Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 4

Magnetized dark energy cosmological models with constant deceleration parameter

Shaikh AY,1 Wankhade KS1

1Department of Mathematics, Indira Gandhi Mahavidyalaya, India
2Department of Mathematics, YC Science College, India

Correspondence: Alfred Y Shaikh, Department of Mathematics, Indira Gandhi Mahavidyalaya, Ralegaon-445402, India

Received: September 11, 2017 | Published: October 16, 2017

Citation: Shaikh AY, Wankhade KS. Magnetized dark energy cosmological models with constant deceleration parameter. Phys Astron Int J. 2017;1(4):108-113. DOI: 10.15406/paij.2017.01.00020

Download PDF

Abstract

In this paper we investigated Homogenous - Hyper surface magnetized dark energy models with constant deceleration parameter. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ωρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JaeqyYdCNaeqyWdihaaa@3C0D@ and a uniform magnetic field of energy density ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaajuaGdaWgaaqaaKqzadGaamOqaaqcfayabaaabeaa aaa@3BC5@ . We have obtained exact solutions to the field equations using the condition that scalar expansion is proportional to the shear scalar. The physical behaviors of the models are discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid does not approach isotropy through the evolution of the universe. The physical aspects of the dark energy models are also discussed.

Keywords: Hyper surface Universe; Dark energy; EoS parameter

Introduction

The discovery of accelerated expansion of the universe1,2 led to a number of new ideas in cosmology. Recent observations of supernovae are consistent with the universe made up 71.3% of dark energy and only 27.4% of a combination of dark matter and baryonic matters3 Dark Energy (DE) has been conventionally characterized by the equation of state (EoS) parameter ω= p ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0ZaaSaaaeaacaWGWbaabaGaeqyWdihaaaaa@3C1C@  which is not necessarily constant. SNIa data collaborated with CMBR anisotropy and galaxy clustering statistics suggest that 1.33<ω<0.79 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGymaiaac6cacaaIZaGaaG4maiabgYda8iabeM8a3jabgYda8iab gkHiTiaaicdacaGGUaGaaG4naiaaiMdaaaa@420A@ .4 Due to lack observational evidence in making a distinction between constant and variable ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ , usually the equation of state parameter is considered as a constant5,6 with phase wise value 1,0, 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaGymaiaacYcacaaMi8UaaGjcVlaayIW7caaMi8UaaGjcVlaaicda caGGSaGaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7caaMi8+aaSaaae aacqGHsislcaaIXaaabaGaaG4maaaaaaa@4DF6@  and +1 for vacuum fluid, dust fluid, radiation and stiff dominated universe, respectively. New dark energy models in anisotropic Bianchi type-I (B-I) space-time with variable EoS parameter and constant deceleration parameter have been investigated by Pradhan et al.7 The Bianchi type III dark energy models with constant deceleration parameter are investigated by Yadav & Yadav.8 Locally rotationally symmetric (LRS) Bianchi Type I cosmological models are examined by Akarsu et al.9 in the presence of dynamically anisotropic dark energy and perfect fluid. They assume that the DE is minimally interacting, has dynamical energy density, anisotropic EoS parameter. Some new exact solutions of Einstein’s field equations emerged in a spatially homogeneous and anisotropic Bianchi type-V space-time with minimally interacting perfect fluid and anisotropic DE components, which has dynamic EoS parameter investigated by Pradhan et al.10 A special law of variation for Hubble’s parameter is presented by Kumar et al.11 in a spatially homogeneous and anisotropic Bianchi type-I space-time that yields a constant value of deceleration parameter.A spatially homogeneous and anisotropic but LRS Bianchi type-II cosmological model is studied by CP Kumar et al.12 with a perfect fluid and constant deceleration parameter. Akarsu et al.13,14 have investigated Bianchi-I and Bianchi-III DE models with constant Deceleration Parameter. Yadav et al.15 studied spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi-I cosmological model in the presence of magnetized dark energy. Sahoo et al.16 investigated axially-symmetric cosmological model with anisotropic DE. Recently, Katore et al.17 studied magnetized anisotropic DE models for Bianchi type-V space–time with constant deceleration parameter. Very recently, Shaikh et al.18 have studied plane-symmetric Universe with variable ω in the presence and the absence of magnetic field of energy density ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaadaWgaaqaaKqzadGaamOqaaqcfayabaaabeaaaaa@3B09@  together with constant deceleration parameter.

Motivated by above research work, in this paper, we have investigated the magnetized anisotropic DE models with variable ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ . This paper is organized as follows: In Section 2, the metric and field equations are described. The solution of field equations are presented in Section 3. Section 4 deals with cases for s0 & s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgcMi5kaaicdaqaaaaaaaaaWdbiaacckapaGaaiOja8qacaGGGcWd aiaadohacqGH9aqpcaaIWaaaaa@3FF5@  and section 5 concludes the findings.

Metric and Field Equations

General solutions of Einstein’s field equations for a perfect fluid satisfying a barotropic equation of state have been obtained by Stewart et al.19 Hajj-Boutros20 developed a method to build exact solutions of field equations in case of the following metric in presence of perfect fluid and obtained exact solutions of the field equations which add to the rare solutions not satisfying the barotropic equation of state. Some hyper surface-homogeneous bulk viscous fluid cosmological models with time-dependent cosmological term have been studied by Verma et al.21

The general metric for a hyper surface Homogenous space time can be described by

d s 2 =d t 2 + A 2 ( t )d x 2 + B 2 ( t )[ d y 2 + 2 ( y,K )d z 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqcfasaaKqzadGaaGOmaaaajugibiabg2da 9iabgkHiTiaadsgacaWG0bqcfa4aaWbaaeqajuaibaqcLbmacaaIYa aaaKqzGeGaey4kaSIaamyqaKqbaoaaCaaabeqcfasaaKqzadGaaGOm aaaajuaGdaqadaqaaKqzGeGaamiDaaqcfaOaayjkaiaawMcaaKqzGe GaaGjcVlaaykW7caWGKbGaamiEaKqbaoaaCaaabeqcfasaaKqzadGa aGOmaaaajugibiabgUcaRiaadkeajuaGdaahaaqabKqbGeaajugWai aaikdaaaqcfa4aaeWaaeaajugibiaadshaaKqbakaawIcacaGLPaaa jugibiaayIW7caaMc8Ecfa4aamWaaeaajugibiaadsgacaWG5bWcda ahaaqcfasabeaajugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaaeabqa aSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaKqbaoaabmaabaqcLbsaca WG5bGaaiilaiaadUeaaKqbakaawIcacaGLPaaajugibiaaykW7caaM c8UaamizaiaadQhajuaGdaahaaqabKqbGeaajugWaiaaikdaaaaaju aGbeqabKqzGeGaeyyeIuoaaKqbakaawUfacaGLDbaaaaa@7DE4@                  (2.1)

Where A, B are functions of t only and ( y,K ) =siny,y,sinhy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabqae aadaqadaqaaiaadMhacaGGSaGaam4saaGaayjkaiaawMcaaaqabeqa cqGHris5aiabg2da9iGacohacaGGPbGaaiOBaiaadMhacaGGSaGaam yEaiaacYcaciGGZbGaaiyAaiaac6gacaGGObGaamyEaaaa@4883@  respectively when k=1,1,0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaykW7caaIXaGaaiilaiaaysW7cqGHsislcaaIXaGaaiil aiaaysW7caaIWaGaaiOlaaaa@424E@

Katore et al.22 obtained the exact solutions of the field equations for Hyper surface-homogeneous space time under the assumption on the anisotropy of the fluid (dark energy), which are obtained for exponential and power-law volumetric expansions in a scalar-tensor theory of gravitation. Katore et al.23 presented a class of solutions of Einstein’s field equations describing two-fluid models of the universe in Hyper surface-Homogenous space time. Shaikh et al.24 proposed the study of cosmological model represented by hyper surface -Homogenous reference system for perfect fluid distribution within the framework of f(R,T) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzai aacIcacaWGsbGaaiilaiaadsfacaGGPaaaaa@3B28@ gravity.

The Einstein field equations, in gravitational units ( c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9iaaigdacaaMe8oaaa@3ABA@ and 8πG=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjaayIW7caWGhbGaeyypa0JaaGymaaaa@3D21@ ) are

R ij 1 2 R g ij = T ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaamyAaiaadQgaaeqaaKqbakabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaamOuaiaaykW7caWGNbWaaSbaaKqbGeaaca WGPbGaamOAaaqabaqcfaOaeyypa0JaeyOeI0IaamivamaaBaaajuai baGaamyAaiaadQgaaeqaaaaa@4789@           (2.2)

Where R ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@3987@  is the Ricci tensor, R is the Ricci scalar, and T ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@3989@ is the energy-momentum tensor for magnetized anisotropic fluid.

