˙ 2 18π ρ vacuum R 2 =8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI XaGaeyOeI0IaaGioaiabec8aWjabeg8aYnaaCaaaleqabaWaaWbaaW qabeaacaWG2bGaamyyaiaadogacaWG1bGaamyDaiaad2gaaaaaaOGa amOuamaaCaaaleqabaGaaGOmaaaakiabg2da9iabgkHiTiaaiIdacq aHapaCcaWGWbGaamOuamaaCaaaleqabaGaaGOmaaaaaaa@5008@      (20)

The solution of Eq. (19), is

R= 3/ 8π ρ vacuum + ρ j sinht 8π ρ vacuum + ρ j /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuaiabg2da9maakaaabaWaaS GbaeaacaaIZaaabaGaaGioaiabec8aWnaabmaabaGaeqyWdi3aaWba aSqabeaadaahaaadbeqaaiaadAhacaWGHbGaam4yaiaadwhacaWG1b GaamyBaaaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaaaaaaleqaaOGaci4CaiaacMgacaGGUbGaaiiAai aadshadaGcaaqaamaalyaabaGaaGioaiabec8aWnaabmaabaGaeqyW di3aaWbaaSqabeaadaahaaadbeqaaiaadAhacaWGHbGaam4yaiaadw hacaWG1bGaamyBaaaaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamOA aaqabaaakiaawIcacaGLPaaaaeaacaaIZaaaaaWcbeaaaaa@5CCC@        (21)

Substitute Eq. (21) in Eq. (20)

8π ρ vacuum + ρ j R 2 8π ρ vacuum R 2 =8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGioaiabec8aWnaabmaabaGaeq yWdi3aaWbaaSqabeaacaWG2bGaamyyaiaadogacaWG1bGaamyDaiaa d2gaaaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamOAaaqabaaakiaawI cacaGLPaaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGio aiabec8aWjabeg8aYnaaCaaaleqabaWaaWbaaWqabeaacaWG2bGaam yyaiaadogacaWG1bGaamyDaiaad2gaaaaaaOGaamOuamaaCaaaleqa baGaaGOmaaaakiabg2da9iabgkHiTiaaiIdacqaHapaCcaWGWbGaam OuamaaCaaaleqabaGaaGOmaaaaaaa@5A76@           (22)

ρ vacuum + ρ j ρ vacuum =p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdi3aaWbaaSqabeaacaWG2b GaamyyaiaadogacaWG1bGaamyDaiaad2gaaaGccqGHRaWkcqaHbpGC daWgaaWcbaGaamOAaaqabaGccqGHsislcqaHbpGCdaahaaWcbeqaam aaCaaameqabaGaamODaiaadggacaWGJbGaamyDaiaadwhacaWGTbaa aaaakiabg2da9iabgkHiTiaadchaaaa@4C1C@             (23)

p= ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaamiCaiabg2da9iabgk HiTiabeg8aYnaaBaaaleaacaWGQbaabeaaaaa@3C07@     (24)

So the cosmological constant (the vacuum energy) disappeared in the solution of the second differential Eq. (20). Just the ordinary energy density state ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaadQgaae qaaaaa@37E1@  remains in the Hyperbolic Universe to derive the accelerating expansion equivalent to its negative pressure. Hyperbolic Universe involves zero13 cosmological constant (the vacuum energy). The negative pressure p= ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamiCaiabg2da9iabgkHiTiabeg 8aYnaaBaaaleaacaWGQbaabeaaaaa@3AC9@  is the property of the hyperbolic structure of the Universe. The hyperbolic structure of the space-time –not the cosmological constant- causes the apparently observed accelerating expansion of the Universe (Figure 4).14

Figure 4 Curvature of space-time. Martha Haynes and Stirling Churchman.4

Zero pressure-dust universe is decelerating universe:Einstein postulates15 that the matter dominated universe could be modeled as dust with zero pressure in order to simplify and solves Friedmann`s equations.

R ˙ 2 +k=(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaam4Aaiabg2da9iaacIcacaaI4aGaeqiWdaNa ai4laiaaiodacaGGPaGaeqyWdiNaamOuamaaCaaaleqabaGaaGOmaa aaaaa@4279@      (25)

2R R ¨ + R ˙ 2 +k=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG RbGaeyypa0JaaGimaaaa@3DC1@      (26)

2R R ¨ =(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaaGOmaiaadkfaceWGsb GbamaacqGH9aqpcqGHsislcaGGOaGaaGioaiabec8aWjaac+cacaaI ZaGaaiykaiabeg8aYjaadkfadaahaaWcbeqaaiaaikdaaaaaaa@4373@        (27)

R ¨ =(4π/3)ρR<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLabmOuayaadaGaeyypa0 JaeyOeI0IaaiikaiaaisdacqaHapaCcaGGVaGaaG4maiaacMcacqaH bpGCcaWGsbGaeyipaWJaaGimaaaa@42B1@       (28)

Guarantees a decelerating expansion of the universe. The pressureless form, Eq. (26), describes a decelerating expansion state of the universe which is described by the energy tensor of matter for dust where ρ=0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYjabg2da9iaaicdacaGGUaaaaa@3C0A@  We solved the second dynamical equation of cosmology in it is pressureless form:

2R R ¨ + R ˙ 2 1=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI XaGaeyypa0JaaGimaaaa@3D97@           (29)

R=t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaamOuaiabg2da9iaads haaaa@391A@       (30)

Substitute R=t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuaiabg2da9iaadshaaaa@37DC@  and k = -1 in Eq. (25)

R ˙ 2 +k=(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaam4Aaiabg2da9iaacIcacaaI4aGaeqiWdaNa ai4laiaaiodacaGGPaGaeqyWdiNaamOuamaaCaaaleqabaGaaGOmaa aaaaa@4279@        (31)

11=(8π/3)ρ t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaaGymaiabgkHiTiaaig dacqGH9aqpcaGGOaGaaGioaiabec8aWjaac+cacaaIZaGaaiykaiab eg8aYjaadshadaahaaWcbeqaaiaaikdaaaaaaa@4297@         (32)

ρ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaeqyWdiNaeyypa0JaaG imaaaa@39C4@       (33)

Hence the zero pressure does not lead to a dusty universe. In fact a zero pressure Universe is an empty space, since ρ=0. MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg8aYjabg2da9iaaicdacaGGUaaaaa@3C0A@  In the presence of pressure, the hyperbolic universe possesses an accelerated expansion as follows;

R ˙ 2 +k=(8π/3)ρ R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGabmOuayaacaWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaam4Aaiabg2da9iaacIcacaaI4aGaeqiWdaNa ai4laiaaiodacaGGPaGaeqyWdiNaamOuamaaCaaaleqabaGaaGOmaa aaaaa@4279@      (34)

2R R ¨ + R ˙ 2 +k=8πp R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaadkfaceWGsbGbamaacq GHRaWkceWGsbGbaiaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG RbGaeyypa0JaeyOeI0IaaGioaiabec8aWjaadchacaWGsbWaaWbaaS qabeaacaaIYaaaaaaa@4328@    (35)

R ¨ = 4π 3 3p+ρ R p=ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceaqabeaacqGH0icxceWGsbGbamaacq GH9aqpcqGHsisldaWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaamaa bmaabaGaaG4maiaadchacqGHRaWkcqaHbpGCaiaawIcacaGLPaaaca WGsbaabaGaeSynIeLaamiCaiabg2da9iabgkHiTiabeg8aYbaaaa@48FC@      (36)

R ¨ = 8π 3 ρR>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbiqaaGaacqGH0icxceWGsbGbamaacq GH9aqpdaWcaaqaaiaaiIdacqaHapaCaeaacaaIZaaaaiabeg8aYjaa dkfacqGH+aGpcaaIWaaaaa@3FDB@        (37)

Guarantees an accelerated expansion of the Universe. Moreover the hyperbolic evolution equation of the Universe predicts the large structure of the observable

Universe 1028cm associated with 14 × 109 yr.3. Note

that in geometrical units:

1 sec = 2.997×1010cm

1 gram = 7.425×10-29cm

1 yr = 3.16×107 s

The energy density now ρ now = 10 31  g/c m 3 =7.425× 10 60 c m 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyWdi3aaSbaaSqaaiaad6gaca WGVbGaam4DaaqabaGccqGH9aqpqaaaaaaaaaWdbiaaigdacaaIWaWd amaaCaaaleqabaWdbiabgkHiTiaaiodacaaIXaaaaOGaaiiOaiaadE gacaGGVaGaam4yaiaad2gapaWaaWbaaSqabeaapeGaaG4maaaakiab g2da9iaaiEdacaGGUaGaaGinaiaaikdacaaI1aGaey41aqRaaGymai aaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGOnaiaaicdaaaGccaWG JbGaamyBa8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaaaa@53AF@

