Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 2

Investigation of intensity laser effects on environment

Arash Rezaei,1 Hamid Motavalibashi,2 Milad Farasat3

1Farhangian university of Isfahan, Isfahan, Iran
2Iran aircraft Company Isfahan, Isfahan, Iran
3Farhangian university of Isfahan, Isfahan, Iran

Correspondence: Arash Rezae, Farhangian university of Isfahan, Isfahan, Iran

Received: November 17, 2019 | Published: April 30, 2020

Citation: Rezaei A, Motavalibashi H, Farasat M. Investigation of intensity laser effects on environment. Phys Astron Int J. 2020;4(2):66?74. DOI: 10.15406/paij.2020.04.00203

Download PDF

Abstract

In this paper different types of weather conditions which effect laser beam quality are being study. Atmospheric conditions such as rain, snow, fog and dust are discussed. Atmospheric turbulence effect on size and intensity of laser beam is described and background optical power relations and received power by receiver are presented. Ground target reflection coefficient and related charts are presented.

Keywords: laser, atmosphere, scattering, turbulence

Introduction

In research, especially in the military field, extensive studies have been conducted on guided laser equipment. Use of laser-guided equipment began in America Air Force during the Vietnam War since the 1970s. The first advantage of this type of weapons was confirmed in this war proved in precision destroying targets with relatively small dimensions but with high importance. Today, laser weapons are used much wider for operations against enemy targets armor and protection. The biggest advantage of this type of weaponry is their high precision that can destroy the precise goals with the least amount of ammunition. Another advantage of using these weapons is the possibility of targeting a point precisely for consecutive times that is very efficient to eliminate armor targets. In recent years, military studies and the correct choice of materials for the manufacture of tracker systems pay special attention to laser detectors. Before transmitting a laser beam inside the environment, it is important to identify the effects of the environment on the beam. Molecules and particles such as dust, fog, smoke, steam, and aerosols, have significant effects on the dispersion, reflection and absorption of laser beams, which themselves contribute to the degradation, deviation, and reduction of laser beam coherence. In this paper, the effects of the environment on the laser beam and the ways to reduce these effects are examined.

Discussion

Atmospheric obscurants reduce the performance of sensors by reducing the signal radiation reaching the sensor because of reduced atmosphere transmittance in the sensor wave length response region, increasing noise at the sensor due to scattering of atmosphering radiation or system illuminator energy into the sensor and reducing the signal – to – noise ratio through turbulence induced wave – front degradation. The three curves indicate a tropical atmosphere with high water vapor content, a subarctic atmosphere, which has a low water vapor content, and a typical us or midlatitude atmosphere, which has a moderate contant. These curves illustrate the effect of water vapor contant on thermal transmittance. Extinction is defined as the reduction, or attenuation of radiation passing through atmosphere. Extinction comprises two process: absorption of energy and scattering of energy. In absorption, a photon of radiation is absorbed by an atmosphere molecular or an aerosol particle. In scattering, the direction of the incident radiation is changed by collisions with atmospheric molecular or aerosol particle. Absorption usually dominates scattering at IR and mmw wave length. Scattering is the major factor in visible extinction but may also be important at IR wave length.

Scattering effectiveness is given by the scattering efficiency Q (n, r) which is ratio of the effective scattering cross of a particle of radius r to its geometric cross section as:1,2

Q( λ,r )= σ s π r 2 = 2 r 2 0 π σ s ( θ )sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuamaabmaapaqaa8qacqaH7oaBcaGGSaGaamOCaaGaayjkaiaa wMcaaiabg2da9maalaaapaqaaGqaa8qacaWFdpWdamaaBaaaleaape Gaa83CaaWdaeqaaaGcbaWdbiaa=b8acaWFYbWdamaaCaaaleqabaWd biaaikdaaaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWdbi aa=jhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaa peGaaGimaaWdaeaapeGaa8hWdaqdpaqaa8qacqGHRiI8aaGccaWFdp WdamaaBaaaleaapeGaa83CaaWdaeqaaOWdbmaabmaapaqaa8qacaWF 4oaacaGLOaGaayzkaaGaci4CaiaacMgacaGGUbGaa8hUdiaa=rgaca WF4oaaaa@58F3@ (1)

Where

r = particle radius, m

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F4@ = angular scattering cross section, m/sr

θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E7@ = scattering angle, rad

If the particle size is much smaller than the radiation wave length, Rayliegh scattering results, and scattering efficiency simplifies to the expression:1

Q( λ,r )= 8 3 ( 2π ) 4 r 4 [ n ( λ ) 2 1 ] 2 λ 4 [ n ( λ ) 2 +2 ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuamaabmaapaqaa8qacqaH7oaBcaGGSaGaamOCaaGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacaaI4aaapaqaa8qacaaIZaaaam aabmaapaqaa8qacaaIYaGaeqiWdahacaGLOaGaayzkaaWdamaaCaaa leqabaWdbiaaisdaaaGcdaWcaaWdaeaapeGaamOCa8aadaahaaWcbe qaa8qacaaI0aaaaOWaamWaa8aabaWdbiaad6gadaqadaWdaeaapeGa eq4UdWgacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccq GHsislcaaIXaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiabeU7aS9aadaahaaWcbeqaa8qacaaI0aaaaOWaam Waa8aabaWdbiaad6gadaqadaWdaeaapeGaeq4UdWgacaGLOaGaayzk aaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkcaaIYaaacaGLBb GaayzxaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@5E77@ (2)

Where

n(λ) = real part of index of refraction ,r = particle radius, m.

Particle size for several common obscurants are given in tables 1 and 2.If the particle size is much larger than the radiation wave length, scattering efficiency calculated by geometrical scattering. According to the table 2 , types of atmospheric particles (steam, aerosols , rain, snow ,…) have different scattering relations.