Now we consider more general energy-momentum tensor for magnetized anisotropic dark fluid in the following form

T i j =dig[ ρ ρ B , p x + ρ B, p y ρ B, p z ρ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaeyypa0JaaGPaVlaa dsgacaWGPbGaam4zamaadmaabaGaeyOeI0IaeqyWdiNaeyOeI0Iaeq yWdi3aaSbaaKqbGeaacaWGcbaabeaajuaGcaGGSaGaamiCamaaBaaa juaibaGaamiEaaqabaqcfaOaey4kaSIaeqyWdi3aaSbaaeaajuaica WGcbqcfaOaaiilaaqabaGaamiCamaaBaaajuaibaGaamyEaaqcfaya baGaeyOeI0IaeqyWdi3aaSbaaeaajuaicaWGcbqcfaOaaiilaaqaba GaamiCaSWaaSbaaKqbGeaajugWaiaadQhaaKqbGeqaaKqbakabgkHi Tiabeg8aYnaaBaaajuaibaGaamOqaaqcfayabaaacaGLBbGaayzxaa aaaa@612B@                                (2.3)

Where ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@  is the energy density of the fluid; p x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamiEaaqcfayabaaaaa@3953@ , p y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamyEaaqcfayabaaaaa@3954@ and p z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamOEaaqabaaaaa@38C7@ are pressures on x, y and z axes respectively and ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGcbaajuaGbeaaaaa@39E8@  stands for energy density of magnetic field. The anisotropic fluid is characterized by the EoS p=ωρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9iaaykW7cqaHjpWDcqaHbpGCaaa@3D97@ , where ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  is not necessarily constant.25

From Equation (2.3), we have

T i j =dig[ ρ ρ B ,ωρ+ ρ B, ( ω+γ )ρ ρ B, ( ω+γ )ρ ρ B ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaDaaajuaibaGaamyAaaqaaiaadQgaaaqcfaOaeyypa0JaaGPaVlaa dsgacaWGPbGaam4zamaadmaabaGaeyOeI0IaeqyWdiNaeyOeI0Iaeq yWdi3aaSbaaKqbGeaacaWGcbaajuaGbeaacaGGSaGaeqyYdCxcfaIa eqyWdixcfaOaey4kaSIaeqyWdi3aaSbaaeaajuaicaWGcbqcfaOaai ilaaqabaWaaeWaaeaacqaHjpWDcqGHRaWkcqaHZoWzaiaawIcacaGL PaaacqaHbpGCcqGHsislcqaHbpGCdaWgaaqaaKqbGiaadkeajuaGca GGSaaabeaadaqadaqaaiabeM8a3jabgUcaRiabeo7aNbGaayjkaiaa wMcaaiabeg8aYjabgkHiTiabeg8aYnaaBaaajuaibaGaamOqaaqcfa yabaaacaGLBbGaayzxaaaaaa@6ADB@                              (2.4)

Where ω x =ωρ+ ρ B, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWG4baajuaGbeaacqGH9aqpcaaMc8UaeqyYdCNa eqyWdiNaey4kaSIaeqyWdi3aaSbaaeaajuaicaWGcbqcfaOaaiilaa qabaaaaa@453F@ ω y =ω+γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWG5baabeaajuaGcqGH9aqpcaaMc8UaeqyYdCNa ey4kaSIaeq4SdCgaaa@4113@  and ω z =ω+γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWG6baabeaajuaGcqGH9aqpcaaMc8UaeqyYdCNa ey4kaSIaeq4SdCgaaa@4114@  are the directional EoS parameters on x, y and z axes respectively. γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC gaaa@382B@  is the deviation free EoS parameter on y axis and z axis.

Jacobs26 studied the impact of a regular, early magnetic flux on Bianchi type-I cosmological model. To discuss the effects of magnetic flux on the evolution of the Universe, King et al.27 used the magnetic perfect fluid energy–momentum tensor. Bianchi type-I cosmological model in the presence of magnetic anisotropic dark energy is obtained by Sharif et al.28. Katore et al.29 investigated Bianchi type-III cosmological model in the presence of magnetic anisotropic dark energy. Zeldovich et al.30 underlined the importance of magnetic field for a variety of astrophysical phenomena.

In a commoving coordinate system, for the anisotropic hyper surface Homogenous metric (2.1), Einstein field equations (2.2) together with Equation (2.4) lead to the following system of equations

2 A ˙ B ˙ AB + B ˙ 2 B 2 + K B 2 =ρ+ ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmam aalaaabaGabmyqayaacaGabmOqayaacaaabaGaamyqaiaadkeaaaGa ey4kaSYaaSaaaeaaceWGcbGbaiaadaahaaqabeaajugWaiaaikdaaa aajuaGbaGaamOqamaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgUca RmaalaaabaGaam4saaqaaiaadkeadaahaaqcfasabeaacaaIYaaaaa aajuaGcqGH9aqpcqaHbpGCcqGHRaWkcqaHbpGCdaWgaaqaaiaadkea aeqaaaaa@4BAC@          (2.5)

2 B ¨ B + B ˙ 2 B 2 + K B 2 =ωρ ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmam aalaaabaGabmOqayaadaaabaGaamOqaaaacqGHRaWkdaWcaaqaaiqa dkeagaGaamaaCaaabeqcfasaaiaaikdaaaaajuaGbaGaamOqamaaCa aajuaibeqaaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGaam4saaqa aiaadkeadaahaaqcfasabeaacaaIYaaaaaaajuaGcqGH9aqpcqGHsi slcqaHjpWDcqaHbpGCcqGHsislcqaHbpGCdaWgaaqaaiaadkeaaeqa aaaa@4BDD@                         (2.6)

A ¨ A + B ¨ B + A ˙ B ˙ AB =( ω+γ )ρ+ ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaceWGbbGbamaaaeaacaWGbbaaaiabgUcaRmaalaaabaGabmOqayaa daaabaGaamOqaaaacqGHRaWkdaWcaaqaaiqadgeagaGaaiqadkeaga GaaaqaaiaadgeacaWGcbaaaiabg2da9iabgkHiTmaabmaabaGaeqyY dCNaey4kaSIaeq4SdCgacaGLOaGaayzkaaGaeqyWdiNaey4kaSIaeq yWdi3aaSbaaKqbGeaacaWGcbaajuaGbeaaaaa@4CAA@              (2.7)

The energy conservation equation related to cosmic fluid and magnetic field is given by

ρ ˙ +( A ˙ A +2 B ˙ B )( 1+ω )ρ+2 B ˙ B γρ+ ρ ˙ B +2 A ˙ A ρ B =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqyWdi NbaiaacqGHRaWkdaqadaqaamaalaaabaGabmyqayaacaaabaGaamyq aaaacqGHRaWkcaaIYaWaaSaaaeaaceWGcbGbaiaaaeaacaWGcbaaaa GaayjkaiaawMcaaiaaysW7daqadaqaaiaaigdacqGHRaWkcqaHjpWD aiaawIcacaGLPaaacqaHbpGCcqGHRaWkcaaIYaWaaSaaaeaaceWGcb GbaiaaaeaacaWGcbaaaiabeo7aNjaayIW7cqaHbpGCcqGHRaWkcuaH bpGCgaGaamaaBaaajuaibaGaamOqaaqabaqcfaOaey4kaSIaaGOmam aalaaabaGabmyqayaacaaabaGaamyqaaaacaaMi8UaeqyWdi3aaSba aKqbGeaacaWGcbaabeaajuaGcqGH9aqpcaaMc8UaaGimaaaa@5FF1@                 (2.8)

Here the overhead dot on A, B and elsewhere denote differentiation with respect to t.

Solution of field equations

The Field Equations (2.5)-(2.7) are a system of three linearly independent equations with six unknown parameters (A,B,ρ, ρ B ,ω,γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadgeacaGGSaGaamOqaiaacYcacqaHbpGCcaGGSaGaeqyWdi3aaSba aKqbGeaacaWGcbaajuaGbeaacaGGSaGaeqyYdCNaaiilaiabeo7aNj aacMcaaaa@4572@ .Thus system is initially undetermined and we need additional constraints to solve the system.

  1. We constrain the system of equations with a law of variation for the Hubble parameter proposed by Berman31 for solving FRW models, which yields a constant value of deceleration parameter (DP). Singh et al.32 have studied flat FRW and Bianchi type models by using the special law of Hubble parameter that yields constant value of deceleration parameter. A similar law of variation for the Hubble parameter in anisotropic space-time metrics that yields a constant value of the deceleration parameter, and generated solutions for Bianchi Type-I,33 LRS Bianchi Type-II,11,34 Bianchi Type-V metric in General Relativity have been proposed.
  2. We assume that the scalar expansion ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaH4oqCaiaawIcacaGLPaaaaaa@39C3@  in the model is proportional to the shear scalar ( σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHdpWCaiaawIcacaGLPaaaaaa@39D0@ .

This condition leads to the following relation between the metric potentials:

A= B n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqai abg2da9iaaykW7caWGcbWaaWbaaeqajuaibaGaamOBaaaaaaa@3BE5@                 (3.1)

Where (n>0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aad6gacqGH+aGpcaaIWaGaaiykaaaa@3A92@  is a constant?

