Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 6 Issue 1

How are cosmic gravity fields seen by moving objects? can gravitons deny their origins?

Hans J. Fahr

Argelander Institute for Astronomy, The University of Bonn, German

Correspondence: Hans Fahr, Argelander Institute for Astronomy, Bonn University, Auf dem Huegel 71, D-53121 Bonn, Germany, Tel 49-228-733677

Received: January 22, 2022 | Published: January 28, 2022

Citation: Fahr HJ. How are cosmic gravity fields seen by moving objects? can gravitons deny their origins? Phys Astron Int J. 2022;6(1):6-10. DOI: 10.15406/paij.2022.06.00242

Download PDF

Abstract

We put the question, how gravitational fields are communicated to space, and how they are recognized in space by moving objects. The general answer given to this question in these days is that field quanta of the gravitational field, called gravitons, are responsible for the communication of such fields. This answer is taken serious here, and then consequently is put into serious doubts when studying several physically coherent consequences.  We start by investigating the gravitational influence of cosmic mass associations on moving massive objects when hereby the effect of propagating gravity field quanta, i.e. the gravitons, communicating the position of gravity sources, is taken into account. It is shown that moving objects are affected by gravity sources from a relativistically displaced position, like stars are seen under an aberration angle compared to the true source position. The astonishing effect of that mislocation is that a moving object at its passage through the center of a centrally symmetric galactic mass association undergoes a permanent gravitational deceleration of its relative motion. Furtheron it is shown that under this new view the problem of a planetary object, orbiting a central mass like the sun, takes a non-Keplerian solution, because the orbiting planet permanently should lose orbital angular momentum, since it permanently experiences a gravitational force component antiparallel to its orbital motion. From that an orbital decay time can be derived which predicts that a terrestrial planet should have a spiralling-in period of only a few 10 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcgaieaaaaaa aaa8qacaaIXaGaaGima8aadaahaaqabKqbagaapeGaaGinaaaaaaa@39A8@  years which, compared to the expected age of the Earth of about 4.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGinai aac6cacaaI1aaaaa@38B4@  Billion years, represents a big problem of understanding. In addition, in view of the presumed action of gravitons from an aberrated source position, this article studies the propagation of cosmic photons over the photospheric limbs of stars. We show that when the center of the gravity field acts from a relativistically displaced position, then no energy change of limb photons when again propagating to larger distances should occur - which does confirm Einstein‘s view - , but also no deflection from the original propagation direction of the photon should occur - which contradicts Einstein‘s derivations. In this article we do not yet offer a rational solution of these newly pinpointed problems, but we simply end with the recommendation to perhaps reinvestigate the theoretical concept of gravitons, thought as to be the quantum messengers of gravitational fields.

Introduction

Since investigations of the English astronomer James Bradley (1728) it has become general astronomical standard knowledge that the apparent position at which stars appear at the sky for an observer at earth depends on the phase of the year. Followed over the whole year, the position varies along ellipses on the sky. Quickly after this finding it became clear that the position of the respective star varies with the orbital velocity     U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabi qaaaqaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaaceWGvbWd ayaalaaaaa@3A12@  of the earth which serves as the moving platform in space from where astronomers observe the stellar constellations. Since the orbital velocity     U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabi qaaaqaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaaceWGvbWd ayaalaaaaa@3A12@  of the earth has an annual periodicity, the apparent positions of stars at the sky show this same periodicity with the vector of the earths orbital velocity around the sun. This general aberration phenomenon of "fix"- stars could well be understood as consequence of Michelson-Morley‘s epoch making prove that the propagation velocity of light is finite and amounts to c=300000km/s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaeyypa0JaaG4maiaaicdacaaIWaGaaGimaiaaicda caaIWaGaam4Aaiaad2gacaGGVaGaam4Caaaa@407E@ .1 The light arriving from the star comes into the astromomer‘s telescope focus from a slightly variable direction dependend on the actual velocity U = U ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGvbWdayaalaWdbiabg2da9iqadwfapaGbaSaapeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3C61@  of the earth. This classic aberration phenomenon is well known amongst astronomers since James Bradley (1728) and nowadays taken as a solid fact.