Effect

Distribution type

Radius of particle

Symmetric distribution

Rayleigh scattering

less than λ/10

Most distribution

Mie scattering

more than λ/10

Most scatting forward

Mie scattering

about λ/4

All scatting forward

Mie scattering

more than λ

Refraction , reflection , diffraction

Light scatting geometry

more than 10 λ

Table 1 The effect of the particles on the order dispersion wave length1

mm waves

Ir waves

vision waves

Diameter of particle ( μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ )

Particle size

Rayleigh scattering

Rayleigh scattering

Rayleigh scattering

10-4

Atmosphere Molecule

Rayleigh scattering

Rayleigh scattering

Rayleigh and Mie scattering

10-2 to 10-1

Haze

Rayleigh scattering

Mie scattering

Mie and geometric scattering

0.5 t0 100

Fog

Rayleigh scattering

Mie scattering

Mie and geometric scattering

2 to 200

Cloud

Mie scattering

Geometric scattering

Geometric scattering

102 to 104

Rain

Mie and geometric scattering

Geometric scattering

Geometric scattering

5103 to 5 105

Show

Rayleigh scattering

Mie scattering

Mie and geometric scattering

1

Smoke

Rayleigh scattering

Mie scattering

Mie and geometric scattering

1 to 100

Dust

Table 2 Particle size distribution and the effect of atmospheric turbulence1

Steam

The following equation shows the atmosphere transmittance coefficient for steam and molecular particles.1

Τ m ( λ )= e Υ m ( λ )R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiPdq1damaaBaaaleaaieaapeGaa8xBaaWdaeqaaOWdbmaabmaa paqaa8qacaWF7oaacaGLOaGaayzkaaGaeyypa0Jaa8xza8aadaahaa Wcbeqaa8qacqGHsislcaWFLoWdamaaBaaameaapeGaa8xBaaWdaeqa aSWdbmaabmaapaqaa8qacaWF7oaacaGLOaGaayzkaaGaa8Nuaaaaaa a@4675@ (3)

Where

T m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=1gaa8aabeaaaaa@3957@ =atmosphere transmittance coefficient for steam and molecular

Υ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=1gaa8aabeaaaaa@39AB@ =steam and molecular attenuation coefficient.

R =Path length

The average value of    for low humidity (lower water vaper than 3.5 g /m3) in visible spectrum is between 0.4 and 0.7 and for high humidity (water vaper more than 14 g /m3) is about 0.02. In the near – infrared range (between 0.7 and 1.1) for low humidity the average value of    is about 0.02 and for high humidity is about 0.03. The water vapor atmosphere transmittance coefficient within 3 to 5   is specifid in table 3 and within 8 to 12   in Table 4. Also according to Table 5, the attenuation coefficient for 10.591 wave length and mmw in different humidities

Aerosol (fog, cloud, dust)

Transmission coefficient for water vapor in the atmosphere of moisture T m ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyBaaqabaGcdaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa @3C4C@

Along the way in terms km

Temperature

The moisture content

15

10

7

5

3

1

 ( o C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCaaaleqaba Gaam4Baaaakiaadoeaaaa@3901@ )

 

0.47

0.53

0.58

0.62

0.68

0.77

0

 

0.42

0.48

0.53

0.58

0.61

0.74

10

10

0.38

0.44

0.49

0.53

0.6

0.71

20

 

0.33

0.39

0.44

0.48

0.55

0.67

30

 

0.35

0.41

0.47

0.51

0.58

0.7

0

 

0.3

0.36

0.41

46

0.53

0.66

10

40

0.24

0.3

0.35

0.4

0.47

0.61

20

 

0.19

0.25

0.3

0.35

0.42

0.56

30

 

0.3

0.36

0.41

0.46

0.53

0.66

0

 

0.24

0.3

0.35

0.4

0.47

0.61

10

70

0.18

0.24

0.29

0.34

0.41

0.56

20

 

0.13

0.18

0.23

0.28

0.36

0.5

30

 

0.27

0.33

0.39

0.44

0.51

0.64

0

 

0.21

0.27

0.33

0.37

0.45

0.59

10

 

0.15

0.21

0.26

0.31

0.39

0.53

20

90

0.1

0.15

0.2

0.25

0.33

0.48

30

 

Table 3 Transmission coefficient for water vapor in the atmosphere of moisture and different distances ranging from 3-5 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ 1

Transmission coefficient for water vapor in the atmosphere of moisture T m ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyBaaqabaGcdaqadaqaaiabeU7aSbGaayjkaiaawMcaaaaa @3C4C@

Along the way in terms km

Temperature

The moisture content

15

10

7

5

3

1

 ( o C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCaaaleqaba Gaam4Baaaakiaadoeaaaa@3901@ )

 

0.86

0.89

0.91

0.93

0.95

0.97

0

 

0.82

0.86

0.89

0.91

0.93

0.97

10

10

0.76

0.81

0.85

0.87

0.91

0.95

20

 

0.65

0.72

0.78

0.82

0.87

0.94

30

 

0.72

0.78

0.82

0.86

0.89

0.95

0

 

0.55

0.65

0.72

0.77

0.84

0.92

10

40

0.31

0.43

0.54

0.62

0.73

0.87

20

 

0.09

0.18

0.28

0.39

0.54

0.78

30

 

0.56

0.66

0.73

0.78

0.84

0.93

0

 

0.3

0.42

0.53

0.62

0.73

0.87

10

70

0.07

0.15

0.26

0.36

0.52

0.77

20

 

0

0.02

0.05

0.11

0.25

0.59

30

 

0.46

0.57

0.66

0.72

0.8

0.91

0

 

0.18

0.3

0.41

0.51

0.64

0.83

10

 

0.02

0.06

0.13

0.023

0.39

0.69

20

90

0

0

0.01

0.04

0.12

0.46

30

 

Table 4 Transmission coefficient for water vapor in the atmosphere of moisture and different distances ranging from 8-12 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ 1

Absolute humidity in terms of g/m3

Attenuation coefficient ϒ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfk9aHoaaBa aaleaacaWGTbaabeaaaaa@3A2D@ In terms of K m ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamyBaaqabaGccqGHsislcaGGNaaaaa@3A9E@

 