The motive behind assuming the constrain is explained with the reference to Thorne36 observations of velocity red shift relation for extragalactic sources suggest that Hubble expansion of the universe is isotropic about 30% range approximately.37,38 To put more precisely, redshift studies place the limit σ H 0.30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHdpWCaeaacaWGibaaaiabgsMiJkaaicdacaGGUaGaaG4maiaa icdaaaa@3DBC@ . Collins39 discussed the physical significance of this condition for perfect fluid and barotropic equation of state in a more general case. Roy et al.4042 proposed this condition to find exact solution of cosmological models.

The average scale factor R of Hyper surface metric is given by

R= ( A B 2 ) 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai abg2da9iaaykW7daqadaqaaiaadgeacaWGcbWaaWbaaeqajuaibaGa aGOmaaaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaajuaGdaWcaa qcfasaaiaaigdaaeaacaaIZaaaaaaaaaa@4130@                    (3.2)

The generalized mean Hubble parameter H is defined as

H= 1 3 ( H 1 + H 2 + H 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9maalaaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaacaWGibWa aSbaaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcaWGibWaaSbaaKqbGe aacaaIYaaabeaajuaGcqGHRaWkcaWGibWaaSbaaKqbGeaacaaIZaaa beaaaKqbakaawIcacaGLPaaaaaa@445E@                     (3.3)

Where H 1 = A ˙ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGjcVpaalaaabaGa bmyqayaacaaabaGaamyqaaaaaaa@3D25@ , H 2 = B ˙ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaaGjcVpaalaaabaGa bmOqayaacaaabaGaamOqaaaaaaa@3D28@  and H 3 = B ˙ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisam aaBaaajuaibaGaaG4maaqcfayabaGaeyypa0JaaGjcVpaalaaabaGa bmOqayaacaaabaGaamOqaaaaaaa@3D29@  are the directional Hubble parameter H, in the direction of x, y and z axes respectively.

The spatial volume for the model (2.1) is given by

V 3 = R 1 3 =A B 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvam aaCaaabeqcfasaaiaaiodaaaqcfaOaeyypa0JaaGPaVlaadkfadaah aaqabKqbGeaajuaGdaWcaaqcfasaaiaaigdaaeaacaaIZaaaaaaaju aGcqGH9aqpcaaMc8UaamyqaiaadkeadaahaaqcfasabeaacaaIYaaa aaaa@44AE@                    (3.4)

Using equations (3.2)-(3.4), we obtain

H= 1 3 V ˙ V = R ˙ R = 1 3 ( A ˙ A +2 B ˙ B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9maalaaabaGaaGymaaqaaiaaiodaaaWaaSaaaeaaceWGwbGb aiaaaeaacaWGwbaaaiabg2da9iaaykW7daWcaaqaaiqadkfagaGaaa qaaiaadkfaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaadaqa daqaamaalaaabaGabmyqayaacaaabaGaamyqaaaacqGHRaWkcaaIYa WaaSaaaeaaceWGcbGbaiaaaeaacaWGcbaaaaGaayjkaiaawMcaaaaa @4907@                          (3.5)

As the line element (2.1) is completely characterized by Hubble parameter H. We also use a well-known relation Berman31 between the average Hubble parameter H and average scale factor given as

H= k 1 R s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9iaaykW7caWGRbWaaSbaaKqbGeaajugWaiaaigdaaKqbagqa aiaadkfadaahaaqcfasabeaacqGHsislcaWGZbaaaaaa@40A4@ ,                      (3.6)

Where k 1 ( > 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacqGH+aGpcaaIWaaa caGLOaGaayzkaaaaaa@3C57@ and s ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cam aabmaabaGaeyyzImRaaGimaaGaayjkaiaawMcaaaaa@3B85@ are constants. This is an important relation because it gives the constant value of the deceleration parameter.

We assume that the magnetized dark energy is minimally interacting, hence energy conservation equation (2.8) can be split into two separately additive conserver components: namely, the conservation of energy –momentum tensor for the anisotropic fluid and for the magnetic field.

ρ ˙ + ( A ˙ A + 2 B ˙ B ) ( 1 + ω ) ρ + 2 B ˙ B γ ρ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqyWdi NbaiaacqGHRaWkdaqadaqaamaalaaabaGabmyqayaacaaabaGaamyq aaaacqGHRaWkcaaIYaWaaSaaaeaaceWGcbGbaiaaaeaacaWGcbaaaa GaayjkaiaawMcaaiaaysW7daqadaqaaiaaigdacqGHRaWkcqaHjpWD aiaawIcacaGLPaaacqaHbpGCcqGHRaWkcaaIYaWaaSaaaeaaceWGcb GbaiaaaeaacaWGcbaaaiabeo7aNjaayIW7cqaHbpGCcqGH9aqpcaaM c8UaaGimaaaa@536A@            (3.7)

ρ B = α A 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGcbaajuaGbeaacqGH9aqpcaaMc8+aaSaaaeaa cqaHXoqyaeaacaWGbbWaaWbaaKqbGeqabaGaaGOmaaaaaaaaaa@3FFA@ .                               (3.8)

The deceleration parameter q in cosmology is the measure of the cosmic acceleration of the universe expansion and is defined as

q= R R ¨ R ˙ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iaaykW7cqGHsisldaWcaaqaaiaadkfaceWGsbGbamaaaeaa ceWGsbGbaiaadaahaaqabKqbGeaacaaIYaaaaaaaaaa@3EAC@ .      (3.9)

In Berman’s law the deceleration parameter can get values q≥−1.For accelerating expansion of the universe, we must have 1q<0. It exhibits constant-rate volumetric expansion if q=0.

Using Equations (3.5) and (3.6), we have

R ˙ = k 1 R s + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOuay aacaGaeyypa0JaaGPaVlaadUgadaWgaaqcfasaaiaaigdaaKqbagqa aiaadkfadaahaaqabKqbGeaacqGHsislcaWGZbGaey4kaSIaaGymaa aaaaa@4126@                 (3.10)

R ¨ = k 2 1 ( s 1 ) R 2 s + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOuay aadaGaeyypa0JaaGPaVlabgkHiTiaadUgadaahaaqcfasabeaacaaI YaaaaKqbaoaaBaaajuaibaGaaGymaaqabaqcfa4aaeWaaeaacaWGZb GaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadkfadaahaaqabKqbGeaa cqGHsislcaaIYaGaam4CaiabgUcaRiaaigdaaaaaaa@4893@ .           (3.11)

Using equations (3.9), (3.10), (3.11), we get values for the deceleration parameter for the mean scale factor as:

q = s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iaaykW7caWGZbGaeyOeI0IaaGymaaaa@3CAB@ for s 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgcMi5kaaykW7caaIWaaaaa@3B88@                (3.12)

q = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iaaykW7cqGHsislcaaIXaaaaa@3BB3@  for s = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abg2da9iaaykW7caaIWaaaaa@3AC7@ .                       (3.13)

The sign of q indicates whether the model accelerates or not. The positive sign of q (i.e. s>1) corresponds to decelerating model whereas the negative sign of q for 0 s < 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadohacqGH8aapcaaIXaaaaa@3BAA@  indicates acceleration. q=0 for s=1 corresponds to expansion with constant velocity. It is remarkable to mention here that though the current observations of SNe Ia and CMBR favours accelerating models (q<0), but both do not altogether rule out the decelerating ones which are also consistent with these observations.43

Using equation (3.10), we obtain the law of average scale factor as

R= ( Dt+ c 1 ) 1 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai abg2da9iaaykW7daqadaqaaiaadseacaaMc8UaamiDaiabgUcaRiaa dogadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaaCa aajuaibeqaaKqbaoaalaaajuaibaGaaGymaaqaaiaadohaaaaaaaaa @44F3@  for s0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgcMi5kaaykW7caaIWaaaaa@3B88@ ,         (3.14)

R= c 2 e k 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuai abg2da9iaaykW7caWGJbWaaSbaaKqbGeaajugWaiaaikdaaKqbagqa aiaaykW7caWGLbWaaWbaaeqajuaibaGaam4AaKqbaoaaBeaajuaiba GaaGymaaqabaGaaGPaVlaadshaaaaaaa@456D@  for s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abg2da9iaaykW7caaIWaaaaa@3AC7@ ,        (3.15)

Where c1 and c2 are constants of integration. Thus, the law (3.6) provides two types of the expansion in the universe i.e., (i) power-law (3.14) and (ii) exponential-law (3.15).

