Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 2

Kinetic theory of cosmic baryon distribution functions in expanding space times

Hans J Fahr, Robindro Dutta Roy

Department of Astrophysics, University of Bonn, Germany

Correspondence: Hans J Fahr, Department of Astrophysics, Institute for Astrophysics and Extraterrestrial Research, University of Bonn, Auf dem H, Tel 49-02 28-73 3677, Fax 49-02 28-73 3672

Received: January 29, 2017 | Published: March 7, 2018

Citation: Fahr HJ, Dutta-Roy R. Kinetic theory of cosmic baryon distribution functions in expanding space times. Phys Astron Int J. 2018;2(2):136-138. DOI: 10.15406/paij.2018.02.00060

Download PDF

Abstract

It is generally assumed in modern cosmology that matter and radiation before the phase of matter recombination was in a perfect thermodynamic equilibrium with baryons described by Maxwell distributions and photons described by a Planckian law. Looking here, however, a bit deeper into the kinetic theory of the physical processes close to and just after the recombination of electrons and protons, reveals that in a homologously expanding universe baryon distribution functions will not keep their Maxwellian profile and connected with it, that their most relevant velocity moments, i.e. their density and their temperature, vary in an unexpected manner, also evidencing that, in contrast to the classical view, the entropy of free baryons changes with cosmic time.

Keywords: cosmology, kinetic theory, hubble expansion

Introduction

Let us start our considerations here from the cosmic era of baryon-electron (or proton-electron) recombination. In standard cosmology it is usually assumed that at the cosmic recombination era photons and matter, meaning electrons and protons, in this phase of the cosmic evolution, are dynamically and physically tightly bound to each other and undergo strong mutual interactions via Coulomb collisions and Compton collisions. With these conditions taken for granted, a pure thermodynamical equilibrium state appears to be guaranteed, implying that particles (protons and electrons) are Maxwell distributed in velocity-space and photons have a Planckian blackbody distribution in frequency. Looking a little more in detail on this relevant point, it is, however, by far not so evident that these assumptions really can be expected to be fulfilled during this period of cosmic evolution. This is because photons and particles are reacting very differently to the cosmological expansion; photons generally are considered to be cooling due to cosmologically being redshifted,1,2 while particles in first order are not directly feeling the expansion, unless they feel it adiabatically by mediation through numerous Coulomb collisions like they do in a box with subsonic expansion of its walls. The expanding walls with an expansion velocity V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nvaaaa@3A52@ should keep in touch with the particles; meaning that slow particles with particle velocities v<V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaiabgYda8iaa=zfaaaa@3C4D@ do not feel the expansion since not interacting with the moving walls, while those with velocities v>V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaiabg6da+iaa=zfaaaa@3C51@ feel it, since their reflection velocities when coming back from the wall is reduced, i.e. v`<v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaiaa=bgacqGH8aapcaWF2baa aa@3D4E@ .

In addition, Coulomb collisions redistributing velocities among particles have a specific property which makes things highly problematic in this context. This is because Coulomb collision cross sections are strongly dependent on the relative velocityof the colliding particles, namely being proportional to.3 This evidently has the consequence that high-velocity particles are much less collision-dominated compared to low-velocity ones, they may even be considered as collision-free at supercritically large velocities. So while the low-velocity branch of the distribution may still cool adiabatically as a collision-dominated gas and thus reflects cosmic expansion in an adiabatic form, the high-velocity branch in contrast behaves collision-free and hence changes in a different form. This violates the concept of a joint equilibrium temperature and of a resulting mono-Maxwellian velocity distribution function and means that there may be a critical evolutionary phase of the universe, due to different forms of cooling in the low- and high-velocity branches of the particle velocity distribution function, which do not permit the persistence of a Maxwellian equilibrium distribution at later cosmic times. We shall look into this interesting evolutionary phase trying to draw some first conclusions.