10.591 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@

35 GHz

94 GHz

1

0.083

0.018

0.025

3

0.091

0.021

0.043

5

0.109

0.024

0.067

10

0.185

0.032

0.108

15

0.311

0.041

0.154

20

0.383

0.049

0.201

Table 5 Molecules attenuation coefficient for wavelength 10.591 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ and millimeter waves at different Humidities1
Aerosol (fog, cloud, dust)

The equation below shows the atmosphere transmittance coefficient for aerosols:1

Τ a ( λ )= e Υ a ( λ )R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiPdq1damaaBaaaleaaieaapeGaa8xyaaWdaeqaaOWdbmaabmaa paqaa8qacaWF7oaacaGLOaGaayzkaaGaeyypa0Jaa8xza8aadaahaa Wcbeqaa8qacqGHsislcaWFLoWdamaaBaaameaapeGaa8xyaaWdaeqa aSWdbmaabmaapaqaa8qacaWF7oaacaGLOaGaayzkaaGaa8Nuaaaaaa a@465D@

where T a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=fgaa8aabeaaaaa@394B@ atmosphere transmittance coefficient

Υ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgaa8aabeaaaaa@399F@ reduce coefficient of aerosols and R= path length. The average of Υ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgaa8aabeaaaaa@399F@ in visible spectrum (between 0.4 to 0.7) is:

Υ a ( 0.40.7μm )= 3.912 V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgaa8aabeaak8qadaqadaWd aeaapeGaaGimaiaac6cacaaI0aGaeyOeI0IaaGimaiaac6cacaaI3a Gaa8hVdiaa=1gaaiaawIcacaGLPaaacqGH9aqpdaWccaWdaeaapeGa aG4maiaac6cacaaI5aGaaGymaiaaikdaa8aabaWdbiaadAfaaaaaaa@48AD@ (5)

Where V is visible distance in km

Visible distance is defined as the distance which you can diagnose an object properly by the contrast of l against background by the contrast of 0.02.1 In Table 6 visibility is provided for different regions. In IR area for the yag laser: two values will be obtained for aerosols attenuation coefficient one for visible distance more than 0.6 km which is equal to:1

0 to 50 meter

Dense dust

50 to 200 meter

Thick dust

200 to 500 meter

The average dust

500 to 1000 meter

Dust weak

1000 to 2000 meter

Low dust

2000 to 4000 meter

Fog

4000 to 10000 meter

May the poor

10000 to 20000 meter

clean Air

20000 to 50000 meter

Very clean air

more than 50000 meter

Ultra-clean air

Table 6 Visible distances for different regions3

Υ a1 ( 1.06μm )= 10 [ 0.136+1.16log( 3.912 V ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgacaaIXaaapaqabaGcpeWa aeWaa8aabaWdbiaaigdacaGGUaGaaGimaiaaiAdacaWF8oGaa8xBaa GaayjkaiaawMcaaiabg2da9iaaigdacaaIWaWdamaaCaaaleqabaWd bmaadmaapaqaa8qacqGHsislcaaIWaGaaiOlaiaaigdacaaIZaGaaG OnaiabgUcaRiaaigdacaGGUaGaaGymaiaaiAdaciGGSbGaai4Baiaa cEgadaqadaWdaeaapeWaaSGaa8aabaWdbiaaiodacaGGUaGaaGyoai aaigdacaaIYaaapaqaa8qacaWGwbaaaaGaayjkaiaawMcaaaGaay5w aiaaw2faaaaaaaa@57B0@ (6)

And for a visible distance less than 0.6 km and equal to 0.6 km:1

Υ a2 ( 1.06μm )= 3.912 V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgacaaIYaaapaqabaGcpeWa aeWaa8aabaWdbiaaigdacaGGUaGaaGimaiaaiAdacaWF8oGaa8xBaa GaayjkaiaawMcaaiabg2da9maaliaapaqaa8qacaaIZaGaaiOlaiaa iMdacaaIXaGaaGOmaaWdaeaapeGaamOvaaaaaaa@470C@ (7)

In near-IR range (between 0.7 to 1.1) the average value of Υ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgaa8aabeaaaaa@399F@ is equal to:1

Υ a ( 0.71.1μm )=0.6( 3.912 V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=fgaa8aabeaak8qadaqadaWd aeaapeGaaGimaiaac6cacaaI3aGaeyOeI0IaaGymaiaac6cacaaIXa Gaa8hVdiaa=1gaaiaawIcacaGLPaaacqGH9aqpcaaIWaGaaiOlaiaa iAdadaqadaWdaeaapeWaaSGaa8aabaWdbiaaiodacaGGUaGaaGyoai aaigdacaaIYaaapaqaa8qacaWGwbaaaaGaayjkaiaawMcaaaaa@4C7F@ (8)

Table 7 shows the attenuation coefficient for other wavelength (Table 7).

Particle size

Attenuation coefficient ϒ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfk9aHoaaBa aaleaacaWGHbaabeaaaaa@3A21@ in terms of K m ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaamyBaaqabaGccqGHsislcaGGNaaaaa@3A9E@

 

10.591 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@

8-12 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@

3-5 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@

May city

 

 

 

Visibility to 2 km

0.16

0.18

0.29

Visibility to 5 km

0.06

0.07

0.11

Visibility to 10 km

0.03

0.04

0.6

Visibility to 15 km

0.02

0.02

0.04

May incident

     

Visibility to 0.5 km

1.7

2.4

10.1

Visibility to 1 km

0.9

1.2

5.1

May rose

     

Visibility to 0.5 km

8.9

9

8.4

Visibility to 1 km

4.5

4.5

4.2

Table 7 Attenuation coefficient of suspended particles in the air for wavelength 10.591 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ , 8-12 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ , 3-5 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ 1

Radiation fog forms when the weather cools down until the dew point and advection fog forms when vertical air mixture with different temperatures manufactures until the dew point. In these two types the size of fog particle are different.