The age of the Universe (approximately) t now =14× 10 9 yr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamiDamaaBaaaleaacaWGUbGaam 4BaiaadEhaaeqaaOaeaaaaaaaaa8qacqGH9aqpcaaIXaGaaGinaiab gEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaiMdaaaGccaWG5b GaamOCaaaa@4251@

Substitute the above data in the hyperbolic time evolution equation of the Universe, yields

R j = 3/8π ρ j sinh t j 8π ρ j /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWGQbaabe aakiabg2da9maakaaabaGaaG4maiaac+cacaaI4aGaeqiWdaNaeqyW di3aaSbaaSqaaiaadQgaaeqaaaqabaGcciGGZbGaaiyAaiaac6gaca GGObWaamWaaeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaOWaaOaaaeaa caaI4aGaeqiWdaNaeqyWdi3aaSbaaSqaaiaadQgaaeqaaOGaai4lai aaiodaaSqabaaakiaawUfacaGLDbaaaaa@4DB9@

R now = 3/8π ρ now sinh t now 8π ρ now /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWGUbGaam 4BaiaadEhaaeqaaOGaeyypa0ZaaOaaaeaacaaIZaGaai4laiaaiIda cqaHapaCcqaHbpGCdaWgaaWcbaGaamOBaiaad+gacaWG3baabeaaae qaaOGaci4CaiaacMgacaGGUbGaaiiAamaadmaabaGaamiDamaaBaaa leaacaWGUbGaam4BaiaadEhaaeqaaOWaaOaaaeaacaaI4aGaeqiWda NaeqyWdi3aaSbaaSqaaiaad6gacaWGVbGaam4DaaqabaGccaGGVaGa aG4maaWcbeaaaOGaay5waiaaw2faaaaa@5589@

R now = 3/ 8π×7.425× 10 60 × sinh 14×10 9 ×3.16× 10 7 ×2 .997×10 10 × 8π×7.425× 10 60 /3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiaadkfadaWgaaWcba GaamOBaiaad+gacaWG3baabeaakiabg2da9maakaaabaGaaG4maiaa c+cadaqadaqaaiaaiIdacqaHapaCcqGHxdaTcaaI3aGaaiOlaiaais dacaaIYaGaaGynaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGH sislcaaI2aGaaGimaaaaaOGaayjkaiaawMcaaaWcbeaakiabgEna0c qaaiGacohacaGGPbGaaiOBaiaacIgadaWadaabaeqabaGaaeymaiaa bsdacaqGxdGaaeymaiaabcdadaahaaWcbeqaaiaabMdaaaGccqGHxd aTcaaIZaGaaiOlaiaaigdacaaI2aGaey41aqRaaGymaiaaicdadaah aaWcbeqaaiaaiEdaaaGccqGHxdaTcaqGYaGaaeOlaiaabMdacaqG5a Gaae4naiaabEnacaqGXaGaaeimamaaCaaaleqabaGaaeymaiaabcda aaaakeaacqGHxdaTdaGcaaqaaiaaiIdacqaHapaCcqGHxdaTcaaI3a GaaiOlaiaaisdacaaIYaGaaGynaiabgEna0kaaigdacaaIWaWaaWba aSqabeaacqGHsislcaaI2aGaaGimaaaakiaac+cacaaIZaaaleqaaa aakiaawUfacaGLDbaaaaaa@7E36@            (38)

R now =1.6× 10 29 ×sinh0.08287 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWGUbGaam 4BaiaadEhaaeqaaOGaeyypa0JaaGymaiaac6cacaaI2aGaey41aqRa aGymaiaaicdadaahaaWcbeqaaiaaikdacaaI5aaaaOGaey41aqRaci 4CaiaacMgacaGGUbGaaiiAaiaaicdacaGGUaGaaGimaiaaiIdacaaI YaGaaGioaiaaiEdaaaa@4C6D@         (39)

R now =1.3× 10 28 cm MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWGUbGaam 4BaiaadEhaaeqaaOGaeyypa0JaaGymaiaac6cacaaIZaGaey41aqRa aGymaiaaicdadaahaaWcbeqaaiaaikdacaaI4aaaaOGaam4yaiaad2 gaaaa@4341@     (40)

Newton`s laws of gravity do no longer hold in non-Euclidean geometry. Geometry is the study of the local structures of the manifold, by means of measurements and observations. Observations being made are not complete in themselves; they interpreted within a theory (a paradigm). Topology is the study of the global structures of the manifold, mathematically. In General Relativity Theory, gravity is geometry. In order to modify the laws of gravity; first we should modify the underlying geometry itself.15 Hence, we establish the modified laws of gravity from the updated non-Euclidean geometry. We prove that the topology of the universe is globally hyperbolic. We develop the laws of gravity in the hyperbolic spacetime. Such modified laws fit the current observed data and successively predict the accelerated expansion of the universe without invoking Dark Energy. The observed average density of the universe is 3x10-31g/cm3. This density implies an open universe (hyperbolic universe) (Table 1).16

Topic

Size

Mass/Energy

First appearance

Macro world

Observable Universe

1.3×1028cm (cosmic horizon)

4×1022Msun
(including dark energy, ordinary and dark matters)

0 sec

Super Clusters

1026cm

1016Msun

11×109yr

Clusters of Galaxies

1024cm

1015Msun

6×109yr

Galaxies

1022cm

10111014Msun

7×108yr

Star Clusters

1020cm

102106Msun

5×108yr

Planetary Systems

1016cm

0.1100Msun

1.8×108yr

Stars

1011cm

0.1100Msun

1.8×108yr

Earth

109cm

6×1027gm

9.5×109yr

Table 1 The Cosmic Table. The current observed universe 1.3×1028cm.16

Flat rotation curve

A general observation of galaxy rotation can be stated as: galaxies with a central bulge in their disk have a rotation curve which is flat from near the centre to the edge, i.e. stars are observed to revolve around the centre of these galaxies at a constant speed over a large range of distances from the centre of the galaxy. However, it was expected that these galaxies would have a rotation curve that slopes down from the centre to the edge in the same way as other systems with most of their mass in the centre, such as the Solar System of planets or the Jovian System of moons following the prediction of Kepler's Laws. Something else is needed to account for the dynamics of galaxies besides a simple application of the laws of gravity to the observed matter. It is also observed that galaxies with a uniform distribution of luminous matter have a rotation curve sloping up from center to edge. Most low surface brightness galaxies rotate with a rotation curve that slopes up from the center, indicating little core bulge. The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the ones predicted assuming a centrally-dominated mass that follows the luminous material observed. If masses of galaxies are derived solely from the luminosities and the mass-to-light ratios in the disk and core portions of spiral galaxies are assumed to be close to that of stars, the masses derived from the kinematics of the observed rotation do not match. This discrepancy can be accounted for if there exist a large amount of dark matter that permeates the galaxy and extends into the galaxy's halo. Many physicists are nowadays convinced that some form of dark matter has to exist to explain for instance the discrepancy between the flat rotation curves of stars within a galaxy and the rotation curves expected from Kepler's third law. Assuming flat space and circular orbit, astronomers use the Virial theorem to determine the masses of the galaxies: M= V 2 R/G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGnbGaeyypa0 JaaeOva8aadaahaaWcbeqaa8qacaaIYaaaaOGaaeOuaiaac+cacaqG hbaaaa@3B39@ . M is the mass of the galaxy, V is the speed of the galaxy, R is the distance of the galactic center and G is the gravitational constant (Figure 5).17

Figure 5 The rotation curve of a galaxy (also called a velocity curve) is the plot of the orbital speed (in km/s) of the stars or gas in the galaxy on the y-axis against the distance from the center of the galaxy on the x-axis.17