Theoretical approach

We start out from the generally accepted assumption in modern cosmology, that during the collision-dominated phase of the cosmic evolution, just before the time of matter recombination, matter and radiation are in a thermodynamic equilibrium state. In the following cosmic evolution this equilibrium, however, will experience perturbations as had already been emphasized by Fahr & Loch.4 The following part of the paper rather shall demonstrate that, even though a Maxwellian distribution would actually prevail at the beginning of the collision-free expansion phase (i.e. just after the recombination phase when electrons and protons recombine to H-atoms and photons start propagating through cosmic space effectively without further interaction with matter), this distribution function would, nevertheless, not persist in the universe during the ongoing of the collision-free expansion. For that purpose let us first consider a collision-free particle population in an expanding Robertson-Walker universe. Hereby it is clear that due to the cosmological principle and, connected with it, the homogeneity requirement, also the velocity distribution function of the particles must be isotropic in v and independent on the local place. It thus must be of the following general form
f( v,t )=n( t ) f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqbaoaabmaak8aabaqcLbsapeGa amODaiaacYcacaWG0baakiaawIcacaGLPaaajugibiabg2da9iaad6 gajuaGdaqadaGcpaqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaKqz GeGaeyyXICTabmOzayaaraqcfa4aaeWaaOWdaeaajugib8qacaWG2b GaaiilaiaadshaaOGaayjkaiaawMcaaaaa@4F8A@  (1)
Where n( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaKqbaoaabmaak8aabaqcLbsapeGa amiDaaGccaGLOaGaayzkaaaaaa@3E34@ denotes the cosmologically varying density only depending on the worldtime t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ , and f ¯ ( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOzayaaraqcfa4aaeWaaOWdaeaajugi b8qacaWG2bGaaiilaiaadshaaOGaayjkaiaawMcaaaaa@3FEF@ is the normalized, time-dependent, isotropic velocity distribution function connected with the property of a normalized function f ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOzayaaraaaaa@3A72@ of the magnitude v of the particle velocity according to: f ¯ ( v,t ) d 3 v=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aadaWdbaqaaKqzGeGabmOzayaaraqcfaieaaaaaaaaa8qadaqadaGc paqaaGqadKqzGeWdbiaa=zhacaGGSaGaa8hDaaGccaGLOaGaayzkaa qcLbsacaWFKbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugi biaa=zhacqGH9aqpcaaIXaaal8aabeqab0Gaey4kIipaaaa@4919@ .