Rain:

The following equation defines the atmosphere transmittance coefficient for the precipitation in the air.1

Τ p ( λ )= e Υ p ( λ )R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiPdq1damaaBaaaleaaieaapeGaa8hCaaWdaeqaaOWdbmaabmaa paqaa8qacaWF7oaacaGLOaGaayzkaaGaeyypa0Jaa8xza8aadaahaa Wcbeqaa8qacqGHsislcaWFLoWdamaaBaaameaapeGaa8hCaaWdaeqa aSWdbmaabmaapaqaa8qacaWF7oaacaGLOaGaayzkaaGaa8Nuaaaaaa a@467B@ (9)

Where

.T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=bhaa8aabeaaaaa@395A@ = the atmosphere transmittance coefficient for the precipitation in the air

. Υ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhaa8aabeaaaaa@39AE@ = the precipitation attenuation coefficient

R=path length

The average value of Υ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhaa8aabeaaaaa@39AE@ (in visible spectrum range to thermal wavelength) determines based on the amount of rainfall for three different types of rainfall.

For the drizzle we have:1

Υ prd ( VisibleThermal )=0.51 r 0.63 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhacaWFYbGaa8hzaaWdaeqa aOWdbmaabmaapaqaa8qacaWFwbGaa8xAaiaa=nhacaWFPbGaa8Nyai aa=XgacaWFLbGaeyOeI0Iaa8hvaiaa=HgacaWFLbGaa8NCaiaa=1ga caWFHbGaa8hBaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaG ynaiaaigdacaWGYbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOn aiaaiodaaaaaaa@52F6@ (10)

For the widespread we have:

Υ prw ( VisibleThermal )=0.36 r 0.63 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhacaWFYbGaa83DaaWdaeqa aOWdbmaabmaapaqaa8qacaWFwbGaa8xAaiaa=nhacaWFPbGaa8Nyai aa=XgacaWFLbGaeyOeI0Iaa8hvaiaa=HgacaWFLbGaa8NCaiaa=1ga caWFHbGaa8hBaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaG 4maiaaiAdacaWGYbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOn aiaaiodaaaaaaa@530C@ (11)

And for the thunderstorm we have:

Υ prt ( VisibleThermal )=0.16 r 0.63 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhacaWFYbGaa8hDaaWdaeqa aOWdbmaabmaapaqaa8qacaWFwbGaa8xAaiaa=nhacaWFPbGaa8Nyai aa=XgacaWFLbGaeyOeI0Iaa8hvaiaa=HgacaWFLbGaa8NCaiaa=1ga caWFHbGaa8hBaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGUaGaaG ymaiaaiAdacaWGYbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOn aiaaiodaaaaaaa@5307@ (12)

Where r=amount of rainfall (mm per hour (mmph))

Snowfall:

The atmosphere transmittance coefficient equation for both rainfall and snowfall are the same. The only difference is the attenuation coefficient. The snowfall attenuation coefficient depends on visible distance and equals to:1

Υ ps ( VisibleThermal )= 3.912 V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xPd8aadaWgaaWcbaWdbiaa=bhacaWFZbaapaqabaGcpeWa aeWaa8aabaWdbiaa=zfacaWFPbGaa83Caiaa=LgacaWFIbGaa8hBai aa=vgacqGHsislcaWFubGaa8hAaiaa=vgacaWFYbGaa8xBaiaa=fga caWFSbaacaGLOaGaayzkaaGaeyypa0ZaaSGaa8aabaWdbiaaiodaca GGUaGaaGyoaiaaigdacaaIYaaapaqaa8qacaWGwbaaaaaa@4FD4@ (13)

Dust:

The following equation defines the atmosphere transmittance coefficient for dust in the air.1

Τ d ( λ )= e α d ( λ )Cl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiPdq1damaaBaaaleaaieaapeGaa8hzaaWdaeqaaOWdbmaabmaa paqaa8qacaWF7oaacaGLOaGaayzkaaGaeyypa0Jaa8xza8aadaahaa Wcbeqaa8qacqGHsislcaWFXoWdamaaBaaameaapeGaa8hzaaWdaeqa aSWdbmaabmaapaqaa8qacaWF7oaacaGLOaGaayzkaaGaa83qaiaa=X gaaaaaaa@474D@ (14)

Where

 . T d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=rgaa8aabeaaaaa@394E@ =Atmosphere transmittance coefficient for dust in the air

. . α d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiOlaGqaaiaa=f7apaWaaSbaaSqaa8qacaWFKbaapaqabaaaaa@3A60@ =Attenuation coefficient of dust in the air

And cl=Path length density by g/m2

Cl achieves from multiplication of upload mass by path length R generally for the a we could write.1

α d ( λ )=<< Qσ M >> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xSd8aadaWgaaWcbaWdbiaa=rgaa8aabeaak8qadaqadaWd aeaapeGaa83UdaGaayjkaiaawMcaaiabg2da9iabgYda8iabgYda8m aalaaapaqaa8qacaWGrbGaeq4Wdmhapaqaa8qacaWGnbaaaiabg6da +iabg6da+aaa@4586@ (15)

Where:

σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdmhaaa@38F4@ =Cross-sectional area of particle

Q=The dispersion coefficient

M=Mass of the particle

The internal bracket is identifier of solid angle average and the external bracket is the identifier of mass distribution average of the particle. For the cl we have:

Cl= r 1 r 2 C( r )dl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadYgacqGH9aqpdaGfWbqabSWdaeaapeGaamOCa8aadaWg aaadbaWdbiaaigdaa8aabeaaaSqaa8qacaWGYbWdamaaBaaameaape GaaGOmaaWdaeqaaaqdbaWdbiabgUIiYdaakiaadoeadaqadaWdaeaa peGaamOCaaGaayjkaiaawMcaaiaadsgacaWGSbaaaa@4611@ (16)

Where

C( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWGYbaacaGLOaGaayzkaaaaaa@3A98@ =density at r

. dl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadYgaaaa@390B@ =longitudinal element of the doped area

r 2 r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaWG YbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@3C51@ =length of the doped area

