Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 2 Issue 3

Lasing in grandjean–cano wedge as an option to study surface anchoring

Belyakov VA

Landau Institute for Theoretical Physics, Moscow Region, Russia

Correspondence: Vladimir Belyakov, Landau Institute for Theoretical Physics, Chernogolovka, Moscow Region, Russia, Tel 749 9137 3244

Received: February 26, 2018 | Published: May 11, 2018

Citation: Belyakov VA. Lasing in grandjean–cano wedge as an option to study surface anchoring. Phys Astron Int J. 2018;2(3):172-173. DOI: 10.15406/paij.2018.02.00082

Download PDF

Abstract

In this paper, theoretical consideration to study the surface anchoring in liquid crystals by means of distributed feedback (DFB) lasing in Grandjean–Cano wedge is presented with a short survey of low threshold lasing in chiral liquid crystals.

Keywords: grandjean–cano wedge, surface anchoring, optical edge modes, DFB lasing in photonic liquid crystals

Introduction

An essential progress was recently achieved in the model independent restoration of the actual surface anchoring potential in liquid crystals with the help of Grandjean–Cano (GC) wedge.1–3 A principal element of this restoration is a measuring the director orientation distribution at the wedge surface in an individual GC zone.2 There are various approaches to measure the director orientation distribution at the wedge surface2 and in Belyakov et al.1 it was reported on measuring large director angular deviations from the easy direction, up to the angle π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiWdaNaai4laiaaisdaaaa@3C9C@ by polarization microscope technique. Correspondingly, the actual surface anchoring potential was restored in Belyakov et al.3 up to angle π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiWdaNaai4laiaaisdaaaa@3C9C@ . In this angular interval the restored surface anchoring potential differs essentially from the known model anchoring potentials and, in particular, from the very popular Rapini–Papoular potential.4

Because there is a need to restore the actual surface anchoring potential in a whole angular range of it determination (up to the director angular deviations from the easy direction equal to π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiWdaNaai4laiaaikdaaaa@3C9A@ ) new approaches to measuring the director angular deviations from the easy direction are quite actual. In the present paper a new approach based on a measuring the distributed feedback (DFB) lasing frequency dependence in GC zones on the coordinate is studied.

General approach

We shall consider below a GC wedge filled by a cholesteric liquid crystal (CLC) containing dyes admixture ensuring a DFB lasing at the wave–length close to the CLC pitch. We also assume, for obtaining a maximal director angular deviations from the easy direction, that at one wedge surface the anchoring is infinitely strong (the director orientation coincides with the easy direction) and at the opposite wedge surface the anchoring is finite (the director orientation is capable to deviate from the easy direction). Because the director deviation angle φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOgaaa@3B2B@ is changing with the coordinate in GC zone (being equal to zero in the middle of zone) the local value of CLC pitch in each individual zone is also changing with the coordinate in GC zone (being equal to the equilibrium pitch only in the middle of zone). As known5 a minimal value of DFB lasing threshold happens at the frequency of edge mode (EM) depending on the CLC pitch, CLC dielectric anisotropy, and local wedge thickness. So, the lasing frequency for a minimal value of DFB lasing threshold occurs to be dependent on the local pitch value in a GC wedge. It is why an observed local lasing frequency allows determining the local pitch value. So, a measuring of the local lasing frequency allows to find the local director deviation from the easy direction angle via the formula

φ = π[ 2L/p N ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOMaaeiiaiabg2da9iaabccacqaH apaCjuaGpaWaamWaaOqaaKqzGeWdbiaaikdacaWGmbGaai4laiaadc hacaqGGaGaeyOeI0IaamOtaaGcpaGaay5waiaaw2faaaaa@481D@ , (1)

Where L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaaaa@3A3F@ is the local wedge thickness, p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaaaa@3A63@ is the local pitch value found from the local value of DFB lasing frequency (coinciding with the EM frequency) and N is the GC zone number. The local EM frequency is determined by the solution of the dispersion equation5

tgqL= i( qτ/ κ 2 )/[ ( τ/2κ ) 2 +  ( q/κ ) 2 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaiaadEgacaWGXbGaamitaiabg2da 9iaabccacaWGPbqcfa4damaabmaakeaajugib8qacaWGXbGaeqiXdq Naai4laiabeQ7aRTWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaaaa k8aacaGLOaGaayzkaaqcLbsapeGaai4laKqba+aadaWadaGcbaqcfa 4aaeWaaOqaaKqzGeWdbiabes8a0jaac+cacaaIYaGaeqOUdSgak8aa caGLOaGaayzkaaWcdaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGe Gaey4kaSIaaeiiaKqba+aadaqadaGcbaqcLbsapeGaamyCaiaac+ca cqaH6oWAaOWdaiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadWdbi aaikdaaaqcLbsacqGHsislcaaIXaaak8aacaGLBbGaayzxaaaaaa@650C@ , (2)