If we take into account that particles, moving freely with their velocity v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaaaa@3A72@ into the v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaaaa@3A72@ -associated direction over a distance l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hBaaaa@3A68@ , are restituting at this new place, despite the differential Hubble flow and the explicit time-dependence of f, a locally prevailing co-variant, but perhaps form-invariant distribution function f( v`,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NzaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaa=bgacaGGSaGaa8hDaaGccaGLOaGaayzkaaaaaa@40B8@ , then the associated functions f( v`,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NzaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaa=bgacaGGSaGaa8hDaaGccaGLOaGaayzkaaaaaa@40B8@ and f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NzaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaacYcacaWF0baakiaawIcacaGLPaaaaaa@3FD7@ must be related to each other in a very specific, Liouville-like way.5,6 Quantifying this required relation needs some special care, since particles that are moving freely in an homologously expanding Hubble universe, do in this specific case at their motions not conserve their associated phasespace volumes d 6 Φ= d 3 v  d 3 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hzaKqba+aadaahaaWcbeqcbasa aKqzadWdbiaaiAdaaaqcLbsacaWHMoGaeyypa0Jaa8hzaSWdamaaCa aajeaibeqaaKqzadWdbiaaiodaaaqcLbsacaWF2bGaa8hOaiaa=rga l8aadaahaaqcbasabeaajugWa8qacaaIZaaaaKqzGeGaa8hEaaaa@4AD4@ , since in a homologously expanding space, no particle Lagrangian L( v,x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8htaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaacYcacaWF4baakiaawIcacaGLPaaaaaa@3FC1@  exists and thus no Hamiltonian canonical relations of their dynamical coordinates v and x are valid. Hence, Liouville´s theorem7 requires that not the differential 6D-phase space volumes, but the conjugated differential phase space densities are identical, i.e.
f`( v`,t )  d 3 v`  d 3 x`=f( v,t )  d 3 v  d 3 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaiaa=bgajuaGdaqadaGcpaqa aKqzGeWdbiaa=zhacaWFGbGaaiilaiaa=rhaaOGaayjkaiaawMcaaK qzGeGaa8hOaiaa=rgal8aadaahaaqcbasabeaajugWa8qacaaIZaaa aKqzGeGaa8NDaiaa=bgacaWFGcGaa8hzaSWdamaaCaaajeaibeqaaK qzadWdbiaaiodaaaqcLbsacaWF4bGaa8hyaiabg2da9iaa=zgajuaG daqadaGcpaqaaKqzGeWdbiaa=zhacaGGSaGaa8hDaaGccaGLOaGaay zkaaqcLbsacaWFGcGaa8hzaSWdamaaCaaajeaibeqaaKqzadWdbiaa iodaaaqcLbsacaWF2bGaa8hOaiaa=rgal8aadaahaaqcbasabeaaju gWa8qacaaIZaaaaKqzGeGaa8hEaaaa@6393@  (2)
At the place where these particles arrive after passage over a distance l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hBaaaa@3A68@ , the particle population has a relative Hubble drift given by v H =lH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaSWdamaaBaaajeaibaqcLbma peGaa8hsaaqcbaYdaeqaaKqzGeWdbiabg2da9iaa=XgacqGHflY1ca WFibaaaa@42BC@ co-aligned with v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaaaa@3A72@ , where H=H(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hsaiabg2da9iaa=HeacaGGOaGa a8hDaiaa=Lcaaaa@3E5E@ means the time-dependent, actual Hubble parameter. Thus, the original particle velocity v  is locally tuned down to v`=vlH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaiaa=bgacqGH9aqpcaWF2bGa eyOeI0Iaa8hBaiabgwSixlaadIeaaaa@4241@ , since at the present place x´ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hEaiaa=rlaaaa@3BA9@ deplaced from the original place by the increment l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hBaaaa@3A68@ , all velocities have to be judged with respect to the new reference frame with a differential Hubble drift of lH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hBaiabgwSixlaa=Heaaaa@3D7B@ . In addition, all dimensions of the space volume within a time Δt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCiLdGqadiaa=rhaaaa@3B90@ are cosmologically expanded, so that dx`=dx( 1+HΔt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hzaiaa=HhacaWFGbGaeyypa0Ja a8hzaiaa=HhajuaGdaqadaGcpaqaaKqzGeWdbiaaigdacqGHRaWkca WFibGaaCiLdiaa=rhaaOGaayjkaiaawMcaaaaa@4672@ holds. A complete re-incorporation into the locally valid distribution function then implies, with linearizably small quantities Δtl/v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaCiLdGqadiaa=rhacqGHfjcqcaWFSbGa ai4laiaa=zhaaaa@3F59@ and Δv=lH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqecbmGaa8NDaiabg2da9iabgkHi Tiaa=XgacqGHflY1caWGibaaaa@41CF@ , that one can express the above requirement in the following form
f`( v`,t )  d 3 v`  d 3 x=( f( v,t )+ f t Δt+ f v Δv )(1+ ( Δv v ) 2 ) ( 1+HΔt ) 3 d 3 v  d 3 x=f( v,t )  d 3 v  d 3 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaiaa=bgajuaGdaqadaGcpaqa aKqzGeWdbiaa=zhacaWFGbGaaiilaiaa=rhaaOGaayjkaiaawMcaaK qzGeGaa8hOaiaa=rgal8aadaahaaqcbasabeaajugWa8qacaaIZaaa aKqzGeGaa8NDaiaa=bgacaWFGcGaa8hzaSWdamaaCaaajeaibeqaaK qzadWdbiaaiodaaaqcLbsacaWF4bGaeyypa0tcfa4aaeWaaOWdaeaa jugib8qacaWFMbqcfa4aaeWaaOWdaeaajugib8qacaWF2bGaaiilai aa=rhaaOGaayjkaiaawMcaaKqzGeGaey4kaSscfa4aaSaaaOWdaeaa jugib8qacqGHciITcaWFMbaak8aabaqcLbsapeGaeyOaIyRaa8hDaa aacqqHuoarcaWF0bGaey4kaSscfa4aaSaaaOWdaeaajugib8qacqGH ciITcaWFMbaak8aabaqcLbsapeGaeyOaIyRaa8NDaaaacqqHuoarca WF2baakiaawIcacaGLPaaajugibiabgwSixlaacIcacaaIXaGaey4k aSscfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacqqHuo arcaWF2baak8aabaqcLbsapeGaa8NDaaaaaOGaayjkaiaawMcaaSWd amaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaGGPaqcfa4aae WaaOWdaeaajugib8qacaaIXaGaey4kaSIaa8hsaiabgwSixlabfs5a ejaa=rhaaOGaayjkaiaawMcaaSWdamaaCaaajeaibeqaaKqzadWdbi aaiodaaaqcLbsacaWFKbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4m aaaajugibiaa=zhacaWFGcGaa8hzaSWdamaaCaaajeaibeqaaKqzad WdbiaaiodaaaqcLbsacaWF4bGaeyypa0Jaa8NzaKqbaoaabmaak8aa baqcLbsapeGaa8NDaiaacYcacaWF0baakiaawIcacaGLPaaajugibi aa=bkacaWFKbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugi biaa=zhacaWFGcGaa8hzaSWdamaaCaaajeaibeqaaKqzadWdbiaaio daaaqcLbsacaWF4baaaa@A95F@  (3)