The Table 9 shows the dust attenuation coefficient for different wavelength

Rainfall intensity

Annual rate

Heavy

More than 7.7 mm/h

Average

2.5 to 7.7 mm/h

Light

Less than 2.5 mm/h

Table 8 Precipitation

Rainfall intensity

Annual rate

Heavy

More than 7.7 mm/h

Average

2.5 to 7.7 mm/h

Light

Less than 2.5 mm/h

Table 9 Dust in the air attenuation coefficient for different wavelengths1

Visible distance , Km              

Mass loading , g/m3

0.2

1.110-1

0.47

6.910-2

1

2.110-2

3.2

5.210-3

8

210-3

Table 10 Mass loading of dust visible for different distances1

Smoke sources

Attenuation coefficient smoke

wavelength in terms of micrometer

0.4 – 0.7

0.7 – 1.2

1.06

3-5

8-12

10.6

35.94 GHz

Fuel evaporates into mechanical

 

6.58

4.59

3.48

0.25

0.02

0.02

0.001

Spray fuel into diesel engines

 

5.65

4.08

3.25

0.25

0.03

0.03

0.001

Burning phosphorus

 

4.05

1.77

1.37

0.29

0.83

0.38

0.001

Burning zinc compounds

 

3.66

2.67

2.28

]0.19

0.04

0.03

0.001

Coal

6

3.5

2

0.23

0.05

0.06

0.001

Table 11 Smoke attenuation coefficient obtained from a variety of sources, to different wavelengths11

Smoke:

The following equation defines the atmosphere transmittance coefficient for smoke in the air:1

Τ s ( λ )= e α s ( λ )Cl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiPdq1damaaBaaaleaaieaapeGaa83CaaWdaeqaaOWdbmaabmaa paqaa8qacaWF7oaacaGLOaGaayzkaaGaeyypa0Jaa8xza8aadaahaa Wcbeqaa8qacqGHsislcaWFXoWdamaaBaaameaapeGaa83CaaWdaeqa aSWdbmaabmaapaqaa8qacaWF7oaacaGLOaGaayzkaaGaa83qaiaa=X gaaaaaaa@476B@ (16)

Where

T s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8hva8aadaWgaaWcbaWdbiaa=nhaa8aabeaaaaa@395D@ = atmosphere transmittance coefficient for smoke in the air

. α s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa8xSd8aadaWgaaWcbaWdbiaa=nhaa8aabeaaaaa@39BD@ = attenuation coefficient of smoke in the air,g/m2

And cl = path length of density, g/m2

Cl also defines according to the equation (17)

According to the equation 17we could calculate the amount of cl so that l is the length of infected area .then due to the equation16 we could calculate the atmosphere transmittance coefficient for smoke for the all of atmosphere transmittance coefficient in the absence of precipitation we have:

T( λ )= T m ( λ ) T a ( λ ) T s ( λ ) T d ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaabmaapaqaaGqaa8qacaWF7oaacaGLOaGaayzkaaGaeyyp a0Jaa8hva8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qadaqadaWdae aapeGaa83UdaGaayjkaiaawMcaaiaa=rfapaWaaSbaaSqaa8qacaWG HbaapaqabaGcpeWaaeWaa8aabaWdbiaa=T7aaiaawIcacaGLPaaaca WFubWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbmaabmaapaqaa8qa caWF7oaacaGLOaGaayzkaaGaa8hva8aadaWgaaWcbaWdbiaadsgaa8 aabeaak8qadaqadaWdaeaapeGaa83UdaGaayjkaiaawMcaaaaa@5079@ (17)

And in presence of snowfall or rainfall we have:

T( λ )= T m ( λ ) T p ( λ ) T s ( λ ) T d ( λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaabmaapaqaaGqaa8qacaWF7oaacaGLOaGaayzkaaGaeyyp a0Jaa8hva8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qadaqadaWdae aapeGaa83UdaGaayjkaiaawMcaaiaa=rfapaWaaSbaaSqaa8qacaWG WbaapaqabaGcpeWaaeWaa8aabaWdbiaa=T7aaiaawIcacaGLPaaaca WFubWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbmaabmaapaqaa8qa caWF7oaacaGLOaGaayzkaaGaa8hva8aadaWgaaWcbaWdbiaadsgaa8 aabeaak8qadaqadaWdaeaapeGaa83UdaGaayjkaiaawMcaaaaa@5088@ (18)

Light turbulence

The atmospheric turbulence reduces by wavelength enhancement. Atmospheric turbulence causes beam extension beam divagation flashing and fluctuation in the brightness of the beam.4 These effect will be describe by radius of beam displacement of the center of beam compatibility or confliction of radiation of the beam. The scintillation effect causes the reduction of pendulous power average at the receiver aperture. Movement of picture or the blur of the caused turbulence describe by optic function (coherence length) and also wave front tilt. The atmospheric turbulence could be considered as a compound of cell with different size and refractive index. These cells move within the beam and cause the effect which is explained at the above. Assuming still and freezed atmosphere the speed and direction of this uniform movement determines by the wind average speed. Based on the size of dominant cell and beam diameter the turbulence cells cause the beam scattering in different direction. When size of the cell is smaller than the beam diameter refraction and diffraction happens. The beam radiation figure turns into a small ray and the dark area results of interference of wave front refraction and diffraction (flicker). Based on the turbulence power ratio each one of the two cases of the above may be observed singly or together. Strehl is the ratio of the average of radiation on the axis with turbulence to the average of radiation on the axis without turbulence .so that the ratio of the beam diameter with turbulence to the beam without turbulence is equal to:

For the long term turbulence cases we have:1

S l = [ 1+ ( D r 0 ) 2 ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacqGH9aqpdaWa daWdaeaapeGaaGymaiabgUcaRmaabmaapaqaa8qadaWccaWdaeaape GaamiraaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaa aaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaki aawUfacaGLDbaapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaaa@460E@ (19)

And for the short term turbulence if ( D r 0 )3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaaliaapaqaa8qacaWGebaapaqaa8qacaWGYbWd amaaBaaaleaapeGaaGimaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacq GHKjYOcaaIZaaaaa@3E89@ :