Models for s≠0 and s=0:

Case (i): Model for s0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgcMi5kaaykW7caaIWaaaaa@3B88@

Using Equations (3.1), (3.5) and (3.12), we get following expression for scale function

B( t )= l 0 ( Dt+ c 1 ) 1 r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaykW7caWGSbWa aSbaaKqbGeaacaaIWaaabeaajuaGdaahaaqcfasabeaajuaGdaqada qcfasaaiaadseacaaMc8UaamiDaiabgUcaRiaadogajuaGdaWgaaqc fasaaiaaigdaaeqaaaGaayjkaiaawMcaaKqbaoaaCaaajuaibeqaaK qbaoaalaaajuaibaGaaGymaaqaaiaadkhaaaaaaaaajuaGcaGGSaaa aa@4CC4@      (4.1)

A( t )= l 1 ( Dt+ c 1 ) n r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaykW7caWGSbWa aSbaaKqbGeaacaaIXaaabeaajuaGdaahaaqcfasabeaajuaGdaqada qcfasaaiaadseacaaMc8UaamiDaiabgUcaRiaadogajuaGdaWgaaqc fasaaiaaigdaaeqaaaGaayjkaiaawMcaaKqbaoaaCaaajuaibeqaaK qbaoaalaaajuaibaGaamOBaaqaaiaadkhaaaaaaaaaaaa@4BBE@ ,          (4.2)

Where l 0 = c 3 3 ( n+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGPaVlaadogadaWg aaqcfasaaiaaiodaaeqaaKqbaoaaCaaajuaibeqaaKqbaoaalaaaju aibaGaeyOeI0IaaG4maaqaaKqbaoaabmaajuaibaGaamOBaiabgUca RiaaikdaaiaawIcacaGLPaaaaaaaaaaa@45BB@ , r= s( n+2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai abg2da9iaaykW7daWcaaqaaiaadohadaqadaqaaiaad6gacqGHRaWk caaIYaaacaGLOaGaayzkaaaabaGaaG4maaaaaaa@3FEB@  and l 1 = l 0 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBam aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaaGPaVlaadYgadaqh aaqcfasaaiaaicdaaeaacaWGUbaaaaaa@3E8C@ .

Therefore, the model (2.1) becomes

d s 2 = d t 2 + l 1 2 ( D t + c 1 ) 2 n r d x 2 + l 0 2 ( D t + c 1 ) 2 r [ d y 2 + 2 ( y , K ) d z 2 ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqcfasabeaacaaIYaaaaKqbakabg2da9iabgkHiTiaa dsgacaWG0bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWGSb Waa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGdaqadaqaaiaadsea caaMc8UaamiDaiabgUcaRiaadogadaWgaaqcfasaaiaaigdaaeqaaa qcfaOaayjkaiaawMcaamaaCaaabeqaamaalaaabaGaaGOmaiaad6ga aeaacaWGYbaaaaaacaWGKbGaamiEamaaCaaajuaibeqaaiaaikdaaa qcfaOaey4kaSIaaGPaVlaadYgadaqhaaqcfasaaiaaicdaaeaacaaI YaaaaKqbaoaabmaabaGaamiraiaaykW7caWG0bGaey4kaSIaam4yaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaaGaayjkaiaawMcaamaa CaaabeqaamaalaaabaGaaGOmaaqaaiaadkhaaaaaamaadmaabaGaam izaiaadMhadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRmaaqaea baWaaWbaaKqbGeqabaGaaGOmaaaajuaGdaqadaqaaiaadMhacaGGSa Gaam4saaGaayjkaiaawMcaaiaaykW7caaMc8UaamizaiaadQhadaah aaqabKqbGeaacaaIYaaaaaqcfayabeqacqGHris5aaGaay5waiaaw2 faaiaac6caaaa@78CA@ (4.3)

The expression for kinematical parameters the Hubble’s parameter H, the scalar expansion, shear scalar, for model (4.3) are given by

H= k 1 ( Dt+ c 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9iaaykW7daWcaaqaaiaadUgadaWgaaqcfasaaiaaigdaaeqa aaqcfayaamaabmaabaGaamiraiaaykW7caWG0bGaey4kaSIaam4yam aaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaaaaiaacYca aaa@4562@             (4.4)

θ=3H= 3 k 1 ( Dt+ c 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde Naeyypa0JaaG4maiaadIeacqGH9aqpcaaMc8+aaSaaaeaacaaIZaGa am4AamaaBaaajuaibaGaaGymaaqabaaajuaGbaWaaeWaaeaacaWGeb GaaGPaVlaadshacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaabeaa aKqbakaawIcacaGLPaaaaaGaaiilaaaa@4998@               (4.5)

σ 2 = 1 3 ( n1 ) 2 D 2 r 2 ( Dt+ c 1 ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaWbaaeqajuaibaGaaGOmaaaajuaGcqGH9aqpcaaMc8+aaSaaaeaa caaIXaaabaGaaG4maaaadaWcaaqaamaabmaabaGaamOBaiabgkHiTi aaigdaaiaawIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaKqbakaa dseadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadkhadaahaaqcfa sabeaacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7caWG0bGaey4k aSIaam4yamaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaa WaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaaiOlaaaa@5340@                (4.6)

Using Equations (4.5) and (4.6), we have

σ θ = D( n1 ) 3 3 r k 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHdpWCaeaacqaH4oqCaaGaeyypa0JaaGPaVpaalaaabaGaamir amaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaaaeaaca aIZaWaaOaaaeaacaaIZaGaaGPaVdqabaGaamOCaiaaykW7caWGRbWa aSbaaKqbGeaacaaIXaaabeaaaaqcfaOaaiOlaaaa@4A6C@           (4.7)

Using Equations (3.8) and (4.2), we get

ρ B = α l 1 2 ( Dt+ c 1 ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGcbaabeaajuaGcqGH9aqpcaaMc8+aaSaaaeaa cqaHXoqyaeaacaWGSbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaju aGdaqadaqaaiaadseacaaMc8UaamiDaiabgUcaRiaadogadaWgaaqc fasaaiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaai aaikdaaaaaaKqbakaac6caaaa@4BF2@                                       (4.8)

Using equations (2.5), (3.1), (4.1) and (4.8) we have

ρ= ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r α l 1 2 ( Dt+ c 1 ) 2n r . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi Naeyypa0JaaGPaVpaalaaabaWaaeWaaeaacaaIYaGaamOBaiabgUca RiaaigdaaiaawIcacaGLPaaacaWGebWaaWbaaKqbGeqabaGaaGOmaa aaaKqbagaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaajuaGdaqadaqa aiaadseacaaMc8UaamiDaiabgUcaRiaadogadaWgaaqcfasaaiaaig daaeqaaaqcfaOaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaaa aKqbakabgUcaRmaalaaabaGaam4saaqaaiaadYgadaqhaaqcfasaai aaicdaaeaacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7caWG0bGa ey4kaSIaam4yamaaBaaajuaibaGaaGymaaqcfayabaaacaGLOaGaay zkaaWaaWbaaeqajuaibaqcfa4aaSaaaKqbGeaacaaIYaaabaGaamOC aaaaaaaaaKqbakabgkHiTmaalaaabaGaeqySdegabaGaamiBamaaDa aajuaibaGaaGymaaqaaiaaikdaaaqcfa4aaeWaaeaacaWGebGaaGPa VlaadshacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaabeaaaKqbak aawIcacaGLPaaadaahaaqabKqbGeaajuaGdaWcaaqcfasaaiaaikda caWGUbaabaGaamOCaaaaaaaaaKqbakaac6caaaa@7238@                         (4.9)

It is observed that the Hubble parameter H, the scalar expansion, shear scalar, magnetized dark energy density and energy density is the decreasing function of time and approaches 0 as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkabg6HiLcaa@3ADB@  . Since lim t σ θ =constant, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaciGGSbGaaiyAaiaac2gaaeaacaWG0bGaeyOKH4QaeyOhIukaamaa laaabaGaeq4WdmhabaGaeqiUdehaaiabg2da9abaaaaaaaaapeGaam 4yaiaad+gacaWGUbGaam4CaiaadshacaWGHbGaamOBaiaadshacaGG Saaaaa@4AAC@

The model is not isotropic for large value of t.

We observe that at t= c 1 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9maalaaabaGaeyOeI0Iaam4yamaaBaaajuaibaGaaGymaaqa baaajuaGbaGaamiraaaaaaa@3CC9@ , the spatial volume vanishes while all the parameters diverge. Therefore, the model has a big bang singularity at t= c 1 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9maalaaabaGaeyOeI0Iaam4yamaaBaaajuaibaGaaGymaaqa baaajuaGbaGaamiraaaaaaa@3CC9@ , which can be shifted to t=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9iaaicdaaaa@393D@  by choosing c 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaBaaajuaibaWdbiaaigdaa8aabeaajuaGpeGa eyypa0JaaGimaaaa@3B22@ .