This then means for terms of first order
f t Δt+ f v Δv+2 Δv v f+3HΔtf=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeuiLdqKaa8hDai abgUcaRKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaa8NzaaGcpaqa aKqzGeWdbiabgkGi2kaa=zhaaaGaeuiLdqKaa8NDaiabgUcaRiaaik dacqGHflY1juaGdaWcaaGcpaqaaKqzGeWdbiabfs5aejaa=zhaaOWd aeaajugib8qacaWF2baaaiaa=zgacqGHRaWkcaaIZaGaa8hsaiabgw Sixlabfs5aejaa=rhacqGHflY1caWFMbGaeyypa0JaaGimaaaa@6223@ (4)
And consequently
f t l v lH f v 2 lH v f+3H l v f=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaqcfa4aaSaaaOWdae aajugib8qacaWFSbaak8aabaqcLbsapeGaa8NDaaaacqGHsislcaWF SbGaeyyXICTaa8hsaKqbaoaalaaak8aabaqcLbsapeGaeyOaIyRaa8 NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=zhaaaGaeyOeI0IaaGOmaKqb aoaalaaak8aabaqcLbsapeGaa8hBaiaa=HeaaOWdaeaajugib8qaca WF2baaaiaa=zgacqGHRaWkcaaIZaGaa8hsaKqbaoaalaaak8aabaqc LbsapeGaa8hBaaGcpaqaaKqzGeWdbiaa=zhaaaGaa8Nzaiabg2da9i aaicdaaaa@5F85@  (5)
Finally leading to the following requirement (Requirement A)
f t =vH f v Hf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyypa0Jaa8NDai aa=HeajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaa=zgaaOWdaeaa jugib8qacqGHciITcaWF2baaaiabgkHiTiaa=HeacaWFMbaaaa@4BBD@  (6)
Starting from a Maxwell distribution f( v, t 0 )=Max( v, t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NzaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaacYcacaWF0bWcpaWaaSbaaKqaGeaajugWa8qacaaIWa aajeaipaqabaaak8qacaGLOaGaayzkaaqcLbsacqGH9aqpcaWHnbGa aCyyaiaahIhajuaGdaqadaGcpaqaaKqzGeWdbiaa=zhacaGGSaGaa8 hDaSWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaaGcpeGa ayjkaiaawMcaaaaa@4EEE@ , one could try to solve the upper particle differential equation and find the solution for all later distribution functions. Here, however, we prefer to make use of a much simpler procedure: Namely looking now for the most interesting velocity moments, like density and pressure, of the function f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaaaa@3A62@ fulfilling the above partial differential equation, - then multiplying this equation with a) 4π v 2 dv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGinaiabec8aWjaadAhal8aadaahaaqc basabeaajugWa8qacaaIYaaaaKqzGeGaamizaiaadAhaaaa@41B8@ and b) ( 4π/3 )m v 4 dv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaaGinaGqadiaa =b8acaGGVaGaaG4maaGccaGLOaGaayzkaaqcLbsacaWFTbGaa8NDaS WdamaaCaaajeaibeqaaKqzadWdbiaaisdaaaqcLbsacaWFKbGaa8ND aaaa@4678@  and integrating over the whole velocity space leads to the following relations:
a)n= n 0 e 2H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8xyaiaa=LcacaWFUbGaeyypa0Ja a8NBaSWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqzGe Wdbiaa=vgal8aadaahaaqcbasabeaajugWa8qacqGHsislcaaIYaGa a8hsaSWaaeWaaKqaG8aabaqcLbmapeGaa8hDaiabgkHiTiaa=rhal8 aadaWgaaqccasaaKqzadWdbiaaicdaaKGaG8aabeaaaKqaG8qacaGL OaGaayzkaaaaaaaa@4ED0@  (7)
And
b)P= P 0 e 4H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nyaiaa=LcacaWFqbGaeyypa0Ja a8huaKqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaKqzGe Wdbiaa=vgal8aadaahaaqcbasabeaajugWa8qacqGHsislcaaI0aGa a8hsaSWaaeWaaKqaG8aabaqcLbmapeGaa8hDaiabgkHiTiaa=rhal8 aadaWgaaqccasaaKqzadWdbiaaicdaaKGaG8aabeaaaKqaG8qacaGL OaGaayzkaaaaaaaa@4EFB@ (8)
This then immediately makes evident that with the above solutions, one for instance finds that the particle entropy S=P/ n γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83uaiabg2da9iaa=bfacaGGVaGa a8NBaSWdamaaCaaajeaibeqaaKqzadWdbiaa=n7aaaaaaa@40A3@ , given by
P n γ = P 0 n 0 γ e ( 42γ )H( t t 0 ) = P 0 n 0 e 2 3 H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaacbmqcLbsapeGaa8huaaGc paqaaKqzGeWdbiaa=5gal8aadaahaaqcbasabeaajugWa8qacaWFZo aaaaaajugibiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaa8huaKqb a+aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaaGcbaqcLbsape Gaa8NBaSWdamaaDaaajeaibaqcLbmapeGaaGimaaqcbaYdaeaajugW a8qacaWFZoaaaaaajugibiaa=vgajuaGpaWaaWbaaSqabKqaGeaaju gWa8qacqGHsisllmaabmaajeaipaqaaKqzadWdbiaaisdacqGHsisl caaIYaGaa83SdaqcbaIaayjkaiaawMcaaKqzadGaa8hsaSWaaeWaaK qaG8aabaqcLbmapeGaa8hDaiabgkHiTiaa=rhal8aadaWgaaqccasa aKqzadWdbiaaicdaaKGaG8aabeaaaKqaG8qacaGLOaGaayzkaaaaaK qzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaWFqbWcpaWaaSba aKqaGeaajugWa8qacaaIWaaajeaipaqabaaakeaajugib8qacaWFUb WcpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaaaKqzGeWd biaa=vgal8aadaahaaqcbasabeaajugWa8qacqGHsisllmaalaaaje aipaqaaKqzadWdbiaaikdaaKqaG8aabaqcLbmapeGaaG4maaaacaWF ibWcdaqadaqcbaYdaeaajugWa8qacaWF0bGaeyOeI0Iaa8hDaSWdam aaBaaajiaibaqcLbmapeGaaGimaaqccaYdaeqaaaqcbaYdbiaawIca caGLPaaaaaaaaa@7F96@  (9)
Surprisingly enough is not constant with time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hDaaaa@3A70@ , which means that in fact no adiabatic behavior of the expanding particle gas occurs, and that the gas entropyfor that reason also is not constant but is decreasing according to the following relation