Rotational Velocity: Using the power of the Doppler Shift, scientists can learn much about the motions of galaxies. They know that galaxies rotate because, when viewed edge-on, the light from one side of the galaxy is blue shifted and the light from the other side is red shifted. One side is moving toward the Earth, the other is moving away. They can also determine the speed at which the galaxy is rotating from how far the light is shifted. Knowing how fast the galaxy is rotating, they can then figure out the mass of the galaxy mathematically. As scientists look closer at the speeds of galactic rotation, they find something strange. The individual stars in a galaxy should act like the planets in our solar system, the farther away from the center, the slower they should move. But the Doppler Shift reveals that the stars in many galaxies do not slow down at farther distances. And on top of that, the stars move at speeds that should rip the galaxy apart; there is not enough measured mass to supply the gravity needed to hold the galaxy together. These high rotational speeds suggest that the galaxy contains more mass than was calculated. Scientists theorize that, if the galaxy was surrounded by a halo of unseen matter, the galaxy could remain stable at such high rotational speeds. Another method astronomers use to determine the mass of a galaxy (or cluster of galaxies) is simply to look at how much light there is. By measuring the amount of light reaching the earth, the scientists can estimate the number of stars in the galaxy. Knowing the number of stars in the galaxy, the scientists can then mathematically determine the mass of the galaxy. Astronomers use the Mass – Luminosity equation to determine the mass of a star M= L 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGnbGaeyypa0 ZaaOqaa8aabaWdbiaabYeaaSWdaeaapeGaaGinaaaaaaa@38E2@ . M=the star`s mass. L = the star`s Luminosity. Fritz Zwicky used both methods described here to determine the mass of the Coma cluster of galaxies over half a century ago. When he compared his data, he brought to light the missing mass problem. The high rotational speeds that suggest a halo reinforce Zwicky's findings. The data suggest that less than 10% of what we call the universe is in a form that we can see. Now scientists are diligently searching for the elusive dark matter, the other 90% of the universe. Throughout the 1970s, however, Rubin and other astronomers found the same pattern again and again, in galaxy after galaxy, until theorists had little choice but to reach a consensus: Galaxies are embedded within a vastly much larger, stabilizing halo of matter we can’t detect in any range of the electromagnetic spectrum −that is, matter that’s “dark.” Theorists even identified the properties of what the hypothetical matter might be, and experimenters began designing instruments that in principle would be able to detect the particle or collection of particles. Some theorists and observers have been pursuing that possibility since the early 1980s, though the community generally has seen their work as somewhat contrarian. The longer that dark matter went undetected, Rubin said, the more likely she thought the solution to the mystery would be a modification to our understanding of gravity. Maybe the discovery of dark matter was not possible. Maybe dark matter doesn’t exist. Maybe what she detected in the 1960s and 1970s was evidence that gravity doesn't work on large scales in the manner that Newton taught us.18

WIMPS

Most scientists think that dark matter is composed of non-baryonic matter. The lead candidate, WIMPS (weakly interacting massive particles), have ten to a hundred times the mass of a proton, but their weak interactions with "normal" matter make them difficult to detect. Neutralinos, massive hypothetical particles heavier and slower than neutrinos, are the foremost candidate, though they have yet to be spotted. The smaller neutral axion and the uncharched photinos are also potential placeholders for dark matter. Then there are the Weakly Interacting Massive Particles (WIMPs), which possess mass, yet do not interact with ordinary matter (baryons such as protons and neutrons) because they are composed by something unknown. Dark (missing) matter (DM) even comes in two flavors, hot (HDM) and cold (CDM). The CDM is supposedly to be in dead stars, planets, brown dwarfs ("failed stars") etc., while HDM is postulated to be fast moving in particles floating throughout the universe. It should be constituted by neutrinos, tachyons etc. But where is all of this missing matter? The truth is that after many years of looking for it, there is still no definitive proof that WIMPs exist. The latest results from two direct detection experiments have ruled out theoretically attractive dark matter candidates, including WIMPs. Scientists from two of the world"s biggest dark matter detectors have reported that their latest experiments, like all earlier attempts, have produced no sign of the elusive substance. Scientists from two of the world"s biggest dark matter detectors have reported that their latest experiments, like all earlier attempts, have produced no sign of the elusive substance. In a pair of papers published in Physical Review Letters, researchers from the XENON1T19 and PandaX-II20 collaborations have ruled out some theoretical possibilities for dark matter particles.

MACHOs

There are the Massive Compact Halo Objects (MACHOs), objects like black holes, and neutron stars that purportedly populate the outer reaches of galaxies like the Milky Way. Some scientists are revisiting an old idea that black holes born at the dawn of time are a prime suspect for all that missing mass. Researchers call these speculative black holes "massive compact halo objects," or MACHOs, since dark matter lurks in a "halo" in and around big galaxies. But a new study in The Astrophysical Journal Letters offers a serious reality check to the idea that MACHOs are dark matter. Timothy Brandt, an astrophysicist at the Institute for Advanced Study, wrote the study after he took a close look at 11 dim, feeble, and weird little galaxies. The stars there are choking with dark matter, at least compared to larger galaxies like the Milky Way or Andromeda, but the little galaxies don't seem to show any obvious signs of harboring a flotilla of old black holes."These galaxies would be less dense and larger than we see," Brandt told Business Insider. Instead they're inexplicably compact. And that could represent a big threat to the MACHO hypothesis. Meanwhile, ultra-faint dwarf galaxies are roughly 99% dark matter."The dark matter is holding them together and preventing them from flying apart," Brandt told Business Insider. And that's where Brandt realized he could see if a bunch of old black holes between 20 to 100 times the mass of the sun (a size range for MACHOs that has yet to be ruled out) really exist there. If so, they'd accelerate stars as they passed nearby, causing the entire cluster or galaxy to "puff" outward over billions of years. A diffuse cloud of dark matter particles, on the other hand, would keep the cluster glued together.21 Most early massive galaxies are strongly dominated by normal matter: The theory is that galaxies contain dark matter and that this makes them gravitationally stable in the standard model of physics. McCulloch is skeptical about dark matter and he says that it is an implausible theory to explain dwarf galaxies, which are super-tiny galaxies containing only between 1,000-10,000 stars that revolve around the Milky Way. There are 20 dwarf galaxies in existence from Segue-1 (the smallest) to Canes Venatici-1 (the largest), and dark matter is only meant to work by spreading out across a wide distance, but it is still used to explain dwarf galaxies, even though this requires dark matter to be concentrated within these systems, which is implausible. "In a study published in Nature, researchers have now looked at six massive, star-forming galaxies from when the universe was around four billion years old. These distant galaxies were observed using the ESO's Very Large Telescope, which allowed researchers to measure the rotation of the galaxies. Their findings were something of a surprise. Unlike the spiral galaxies we see today, the outer regions of the six observed appear to be rotating far slower than the areas close to their centers – a finding that is at odds with simulations of how early galaxies form. It also suggests that there is less dark matter present compared to galaxy we see today. Reinhard Genzel, lead author of the study, explained: "Surprisingly, the rotation velocities are not constant, but decrease further out in the galaxies. There are probably two causes for this. Firstly, most of these early massive galaxies are strongly dominated by normal matter, with dark matter playing a much smaller role than in the Local Universe. Secondly, these early discs were much more turbulent than the spiral galaxies we see in our cosmic neighborhood” (Figure 6).22

Figure 6 Most early massive galaxies are strongly dominated by normal matter. PR Image eso1709a.17

Bullet cluster

The greatest challenge to modified gravity theories, and also the clearest direct evidence of Dark Matter, comes from observations of a pair of colliding galaxy clusters known as the Bullet Cluster in which the stars and Dark Matter separate from the substantial mass of ionized gas. The Dark Matter follows the less substantial stars and not the more massive gas. Since the new bullet cluster is less massive and the merger slower, weighing its dark matter could be harder. The dark matter hypothesis for the bullet cluster is contradicted by the cold dark matter ΛCDM model. The initial relative velocity of the two colliding clusters would need to be around 3000 km/s in order to explain the observed shock velocity, X-ray brightness ratio and morphology of the main and sub-cluster. Jounghun et al.23 have shown that such a high infall velocity is incompatible with the predictions of the cold dark matter ΛCDM model Figure 7.24 The probability that such an event could occur is roughly one in 10 billion!23

Figure 7 The Matter of the Bullet Cluster.17

MOND

An alternative to Dark Matter is to explain the missing mass by means of modification of gravity at large distances or more specifically at small accelerations. In 1983, Morderhai Milgrom proposed phenomenological modification of Newton’s law which fits galaxy rotation curves. The theory, known as Modified Newtonian Dynamics (MOND) automatically recovers the Tully-Fischer law. The theory modifies the acceleration of a particle below a small acceleration a 0 = 10 10 ms 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGHbWdamaaBa aaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaaigdacaaIWaWdamaa CaaaleqabaWdbiabgkHiTiaaigdacaaIWaaaaOGaaeyBaiaabohapa WaaWbaaSqabeaapeGaeyOeI0IaaGOmaaaaaaa@4046@ . This therefore enters the theory as a universal constant. The gravitational acceleration at large distances then read sa= GMa 0 /r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaWGZbGaamyyai abg2da9maakaaapaqaa8qacaqGhbGaaeytaiaabggapaWaaSbaaSqa a8qacaaIWaaapaqabaaapeqabaGccaGGVaGaaeOCaaaa@3D8D@  at large distances, instead of the Newtonian a= GM /r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGHbGaeyypa0 ZaaOaaa8aabaWdbiaabEeacaqGnbaaleqaaOGaai4laiaabkhaaaa@3A96@ .1 There are two main difficulties with MOND. First, it does not explain how galaxy clusters can be bound without the presence of some hidden mass. Second, attempts to derive MOND from a consistent relativistic field theory have failed. One such attempt is the Tensor-Vector-Scalar. Many models are unstable or require actions which depend on the mass M of the galaxy, thereby giving a different theory for each galaxy. Moreover modified gravity theories have serious difficulties reproducing the CMB power spectrum. Modified gravity theories can give an excellent phenomenological fit through an adjustment of the values of the extra parameters, but there is no universal principle to determine these values. This requirement for simplicity and predictivity is met by General Relativity. The modifications of gravity proposed as alternative to the Dark Matter paradigm illustrate the need for tests of GR at large distances and low accelerations. For the versions of MOND, the basic idea is this: there is no dark matter, but there are two different metrics −metrics are space-times coupled to matter. One metric is coupled to ordinary matter. Gravtitational waves, on the other hand, have an entirely different metric that, is warped out of shape. Its warped shape is what we perceive as dark matter. So there is no dark matter−instead the space-time is naturally warped in the absence of dark matter. These two seemingly independent metrics can explain the structures of galaxies and of collisions between galaxy clusters, but the idea has consequences. For instance, if a something should emit both gravitational waves and light, the two waves will travel by different paths depending on the masses they encounter. So, light and gravitational waves won't arrive at a distant observation point at the same time. When two neutron stars spiraled into each other and merged, they released a huge amount of energy as both light and gravitational waves. The light and the gravitational waves travel along the direct line of sight to us, curling around the gravity wells of intervening galaxies along the way. As a result, the initial burst of light and gravitational waves hid a little gem: the time difference between the arrival of the gravitational waves and the light. All 1.7 seconds of it.25 The measured delay was so much shorter than the difference predicted by double metric theories. Yes, that was the recorded delay between the two signals. This is a dead MOND.26