Using Equations (2.6), (3.1), (4.1), (4.8) and (4.9), the equation of state parameter is given by

ω= [ ( 2r3 ) D 2 r 2 ( Dt+ c 1 ) 2 K l 0 2 ( Dt+ c 1 ) 2 r α l 1 2 ( Dt+ c 1 ) 2n r ] [ ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r α l 1 2 ( Dt+ c 1 ) 2n r ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGPaVpaalaaabaWaamWaaeaadaWcaaqaamaabmaabaGa aGOmaiaadkhacqGHsislcaaIZaaacaGLOaGaayzkaaGaamiramaaCa aajuaibeqaaiaaikdaaaaajuaGbaGaamOCamaaCaaajuaibeqaaiaa ikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJb WaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqc fasabeaacaaIYaaaaaaajuaGcqGHsisldaWcaaqaaiaadUeaaeaaca WGSbWaa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGdaqadaqaaiaa dseacaaMc8UaamiDaiabgUcaRiaadogadaWgaaqcfasaaiaaigdaaK qbagqaaaGaayjkaiaawMcaamaaCaaabeqcfasaaKqbaoaalaaajuai baGaaGOmaaqaaiaadkhaaaaaaaaajuaGcqGHsisldaWcaaqaaiabeg 7aHbqaaiaadYgadaqhaaqcfasaaiaaigdaaeaacaaIYaaaaKqbaoaa bmaabaGaamiraiaaykW7caWG0bGaey4kaSIaam4yamaaBaaajuaiba GaaGymaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaeqajuaibaqcfa4a aSaaaKqbGeaacaaIYaGaamOBaaqaaiaadkhaaaaaaaaaaKqbakaawU facaGLDbaaaeaadaWadaqaamaalaaabaWaaeWaaeaacaaIYaGaamOB aiabgUcaRiaaigdaaiaawIcacaGLPaaacaWGebWaaWbaaeqajuaiba GaaGOmaaaaaKqbagaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaajuaG daqadaqaaiaadseacaaMc8UaamiDaiabgUcaRiaadogadaWgaaqcfa saaiaaigdaaeqaaaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiaa ikdaaaaaaKqbakabgUcaRmaalaaabaGaam4saaqaaiaadYgadaqhaa qcfasaaiaaicdaaeaacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7 caWG0bGaey4kaSIaam4yamaaBaaajuaibaGaaGymaaqcfayabaaaca GLOaGaayzkaaWaaWbaaeqajuaibaWcdaWcaaqcfasaaKqzadGaaGOm aaqcfasaaKqzadGaamOCaaaaaaaaaKqbakabgkHiTmaalaaabaGaeq ySdegabaGaamiBamaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfa4a aeWaaeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJbWcdaWgaaqcfa yaaKqzadGaaGymaaqcfayabaaacaGLOaGaayzkaaWaaWbaaeqajuai baWcdaWcaaqcfasaaKqzadGaaGOmaiaad6gaaKqbGeaajugWaiaadk haaaaaaaaaaKqbakaawUfacaGLDbaaaaGaaiOlaaaa@B2AD@                 (4.10)

The SN Ia data suggests that −1.67< ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ <−0.6244 while the limit imposed on ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  by a combination of SN Ia data (with CMB anisotropy) and galaxy clustering statistics is −1.33< ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ <−0.79 [4]. So, if the present work is compared with experimental results mentioned above then, one can conclude that the limit of ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  provided by equation (4.10) may accommodated with the acceptable range of EoS parameter.

Using Equations (2.6), (3.1), (4.1), (4.8) and (4.9) and (4.10), the skew ness parameter is given by

γ= [ [ ( n1 )r( n 2 +n2 ) ] D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r + 2α l 1 2 ( Dt+ c 1 ) 2n r ] [ ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r α l 1 2 ( Dt+ c 1 ) 2n r ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGPaVpaalaaabaWaamWaaeaadaWcaaqaamaadmaabaWa aeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadkhacq GHsisldaqadaqaaiaad6gadaahaaqcfasabeaacaaIYaaaaKqbakab gUcaRiaad6gacqGHsislcaaIYaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGPaVlaadseadaahaaqabKqbGeaacaaIYaaaaaqcfayaaiaa dkhadaahaaqabKqbGeaacaaIYaaaaKqbaoaabmaabaGaamiraiaayk W7caWG0bGaey4kaSIaam4yamaaBaaajuaibaGaaGymaaqabaaajuaG caGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaey4kaS YaaSaaaeaacaWGlbaabaGaamiBamaaDaaajuaibaGaaGimaaqaaiaa ikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJb WaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawIcacaGLPaaadaahaaqa bKqbGeaajuaGdaWcaaqcfasaaiaaikdaaeaacaWGYbaaaaaaaaqcfa Oaey4kaSYaaSaaaeaacaaIYaGaeqySdegabaGaamiBamaaDaaajuai baGaaGymaaqaaiaaikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaads hacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIca caGLPaaadaahaaqabKqbGeaajuaGdaWcaaqcfasaaiaaikdacaWGUb aabaGaamOCaaaaaaaaaaqcfaOaay5waiaaw2faaaqaamaadmaabaWa aSaaaeaadaqadaqaaiaaikdacaWGUbGaey4kaSIaaGymaaGaayjkai aawMcaaiaadseadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaadkha daahaaqcfasabeaacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7ca WG0bGaey4kaSIaam4yaSWaaSbaaKqbGeaajugWaiaaigdaaKqbGeqa aaqcfaOaayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaaaaKqbak abgUcaRmaalaaabaGaam4saaqaaiaadYgadaqhaaqcfasaaiaaicda aeaacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7caWG0bGaey4kaS Iaam4yamaaBaaajuaibaGaaGymaaqabaaajuaGcaGLOaGaayzkaaWa aWbaaeqajuaibaqcfa4aaSaaaKqbGeaacaaIYaaabaGaamOCaaaaaa aaaKqbakabgkHiTmaalaaabaGaeqySdegabaGaamiBamaaDaaajuai baGaaGymaaqaaiaaikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaads hacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawIca caGLPaaadaahaaqabKqbGeaalmaalaaajuaibaqcLbmacaaIYaGaam OBaaqcfasaaKqzadGaamOCaaaaaaaaaaqcfaOaay5waiaaw2faaaaa aaa@BC75@                                  (4.11)

In absence of magnetic field i.e. α0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyOKH4QaaGimaaaa@3ACA@ the value of Hubble’s parameter H, the scalar expansion θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ , shear scalar σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@  remains as it is and energy density for magnetic field ,energy density for fluid, the EoS parameter and skew ness parameter given by

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkabg6HiLcaa@3ADB@          (4.12)

ρ= ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaW3fjuaGcq aHbpGCcqGH9aqpcaaMc8+aaSaaaeaadaqadaqaaiaaikdacaWGUbGa ey4kaSIaaGymaaGaayjkaiaawMcaaiaadseadaahaaqcfasabeaaca aIYaaaaaqcfayaaiaadkhadaahaaqabKqbGeaacaaIYaaaaKqbaoaa bmaabaGaamiraiaaykW7caWG0bGaey4kaSIaam4yamaaBaaajuaiba GaaGymaaqabaaajuaGcaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGOm aaaaaaqcfaOaey4kaSYaaSaaaeaacaWGlbaabaGaamiBamaaDaaaju aibaGaaGimaaqaaiaaikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaa dshacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawI cacaGLPaaadaahaaqcfasabeaajuaGdaWcaaqcfasaaiaaikdaaeaa caWGYbaaaaaaaaqcfaOaaiilaaaa@6062@      (4.13)

ω= [ ( 2r3 ) D 2 r 2 ( Dt+ c 1 ) 2 K l 0 2 ( Dt+ c 1 ) 2 r ] [ ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r ] , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGPaVpaalaaabaWaamWaaeaadaWcaaqaamaabmaabaGa aGOmaiaadkhacqGHsislcaaIZaaacaGLOaGaayzkaaGaamiramaaCa aajuaibeqaaiaaikdaaaaajuaGbaGaamOCaSWaaWbaaKqbGeqabaqc LbmacaaIYaaaaKqbaoaabmaabaGaamiraiaaykW7caWG0bGaey4kaS Iaam4yamaaBaaajuaibaGaaGymaaqcfayabaaacaGLOaGaayzkaaWa aWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaSaaaeaacaWGlb aabaGaamiBamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqcfa4aaeWa aeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJbWaaSbaaKqbGeaaca aIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaajuaGdaWc aaqcfasaaiaaikdaaeaacaWGYbaaaaaaaaaajuaGcaGLBbGaayzxaa aabaWaamWaaeaadaWcaaqaamaabmaabaGaaGOmaiaad6gacqGHRaWk caaIXaaacaGLOaGaayzkaaGaamiramaaCaaajuaibeqaaiaaikdaaa aajuaGbaGaamOCamaaCaaajuaibeqaaiaaikdaaaqcfa4aaeWaaeaa caWGebGaaGPaVlaadshacqGHRaWkcaWGJbWaaSbaaKqbGeaacaaIXa aabeaaaKqbakaawIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaaaa juaGcqGHRaWkdaWcaaqaaiaadUeaaeaacaWGSbWaa0baaKqbGeaaca aIWaaabaGaaGOmaaaajuaGdaqadaqaaiaadseacaaMc8UaamiDaiab gUcaRiaadogadaWgaaqcfasaaiaaigdaaeqaaaqcfaOaayjkaiaawM caamaaCaaajuaibeqaaKqbaoaalaaajuaibaGaaGOmaaqaaiaadkha aaaaaaaaaKqbakaawUfacaGLDbaaaaGaaiilaaaa@8969@             (4.14)