Now an urgent consequent and subsequent question may be provocated concerning the analogous mis-location of gravitational cosmic sources, instead of electromagnetic sources. Of course, stellar gravity fields are not radiation fields in the usual sense, rather they may in general appear as constant source-related fields in space. But one should keep in mind that according to modern physical understandings gravity fields are quantum fields, just like electromagnetic fields. The location of the sources of cosmic gravity fields thus is communicated to cosmic space by the outflow of gravitons as the quanta of this fields. Since, however, these gravitons according to our present understanding have a limited propagation velocity equal to that of light , i.e. c g = c el =c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaBaaabaWdbiaadEgaa8aabeaapeGaeyypa0Ja am4ya8aadaWgaaqaa8qacaWGLbGaamiBaaWdaeqaa8qacqGH9aqpca WGJbaaaa@3EED@ , an aberration effect similar to that of radiating stars should also cause that the centers of stellar gravity appear dislocated from their true positions, dependend on the velocity U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGvbWdayaalaaaaa@379F@  of the gravity sensors. In this respect "gravity sensors" are represented by massive objects, particles or photons reacting to cosmic gravity fields. That idea should allow to conclude that centers of stellar gravity fields consequently influence and affect moving objects, particles or photons from an apparently aberrated position. In the following we shall briefly investigate related effects and consequences of such "gravitational aberrations" in sections 2. to 4. , and then in section 5. look for conclusions which should be drawn from this challenging new view.

The cosmic deceleration of moving objects at crossings of galaxy clusters

Recently it has been investigated how massive, cosmic objects are affected, when moving along their trajectories with a peculiar velocity U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGvbWdayaalaaaaa@379F@  through the gravitational fields of the ambient masses of the universe and do see the positions of discrete cosmic mass sources like stars, galaxies or galaxy clusters relativistically displaced with respect to their real positions given in the cosmic rest frame.2,3 This "gravitational aberration" phenomenon, well known amongst astronomers by its electromagnetic analogue as "stellar aberration", should have most interesting, surprising effects on the gravitationally influenced motion of such objects.

The above mentioned authors considered the situation that the locations of the sources of gravity, due to the finite propagation velocity v g =c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bWdamaaBaaabaWdbiaadEgaa8aabeaapeGaeyypa0Ja am4yaaaa@3AD8@  of gravitons, are recognized or perceived by gravitationally influenced moving particles or photons at "relativistically retarded" positions. Hence the apparent direction of the gravitational pull with respect to the location of the real mass source experiences an aberration, meaning that it appears as displaced by a certain angle δθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqaH4oqCaaa@39FF@ . If a corresponding mass element δ M C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGnbWdamaaBaaabaWdbiaadoeaa8aabeaaaaa@3A32@  on a spherical mass shell of a cluster at a radial distance r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbaaaa@379B@  is "gravitationally" seen by an object at rest with respect to the cluster center under an angle θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ , it instead acts upon a moving particle or photon effectively not from this direction θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ , but from an apparently different direction θ`=θ+δθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcaGGGbGaeyypa0JaeqiUdeNaey4kaSIaeqiTdqMa eqiUdehaaa@4037@ , when viewed by the moving particle with velocity U =U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGvbWdayaalaWdbiabg2da9iaadwfaaaa@3990@   k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGRbWdayaalaaaaa@37B6@  or by the photon with a velocity c =c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGJbWdayaalaWdbiabg2da9iaadogaaaa@39AC@   k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGRbWdayaalaaaaa@37B5@ .

According to SRT- relations these two angles θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCaaa@385A@  and θ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaW baaSqabeaacaGGNaaaaaaa@3884@  for an object moving with a velocity     U =U k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabi qaaaqaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaaceWGvbWd ayaalaWdbiabg2da9iaadwfaceWGRbWdayaalaaaaa@3D13@  are connected by the following relation:4

cos θ ' = cosθ+β 1+βcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGJbGaae4BaiaabohacqaH4oqCdaahaaqabeaacaGGNaaa aiabg2da9maalaaapaqaa8qacaWGJbGaam4BaiaadohacqaH4oqCcq GHRaWkcqaHYoGya8aabaWdbiaaigdacqGHRaWkcqaHYoGycaWGJbGa am4BaiaadohacqaH4oqCaaaaaa@4C1E@   (1)

where β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGyaaa@3845@  is given by β=U/c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaWGvbGaai4laiaadogaaaa@3BC0@ . Imagining now an object at a distance R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@377B@  from the center of a cluster (see Figure 1 for illustration), then it is evident that this object is attracted by the gravitation of a mass element δ M C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcaWGnbWdamaaBaaabaWdbiaadoeaa8aabeaaaaa@3A32@  under an angle θ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaW baaSqabeaacaGGNaaaaaaa@3884@  given by the formula above, when this mass element , judged from the rest frame of the cluster, is located under an angle θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiUde haaa@383A@ .