S=S( t )= S 0 ln( P n γ )= 2 3 H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83uaiabg2da9iaa=nfajuaGdaqa daGcpaqaaKqzGeWdbiaa=rhaaOGaayjkaiaawMcaaKqzGeGaeyypa0 Jaa83uaSWdamaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqz GeWdbiGacYgacaGGUbqcfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdae aajugib8qacaWFqbaak8aabaqcLbsapeGaa8NBaKqba+aadaahaaWc beqcbasaaKqzadWdbiaa=n7aaaaaaaGccaGLOaGaayzkaaqcLbsacq GH9aqpcqGHsisljuaGdaWcaaGcpaqaaKqzGeWdbiaaikdaaOWdaeaa jugib8qacaaIZaaaaiaa=HeajuaGdaqadaGcpaqaaKqzGeWdbiaa=r hacqGHsislcaWF0bWcpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeai paqabaaak8qacaGLOaGaayzkaaaaaa@6022@  (10)
At this point of our study, it is perhaps historically interesting to see that, when assuming the commonly used Hamilton canonical relations to be valid (i.e. dL d p i = d x i dt ; dL d x i = d p i dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaacbmqcLbsapeGaa8hzaiaa =XeaaOWdaeaajugib8qacaWFKbGaa8hCaKqba+aadaWgaaqcbasaaK qzadWdbiaa=LgaaSWdaeqaaaaajugib8qacqGH9aqpjuaGdaWcaaGc paqaaKqzGeWdbiaa=rgacaWF4bWcpaWaaSbaaKqaGeaajugWa8qaca WFPbaajeaipaqabaaakeaajugib8qacaWFKbGaa8hDaaaacaGG7aGa eyOeI0scfa4aaSaaaOWdaeaajugib8qacaWFKbGaa8htaaGcpaqaaK qzGeWdbiaa=rgacaWF4bWcpaWaaSbaaKqaGeaajugWa8qacaWFPbaa jeaipaqabaaaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsape Gaa8hzaiaa=bhal8aadaWgaaqcbasaaKqzadWdbiaa=LgaaKqaG8aa beaaaOqaaKqzGeWdbiaa=rgacaWF0baaaaaa@5FF8@ ), the Liouville theorem would then instead of Requirement A simply require f`( v`,t )=f( v,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaiaa=bgajuaGdaqadaGcpaqa aKqzGeWdbiaa=zhacaWFGbGaaiilaiaa=rhaaOGaayjkaiaawMcaaK qzGeGaeyypa0Jaa8NzaKqbaoaabmaak8aabaqcLbsapeGaa8NDaiaa cYcacaWF0baakiaawIcacaGLPaaaaaa@498A@  and hence would lead to the following form of a Vlasow equation (Requirement B)
f t vH f v =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyOeI0Iaa8NDai aa=HeajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaa=zgaaOWdaeaa jugib8qacqGHciITcaWF2baaaiabg2da9iaaicdaaaa@4AC7@  (11)
In that case, the first velocity moment is found from the following relation
n t = 4π v 3 H f v dv=4πH ( v 3 f) v dv12πH v 2 fdv MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NBaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyypa0tcfa4dam aavacakeqaleqabaqcLbsacaaMb8oaneaajugib8qacqGHRiI8aaGa aGinaiaa=b8acaWF2bWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maa aajugibiaa=HeajuaGdaWcaaGcpaqaaKqzGeWdbiabgkGi2kaa=zga aOWdaeaajugib8qacqGHciITcaWF2baaaiaa=rgacaWF2bGaeyypa0 JaaGinaiaa=b8acaWFibqcfa4damaavacakeqaleqabaqcLbsacaaM b8oaneaajugib8qacqGHRiI8aaqcfa4aaSaaaOWdaeaajugib8qacq GHciITcaGGOaGaa8NDaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaa iodaaaqcLbsacaWFMbGaaiykaaGcpaqaaKqzGeWdbiabgkGi2kaa=z haaaGaa8hzaiaa=zhacqGHsislcaaIXaGaaGOmaiaa=b8acaWFibqc fa4damaavacakeqaleqabaqcLbsacaaMb8oaneaajugib8qacqGHRi I8aaGaa8NDaSWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsa caWFMbGaa8hzaiaa=zhaaaa@7DC3@  (12)
Yielding
n t =3nH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NBaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyypa0JaeyOeI0 IaaG4maiaa=5gacaWFibaaaa@4412@  (13)
Which can easily be identified with the solution n~ R 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NBaiaac6hacaWFsbWcpaWaaWba aKqaGeqabaqcLbmapeGaeyOeI0IaaG4maaaaaaa@3F8D@ , i.e. a baryon density falling off inversely proportional to the cosmic volume. Looking furthermore also for the higher moment P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8huaaaa@3A4C@ , then in this case one is lead to
P t = 4π 3 v 5 H f v dv=5HP MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8huaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyypa0tcfa4aaS aaaOWdaeaajugib8qacaaI0aGaa8hWdaGcpaqaaKqzGeWdbiaaioda aaqcfa4damaavacakeqaleqabaqcLbsacaaMb8oaneaajugib8qacq GHRiI8aaGaa8NDaSWdamaaCaaajeaibeqaaKqzadWdbiaaiwdaaaqc LbsacaWFibqcfa4aaSaaaOWdaeaajugib8qacqGHciITcaWFMbaak8 aabaqcLbsapeGaeyOaIyRaa8NDaaaacaWFKbGaa8NDaiabg2da9iab gkHiTiaaiwdacaWFibGaa8huaaaa@5C71@  (14)
Which now in this case shows that the actual entropy based on γ=5/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83Sdiabg2da9iaaiwdacaGGVaGa aG4maaaa@3DE7@ evaluates to
S= P n γ = P 0 n 0 γ e ( 53γ )H( t t 0 ) =const.!!! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83uaiabg2da9Kqbaoaalaaak8aa baqcLbsapeGaa8huaaGcpaqaaKqzGeWdbiaa=5gajuaGpaWaaWbaaS qabKqaGeaajugWa8qacaWFZoaaaaaajugibiabg2da9Kqbaoaalaaa k8aabaqcLbsapeGaa8huaSWdamaaBaaajeaibaqcLbmapeGaaGimaa qcbaYdaeqaaaGcbaqcLbsapeGaa8NBaSWdamaaDaaajeaibaqcLbma peGaaGimaaqcbaYdaeaajugWa8qacaWFZoaaaaaajugibiaa=vgaju aGpaWaaWbaaSqabKqaGeaajugWa8qacqGHsisllmaabmaajeaipaqa aKqzadWdbiaaiwdacqGHsislcaaIZaGaa83SdaqcbaIaayjkaiaawM caaKqzadGaa8hsaSWaaeWaaKqaG8aabaqcLbmapeGaa8hDaiabgkHi Tiaa=rhal8aadaWgaaqccasaaKqzadWdbiaaicdaaKGaG8aabeaaaK qaG8qacaGLOaGaayzkaaaaaKqzGeGaeyypa0JaaC4yaiaah+gacaWH UbGaaC4CaiaahshacaGGUaGaaiyiaiaacgcacaGGHaaaaa@6EA0@  (15)
That means in this”classic“case also an adiabatic expansion is retained, however, based on wrong assumptions!- Assumptions namely that the classical Hamilton canonical relations would be valid here which they are in fact not due to the non-conservative Hubble-forces acting, connected with the relation dp/dt=pH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hzaiaa=bhacaGGVaGaa8hzaiaa =rhacqGH9aqpcaWFWbGaa8hsaaaa@409E@ .