γ= [ [ ( n1 )r( n 2 +n2 ) ] D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r ] [ ( 2n+1 ) D 2 r 2 ( Dt+ c 1 ) 2 + K l 0 2 ( Dt+ c 1 ) 2 r ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGPaVpaalaaabaWaamWaaeaadaWcaaqaamaadmaabaWa aeWaaeaacaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadkhacq GHsisldaqadaqaaiaad6gadaahaaqcfasabeaacaaIYaaaaKqbakab gUcaRiaad6gacqGHsislcaaIYaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGPaVlaadseadaahaaqcfasabeaacaaIYaaaaaqcfayaaiaa dkhadaahaaqabKqbGeaacaaIYaaaaKqbaoaabmaabaGaamiraiaayk W7caWG0bGaey4kaSIaam4yamaaBaaajuaibaGaaGymaaqabaaajuaG caGLOaGaayzkaaWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaey4kaS YaaSaaaeaacaWGlbaabaGaamiBamaaDaaajuaibaGaaGimaaqaaiaa ikdaaaqcfa4aaeWaaeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJb WaaSbaaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqc fasabeaajuaGdaWcaaqcfasaaiaaikdaaeaacaWGYbaaaaaaaaaaju aGcaGLBbGaayzxaaaabaWaamWaaeaadaWcaaqaamaabmaabaGaaGOm aiaad6gacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamiramaaCaaaju aibeqaaiaaikdaaaaajuaGbaGaamOCamaaCaaajuaibeqaaiaaikda aaqcfa4aaeWaaeaacaWGebGaaGPaVlaadshacqGHRaWkcaWGJbWaaS baaKqbGeaacaaIXaaabeaaaKqbakaawIcacaGLPaaadaahaaqabKqb GeaacaaIYaaaaaaajuaGcqGHRaWkdaWcaaqaaiaadUeaaeaacaWGSb Waa0baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGdaqadaqaaiaadsea caaMc8UaamiDaiabgUcaRiaadogadaWgaaqcfasaaiaaigdaaeqaaa qcfaOaayjkaiaawMcaamaaCaaajuaibeqaaKqbaoaalaaajuaibaGa aGOmaaqaaiaadkhaaaaaaaaaaKqbakaawUfacaGLDbaaaaGaaiOlaa aa@9434@                     (4.15)

Case (ii): Model S=0

From Equations (3.1), (3.5) and (3.13) we get following expression for scale function

B( t )= L 0 e k 2 t , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOqam aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaykW7caWGmbWa aSbaaKqbGeaacaaIWaaabeaajuaGcaaMc8UaamyzamaaCaaajuaibe qaaiaadUgajuaGdaWgaaqcfasaaiaaikdaaeqaaiaadshaaaqcfaOa aiilaaaa@464B@                  (5.1)

A( t )= L 1 e n k 2 t , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyqam aabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaykW7caWGmbWa aSbaaKqbGeaacaaIXaaajuaGbeaacaaMc8UaamyzamaaCaaajuaibe qaaiaad6gacaaMc8Uaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGa amiDaaaajuaGcaGGSaaaaa@48C9@                   (5.2)

Where L 0 = ( c 2 c 4 ) 3 n+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaaGimaaqcfayabaGaeyypa0JaaGPaVpaabmaabaWa aSaaaeaacaWGJbWaaSbaaKqbGeaacaaIYaaajuaGbeaaaeaacaWGJb WaaSbaaKqbGeaacaaI0aaabeaaaaaajuaGcaGLOaGaayzkaaWaaWba aeqajuaibaqcfa4aaSaaaKqbGeaacaaIZaaabaGaamOBaiabgUcaRi aaikdaaaaaaaaa@4684@  , k 2 = 3 k 1 n+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aam aaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaaGPaVpaalaaabaGa aG4maiaaykW7caWGRbWaaSbaaKqbGeaacaaIXaaabeaaaKqbagaaca WGUbGaey4kaSIaaGOmaaaaaaa@430F@  and L 1 = L 0 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaaGymaaqcfayabaGaeyypa0JaaGPaVlaadYeadaqh aaqcfasaaiaaicdaaeaacaWGUbaaaaaa@3E4C@ .

Therefore, the model (2.1) becomes

d s 2 =d t 2 + L 1 2 e 2n k 2 t d x 2 + L 0 2 e 2n k 2 t [ d y 2 + 2 ( y,K )d z 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqcfasabeaacaaIYaaaaKqbakabg2da9iabgkHiTiaa dsgacaWG0bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWGmb Waa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcaaMc8UaamyzaSWa aWbaaKqbGeqabaqcLbmacaaIYaGaamOBaiaaykW7caWGRbWcdaWgaa qcfasaaKqzadGaaGOmaaqcfasabaqcLbmacaWG0baaaKqbakaadsga caWG4bWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaWGmbWaa0 baaKqbGeaacaaIWaaabaGaaGOmaaaajuaGcaWGLbWaaWbaaKqbGeqa baGaaGOmaiaad6gacaaMc8Uaam4AaKqbaoaaBaaajuaibaGaaGOmaa qabaGaamiDaaaajuaGcaaMc8+aamWaaeaacaWGKbGaamyEamaaCaaa beqcfasaaiaaikdaaaqcfaOaey4kaSYaaabqaeaadaahaaqabKqbGe aacaaIYaaaaKqbaoaabmaabaGaamyEaiaacYcacaWGlbaacaGLOaGa ayzkaaGaaGPaVlaaykW7caWGKbGaamOEamaaCaaajuaibeqaaiaaik daaaaajuaGbeqabiabggHiLdaacaGLBbGaayzxaaGaaiOlaaaa@7797@                       (5.3)

The expression for kinematical parameters the Hubble’s parameter H, the scalar expansion, shear scalar, for model (5.3) are given by

H= 1 3 ( n+2 ) k 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9iaaykW7daWcaaqaaiaaigdaaeaacaaIZaaaamaabmaabaGa amOBaiabgUcaRiaaikdaaiaawIcacaGLPaaacaaMi8Uaam4AamaaBa aajuaibaGaaGOmaaqcfayabaGaaiilaaaa@444E@             (5.4)

θ=3H=( n+2 ) k 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde Naeyypa0JaaG4maiaadIeacqGH9aqpcaaMc8+aaeWaaeaacaWGUbGa ey4kaSIaaGOmaaGaayjkaiaawMcaaiaayIW7caWGRbWaaSbaaKqbGe aacaaIYaaabeaajuaGcaGGSaaaaa@463F@      (5.5)

σ 2 = 1 3 ( n1 ) 2 k 2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3cdaahaaqcfasabeaajugWaiaaikdaaaqcfaOaeyypa0JaaGPaVpaa laaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaacaWGUbGaeyOeI0IaaG ymaaGaayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaqcfaOaaGjc VlaadUgadaqhaaqcfasaaiaaikdaaeaacaaIYaaaaKqbakaac6caaa a@4A7A@                (5.6)

Using Equations (5.5) and (5.6) , we have

σ θ = 1( n1 ) 3 ( n+2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHdpWCaeaacqaH4oqCaaGaeyypa0JaaGPaVpaalaaabaGaaGym aiaayIW7daqadaqaaiaad6gacqGHsislcaaIXaaacaGLOaGaayzkaa aabaWaaOaaaeaacaaIZaaabeaacaaMi8UaaGjcVpaabmaabaGaamOB aiabgUcaRiaaikdaaiaawIcacaGLPaaaaaGaaiOlaaaa@4BD9@            (5.7)

Using Equations (3.8) and (5.2), we get

ρ B = α L 1 2 e 2n k 2 t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGcbaajuaGbeaacqGH9aqpcaaMc8+aaSaaaeaa cqaHXoqyaeaacaWGmbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaju aGcaaMi8UaamyzamaaCaaajuaibeqaaiaaikdacaWGUbGaam4AaKqb aoaaBaaajuaibaGaaGOmaaqabaGaamiDaaaaaaqcfaOaaiOlaaaa@4A8A@                   (5.8)

From Equations (2.5), (3.1), (5.1) and (5.8) we have

ρ=2n k 2 2 + k 2 2 + k L 0 2 e 2 k 2 t α L 1 2 e 2n k 2 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi Naeyypa0JaaGPaVlaaikdacaWGUbGaam4AamaaDaaajuaibaGaaGOm aaqaaiaaikdaaaqcfaOaey4kaSIaam4AamaaDaaajuaibaGaaGOmaa qaaiaaikdaaaqcfaOaey4kaSYaaSaaaeaacaWGRbaabaGaamitamaa DaaajuaibaGaaGimaaqaaiaaikdaaaqcfaOaaGjcVlaadwgadaahaa qabKqbGeaacaaIYaGaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGa amiDaaaaaaqcfaOaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWGmbWaa0 baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcaaMi8UaamyzaSWaaWba aKazfa4=beqaaKqzadGaaGOmaiaad6gacaWGRbWcdaWgaaqcKvaG=h aajugWaiaaikdaaKazfa4=beaajugWaiaadshaaaaaaaaa@66D7@                            (5.9)

It is observed that the Hubble parameter H, the scalar expansion, shear scalar, magnetized dark energy density and energy density is the decreasing function of time and approaches 0

As   t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgkziUkabg6HiLcaa@3ADB@ . Since lim t σ θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aaciGGSbGaaiyAaiaac2gaaeaacaWG0bGaeyOKH4QaeyOhIukaamaa laaabaGaeq4WdmhabaGaeqiUdehaaaaa@4144@ = constant,The model is not isotropic for large value of t.