S s1 = [ 1+0.182 ( D r 0 ) 2 ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadohacaaIXaaapaqabaGcpeGaeyyp a0ZaamWaa8aabaWdbiaaigdacqGHRaWkcaaIWaGaaiOlaiaaigdaca aI4aGaaGOmamaabmaapaqaa8qadaWccaWdaeaapeGaamiraaWdaeaa peGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaaak8qacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaakiaawUfacaGLDbaa paWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaaa@4A75@ (20)

And if ( D r 0 )>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbmaaliaapaqaa8qacaWGebaapaqaa8qacaWGYbWd amaaBaaaleaapeGaaGimaaWdaeqaaaaaaOWdbiaawIcacaGLPaaacq GH+aGpcaaIZaaaaa@3DDC@ :

S s2 = [ 1+ ( D r 0 ) 2 1.18 ( D r 0 ) 5 3 ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadohacaaIYaaapaqabaGcpeGaeyyp a0ZaamWaa8aabaWdbiaaigdacqGHRaWkdaqadaWdaeaapeWaaSGaa8 aabaWdbiaadseaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaaa paqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYa aaaOGaeyOeI0IaaGymaiaac6cacaaIXaGaaGioamaabmaapaqaa8qa daWccaWdaeaapeGaamiraaWdaeaapeGaamOCa8aadaWgaaWcbaWdbi aaicdaa8aabeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWd bmaaliaapaqaa8qacaaI1aaapaqaa8qacaaIZaaaaaaaaOGaay5wai aaw2faa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@51B0@ (21)

Where

 D= effective diameter of the laser aperture

. S l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadYgaa8aabeaaaaa@3954@ = ratio of the long term strehl

. S s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadohaa8aabeaaaaa@395B@ = ratio of the short term strehl

And r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393C@ = coherence length

If the turbulence is uniform we have:

r 0 =0.3325 ( 10 6 λ ) 6 5 ( 10 3 C n 2 R ) 3 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI WaGaaiOlaiaaiodacaaIZaGaaGOmaiaaiwdadaqadaWdaeaapeGaaG ymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGOnaaaakiabeU7a SbGaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWccaWdaeaapeGaaG OnaaWdaeaapeGaaGynaaaaaaGcdaqadaWdaeaapeGaaGymaiaaicda paWaaWbaaSqabeaapeGaaG4maaaakiaadoeapaWaa0baaSqaa8qaca WGUbaapaqaa8qacaaIYaaaaOGaamOuaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qadaWccaWdaeaapeGaeyOeI0IaaG4maaWdaeaapeGaaG ynaaaaaaaaaa@52AE@ (22)

Where C n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaikdaaaaaaa@3A13@ = constant of the refraction index by m 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qadaWccaWdaeaapeGaeyOeI0IaaGOm aaWdaeaapeGaaG4maaaaaaaaaa@3B25@

The amount of C n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaikdaaaaaaa@3A13@ changes between 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaiaaisda aaaaaa@3B58@ for the weak turbulence 6* 10 14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaacQcacaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsisl caaIXaGaaGinaaaaaaa@3CC6@ for the medium turbulence and 6* 10 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOnaiaacQcacaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsisl caaIXaGaaG4maaaaaaa@3CC5@ for hard turbulence

For the non-uniform turbulence this effect is strong the flicker effect due to atmosphere is estimated by the following equation

σ I 2 =1.24 C n 2 ( 2π λ ) 7 6 ( 10 3 R ) 11 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83Wd8aadaqhaaWcbaWdbiaadMeaa8aabaWdbiaaikdaaaGc cqGH9aqpcaaIXaGaaiOlaiaaikdacaaI0aGaa83qa8aadaWgaaWcba Wdbiaad6gaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGcdaqadaWd aeaapeWaaSGaa8aabaWdbiabgkdaYiabec8aWbWdaeaapeGaeq4UdW gaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWccaWdaeaapeGa aG4naaWdaeaapeGaaGOnaaaaaaGcdaqadaWdaeaapeGaaGymaiaaic dapaWaaWbaaSqabeaapeGaaG4maaaakiaadkfaaiaawIcacaGLPaaa paWaaWbaaSqabeaapeWaaSGaa8aabaWdbiaaigdacaaIXaaapaqaa8 qacaaI2aaaaaaaaaa@51E4@ (23)

In the spread range or hard turbulence the amount of σ I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83Wd8aadaqhaaWcbaWdbiaadMeaa8aabaWdbiaaikdaaaaa aa@3A76@ wont be more than 0.5 sigma is by w for the consubstantial turbulence the amount of σ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83Wd8aadaqhaaWcbaWdbiaadIhaa8aabaWdbiaaikdaaaaa aa@3AA5@ variance of the movement of the center of the picture is equal to:

σ x 2 =1.093 C n 2 F 2 D 1 3 10 3 R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaabaaaaaaa aapeGaa83Wd8aadaqhaaWcbaWdbiaadIhaa8aabaWdbiaaikdaaaGc cqGH9aqpcaaIXaGaaiOlaiaaicdacaaI5aGaaG4maiaa=neapaWaaS baaSqaa8qacaWGUbaapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGa amOra8aadaahaaWcbeqaa8qacaaIYaaaaOGaamira8aadaahaaWcbe qaa8qadaWccaWdaeaapeGaeyOeI0IaaGymaaWdaeaapeGaaG4maaaa aaGccaaIXaGaaGima8aadaahaaWcbeqaa8qacaaIZaaaaOGaamOuaa aa@4B8A@ (24)

Where f= focal length of the receiver

The reflection coefficient of ground targets

At first reflection coefficient is reviewed for very important ground targets. Generally natural targets are divided to 5 total categories which three categories of water cloud and snow due to close nature are mentioned in one.5,6

  1. Agricultural land trees bushes and meadows
  2. Ground
  3. Rocks
  4. Water cloud and snow
  5. Metals

Received power

To determination of the most range of object location and tracing the lighten object by the laser pulse first of all it's necessary to find the light level in optical receiver sensitive position. It's specified as well that the angel measurement error is highly dependent to noise signal ratio in output receiver ring. In more analysis according to Table (1–7) geometric characteristic of the laser, the lighten object and the optical receiver are in use to specify the optical power level at the optical receiver input (Table 1).7

In analysis, in order to generalize, it's assumed that laser and optical receiver are placed in different places.