Hyperbolic universe possesses no Dark Matter

Hyperbolic space-time and hyperbolic trajectory, not dark matter, resolves the discrepancy between the flat rotation curves of stars within a galaxy and the rotation curves expected from Kepler's third law. The orbital velocity of a body traveling along hyperbolic trajectory in flat space can be computed as Vallado theorem.27

V= 2μ r μ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9maakaaabaWaaS aaaeaacaaIYaGaeqiVd0gabaGaamOCaaaacqGHsisldaWcaaqaaiab eY7aTbqaaiaadggaaaaaleqaaaaa@3E14@           (41)

Where: μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0gaaa@36BC@  is standard gravitational parameter, r is radial distance of orbiting body from central body and a is the hyperbola negative semi-major axis.

The orbit of Mercury around the sun doesnt obey Newton's law of gravity that governs the rest of the plant`s orbits. This is due to the curved spacetime near the sun. According to Newton's law of gravity the orbit of Mercury around the sun should be a perfect ellipse with the sun at one focus. That's just Kepler's first law. Mercury was not precisely following its predicted orbit. The sun has the strongest gravitational field of any object in the solar system. Since, according to general relativity the curvature of spacetime is a direct measure of the strength of a gravitational field. As Mercury tries to move along an elliptical orbit, the orbit itself slowly moves. This effect called the precession of Mercury's perihelion. The gravity near the sun is strong enough to warp space-time. Far away from the sun the space-time turns flat, the other planets obey Keplerian elliptical orbit. The same analogy can be applied to describe the trajectory of a galaxy within the hyperbolic space-time of its parent cluster. The hyperbolic space-time causes the galaxy to speed up as moved away from the center. Far away from the center the space-time return flat, while one could apply Vallado theorem for the hyperbolic trajectory in the flat spacetime. The body traveling along hyperbolic trajectory will attain in infinity an orbital velocity called hyperbolic excess velocity  that can be computed as

V = μ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvamaaBaaaleaacqGHEisPae qaaOGaeyypa0ZaaOaaaeaacqGHsisldaWcaaqaaiabeY7aTbqaaiaa dggaaaaaleqaaaaa@3C42@       (42)

Where: μ=Gm MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacqaH8oqBcqGH9a qpcaqGhbGaaeyBaaaa@399C@ is standard gravitational parameter and a is the negative semi-major axis of orbit’s hyperbola.

Kepler's third law and consequently Virial theorem does no longer hold for Non-Euclidian space. In the hyperbolic space-time, galaxies furthest away from the center are moving fastest until they reached large distance from the center the space-time return flat. They possessed hyperbolic trajectory, according to Vallado theorem, with constant speed, called hyperbolic excess velocity, V = μ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGwbWdamaaBa aaleaapeGaeqOhIukapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiab gkHiTmaalaaapaqaa8qacaqG8oaapaqaa8qacaqGHbaaaaWcbeaaaa a@3C83@  that account for the flat curve.

Equation of the radial motion in the galaxy`s hyperbolic spacetime

To seek completeness, it remains to develop an equation of motion describes the speed up motion in the hyperbolic space-time and predicts the flat curve. To do this, I will follow the following strategy

  1. Seek for an equation v=f r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamODaiabg2da9iaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaaaaa@3A72@  such that v= lim r0 f r =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamODaiabg2da9maaxababaGaci iBaiaacMgacaGGTbaaleaacaWGYbGaeyOKH4QaaGimaaqabaGccaWG MbWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@42E3@
  2. v=f r large.r μ 2 r 1 a r μ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamODaiabg2da9iaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaadaGdKaWcbaGaamiBaiGacggacaGG YbGaai4zaiaadwgacaGGUaGaamOCaaqabOGaayPKHaWaaOaaaeaacq aH8oqBdaqadaqaamaalaaabaGaaGOmaaqaaiaadkhaaaGaeyOeI0Ya aSaaaeaacaaIXaaabaGaamyyaaaaaiaawIcacaGLPaaaaSqabaGcda GdKaWcbaGaamOCaiabgkziUkabg6HiLcqabOGaayPKHaWaaOaaaeaa cqGHsisldaWcaaqaaiabeY7aTbqaaiaadggaaaaaleqaaaaa@53BC@
  3. I guess the required equation –fits the data- should be

  v=f r = e 1 r μ 2 r 1 a . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamODaiabg2da9iaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaa cqGHsisldaWcaaqaaiaaigdaaeaacaWGYbaaaaaakmaakaaabaGaeq iVd02aaeWaaeaadaWcaaqaaiaaikdaaeaacaWGYbaaaiabgkHiTmaa laaabaGaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaaaleqaaOGaai Olaaaa@47BF@       (43),

  1. The final step in the mathematical problem solving method is to prove the conjecture

v=f r = e 1 r μ 2 r 1 a . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamODaiabg2da9iaadAgadaqada qaaiaadkhaaiaawIcacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaa cqGHsisldaWcaaqaaiaaigdaaeaacaWGYbaaaaaakmaakaaabaGaeq iVd02aaeWaaeaadaWcaaqaaiaaikdaaeaacaWGYbaaaiabgkHiTmaa laaabaGaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaaaleqaaOGaai Olaaaa@47BF@

To find such an equation of the radial motion in the galaxy`s hyperbolic space-time, we proceed as follows: The required modified Schwarzschild spherically symmetric metric will be

d τ 2 = e ν d t 2 e λ d r 2 r 2 d Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabes8a0naaCaaaleqaba GaaGOmaaaakiabg2da9iaadwgadaahaaWcbeqaaiabe27aUbaakiaa dsgacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyzamaaCa aaleqabaGaeq4UdWgaaOGaamizaiaadkhadaahaaWcbeqaaiaaikda aaGccqGHsislcaWGYbWaaWbaaSqabeaacaaIYaaaaOGaamizaiabgM 6axnaaCaaaleqabaGaaGOmaaaaaaa@4C28@    (44)

d τ 2 = 1+ν+ 1/2 ν 2 +... d t 2 1+λ+ 1/2 λ 2 +... d r 2 r 2 d Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceaqabeaacaWGKbGaeqiXdq3aaWbaaS qabeaacaaIYaaaaOGaeyypa0ZaaeWaaeaacaaIXaGaey4kaSIaeqyV d4Maey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaGaay jkaiaawMcaaiabe27aUnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa c6cacaGGUaGaaiOlaaGaayjkaiaawMcaaiaadsgacaWG0bWaaWbaaS qabeaacaaIYaaaaaGcbaGaeyOeI0YaaeWaaeaacaaIXaGaey4kaSIa eq4UdWMaey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacaaIYaaaaa GaayjkaiaawMcaaiabeU7aSnaaCaaaleqabaGaaGOmaaaakiabgUca Riaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaiaadsgacaWGYbWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaamOCamaaCaaaleqabaGaaGOm aaaakiaadsgacqGHPoWvdaahaaWcbeqaaiaaikdaaaaaaaa@636B@ (45)