Recent observations of SN Ia45,46 suggest that the universe is accelerating in its present state of evolution. It is believed that the way universe is accelerating presently; it will expand at the fastest possible rate in future and forever. For s= 0, we get q=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iabgkHiTiaaigdaaaa@3A28@  ; incidentally this value of DP leads to dH dt =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbGaamisaaqaaiaadsgacaWG0baaaiabg2da9iaaicdaaaa@3BEC@ , which implies the greatest value of Hubble’s parameter and the fastest rate of expansion of the universe. Thus, this model may represent the inflationary era in the early universe and the very late times of the universe.

From Equations (2.6), (3.1), (5.1), (5.8) and (5.9), the equation of state parameter is given by

ω= [ 3 k 2 2 + k L 0 2 e 2 k 2 t + α L 1 2 e 2n k 2 t ] [ ( 2n+1 ) k 2 2 + k L 0 2 e 2 k 2 t α L 1 2 e 2n k 2 t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGPaVlabgkHiTmaalaaabaWaamWaaeaacaaIZaGaam4A amaaDaaajuaibaGaaGOmaaqaaiaaikdaaaqcfaOaey4kaSYaaSaaae aacaWGRbaabaGaamitamaaDaaajuaibaGaaGimaaqaaiaaikdaaaqc faOaaGjcVlaadwgadaahaaqabKqbGeaacaaIYaGaam4AaKqbaoaaBa aajuaibaGaaGOmaaqabaGaamiDaaaaaaqcfaOaey4kaSYaaSaaaeaa cqaHXoqyaeaacaWGmbWcdaqhaaqcfasaaKqzadGaaGymaaqcfasaaK qzadGaaGOmaaaajuaGcaaMi8UaamyzamaaCaaabeqcfasaaiaaikda caWGUbGaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGaamiDaaaaaa aajuaGcaGLBbGaayzxaaaabaWaamWaaeaadaqadaqaaiaaikdacaWG UbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadUgadaqhaaqcfasaai aaikdaaeaacaaIYaaaaKqbakabgUcaRmaalaaabaGaam4Aaaqaaiaa dYeadaqhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakaayIW7caWGLb WaaWbaaeqajuaibaGaaGOmaiaadUgajuaGdaWgaaqcfasaaiaaikda aeqaaiaadshaaaaaaKqbakabgkHiTmaalaaabaGaeqySdegabaGaam itamaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaaGjcVlaadwga daahaaqcfasabeaacaaIYaGaamOBaiaadUgajuaGdaWgaaqcfasaai aaikdaaeqaaiaadshaaaaaaaqcfaOaay5waiaaw2faaaaaaaa@843F@                                     (5.10)

From Equation (5.10), we observe that ω1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaeyisISRaeyOeI0IaaGymaaaa@3BAA@  for sufficiently large time t. Therefore, the late time dynamics of EoS parameter ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@ represents the vacuum fluid dominated Universe, which is mathematically equivalent to cosmological constant.

From Equations (2.6), (3.1), (5.1), (5.8) and (5.9) and (5.10), the skew ness parameteris given by

γ= [ ( n 2 +n2 ) k 2 2 + k L 0 2 e 2 k 2 t + 2α L 1 2 e 2n k 2 t ] [ ( 2n+1 ) k 2 2 + k L 0 2 e 2 k 2 t α L 1 2 e 2n k 2 t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGPaVpaalaaabaWaamWaaeaacqGHsisldaqadaqaaiaa d6gadaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiaad6gacqGHsi slcaaIYaaacaGLOaGaayzkaaGaam4AamaaDaaajuaibaGaaGOmaaqa aiaaikdaaaqcfaOaey4kaSYaaSaaaeaacaWGRbaabaGaamitamaaDa aajuaibaGaaGimaaqaaiaaikdaaaqcfaOaaGjcVlaadwgadaahaaqc fasabeaacaaIYaGaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGaam iDaaaaaaqcfaOaey4kaSYaaSaaaeaacaaIYaGaeqySdegabaGaamit amaaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaaGjcVlaadwgada ahaaqcfasabeaacaaIYaGaamOBaiaadUgajuaGdaWgaaqcfasaaiaa ikdaaeqaaiaadshaaaaaaaqcfaOaay5waiaaw2faaaqaamaadmaaba WaaeWaaeaacaaIYaGaamOBaiabgUcaRiaaigdaaiaawIcacaGLPaaa caWGRbWaa0baaKqbGeaacaaIYaaabaGaaGOmaaaajuaGcqGHRaWkda WcaaqaaiaadUgaaeaacaWGmbWaa0baaKqbGeaacaaIWaaabaGaaGOm aaaajuaGcaaMi8UaamyzamaaCaaajuaibeqaaiaaikdacaWGRbqcfa 4aaSbaaKqbGeaacaaIYaaabeaacaWG0baaaaaajuaGcqGHsisldaWc aaqaaiabeg7aHbqaaiaadYeadaqhaaqcfasaaiaaigdaaeaacaaIYa aaaKqbakaayIW7caWGLbWaaWbaaKqbGeqabaGaaGOmaiaad6gacaWG Rbqcfa4aaSbaaKqbGeaacaaIYaaabeaacaWG0baaaaaaaKqbakaawU facaGLDbaaaaaaaa@8917@             (5.11)

In absence of magnetic field i.e. α0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyOKH4QaaGimaaaa@3ACA@ the value of Hubble’s parameter H, the scalar expansion θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ , shear scalar σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm haaa@3847@  remains as it is and energy density for magnetic field, energy density for fluid , the EoS parameter ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  and skewness parameter γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC gaaa@382B@  given by

s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaeyypa0JaaGimaaaa@395C@   (5.12)

ρ=( 2n+1 ) k 2 2 + k L 0 2 e 2 k 2 t . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi Naeyypa0JaaGPaVpaabmaabaGaaGOmaiaad6gacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaam4AamaaDaaajuaibaGaaGOmaaqaaiaaikdaaa qcfaOaey4kaSYaaSaaaeaacaWGRbaabaGaamitamaaDaaajuaibaGa aGimaaqaaiaaikdaaaGaaGjcVNqbakaadwgadaahaaqabKqbGeaaca aIYaGaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGaamiDaaaaaaqc faOaaiOlaaaa@5040@ (5.13)

ω= [ 3 k 2 2 + k L 0 2 e 2 k 2 t ] [ ( 2n+1 ) k 2 2 + k L 0 2 e 2 k 2 t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGPaVlabgkHiTmaalaaabaWaamWaaeaacaaIZaGaam4A aSWaa0baaKqbGeaajugWaiaaikdaaKqbGeaajugWaiaaikdaaaqcfa Oaey4kaSYaaSaaaeaacaWGRbaabaGaamitamaaDaaajuaibaGaaGim aaqaaiaaikdaaaqcfaOaaGjcVlaadwgadaahaaqcfasabeaacaaIYa Gaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGaamiDaaaaaaaajuaG caGLBbGaayzxaaaabaWaamWaaeaadaqadaqaaiaaikdacaWGUbGaey 4kaSIaaGymaaGaayjkaiaawMcaaiaadUgadaqhaaqcfasaaiaaikda aeaacaaIYaaaaKqbakabgUcaRmaalaaabaGaam4AaaqaaiaadYeada qhaaqcfasaaiaaicdaaeaacaaIYaaaaKqbakaayIW7caWGLbWaaWba aKqbGeqabaGaaGOmaiaadUgajuaGdaWgaaqcfasaaiaaikdaaeqaai aadshaaaaaaaqcfaOaay5waiaaw2faaaaaaaa@67B2@ (5.14)

γ= [ ( n 2 +n2 ) k 2 2 + k L 0 2 e 2 k 2 t ] [ ( 2n+1 ) k 2 2 + k L 0 2 e 2 k 2 t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGPaVpaalaaabaWaamWaaeaacqGHsisldaqadaqaaiaa d6gadaahaaqabKqbGeaacaaIYaaaaKqbakabgUcaRiaad6gacqGHsi slcaaIYaaacaGLOaGaayzkaaGaam4AamaaDaaajuaibaGaaGOmaaqa aiaaikdaaaqcfaOaey4kaSYaaSaaaeaacaWGRbaabaGaamitamaaDa aajuaibaGaaGimaaqaaiaaikdaaaqcfaOaaGjcVlaadwgadaahaaqa bKqbGeaacaaIYaGaam4AaKqbaoaaBaaajuaibaGaaGOmaaqabaGaam iDaaaaaaaajuaGcaGLBbGaayzxaaaabaWaamWaaeaadaqadaqaaiaa ikdacaWGUbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadUgadaqhaa qcfasaaiaaikdaaeaacaaIYaaaaKqbakabgUcaRmaalaaabaGaam4A aaqaaiaadYealmaaDaaajuaibaqcLbmacaaIWaaajuaibaqcLbmaca aIYaaaaKqbakaayIW7caWGLbWaaWbaaeqajuaibaGaaGOmaiaadUga juaGdaWgaaqcfasaaiaaikdaaeqaaiaadshaaaaaaaqcfaOaay5wai aaw2faaaaaaaa@6E63@

Conclusion

In this paper, we have studied Hypersurface Homogeneous anisotropic DE with variable EoS parameter ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDaaa@3871@ , considering two cases, for s0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgcMi5kaaicdaaaa@39FD@  and s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGZbGaeyypa0JaaGimaaaa@395C@  respectively. The special law of variation for Hubble’s parameter proposed by Berman31 yields constant value of Deceleration Parameter given by q=s1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iaadohacqGHsislcaaIXaaaaa@3B20@ , which provides accelerating models of the universe for s<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgYda8iaaigdaaaa@393B@  and decelerating ones for s>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abg6da+iaaigdaaaa@393F@ . It is observed that in both cases, EoS parameter ω is variable function of time which has been supported by recent observations1,2 The EoS parameter of DE evolves within the range predicted by the observations. Since in both cases, σ θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHdpWCaeaacqaH4oqCaaaaaa@3A0D@ =constant, the models do not approach isotropy at any time. Therefore, we cannot rule out the possibility of anisotropic nature of DE at least in hyper surface Homogenous framework. It is interesting to note that our investigations resembles to the result obtained by Yadav et al.15 The analysis of the models reveals that the present-day universe is dominated by Dark Energy, which can successfully describe the accelerating nature of the universe consistent with the observations.