Analysis of the power level of the background and reflected optical signal of laser behaives according to the main known equation which is radioscopy. For the background and object it's assumed that scattered reflections are reflected of the Lamberty surfaces. Also it's assumed that all of the laser beam is on the object which is lighten by laser.

Background power

Background optical power which receives from a optical receiver sensitive to location at entrance is equal to:7

P B = L λ G T R T F T at MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadkeaa8aabeaak8qacqGH9aqpcaWG mbWdamaaBaaaleaapeGaeq4UdWgapaqabaGcpeGaam4raiaadsfapa WaaSbaaSqaa8qacaWGsbaapaqabaGcpeGaamiva8aadaWgaaWcbaWd biaadAeaa8aabeaak8qacaWGubWdamaaBaaaleaapeGaamyyaiaads haa8aabeaaaaa@455A@ (25)

Where

. L λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaaaa@3A10@ =son radiance spectrum

G= geometric factor

. T R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkfaa8aabeaaaaa@393B@ =transference coefficient of optical receiver

. T F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadAeaa8aabeaaaaa@392F@ =transference coefficient of optical filter

And T at MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadggacaWG0baapaqabaaaaa@3A43@ =atmosphere transference coefficient

G the geometric factor is obtained from two small area radiative exchange factor and equals to:

A D COSθ. A R COS θ po MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadseaa8aabeaak8qacaWGdbGaam4t aiaadofacqaH4oqCieaacaWFUaGaamyqa8aadaWgaaWcbaWdbiaadk faa8aabeaak8qacaWGdbGaam4taiaadofacqaH4oqCpaWaaSbaaSqa a8qacaWGWbGaam4BaaWdaeqaaaaa@4694@ (26)

Where

. A D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadseaa8aabeaaaaa@391A@ = Quad detector footprint area in background

. A R COS θ po MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadkfaa8aabeaak8qacaWGdbGaam4t aiaadofacqaH4oqCpaWaaSbaaSqaa8qacaWGWbGaam4BaaWdaeqaaa aa@3FAF@ = The effective area of the photoreceptor

. θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E7@ = The angle between the vector perpendicular to the surface of the object and filed lines between the object and the receiver

. θ po MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamiCaiaad+gaa8aabeaaaaa@3B2A@ = The angle between the vector perpendicular to the surface receptor filed with the line between the object and the receiver

. R M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaad2eaa8aabeaaaaa@3934@ = The distance between the object and the photoreceptor

In cases where tracking and positioning is good, The photoreceptor is always face to the object so θ po =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamiCaiaad+gaa8aabeaak8qacqGH 9aqpcaaIWaaaaa@3D04@

For the whole radiance of the sun L λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaaaa@3A10@ which caused by a diffuse reflector we have:

T at = e Υ R M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadggacaWG0baapaqabaGcpeGaeyyp a0Jaamyza8aadaahaaWcbeqaa8qacqGHsislcqqHLoqvcaWGsbWdam aaBaaameaapeGaamytaaWdaeqaaaaaaaa@4112@ (27)

Where

E λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaaaa@3A09@ = the whole of the sun .

And. ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamOqaaWdaeqaaaaa@3A12@ = background reflect

The amount of E λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiabeU7aSbWdaeqaaaaa@3A09@ per wavelength can be obtained from standard charts

. T at MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadggacaWG0baapaqabaaaaa@3A43@ atmospheric transfer coefficient is obtained from the following relationship comes to

T at = e Υ R M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadggacaWG0baapaqabaGcpeGaeyyp a0Jaamyza8aadaahaaWcbeqaa8qacqGHsislcqqHLoqvcaWGsbWdam aaBaaameaapeGaamytaaWdaeqaaaaaaaa@4112@ (28)

Where

. 𝛶=Atmospheric extinction coefficient.

The back ground power that obtained from equation(25),when combined with equations (26) and (27) has to be obtained as follows.

Where

Δ λ = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdq0damaaBaaaleaapeGaeq4UdWgapaqabaGcpeGaeyypa0da aa@3BC5@ The whole bandwidth Optical Filter

. 𝛽= photoreceptor visibility range

D po = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamira8aadaWgaaWcbaWdbiaadchacaWGVbaapaqabaGcpeGaeyyp a0daaa@3B5D@ Diameter optical receiver

Signal power

P_S the optical signal received by the laser radiation reflected from the object is lightened with a laser when the laser beam cross-sectional area of the object is smaller than, equals to:

P S = L T A T Ω D T R T F e Υ R M COSθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadofaa8aabeaak8qacqGH9aqpcaWG mbWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbiaadgeapaWaaSbaaS qaa8qacaWGubaapaqabaGcpeGaeuyQdC1damaaBaaaleaapeGaamir aaWdaeqaaOWdbiaadsfapaWaaSbaaSqaa8qacaWGsbaapaqabaGcpe Gaamiva8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qacaWGLbWdamaa CaaaleqabaWdbiabgkHiTiabfw6avjaadkfapaWaaSbaaWqaa8qaca WGnbaapaqabaaaaOWdbiaadoeacaWGpbGaam4uaiabeI7aXbaa@4F83@ (29)

Where

. . L T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@3935@ =Spectrum reflected from the object

 . A T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@392A@ =The area of the laser spot on the object

And Ω D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaamiraaWdaeqaaaaa@39E2@ in accordance with Figure 3-7 angle created by the opening of an optical receiver