In contrast going back to the cosmically correct Vlasow equation (Requirement A), one can then check whether or not this equation allows that an initial Maxwellian velocity distribution function persists during the ongoing collision-free expansion. Here, one finds for f( v,t ) ~ Max( v,t ) ~ n( t )T ( t ) 3/2 e m v 2 /2KT( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NzaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaacYcacaWF0baakiaawIcacaGLPaaajugibiaa=bkaca GG+bGaa8hOaiaah2eacaWHHbGaaCiEaKqbaoaabmaak8aabaqcLbsa peGaa8NDaiaacYcacaWF0baakiaawIcacaGLPaaajugibiaa=bkaca GG+bGaa8hOaiaa=5gajuaGdaqadaGcpaqaaKqzGeWdbiaa=rhaaOGa ayjkaiaawMcaaKqzGeGaa8hvaKqbaoaabmaak8aabaqcLbsapeGaa8 hDaaGccaGLOaGaayzkaaWcpaWaaWbaaKqaGeqabaqcLbmapeGaeyOe I0IaaG4maiaac+cacaaIYaaaaKqzGeGaa8xzaSWdamaaCaaajeaibe qaaKqzadWdbiabgkHiTiaa=1gacaWF2bWcpaWaaWbaaKGaGeqabaqc LbmapeGaaGOmaaaacaGGVaGaaGOmaiaa=TeacaWFubWcdaqadaqcba YdaeaajugWa8qacaWF0baajeaicaGLOaGaayzkaaaaaaaa@6DE5@ , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NBaaaa@3A6A@ and T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hvaaaa@3A50@  being time-dependent moments of f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaaaa@3A62@ , that one obtains the two relevant Vlasow derivatives in the following form:
f t =f( d( ln n ) dt 3 T ˙ 2T + m v 2 2KT T ˙ T ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=rhaaaGaeyypa0Jaa8NzaK qbaoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsapeGaa8hzaKqb aoaabmaak8aabaqcLbsapeGaaCiBaiaah6gacaGGGcGaa8NBaaGcca GLOaGaayzkaaaapaqaaKqzGeWdbiaa=rgacaWF0baaaiabgkHiTKqb aoaalaaak8aabaqcLbsapeGaaG4maiqa=rfapaGbaiaaaOqaaKqzGe WdbiaaikdacaWFubaaaiabgUcaRKqbaoaalaaak8aabaqcLbsapeGa a8xBaiaa=zhal8aadaahaaqcbasabeaajugWa8qacaaIYaaaaaGcpa qaaKqzGeWdbiaaikdacaWFlbGaa8hvaaaajuaGdaWcaaGcpaqaaKqz GeWdbiqa=rfapaGbaiaaaOqaaKqzGeWdbiaa=rfaaaaakiaawIcaca GLPaaaaaa@62EE@ (16)
And
f v =f mv KT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaeyOaIylcbmGa a8NzaaGcpaqaaKqzGeWdbiabgkGi2kaa=zhaaaGaeyypa0JaeyOeI0 Iaa8NzaKqbaoaalaaak8aabaqcLbsapeGaa8xBaiaa=zhaaOWdaeaa jugib8qacaWFlbGaa8hvaaaaaaa@4812@ (17)
These two expressions then lead to the following Vlasow requirement (see Requirement A):
d( ln n ) dt 3 T ˙ 2T + m v 2 2KT T ˙ T =H( m v 2 KT +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaacbmqcLbsapeGaa8hzaKqb aoaabmaak8aabaqcLbsapeGaaCiBaiaah6gacaWFGcGaa8NBaaGcca GLOaGaayzkaaaapaqaaKqzGeWdbiaa=rgacaWF0baaaiabgkHiTKqb aoaalaaak8aabaqcLbsapeGaaG4maiqa=rfapaGbaiaaaOqaaKqzGe WdbiaaikdacaWFubaaaiabgUcaRKqbaoaalaaak8aabaqcLbsapeGa a8xBaiaa=zhal8aadaahaaqcbasabeaajugWa8qacaaIYaaaaaGcpa qaaKqzGeWdbiaaikdacaWFlbGaa8hvaaaajuaGdaWcaaGcpaqaaKqz GeWdbiqa=rfapaGbaiaaaOqaaKqzGeWdbiaa=rfaaaGaeyypa0Jaey OeI0Iaa8hsaKqbaoaabmaak8aabaqcfa4dbmaalaaak8aabaqcLbsa peGaa8xBaiaa=zhal8aadaahaaqcbasabeaajugWa8qacaaIYaaaaa GcpaqaaKqzGeWdbiaa=TeacaWFubaaaiabgUcaRiaaigdaaOGaayjk aiaawMcaaaaa@6695@  (18)
Where T ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGab8hva8aagaGaaaaa@3A68@ denotes the time derivative of T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hvaaaa@3A50@ , i.e. dT/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hzaiaa=rfacaGGVaGaa8hzaiaa =rhaaaa@3DC2@ .