Acknowledgments

None.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. Adam G Riess, Alexei V Filippenko, Peter Challis, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astrophysical Journal. 1998;116(3):1009–1038.
  2. S Perlmutter, G Aldering, G Goldhaber, et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. The Astrophysical Journal. 1999;517:565–586.
  3. M Kowalski, D Rubin, G Aldering, et al. Improved Cosmological Constraints from New, Old and Combined Supernova Datasets. The Astrophysical Journal. 2008;686:749–778.
  4. M Tegmark, M Blanton, M Strauss, et al. The 3D power spectrum of galaxies from the SDSS. The Astrophysical Journal. 2004 ;606(2):702–740.
  5. J Kujat, Angela M Linn, Robert J Scherrer, et al. Prospects for Determining the Equation of State of the Dark Energy: What Can Be Learned from Multiple Observables? The Astrophysical Journal. 2002 ;572(1):1–14.
  6. Matthias Bartelmanna, Klaus Dolagb, Francesca Perrotta, et al. Evolution of dark-matter haloes in a variety of dark-energy cosmologies. New Astronomy Reviews. 2005;49(2-6):199–203.
  7. A Pradhan, H Amirhashchi, B Saha. Bianchi Type-I Anisotropic Dark Energy Models with Constant Deceleration Parameter. International Journal of Theoretical Physics. 2011 ;50(9):2923–2938.
  8. Anil Kumar Yadav, Lallan Yadav. Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter. International Journal of Theoretical Physics. 2011;50(1):218–227.
  9. O Akarsu, CB Kilinc. LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. General Relativity and Gravitation. 2010;42:119–140.
  10. A Pradhan, H Amirhashchi, H Zainuddin. Accelerating dark energy models in Bianchi type-V space-time with variable deceleration parameter-revisted. Electronic Journal of Theoretical Physics. 2002;9(27):159–176.
  11. S Kumar, CP Singh. Anisotropic Bianchi type-I models with constant deceleration parameter in general relativity. Astrophysics and Space Science. 2007;312(1-2):57–62.
  12. CP Singh, S Kumar. Bianchi type-II cosmological models with constant deceleration parameter. International Journal of Modern Physics D. 2006;15(3):419–438.
  13. Akarsu, CB Kilinc. Bianchi type III models with anisotropic dark energy. General Relativity and Gravitation. 2010;42(4):763–775.
  14. Akarsu, CB Kilinc. de Sitter expansion with anisotropic fluid in Bianchi type-I space-time. Astrophysics and Space Science. 2010;326(2):315–322.
  15. AK Yadav, F Rahaman, S Ray, et al. Magnetized dark energy and the late time acceleration. The European Physical Journal Plus. 2014. p. 127.
  16. PK Sahoo, B Mishra. Axially symmetric cosmological model with anisotropic dark energy. The European Physical Journal Plus. 2014. p. 129.
  17. SD Katore, AY Shaikh. Bianchi Type V Magnetized Anisotropic Dark Energy Models with Constant Deceleration Parameter. The African Review of Physics. 2014. p. 1–8.
  18. AY Shaikh, SD Katore. Magnetized anisotropic dark energy models with constant deceleration parameter. Pramana–Journal of Physics. 2016;87:1–8.
  19. Stewart JM, Ellis GFR. Solutions of Einstein's Equations for a Fluid Which Exhibit Local Rotational Symmetry. Journal of Mathematical Physics. 1968;9(7).
  20. Hajj-Boutros. On hyper surface‐homogeneous space‐ Journal of Mathematical Physics. 1985;26(9).
  21. Verma MK, Shri Ram. Bulk Viscous Bianchi Type-III Cosmological Model with Time-Dependent G and Λ. International Journal of Theoretical Physics. 2010;49(4):693–700.
  22. SD Katore, AY Shaikh. Hypersurface-homogeneous space-time with anisotropic dark energy in scalar tensor theory of gravitation. Astrophysics and Space Science. 2015. p. 357.
  23. SD Katore, AY Shaikh. Two-Fluid Cosmological Models in Hypersurface-Homogeneous Spacetime. Prespacetime Journal. 2015;6(3):207–217.
  24. AY Shaikh, KS Wankhade. Hypersurface-Homogeneous Universe with Λ in f(R,T) Gravity by Hybrid Expansion Law. Theoretical Physics. 2017;2(1):34–43.
  25. SM Carroll, M Hoffman, M Trodden. Can the dark energy equation-of-state parameter w be less than −1? Physical Review D. 2003. p. 68.
  26. KC Jacobs. Cosmologies of Bianchi Type i with a Uniform Magnetic Field. Astrophysical Journal. 1969. p. 155.
  27. E King, P Coles. Dynamics of a magnetized Bianchi I universe with vacuum energy. Classical and Quantum Gravity. 2007;24(8).
  28. M Sharif, M Zubair. Dynamics of Bianchi I Universe with Magnetized Anisotropic Dark Energy. Astrophysics and Space Science. 2010;300:399–405.
  29. SD Katore, AY Shaikh, NK Sarkate. Bianchi Type-III Cosmic Strings and Domain Walls Cosmological Models in Self-creation Cosmology. Prespacetime-Journal. 2002;3(2).
  30. Ya B Zeldovich, AA Ruzmainkin, DD Sokoloff. Magnetic field in astrophysics. Gordon and Breach, New York, USA. 1983.
  31. Berman MS. Special Law of Variation for Hubbles Parameters. Il Nuovo Cimento B. 1983;74(2):182–186.
  32. Singh CP, Ram S, Zeyauddin M. Bianchi type-V perfect fluid space-time models in general relativity. Astrophysics and Space Science. 2002;
  33. Singh CP, Kumar S. Bianchi type-II cosmological models with constant deceleration parameter. International Journal of Modern Physics D. 2006;15(3):419–438.
  34. Singh CP, S kumar. Bianchi Type-II inflationary models with constant deceleration parameter in general relativity. Pramana-Journal of Physics. 2007;68:707–720.
  35. Singh CP, Ram S, Zeyauddin M. Bianchi type-V perfect fluid space-time models in general relativity. Astrophysics and Space Science. 2008;315:181–189.
  36. KS Thorne. Primordial Element Formation, Primordial Magnetic Fields, and the Isotropy of the Universe. The Astrophysical Journal. 1967;148:51–68.
  37. R Kantowski, RK Sachs. Some Spatially Homogeneous Anisotropic Relativistic Cosmological Models. Journal of Mathematical Physics. 1966;7(3):433–446.
  38. J Kristian, RK Sachs. Observations in Cosmology. The Astrophysical Journal. 1966. p. 143.
  39. CB Collins. Qualitative Magnetic Cosmology. Communications in Mathematical Physics. 1972;27:37–43.
  40. SR Roy, S Prakash. An anisotropic magneto hydrodynamic cosmological model in general relativity. Indian Journal of Physics B. 1978;52:47–52.
  41. SR Roy, SK Banerjee. A Bianchi type II cosmological model of Petrov type D representing an imperfect fluid with a source-free magnetic field. Classical and Quantum Gravity. 1977;14(10).
  42. R Bali, G Singh. Inhomogeneous cosmological models with electromagnetic field in general relativity. Astrophysics and Space Science. 1987;134(1):47–54.
  43. RG Vishwakarma. A study of angular size-redshift relation for models in which Λ decays as the energy density. Classical and Quantum Gravity. 2000;17(18).
  44. RA Knop, G Aldering, R Amanullah, et al. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope*. The Astrophysical Journal. 2003 ;598(1):102–137.
  45. John L Tonry, Brian P Schmidt, Brian Barris, et al Cosmological Results from High-z Supernovae***. The Astrophysical Journal. 2003;594(1):1–24.
  46. MV John. Cosmographic Evaluation of the Deceleration Parameter Using Type Ia Supernova Data. The Astrophysical Journal. 2004;614(1):1–5.
Creative Commons Attribution License

©2017 Shaikh, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.