For which the Schwarzschild metric is just an approximation

d τ 2 = e ν d t 2 e λ d r 2 r 2 d Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabes8a0naaCaaaleqaba GaaGOmaaaakiabg2da9maabmaabaGaamyzamaaCaaaleqabaGaeqyV d4gaaaGccaGLOaGaayzkaaGaamizaiaadshadaahaaWcbeqaaiaaik daaaGccqGHsisldaqadaqaaiaadwgadaahaaWcbeqaaiabeU7aSbaa aOGaayjkaiaawMcaaiaadsgacaWGYbWaaWbaaSqabeaacaaIYaaaaO GaeyOeI0IaamOCamaaCaaaleqabaGaaGOmaaaakiaadsgacqGHPoWv daahaaWcbeqaaiaaikdaaaaaaa@4F3A@      (46)

d τ 2 1+ν d t 2 1+λ d r 2 r 2 d Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabes8a0naaCaaaleqaba GaaGOmaaaakiabgIKi7oaabmaabaGaaGymaiabgUcaRiabe27aUbGa ayjkaiaawMcaaiaadsgacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey OeI0YaaeWaaeaacaaIXaGaey4kaSIaeq4UdWgacaGLOaGaayzkaaGa amizaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGYbWaaW baaSqabeaacaaIYaaaaOGaamizaiabgM6axnaaCaaaleqabaGaaGOm aaaaaaa@50DD@           (47)

The Ricci tensor

0= R tt = 1/2 e νλ ν + ν 2 /2 ν λ /2 +2 ν /r ,...(i) 0= R rr = 1/2 ν + ν 2 /2 ν λ /2 +2 λ /r ,...(ii) 0= R θθ = 1 e λ r + e λ r ν + λ 2 ,...(iii) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiaaicdacqGH9aqpca WGsbWaaSbaaSqaaiaadshacaWG0baabeaakiabg2da9iabgkHiTmaa bmaabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaca WGLbWaaWbaaSqabeaacqaH9oGBcqGHsislcqaH7oaBaaGcdaqadaqa aiqbe27aUzaagaGaey4kaSYaaSGbaeaacuaH9oGBgaqbamaaCaaale qabaGaaGOmaaaaaOqaaiaaikdaaaGaeyOeI0YaaSGbaeaacuaH9oGB gaqbaiqbeU7aSzaafaaabaGaaGOmaaaacqGHRaWkcaaIYaWaaSGbae aacuaH9oGBgaqbaaqaaiaadkhaaaaacaGLOaGaayzkaaGaaiilaiaa c6cacaGGUaGaaiOlaiaacIcacaWGPbGaaiykaaqaaiaaicdacqGH9a qpcaWGsbWaaSbaaSqaaiaadkhacaWGYbaabeaakiabg2da9maabmaa baWaaSGbaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaadaqada qaaiqbe27aUzaagaGaey4kaSYaaSGbaeaacuaH9oGBgaqbamaaCaaa leqabaGaaGOmaaaaaOqaaiaaikdaaaGaeyOeI0YaaSGbaeaacuaH9o GBgaqbaiqbeU7aSzaafaaabaGaaGOmaaaacqGHRaWkcaaIYaWaaSGb aeaacuaH7oaBgaqbaaqaaiaadkhaaaaacaGLOaGaayzkaaGaaiilai aac6cacaGGUaGaaiOlaiaacIcacaWGPbGaamyAaiaacMcaaeaacaaI WaGaeyypa0JaamOuamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaey ypa0JaeyOeI0YaaiWaaeaacaaIXaGaeyOeI0YaaeWaaeaacaWGLbWa aWbaaSqabeaacqGHsislcqaH7oaBaaGccaWGYbaacaGLOaGaayzkaa WaaWbaaSqabeaakiadacVHYaIOaaGaey4kaSIaamyzamaaCaaaleqa baGaeyOeI0Iaeq4UdWgaaOGaamOCamaabmaabaWaaSaaaeaacuaH9o GBgaqbaiabgUcaRiqbeU7aSzaafaaabaGaaGOmaaaaaiaawIcacaGL PaaaaiaawUhacaGL9baacaGGSaGaaiOlaiaac6cacaGGUaGaaiikai aadMgacaWGPbGaamyAaiaacMcaaaaa@A3C1@    (48)

From R tt = R θθ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOuamaaBaaaleaacaWG0bGaam iDaaqabaGccqGH9aqpcaWGsbWaaSbaaSqaaiabeI7aXjabeI7aXbqa baGccqGH9aqpcaaIWaaaaa@3F44@  web have ν + λ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGafqyVd4MbauaacqGHRaWkcuaH7o aBgaqbaiabg2da9iaaicdaaaa@3B2C@ ,

So ν+λ=k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqyVd4Maey4kaSIaeq4UdWMaey ypa0Jaam4Aaaaa@3B4A@     (49)

K is constant. Write simply λ=ν+logk MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeq4UdWMaeyypa0JaeyOeI0Iaeq yVd4Maey4kaSIaciiBaiaac+gacaGGNbGaam4Aaaaa@3F07@ . Equation (i) is now just

e ν r =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaWGLbWaaWbaaSqabe aacqaH9oGBaaGccaWGYbaacaGLOaGaayzkaaWaaWbaaSqabeaakiqd acVHYaIOgGaGWxaaaaGaeyypa0JaaGimaaaa@40D2@     (50)

e ν r=α+βr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamyzamaaCaaaleqabaGaeqyVd4 gaaOGaamOCaiabg2da9iabgkHiTiabeg7aHjabgUcaRiabek7aIjaa dkhaaaa@3FE2@      (51)

Equation (iii) is

e λ r =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaWGLbWaaWbaaSqabe aacqGHsislcqaH7oaBaaGccaWGYbaacaGLOaGaayzkaaWaaWbaaSqa beaakiadacVHYaIOaaGaeyypa0JaaGymaaaa@4038@      (52)

e ν r =k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaWGLbWaaWbaaSqabe aacqaH9oGBaaGccaWGYbaacaGLOaGaayzkaaWaaWbaaSqabeaakiad acVHYaIOaaGaeyypa0Jaam4Aaaaa@3F84@      (53)

β=k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeyinIWLaeqOSdiMaeyypa0Jaam 4Aaaaa@39DB@     (54)

Now we have the complete solution

e λ = 1 2μ/ kr 1 e 2μ/ kr 1 = e 2μ/ kr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamyzamaaCaaaleqabaGaeq4UdW gaaOGaeyypa0ZaaeWaaeaacaaIXaGaeyOeI0YaaSGbaeaacaaIYaGa eqiVd0gabaGaam4AaiaadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaeyisIS7aaeWaaeaacaWGLbWaaWbaaSqa beaadaWcgaqaaiabgkHiTiaaikdacqaH8oqBaeaacaWGRbGaamOCaa aaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc cqGH9aqpcaWGLbWaaWbaaSqabeaadaWcgaqaaiaaikdacqaH8oqBae aacaWGRbGaamOCaaaaaaaaaa@5482@           (55)

e ν =k 1α/ kr =k 1 2μ/ kr = k 2μ/r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamyzamaaCaaaleqabaGaeqyVd4 gaaOGaeyypa0Jaam4AamaabmaabaGaaGymaiabgkHiTmaalyaabaGa eqySdegabaGaam4AaiaadkhaaaaacaGLOaGaayzkaaGaeyypa0Jaam 4AamaabmaabaGaaGymaiabgkHiTmaalyaabaGaaGOmaiabeY7aTbqa aiaadUgacaWGYbaaaaGaayjkaiaawMcaaiabg2da9maabmaabaGaam 4AaiabgkHiTmaalyaabaGaaGOmaiabeY7aTbqaaiaadkhaaaaacaGL OaGaayzkaaaaaa@5223@      (56)

For radial motion, d Ω 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabgM6axnaaCaaaleqaba GaaGOmaaaakiabg2da9iaaicdaaaa@3A31@ . The Schwarzschild metric will be

d τ 2 = e ν d t 2 e λ d r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabes8a0naaCaaaleqaba GaaGOmaaaakiabg2da9iaadwgadaahaaWcbeqaaiabe27aUbaakiaa dsgacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyzamaaCa aaleqabaGaeq4UdWgaaOGaamizaiaadkhadaahaaWcbeqaaiaaikda aaaaaa@45E6@       (57)

d τ 2 = k 2μ/r d t 2 e 2μ/ kr d r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamizaiabes8a0naaCaaaleqaba GaaGOmaaaakiabg2da9maabmaabaGaam4AaiabgkHiTmaalyaabaGa aGOmaiabeY7aTbqaaiaadkhaaaaacaGLOaGaayzkaaGaamizaiaads hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGLbWaaWbaaSqabeaa daWcgaqaaiaaikdacqaH8oqBaeaacaWGRbGaamOCaaaaaaGccaWGKb GaamOCamaaCaaaleqabaGaaGOmaaaaaaa@4CAD@         (58)

The free fall from rest of a star (of mass m and energy E) far from the center possesses