In order to fulfill the above equation, obviously the terms with v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaSWdamaaCaaajeaibeqaaKqzadWd biaaikdaaaaaaa@3CCA@ have to cancel each other, since n and T are velocity moments of f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8Nzaaaa@3A62@ , hence independent on v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NDaaaa@3A72@ . This is evidently only satisfied, if the change of the temperature with cosmic time is given by
T= T 0 e 2H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hvaiabg2da9iaa=rfajuaGpaWa aSbaaKqaGeaajugWa8qacaaIWaaal8aabeaajugib8qacaWFLbWcpa WaaWbaaKqaGeqabaqcLbmapeGaeyOeI0IaaGOmaiaa=Healmaabmaa jeaipaqaaKqzadWdbiaa=rhacqGHsislcaWF0bWcpaWaaSbaaKGaGe aajugWa8qacaaIWaaajiaipaqabaaajeaipeGaayjkaiaawMcaaaaa aaa@4D74@  (19)
This dependence in fact is obtained when inspecting the earlier found solutions for the moment’s n and P, because these solutions exactly give
T= P Kn = P 0 K n 0 e ( 42 )H( t t 0 ) = T 0 e 2H( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hvaiabg2da9Kqbaoaalaaak8aa baqcLbsapeGaa8huaaGcpaqaaKqzGeWdbiaa=TeacaWFUbaaaiabg2 da9Kqbaoaalaaak8aabaqcLbsapeGaa8huaKqba+aadaWgaaqcbasa aKqzadWdbiaaicdaaSWdaeqaaaGcbaqcLbsapeGaa83saiaa=5gaju aGpaWaaSbaaKqaGeaajugWa8qacaaIWaaal8aabeaaaaqcLbsapeGa a8xzaKqba+aadaahaaWcbeqcbasaaKqzadWdbiabgkHiTSWaaeWaaK qaG8aabaqcLbmapeGaaGinaiabgkHiTiaaikdaaKqaGiaawIcacaGL PaaajugWaiaa=HealmaabmaajeaipaqaaKqzadWdbiaa=rhacqGHsi slcaWF0bWcpaWaaSbaaKGaGeaajugWa8qacaaIWaaajiaipaqabaaa jeaipeGaayjkaiaawMcaaaaajugibiabg2da9iaa=rfal8aadaWgaa qcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacaWFLbWcpaWa aWbaaeqabaqcLbmapeGaeyOeI0IaaGOmaiaa=HealmaabmaapaqaaK qzadWdbiaa=rhacqGHsislcaWF0bWcpaWaaSbaaWqaaKqzadWdbiaa icdaaWWdaeqaaaWcpeGaayjkaiaawMcaaaaaaaa@72FE@ (20)
With that, the Vlasov requirement found above reduces to the following expression
d( ln n ) dt 3 T ˙ 2T =H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaGqad8qacaWFKbWaaeWaa8aabaWd biaahYgacaWHUbGaa8hOaiaa=5gaaiaawIcacaGLPaaaa8aabaWdbi aa=rgacaWF0baaaiabgkHiTmaalaaapaqaa8qacaaIZaGab8hva8aa gaGaaaqaa8qacaaIYaGaa8hvaaaacqGH9aqpcqGHsislcaWFibaaaa@48C0@ (21)
Which then finally leads to requirement
2H 3 2 ( 2H )=H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0IaaGOmaGqadiaa=HeacqGHsisl juaGdaWcaaGcpaqaaKqzGeWdbiaaiodaaOWdaeaajugib8qacaaIYa aaaKqbaoaabmaak8aabaqcLbsapeGaeyOeI0IaaGOmaiaa=HeaaOGa ayjkaiaawMcaaKqzGeGaeyypa0JaeyOeI0Iaa8hsaaaa@48F7@  (22)
Making it mathematically evident that this requirement is not fulfilled, and thus meaning that consequently a Maxwellian particle distribution cannot be maintained, not even at a collision-free cosmic expansion.