Where q= κ { 1+ ( τ/2κ ) 2    [ ( τ/κ ) 2  +  δ 2 ] ½ } ½ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyCaiabg2da9iaabccacqaH6oWAjuaG paWaaiWaaOqaaKqzGeWdbiaaigdacqGHRaWkjuaGpaWaaeWaaOqaaK qzGeWdbiabes8a0jaac+cacaaIYaGaeqOUdSgak8aacaGLOaGaayzk aaWcdaahaaqcbasabeaajugWa8qacaaIYaGaaiiOaaaajugibiabgk HiTiaabccajuaGpaWaamWaaOqaaKqbaoaabmaakeaajugib8qacqaH epaDcaGGVaGaeqOUdSgak8aacaGLOaGaayzkaaqcfa4aaWbaaSqabe aajugWa8qacaaIYaqcLbsacaGGGcaaaiabgUcaRiaabccacqaH0oaz l8aadaahaaqcbasabeaajugWa8qacaaIYaaaaaGcpaGaay5waiaaw2 faaSWaaWbaaKqaGeqabaqcLbmapeGaaiyVaaaaaOWdaiaawUhacaGL 9baalmaaCaaajeaibeqaaKqzadWdbiaac2laaaaaaa@69A1@ , τ= 4π/p, κ = ω EM ε 0 1/2 /c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiXdqNaeyypa0JaaeiiaiaaisdacqaH apaCcaGGVaGaamiCaiaacYcacaqGGaGaeqOUdSMaaeiiaiabg2da9i abeM8a3TWdamaaBaaajeaibaqcLbmapeGaamyraiaad2eaaKqaG8aa beaajugib8qacqaH1oqzlmaaDaaajuaGbaqcLbmacaaIWaaajuaGba qcLbmacaaIXaGaai4laiaaikdaaaqcLbsacaGGVaGaam4yaaaa@55EB@ , ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGim aaqcbasabaaaaa@3D7D@ is the average CLC dielectric constant, ω EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyYdC3cpaWaaSbaaKqaGeaajugWa8qa caWGfbGaamytaaqcbaYdaeqaaaaa@3EB3@ is the lasing frequency and δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqgaaa@3B13@ is the CLC dielectric anisotropy (see [5]). A solution of dispersion equation (2) determines the dependence of the lasing frequency ω EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyYdC3cpaWaaSbaaKqaGeaajugWa8qa caWGfbGaamytaaqcbaYdaeqaaaaa@3EB3@ on the local value of pitch, local value of the wedge thickness L and other CLC parameters and allows connecting the local lasing frequency with the local director deviation from the easy direction applying formula (1).

Unfortunately, in a general case the solution of the Equation (2) can be found only in a numerical approach and the functional dependence of local pitch p on the local lasing frequency ω EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyYdC3cpaWaaSbaaKqaGeaajugWa8qa caWGfbGaamytaaqcbaYdaeqaaaaa@3EB3@ can't be presented in an analytical form.

Analytic approach for a limiting case

However, for the case of a large value of the local thickness L the dependence of p on the local lasing frequency ω EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyYdC3cpaWaaSbaaKqaGeaajugWa8qa caWGfbGaamytaaqcbaYdaeqaaaaa@3EB3@ (and vice versa) can be presented in an analytical form.5 The EM frequencies in this case are coinciding with the frequencies of minima values of the reflection coefficient for a CLC layer of the thickness L and are determined by the relation:

Lκ { 1+ ( τ/2κ ) 2   [ ( τ/κ ) 2  +  δ 2 ] ½ } ½ =πn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaiabeQ7aRLqba+aadaGadaGcbaqc LbsapeGaaGymaiabgUcaRKqba+aadaqadaGcbaqcLbsapeGaeqiXdq Naai4laiaaikdacqaH6oWAaOWdaiaawIcacaGLPaaalmaaCaaajeai beqaaKqzadWdbiaaikdaaaqcLbsacqGHsislcaqGGaqcfa4damaadm aakeaajuaGdaqadaGcbaqcLbsapeGaeqiXdqNaai4laiabeQ7aRbGc paGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmapeGaaGOmaiaacc kaaaqcLbsacqGHRaWkcaqGGaGaeqiTdq2cpaWaaWbaaKqaGeqabaqc LbmapeGaaGOmaaaaaOWdaiaawUfacaGLDbaalmaaCaaajeaibeqaaK qzadWdbiaac2laaaaak8aacaGL7bGaayzFaaWcdaahaaqcbasabeaa jugWa8qacaGG9caaaKqzGeGaeyypa0JaeqiWdaNaamOBaaaa@6A90@ , (3)

Where n is the EM number. Because the lasing threshold is the lowest for the first EM (n=1 in (3)) we shall discuss further only a DFB lasing for n=1. In this case, as follows from (3), the local pitch value is connected with the lasing frequency by the following relation

p= 2πc/[ ω EM ε 0 1/2 ( 1 δ ) ½ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaiabg2da9iaabccacaaIYaGaeqiW daNaam4yaiaac+cajuaGpaWaamWaaOqaaKqzGeWdbiabeM8a3TWdam aaBaaajeaibaqcLbmapeGaamyraiaad2eaaKqaG8aabeaajugib8qa cqaH1oqzlmaaDaaajuaibaqcLbmacaaIWaaajuaibaqcLbmacaaIXa Gaai4laiaaikdaaaqcfa4damaabmaakeaajugib8qacaaIXaGaeyOe I0Iaaeiiaiabes7aKbGcpaGaayjkaiaawMcaaSWaaWbaaKqaGeqaba qcLbmapeGaaiyVaaaaaOWdaiaawUfacaGLDbaaaaa@5A73@ , (4)

Where the Equation (4) relates to the high frequency edge of the stop–band. Inserting (4) in (1) one finds for the director deviation angle for an individual GC zone:

φ=π[ ω EM ε 0 1/2 ( 1 δ ) ½ L/πc  N ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOMaeyypa0JaeqiWdaxcfa4damaa dmaakeaajugib8qacqaHjpWDl8aadaWgaaqcKfaG=haajugWa8qaca WGfbGaamytaaqcKfaG==aabeaajugib8qacqaH1oqzlmaaDaaajqwb a9FaaKqzadGaaGimaaqcKvaq=haajugWaiaaigdacaGGVaGaaGOmaa aajuaGpaWaaeWaaOqaaKqzGeWdbiaaigdacqGHsislcaqGGaGaeqiT dqgak8aacaGLOaGaayzkaaWcdaahaaqcKfaG=hqabaqcLbmapeGaai yVaaaajugibiaadYeacaGGVaGaeqiWdaNaam4yaiaacckacaGGGcGa eyOeI0IaamOtaaGcpaGaay5waiaaw2faaaaa@6950@ , (5)

The found connection (5), between the local director deviation from the easy direction and the local lasing frequency, can be used for a model–independent obtaining the director orientation as a function of coordinate in an individual GC zone if the corresponding measurements of coordinate dependence of the lasing frequency ω EM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyYdC3cpaWaaSbaaKazba4=baqcLbma peGaamyraiaad2eaaKazba4=paqabaaaaa@4239@ in GC zone were performed. However, one should keep in mind that the Equation (5) is sufficiently accurate only for a thick part of the GC wedge, i.e. for a large N.

It should be noted that the lasing measurements needed for a measuring of the director orientation as a function of coordinate in an individual GC zone are very similar to the ones performed in Sanz–Enguita et al.6 where the lasing intensity was measured as a function of coordinate in a GC zone. In Sanz–Enguita et al.6 nothing was said about the coordinate lasing frequency changes, however quite probable that the corresponding frequency measurements were also performed in Sanz–Enguita et al.6 and can be used for obtaining an angular director distribution in the individual GC zone.

Conclusion

We present a new approach based on a measuring the distributed feedback (DFB) lasing frequency dependence in GC zones. The results of the study can be used for a model–independent obtaining the director orientation as a function of local wedge thickness. The corresponding frequency measurements can be used for obtaining an angular director distribution in the individual GC zone.

Acknowledgements

The work is partially supported by the RFBR grants 16–02–0295_a and 16–02–0679_a.

Conflict of interest

Author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Belyakov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.