E m = 1 2μ r dt dτ =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaSaaaeaacaWGfbaabaGaamyBaa aacqGH9aqpdaqadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacqaH 8oqBaeaacaWGYbaaaaGaayjkaiaawMcaamaalaaabaGaamizaiaads haaeaacaWGKbGaeqiXdqhaaiabg2da9iaaigdaaaa@44E3@     (59)

dτ dt 2 = 1 2μ r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaadaWcaaqaaiaadsgacq aHepaDaeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGH9aqpdaqadaqaaiaaigdacqGHsisldaWcaaqaai aaikdacqaH8oqBaeaacaWGYbaaaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaaa@44BB@        (60)

dτ dt 2 = k 2μ/r e 2μ/ kr dr dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaadaWcaaqaaiaadsgacq aHepaDaeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGH9aqpdaqadaqaaiaadUgacqGHsisldaWcgaqaai aaikdacqaH8oqBaeaacaWGYbaaaaGaayjkaiaawMcaaiabgkHiTiaa dwgadaahaaWcbeqaamaalyaabaGaaGOmaiabeY7aTbqaaiaadUgaca WGYbaaaaaakmaabmaabaWaaSaaaeaacaWGKbGaamOCaaqaaiaadsga caWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@50CE@      (61)

1 2μ/r 2 = k 2μ/r e 2μ/ kr dr dt 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0YaaS GbaeaacaaIYaGaeqiVd0gabaGaamOCaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaGccqGH9aqpdaqadaqaaiaadUgacqGHsislda WcgaqaaiaaikdacqaH8oqBaeaacaWGYbaaaaGaayjkaiaawMcaaiab gkHiTiaadwgadaahaaWcbeqaamaalyaabaGaaGOmaiabeY7aTbqaai aadUgacaWGYbaaaaaakmaabmaabaWaaSaaaeaacaWGKbGaamOCaaqa aiaadsgacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aaaaa@5155@            (62)

To our purpose for the hyperbolic spacetime, the velocity far away from the center would be V = μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvamaaBaaaleaacqGHEisPae qaaOGaeyypa0ZaaOaaaeaadaWcgaqaaiabgkHiTiabeY7aTbqaaiaa dggaaaaaleqaaaaa@3C48@  and consequently k=1 μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaam4Aaiabg2da9iaaigdadaWcga qaaiabgkHiTiabeY7aTbqaaiaadggaaaaaaa@3B56@

1 4μ/r + 2μ/r 2 = 1 2μ/r μ/a e 2μ/ 1 μ/a r V 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0YaaS GbaeaacaaI0aGaeqiVd0gabaGaamOCaaaacqGHRaWkdaqadaqaamaa lyaabaGaaGOmaiabeY7aTbqaaiaadkhaaaaacaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaa daWcgaqaaiaaigdacqGHsisldaWcgaqaaiaaikdacqaH8oqBaeaaca WGYbaaaiabgkHiTiabeY7aTbqaaiaadggaaaaacaGLOaGaayzkaaGa eyOeI0IaamyzamaaCaaaleqabaWaaSGbaeaacaaIYaGaeqiVd0gaba WaamWaaeaadaqadaqaaiaaigdadaWcgaqaaiabgkHiTiabeY7aTbqa aiaadggaaaaacaGLOaGaayzkaaGaamOCaaGaay5waiaaw2faaaaaaa GccaWGwbWaaWbaaSqabeaacaaIYaaaaaaa@5D10@      (63)

Neglect the term 2μ/r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaadaWcgaqaaiaaikdacq aH8oqBaeaacaWGYbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaaa@3AF7@ and rearrange

1 4μ/r = 1 2μ/r μ/a e 2μ/ 1 μ/a r V 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIXaGaeyOeI0YaaS GbaeaacaaI0aGaeqiVd0gabaGaamOCaaaaaiaawIcacaGLPaaacqGH 9aqpdaqadaqaamaalyaabaGaaGymaiabgkHiTmaalyaabaGaaGOmai abeY7aTbqaaiaadkhaaaGaeyOeI0IaeqiVd0gabaGaamyyaaaaaiaa wIcacaGLPaaacqGHsislcaWGLbWaaWbaaSqabeaadaWcgaqaaiaaik dacqaH8oqBaeaadaWadaqaamaabmaabaGaaGymamaalyaabaGaeyOe I0IaeqiVd0gabaGaamyyaaaaaiaawIcacaGLPaaacaWGYbaacaGLBb GaayzxaaaaaaaakiaadAfadaahaaWcbeqaaiaaikdaaaaaaa@5633@          (64)

e 2μ/ 1 μ/a r V 2 = 2μ/r μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamyzamaaCaaaleqabaWaaSGbae aacaaIYaGaeqiVd0gabaWaamWaaeaadaqadaqaaiaaigdadaWcgaqa aiabgkHiTiabeY7aTbqaaiaadggaaaaacaGLOaGaayzkaaGaamOCaa Gaay5waiaaw2faaaaaaaGccaWGwbWaaWbaaSqabeaacaaIYaaaaOGa eyypa0ZaaeWaaeaadaWcgaqaamaalyaabaGaaGOmaiabeY7aTbqaai aadkhaaaGaeyOeI0IaeqiVd0gabaGaamyyaaaaaiaawIcacaGLPaaa aaa@4CF6@           (65)

V= e μ/ 1 μ/a r 2μ/r μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaeqiVd0gabaWaamWaaeaadaqadaqa aiaaigdadaWcgaqaaiabgkHiTiabeY7aTbqaaiaadggaaaaacaGLOa GaayzkaaGaamOCaaGaay5waiaaw2faaaaaaaGcdaGcaaqaamaalyaa baWaaSGbaeaacaaIYaGaeqiVd0gabaGaamOCaaaacqGHsislcqaH8o qBaeaacaWGHbaaaaWcbeaaaaa@4AC6@      (66)

V= e aμ/ aμ r 2μ/r μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaamyyaiabeY7aTbqaamaadmaabaWa aeWaaeaacaWGHbGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaGaamOCaa Gaay5waiaaw2faaaaaaaGcdaGcaaqaamaalyaabaWaaSGbaeaacaaI YaGaeqiVd0gabaGaamOCaaaacqGHsislcqaH8oqBaeaacaWGHbaaaa Wcbeaaaaa@4ADB@ V= e aμ/ aμ r 2μ/r μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaamyyaiabeY7aTbqaamaadmaabaWa aeWaaeaacaWGHbGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaGaamOCaa Gaay5waiaaw2faaaaaaaGcdaGcaaqaamaalyaabaWaaSGbaeaacaaI YaGaeqiVd0gabaGaamOCaaaacqGHsislcqaH8oqBaeaacaWGHbaaaa Wcbeaaaaa@4ADB@    (67)

a>>μ aμa MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiablwJirjabgkHiTi aadggacqGH+aGpcqGH+aGpcqaH8oqBaeaacqGH0icxcaWGHbGaeyOe I0IaeqiVd0MaeyisISRaamyyaaaaaa@4348@      (68)

1 μ/a km/s 1 km/s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIXaWaaSGbaeaacq GHsislcqaH8oqBaeaacaWGHbaaaaGaayjkaiaawMcaamaabmaabaWa aSGbaeaacaWGRbGaamyBaaqaaiaadohaaaaacaGLOaGaayzkaaGaey isISRaaGymamaabmaabaWaaSGbaeaacaWGRbGaamyBaaqaaiaadoha aaaacaGLOaGaayzkaaaaaa@4647@      (69)

V= e μ/r 2μ/r μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaeqiVd0gabaGaamOCaaaaaaGcdaGc aaqaamaalyaabaWaaSGbaeaacaaIYaGaeqiVd0gabaGaamOCaaaacq GHsislcqaH8oqBaeaacaWGHbaaaaWcbeaaaaa@42F1@    (70)

Example 1

A typical galaxy of ordinary enclosed mass (e.g. Milky Way or Andromeda) where   M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGGcWdaiaad2 eadaWgaaWcbaGaeSyMIugabeaaaaa@3907@  is the mass of the sun:28

M= 10 11 M = 10 11 ×2× 10 30 kg MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamytaiabg2da9iaaigdacaaIWa WaaWbaaSqabeaacaaIXaGaaGymaaaakiaad2eadaWgaaWcbaGaeSyM Iugabeaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG ymaaaakiabgEna0kaaikdacqGHxdaTcaaIXaGaaGimamaaCaaaleqa baGaaG4maiaaicdaaaGccaWGRbGaam4zaaaa@4ACA@     (71)

μ= 10 11 ×2× 10 30 ×7.4× 10 31 km MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaaic dadaahaaWcbeqaaiaaigdacaaIXaaaaOGaey41aqRaaGOmaiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaIZaGaaGimaaaakiabgEna0k aaiEdacaGGUaGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaIZaGaaGymaaaakiaadUgacaWGTbaaaa@4F43@      (72)

μ=1.5× 10 11 km MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI XaaaaOGaam4Aaiaad2gaaaa@4109@            (73)