Conclusion

With the above result, we are now finally lead to the statement that a correctly derived Vlasow equation for the cosmic gas particles in a Hubble universe leads to a collision-free expansion behavior that neither runs adiabatic for the cosmic gas, nor does it conserve the initially Maxwellian form of the distribution function. Under these auspices, it can, however, also easily be demonstrated that under ongoing collisional interaction of cosmic photons with cosmic particles via Compton collisions in case of non-Maxwellian particle distributions unavoidably lead to deviations from the Planckian blackbody spectrum.4 This makes it hard to be convinced of a pure Planck spectrum for the CMB photons at times around or just after the cosmic matter recombination. Our results now further raise the question whether or not matter and radiation as ingredients in the GRT energy-momentum tensor have to be carefully reanalyzed on the basis of their unexpected non-equilibrium behavior. This should perhaps be taken together with most recent results by Fahr & Heyl8,9 showing that the energy density of cosmic radiation (i.e. the CMB photons) does not fall off with the reciproke of the fourth, but only with the reciproke of the third power of the scale of the universe. We shall look into that problem in an upcoming publication.

Acknowledgements

None

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Peacock JA. Cosmological Physics. UK:Cambridge University Press; 1999:696 p.
  2. Goenner HFM. Einführung in die Spezielle und Allgemeine Relativitätstheorie. Germany:Spektrum Akademischer Verlag;1996.
  3. Spitzer L. Physics of fully ionized gases. USA:Dover Books on Physics;2006.
  4. Fahr HJ, Loch R. Photon stigmata from the recombination phase superimposed on the cosmological background radiation. Astronomy and Astrophysics. 1991;246(1):1–9
  5. Cercigniani C. The Boltzmann equation and its applications. Germany: Springer;1988
  6. Landau LD, Lifshitz EM. Kinetic theory of gases. Germany:Akademie–Verlag;1978.
  7. Chapman S, Cowling TG. The mathematical theory of non-uniform gases. UK:Cambridge University Press;1952.
  8. Fahr HJ, Heyl M. On the cosmology of electromagnetic wave energy in expanding universes. Advances in Astrophysics. 2017;2(1).
  9. Fahr HJ, Heyl M. How are cosmic photons redshifted? Astronomy Notes; 2018.
Creative Commons Attribution License

©2018 Fahr, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.