 . L T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@3935@ spectrum is7–9

L T = 4 P L T T η ρ T e Υ R L COS θ L π 2 β T 2 R L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamita8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGinaiaadcfapaWaaSbaaSqaa8qacaWGmbaapaqaba GcpeGaamiva8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacqaH3oaA cqaHbpGCpaWaaSbaaSqaa8qacaWGubaapaqabaGcpeGaamyza8aada ahaaWcbeqaa8qacqGHsislcqqHLoqvcaWGsbWdamaaBaaameaapeGa amitaaWdaeqaaaaak8qacaWGdbGaam4taiaadofacqaH4oqCpaWaaS baaSqaa8qacaWGmbaapaqabaaakeaapeGaeqiWda3damaaCaaaleqa baWdbiaaikdaaaGccqaHYoGypaWaa0baaSqaa8qacaWGubaapaqaa8 qacaaIYaaaaOGaamOua8aadaqhaaWcbaWdbiaadYeaa8aabaWdbiaa ikdaaaaaaaaa@58BB@ (30)

Where

 . P L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@3931@ = peak power laser

 . T T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@393D@ =transmission coefficient of light

η=efficiency of collection optical transmission

 . ρ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamivaaWdaeqaaaaa@3A24@ =target reflection coefficient

 . θ T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUde3damaaBaaaleaapeGaamivaaWdaeqaaaaa@3A1A@ =angle between the vector perpendicular to the surface with a laser beam

 . β T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdi2damaaBaaaleaapeGaamivaaWdaeqaaaaa@3A05@ =divergence angle of the laser beam

and R L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@3933@ =distance between the laser and the object

 . A T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@392A@ area of the laser spot on the object of value follow below

A T = π R L 2 β T 2 4COS θ L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaeqiWdaNaamOua8aadaqhaaWcbaWdbiaadYeaa8aaba WdbiaaikdaaaGccqaHYoGypaWaa0baaSqaa8qacaWGubaapaqaa8qa caaIYaaaaaGcpaqaa8qacaaI0aGaam4qaiaad+eacaWGtbGaeqiUde 3damaaBaaaleaapeGaamitaaWdaeqaaaaaaaa@48EC@ (31)

And for Ω D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaamiraaWdaeqaaaaa@39E2@ angle we have:

Ω D π D po 2 4 R M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdC1damaaBaaaleaapeGaamiraaWdaeqaaOWdbiabgIKi7oaa laaapaqaa8qacqaHapaCcaWGebWdamaaBaaaleaapeGaamiCaiaad+ gaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaisda caWGsbWdamaaDaaaleaapeGaamytaaWdaeaapeGaaGOmaaaaaaaaaa@455F@ (32)

By combining equations (31) to (33) with equation (30), we finally have for the P S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadofaa8aabeaaaaa@3938@

P S = D po 2 4 R M 2 P L ρ T T T η T R T F e Υ( R L + R M ) COSθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadofaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadchacaWGVbaapaqaba GcdaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaI0aGaamOua8aa daqhaaWcbaWdbiaad2eaa8aabaWdbiaaikdaaaaaaOGaamiua8aada WgaaWcbaWdbiaadYeaa8aabeaak8qacqaHbpGCpaWaaSbaaSqaa8qa caWGubaapaqabaGcpeGaamiva8aadaWgaaWcbaWdbiaadsfaa8aabe aaieaak8qacaWF3oGaamiva8aadaWgaaWcbaWdbiaadkfaa8aabeaa k8qacaWGubWdamaaBaaaleaapeGaamOraaWdaeqaaOWdbiaadwgapa WaaWbaaSqabeaapeGaeyOeI0IaeuyPdu1aaeqaa8aabaWdbiaadkfa paWaaSbaaWqaa8qacaWGmbaapaqabaaal8qacaGLOaaacqGHRaWkda qacaWdaeaapeGaamOua8aadaWgaaadbaWdbiaad2eaa8aabeaaaSWd biaawMcaaaaakiaadoeacaWGpbGaam4uaiabeI7aXbaa@5DEE@ (33)

Conclusion

According to the formula of laser attenuation by atmospheric conditions such as temperature, humidity, dust, rain, snow polished and smoke and ... which are dependent to the laser wavelength and the distance and the light intensity in order to minimize the laser must:

  1. Reduse the target distance
  2. Increase the incident laser beam intensity
  3. Increaase the Selective laser wavelength because the more higher frequency, the more attenuation efficiency and Conversely is the same situation
  4. The purpose of reflecting surface so that the reflection coefficient is higher, For example, hitting a building is better that the laser to hit on smooth surfaces such as metallic windows.

Acknowledgments

None.

Conflicts of interest

Author declares that there are no conflicts of interest.

Funding

None.

References

  1. Department of defense handbook Washington DC. Quantitative Description of Obscuration Factors for Electro-Optical and Millimeter Wave System. DOD HDBK-178. 1986.
  2. M Pendley. Air Warfare Battlelab Initiative for Stabilized Portable Optical Target Tracking Receiver. International Command and Control Reserch and Technology Symposium the Future of C2, 10th ed, 2004.
  3. Henrik Andersson. Position Sensitive Detectors-Device Technology and Application in Spectroscopy. Mid Sweden University Doctoral Thesis 48, 2008;ISBN 978-91-85317-91-2,5-25.
  4. Gerald C Holst, CCD Arrays. Cameras and displays. 2nd ed, SPIE Optical Engineering Press, Washington USA, 1998.
  5. KC Bahuguna, Prabhat Sharma, NS Vasan, et al. Laser Range Sensors. Defence Science Journal. 2007;57(6):881–890.
  6. Department of defense handbook, range laser safety, mil-hdbk-828B, 2nd ed. 2011. p. 10–35.
  7. Zarko P, Barbaric, Lazo M, et al. Optimization of Optical Receiver Parameters for Pulsed Laser Tracking Systems. IEEE Transactions on instrumentation and measurement. 2009;58(3):9–279.
  8. Gerald C, Holst. Electro-optical imaging system performance, 12th ed, SPIE Optical Engineering Press, Washington USA, 2000.
  9. Hiroaki Ando, Hiroshi Kanbe, Tatsuya Kimura. Characteristics of Germanium Avalanche Photodiodes in the Wavelength Region of 1-1.6 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaad2 gaaaa@39B6@ . IEEE Journal of Quantum Electronics. 1978;14(11):804 810.
Creative Commons Attribution License

©2020 Rezaei, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.