μ=1.5× 10 11 km× s/s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI XaaaaOGaam4Aaiaad2gacqGHxdaTdaqadaqaamaalyaabaGaam4Caa qaaiaadohaaaaacaGLOaGaayzkaaaaaa@46AF@       (74)

μ=1.5× 10 11 km× 3× 10 5 km/s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI XaaaaOGaam4Aaiaad2gacqGHxdaTdaqadaqaamaalyaabaGaaG4mai abgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaI1aaaaOGaam4Aaiaa d2gaaeaacaWGZbaaaaGaayjkaiaawMcaaaaa@4CD8@      (75)

μ=4.5× 10 16 k m 2 /s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGinaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI 2aaaaOWaaeWaaeaadaWcgaqaaiaadUgacaWGTbWaaWbaaSqabeaaca aIYaaaaaGcbaGaam4CaaaaaiaawIcacaGLPaaaaaa@449B@            (76)

210= μ/ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGOmaiaaigdacaaIWaGaeyypa0 ZaaOaaaeaadaWcgaqaaiabeY7aTbqaaiabgkHiTiaadggaaaaaleqa aaaa@3BF7@       (77)

210 2 =μ/ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIYaGaaGymaiaaic daaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWc gaqaaiabeY7aTbqaaiabgkHiTiaadggaaaaaaa@3E58@              (78)

V= e μ/ r kpc 2μ/ r kpc μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeqiVd0gabaGaamOCamaabmaabaGaam4Aaiaa dchacaWGJbaacaGLOaGaayzkaaaaaaaakmaakaaabaWaaSGbaeaaca aIYaGaeqiVd0gabaGaamOCamaabmaabaGaam4AaiaadchacaWGJbaa caGLOaGaayzkaaGaeyOeI0YaaSGbaeaacqaH8oqBaeaacaWGHbaaaa aaaSqabaaaaa@4AB0@     (79)

V= e 4.5× 10 16 k m 2 /s / 1 km/s ×r 3.1× 10 16 km × 9× 10 16 k m 2 /s / 1 km/s ×r 3.1× 10 16 km + 210 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGceiqabeaaiaqaaiaadAfacqGH9aqpca WGLbWaaWbaaSqabeaadaWcgaqaaiabgkHiTiaaisdacaGGUaGaaGyn aiabgEna0kaaigdacaaIWaWaaWbaaWqabeaacaaIXaGaaGOnaaaalm aabmaabaWaaSGbaeaacaWGRbGaamyBamaaCaaameqabaGaaGOmaaaa aSqaaiaadohaaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaaIXaWaae WaaeaadaWcgaqaaiaadUgacaWGTbaabaGaam4CaaaaaiaawIcacaGL PaaacqGHxdaTcaWGYbWaaeWaaeaacaaIZaGaaiOlaiaaigdacqGHxd aTcaaIXaGaaGimamaaCaaameqabaGaaGymaiaaiAdaaaWccaWGRbGa amyBaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaaaaGccqGHxdaTae aadaGcaaqaamaaCaaaleqabaWaaSGbaeaacaaI5aGaey41aqRaaGym aiaaicdadaahaaadbeqaaiaaigdacaaI2aaaaSWaaeWaaeaadaWcga qaaiaadUgacaWGTbWaaWbaaWqabeaacaaIYaaaaaWcbaGaam4Caaaa aiaawIcacaGLPaaaaeaadaqadaqaaiaaigdadaqadaqaamaalyaaba Gaam4Aaiaad2gaaeaacaWGZbaaaaGaayjkaiaawMcaaiabgEna0kaa dkhadaqadaqaaiaaiodacaGGUaGaaGymaiabgEna0kaaigdacaaIWa WaaWbaaWqabeaacaaIXaGaaGOnaaaaliaadUgacaWGTbaacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaey4kaSIaaGOmaiaaigdacaaIWaWaaW baaWqabeaacaaIYaaaaaaaaaaaleqaaaaaaa@811D@          (80)

V= e 1.45 2.9/ r+ 210 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaaiabgkHiTiaaigdacaGGUaGaaGinaiaaiwdaaaGcdaGcaaqa amaaCaaaleqabaWaaSGbaeaacaaIYaGaaiOlaiaaiMdaaeaacaWGYb Gaey4kaSIaaGOmaiaaigdacaaIWaWaaWbaaWqabeaacaaIYaaaaaaa aaaaleqaaaaa@4362@        (81)

The curve of this equation by visual math program as follows (Figure 8)

Figure 8 The curve describes the motion of a star in the Milky Way (or Andromeda) galaxy. The vertical axis represents the velocity, while the horizontal axis represents the distance from the center of the galaxy.

Example 2

A typical cluster of galaxies of ordinary enclosed mass

M= 10 14 M = 10 14 ×2× 10 30 kg MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamytaiabg2da9iaaigdacaaIWa WaaWbaaSqabeaacaaIXaGaaGinaaaakiaad2eadaWgaaWcbaGaeSyM Iugabeaakiabg2da9iaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG inaaaakiabgEna0kaaikdacqGHxdaTcaaIXaGaaGimamaaCaaaleqa baGaaG4maiaaicdaaaGccaWGRbGaam4zaaaa@4AD0@     (82)

μ= 10 14 ×2× 10 30 ×7.4× 10 31 km MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaaic dadaahaaWcbeqaaiaaigdacaaI0aaaaOGaey41aqRaaGOmaiabgEna 0kaaigdacaaIWaWaaWbaaSqabeaacaaIZaGaaGimaaaakiabgEna0k aaiEdacaGGUaGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaIZaGaaGymaaaakiaadUgacaWGTbaaaa@4F46@     (83)

μ=1.5× 10 14 km MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI 0aaaaOGaam4Aaiaad2gaaaa@410C@           (84)

μ=1.5× 10 14 km× 3× 10 5 km/s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGymaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI 0aaaaOGaam4Aaiaad2gacqGHxdaTdaqadaqaaiaaiodacqGHxdaTca aIXaGaaGimamaaCaaaleqabaGaaGynaaaakmaalyaabaGaam4Aaiaa d2gaaeaacaWGZbaaaaGaayjkaiaawMcaaaaa@4CDB@        (85)

μ=4.5× 10 19 k m 2 /s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaeqiVd0Maeyypa0JaaGinaiaac6 cacaaI1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI 5aaaaOWaaeWaaeaadaWcgaqaaiaadUgacaWGTbWaaWbaaSqabeaaca aIYaaaaaGcbaGaam4CaaaaaiaawIcacaGLPaaaaaa@449E@         (86)

1000= μ/ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaaGymaiaaicdacaaIWaGaaGimai abg2da9maakaaabaWaaSGbaeaacqaH8oqBaeaacqGHsislcaWGHbaa aaWcbeaaaaa@3CAF@        (87)

1000 2 =μ/ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaWaaeWaaeaacaaIXaGaaGimaiaaic dacaaIWaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyyp a0ZaaSGbaeaacqaH8oqBaeaacqGHsislcaWGHbaaaaaa@3F10@      (88)

V= e μ/ (rΜpc) 2μ/ r(10Μpc) μ/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaeqiVd0gabaGaaiikaiaadkhacqqH CoqtcaWGWbGaam4yaiaacMcaaaaaaOWaaOaaaeaadaWcgaqaamaaly aabaGaaGOmaiabeY7aTbqaaiaadkhacaGGOaGaaGymaiaaicdacqqH CoqtcaWGWbGaam4yaiaacMcaaaGaeyOeI0IaeqiVd0gabaGaamyyaa aaaSqabaaaaa@4DC0@    (89)

V= e 4.5× 10 19 / 3.1× 10 19 ×r 2×4.5× 10 19 / 3.1× 10 19 ×r + 1000 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaaGinaiaac6cacaaI1aGaey41aqRa aGymaiaaicdadaahaaadbeqaaiaaigdacaaI5aaaaaWcbaWaaeWaae aacaaIZaGaaiOlaiaaigdacqGHxdaTcaaIXaGaaGimamaaCaaameqa baGaaGymaiaaiMdaaaWccqGHxdaTcaWGYbaacaGLOaGaayzkaaaaaa aakmaakaaabaWaaSGbaeaacaaIYaGaey41aqRaaGinaiaac6cacaaI 1aGaey41aqRaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI5aaaaa GcbaWaaeWaaeaacaaIZaGaaiOlaiaaigdacqGHxdaTcaaIXaGaaGim amaaCaaaleqabaGaaGymaiaaiMdaaaGccqGHxdaTcaWGYbaacaGLOa GaayzkaaaaaiabgUcaRmaabmaabaGaaGymaiaaicdacaaIWaGaaGim aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaaa@6929@            (90)

V= e 1.45/r 2.9/r + 1000 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaGaamOvaiabg2da9iaadwgadaahaa WcbeqaamaalyaabaGaeyOeI0IaaGymaiaac6cacaaI0aGaaGynaaqa aiaadkhaaaaaaOWaaOaaaeaadaWcgaqaaiaaikdacaGGUaGaaGyoaa qaaiaadkhaaaGaey4kaSYaaeWaaeaacaaIXaGaaGimaiaaicdacaaI WaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@4677@      (91)

The curve of this equation by visual math program as follows (Figure 9):

Figure 9 The curve describes the motion of a cluster of galaxies. The vertical axis represents the velocity, while the horizontal axis represents the distance from the center of the cluster.

The dark matter halo is nothing but instead of it we have a cell of same hyperbolic negative curvature as the negative curvature of the whole Hyperbolic Universe. Virial theorem V= MG r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGwbGaeyypa0 ZaaOaaa8aabaWdbmaalaaapaqaa8qacaqGnbGaae4raaWdaeaapeGa aeOCaaaaaSqabaaaaa@3A1C@  does no longer hold for Non-Euclidian space. We developed the equation of motion in the hyperbolic spacetime: V= e μ/r μ 2/r1/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGwbGaeyypa0 Jaaeyza8aadaahaaWcbeqaa8qacqGHsislcaqG8oGaai4laiaabkha aaGcdaGcaaWdaeaapeGaaeiVdmaabmaapaqaa8qacaaIYaGaai4lai aabkhacqGHsislcaaIXaGaai4laiaabggaaiaawIcacaGLPaaaaSqa baaaaa@44E1@ , that describes the speed up motion in the hyperbolic space-time and predicts the flat curve. Farther away from the center the exponential factor e 1 r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGLbWdamaaCa aaleqabaWdbmaalaaapaqaa8qacqGHsislcaaIXaaapaqaa8qacaqG Ybaaaaaaaaa@3945@  drops to one. Galaxies furthest away from the center are moving fastest until they reached large distance from the center the space-time turns flat and they possessed hyperbolic trajectory: V= μ 2/r1/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGwbGaeyypa0 ZaaOaaa8aabaWdbiaabY7adaqadaWdaeaapeGaaGOmaiaac+cacaqG YbGaeyOeI0IaaGymaiaac+cacaqGHbaacaGLOaGaayzkaaaaleqaaa aa@3FCC@  , according to Vallado theorem, with constant speed called hyperbolic excess velocity: V = μ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbc92BRb sqUrxAXvxyaeXafv3ySLgzGmvETj2BSbqee0evGueE0jxyaibaiKI8 VvI8sipe0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pw e9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGa ciGaaiaabeqaaeaabaWaaaGcbaaeaaaaaaaaa8qacaqGwbWdamaaBa aaleaapeGaeqOhIukapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiab gkHiTmaalaaapaqaa8qacaqG8oaapaqaa8qacaqGHbaaaaWcbeaaaa a@3C83@  that can account for the galaxy flat rotation curve problem, a is the negative semi-major axis of orbit's hyperbola.

Conclusion

Newton's laws of gravity is valid only in an Euclidean space. Newton's laws of gravity do no longer hold in the large structure non-Euclidean geometry. Any attempt to modify Newton's laws of gravity (e.g. MOND) would not help, for it didn't take into account the relativistic physics of the large structure. For large structure scale and cosmological scale the curvature of the spacetime would no longer be ignored, where General Relativity dominated. We neither need a new theory for gravity nor modify the General Relativity Theory. We need to overcome the shortcoming of the General Relativity Theory at extreme scales. Such a shortcoming is a consequence of the approximations and the oversimplification assumptions made to simplify Einstein's Field Equations in order to solve the associated Friedmann's differential equations. The pressureless–dust flat universe model is an oversimplification solution to the Einstein's Field equations. This led to a drastic failure in predicting the missing mass and the accelerating expansion of the universe. Our main failure is that we accept an unverifiable assumption that the portion of the universe which can be observed (which is flat) is representative of the whole (which is curved), and that the laws of physics are the same throughout the whole universe. It is an oversimplification to generalize that the universe is globally flat and the laws of physics are the same throughout the globe universe. In General Relativity Theory, gravity is geometry. In order to modify the laws of gravity, a natural first step is to modify the geometry itself. Hence, we establish the modified laws of gravity from the updated non-Euclidean geometry. We prove that the topology of the universe globally is hyperbolic. We develop the laws of gravity in the hyperbolic space time. Such laws fit the current observed data and ruling out both dark matter and dark energy. Hence, the universe is not dark.

According to Occam's razor the model should be aesthetically pleasing, that is "If you have two theories that both explain the observed facts, then you should use the simplest with the fewest assumptions. We compare between the Flat Universe paradigm and the Hyperbolic Universe paradigm via the Table 2. The Hyperbolic Universe is aesthetically pleasing since it satisfies the Occam's razor.

Flat universe

Hyperbolic universe

Locally Euclidean

Locally nearly Identical to Euclidean

No mathematical proof (model) exists support a flat Universe

There exists a mathematical proof (model) support a Hyperbolic Universe

The Virial Theorem
V=MG/r
Doesn`t predict the flat rotation curve for a Galaxy and a cluster of Galaxies

The hyperbolic equation of motion
V=eμ/r2μ/rμ/a
predicts the flat rotation curve for a Galaxy and a cluster of Galaxies

Needs a mysterious Dark Matter to predict the flat rotation curve

No needs for Dark Matter to predict the flat rotation curve

Needs a mysterious Dark Energy to predict the equation of state w=1p=ρ 
necessary to account for the observed accelerated expansion of the Universe

The equation of the time evolution of the Hyperbolic Universe predicts the equation of state w=1p=ρ
 necessary to account for the observed accelerated expansion of the Universe

The scale factor R=t2/3 cannot predicts the current observed large structure
1.3×1028cm

The scale factor Rnow=3/8πρnow×sinhtnow8πρnow/3 predicts the current observed large structure 1.3×1028cm

Table 2 A comparison between Hyperbolic Universe and Flat Universe

Acknowledgments

None.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. Debono I, Smoot GF. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe. 2016;2(4):23.
  2. E Lerner. An Open Letter to the Scientific Community. A Cosmology Group. 2004.
  3. Mabkhout SA. The Big Bang Universe Neither Needs Inflation Nor Dark Matter and Dark Energy. Phys Essays. 2013;26(3):422.
  4. Mabkhout SA. The Hyperbolic Geometry of the Universe and the Wedding of General Relativity Theory to Quantum Theory. Phys Essays. 2012;25:112.
  5. S Perlmutter, G Aldering, Goldhaber, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal. 1999;517(2):565.
  6. Charles Baltay. The accelerating universe and dark energy. International Journal of Modern Physics. 2014;23(6):1430012.
  7. Riess AG, Filippenko AV, Challis P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal. 1998;116:1009.
  8. Dennis Overbye. In the Beginning. USA: The New York Times. 2002 .
  9. High Z Supernova Search. Team, HST, NASA.
  10. Low Density Inflationary Universes. Stuart Levy of the University of Illinois, Urbana-Champaign and Tamara Munzer of Stanford University.
  11. LIGO Scientific Collaboration. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters. 2017;848(2):27.
  12. David Polarski. Dark energy. Int J Mod Phys D. 2013;22(14):1330027.
  13. Sibel Boran, Shantanu Desai, Emre Kahya, et al. GW170817 Falsifies Dark Matter Emulators. Phys Rev D. 2018;97:041501.
  14. James B Hartle. Gravity An Introduction To Einstein's General Relativity. San Francisco: Addison Wesley; 2003. p. 582.
  15. Geometry of the universe.
  16. A Einstein. The Meaning of Relativity. New Jersey: Princeton University Press; 2005. p. 117−118.
  17. A Review of the Universe - Structures, Evolutions, Observations, and Theories.
  18. Dark Matter.
  19. Vera Rubin Didn't Discover Dark Matter. 2016.
  20. E Aprile. First Dark Matter Search Results from the XENON1T Experiment. 2017;119:181301.
  21. Xiangyi Cui. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. 2017;119:181302.
  22. Timothy D. Brandt, Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies. The Astrophysical Journal Letters. 2016;824(2):1−5.
  23. Reinhard Genzel. VLT observations of distant galaxies suggest they were dominated by normal matter. Dark Matter Less Influential in Galaxies in Early Universe. Release no: eso 1709.
  24. Jounghun L, Eiichiro K. Bullet Cluster: A Challenge to LCDM Cosmology. The Astrophysical Journal. 2010;718(1):60.
  25. Maxim Markevitch. Chandra observation of the most interesting cluster in the Universe. 2005.
  26. Hyperbolic trajectory.
  27. Eric Chaisson, Steve McMillan. Astronomy Today. 6th ed. USA: Addison Wesley; 2008. p. 636.
Creative Commons Attribution License

©2019 Mabkhout. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.