Figure 1 Illustration of a moving object crossing a radially symmetric cluster mass system.

This, however, means that along the trajectory an effective, attractive force acts given by

k δ K =Gδ M C cos θ ' R ' 2 + r 2 +2rRcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGRbWdayaalaWdbiabgwSixlabes7aKjqadUeapaGbaSaa peGaeyypa0JaeyOeI0Iaam4raiabes7aKjaad2eapaWaaSbaaeaape Gaam4qaaWdaeqaa8qadaWcaaWdaeaapeGaae4yaiaab+gacaqGZbGa eqiUde3aaWbaaeqabaGaai4jaaaaa8aabaWdbiaadkfacaGGNaWdam aaCaaabeqaa8qacaaIYaaaaiabgUcaRiaadkhapaWaaWbaaeqabaWd biaaikdaaaGaey4kaSIaaGOmaiaadkhacaWGsbGaae4yaiaab+gaca qGZbGaeqiUdehaaaaa@55F6@   (2)

which lead to unexpected new effects.

One can easily agree to the point that forces perpendicular to k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGRbWdayaalaaaaa@37B5@  cancel as long as the object is moving on a central line crossing right through the center of the spherically symmetric mass cluster at  r= r c =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamOCaiabg2da9iaadkhapaWaaSbaaeaapeGaam4y aaWdaeqaa8qacqGH9aqpcaaIWaaaaa@3DC3@ . But calculating now the integrated forces K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGlbWdayaalaaaaa@3795@  in direction K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qaceWGlbWdayaalaaaaa@3795@   of the motion, acting on the moving object at the place R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbaaaa@377B@  , one obtains the following, surprising result2,3 when assuming spherically symmetric mass distribution according to      ρ( r )= ρ C,0 exp[ r/ r 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaajuaGcaGGGcGa eqyWdi3aaeWaa8aabaWdbiaadkhaaiaawIcacaGLPaaacqGH9aqpcq aHbpGCpaWaaSbaaeaapeGaam4qaiaacYcacaaIWaaapaqabaWdbiaa bwgacaqG4bGaaeiCamaadmaapaqaa8qacqGHsislcaWGYbGaai4lai aadkhapaWaaSbaaeaapeGaaGimaaWdaeqaaaWdbiaawUfacaGLDbaa aaa@4D7F@ :

K=Gπ ρ c,0 θrexp[ r r o ]sinθdθ cosθ+β 1+βcosθ R 2 + r 2 +2rRcosθ r 2 dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaadUeacqGH9aqpcqGHsislcaWGhbGaeqiWdaNaeqyWdi3aaSba aSqaaiaadogacaGGSaGaaGimaaqabaGccqGHRiI8cqaH4oqCcqGHRi I8caWGYbGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWcaaqa aiaadkhaaeaacaWGYbWaaSbaaSqaaiaad+gaaeqaaaaaaOGaay5wai aaw2faaiGacohacaGGPbGaaiOBaiabeI7aXjaadsgacqaH4oqCdaWc aaqaamaalaaabaGaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaeq OSdigabaGaaGymaiabgUcaRiabek7aIjGacogacaGGVbGaai4Caiab eI7aXbaaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam OCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGYbGaamOu aiGacogacaGGVbGaai4CaiabeI7aXbaacaWGYbWaaWbaaSqabeaaca aIYaaaaOGaamizaiaadkhaaaa@7B62@   (3)

For the case R=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0JaaGimaaaa@393B@ , i.e. the object is located just in the center of the cluster, this expression is simplified to the following, easily handable expression:

K=Gπ ρ c,0 0 exp[ r r o ]dr 0 π cosθ+β 1+βcosθ sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaadUeacqGH9aqpcqGHsislcaWGhbGaeqiWdaNaeqyWdi3aaSba aSqaaiaadogacaGGSaGaaGimaaqabaGccqGHRiI8daqhaaWcbaGaaG imaaqaaiabg6HiLcaakiGacwgacaGG4bGaaiiCamaadmaabaGaeyOe I0YaaSaaaeaacaWGYbaabaGaamOCamaaBaaaleaacaWGVbaabeaaaa aakiaawUfacaGLDbaacaWGKbGaamOCaiabgwSixlabgUIiYpaaDaaa leaacaaIWaaabaGaeqiWdahaaOWaaSaaaeaaciGGJbGaai4Baiaaco hacqaH4oqCcqGHRaWkcqaHYoGyaeaacaaIXaGaey4kaSIaeqOSdiMa ci4yaiaac+gacaGGZbGaeqiUdehaaiGacohacaGGPbGaaiOBaiabeI 7aXjaadsgacqaH4oqCaaa@718A@   (4)

making evident that even in the cluster center at R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0JaaGimaaaa@393C@ , being surrounded by a spherically symmetric mass distribution of the cluster, the moving object experiences a net force given by the following evaluated expression:

K=Gπ ρ c,0 r 0 0 π cosθ+β 1+βcosθ sinθdθ= 3 4 G M c r 0 2 [ 1 β 2 β 2 In[ 1+β 1β ] 2 β ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaadUeacqGH9aqpcqGHsislcaWGhbGaeqiWdaNaeqyWdi3aaSba aSqaaiaadogacaGGSaGaaGimaaqabaGccaWGYbWaaSbaaSqaaiaaic daaeqaaOGaey4kIi=aa0baaSqaaiaaicdaaeaacqaHapaCaaGcdaWc aaqaaiGacogacaGGVbGaai4CaiabeI7aXjabgUcaRiabek7aIbqaai aaigdacqGHRaWkcqaHYoGyciGGJbGaai4BaiaacohacqaH4oqCaaGa ci4CaiaacMgacaGGUbGaeqiUdeNaamizaiabeI7aXjabg2da9iabgk HiTmaalaaabaGaaG4maaqaaiaaisdaaaGaam4ramaalaaabaGaamyt amaaBaaaleaacaWGJbaabeaaaOqaaiaadkhadaqhaaWcbaGaaGimaa qaaiaaikdaaaaaaOWaamWaaeaadaWcaaqaaiaaigdacqGHsislcqaH YoGydaahaaWcbeqaaiaaikdaaaaakeaacqaHYoGydaahaaWcbeqaai aaikdaaaaaaOGaamysaiaad6gadaWadaqaamaalaaabaGaaGymaiab gUcaRiabek7aIbqaaiaaigdacqGHsislcqaHYoGyaaaacaGLBbGaay zxaaGaeyOeI0YaaSaaaeaacaaIYaaabaGaeqOSdigaaaGaay5waiaa w2faaaaa@819C@   (5)

where M C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbWdamaaBaaabaWdbiaadoeaa8aabeaaaaa@388E@  denotes the total mass of the cluster. In Figure 2 the force K( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWaaeWaa8aabaWdbiabek7aIbGaayjkaiaawMcaaaaa @3ABD@  is shown as function of β=U/c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaWGvbGaai4laiaadogaaaa@3BC0@  making it also evident that for  U=β=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaamyvaiabg2da9iabek7aIjabg2da9iaaicdaaaa@3D09@  this force K( β=0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWaaeWaa8aabaWdbiabek7aIjabg2da9iaaicdaaiaa wIcacaGLPaaaaaa@3C7D@  vanishes.

Figure 2 The force K( β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWaaeWaa8aabaWdbiabek7aIbGaayjkaiaawMcaaaaa @3ABD@ normalized by  [3G M C /4 r 0 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcqcfaOaai4waiaaiodacaWGhbGaamyta8aadaWgaaqaa8qa caWGdbaapaqabaWdbiaac+cacaaI0aGaamOCa8aadaqhaaqaa8qaca aIWaaapaqaa8qacaaIYaaaaiaac2faaaa@4148@ is shown as function of β=U/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGycqGH9aqpcaWGvbGaai4laiaadogaaaa@3B33@ .

The above result at first glance appears counter-intuitive, since, as is generally known, in the center of a symmetric mass distribution one would normally not expect any net gravitational force, i.e. in the center of the Sun or the Earth there is no gravitational force. In case, however, when the object in the center is moving with velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbaaaa@36F1@ , then in fact there is a net acting force given by the upper expression. Only for the case of β=U=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGycqGH9aqpcaWGvbGaeyypa0JaaGimaaaa@3B58@   there exists no force. Also the general scientific wisdom, that inside a spherical mass shell no gravitational field is felt, obviously does not hold for an object in motion with β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHYoGycqGHLjYScaaIWaaaaa@3A38@ . This is because a moving object recognizes the surrounding single mass elements on the spherical shell at asymetrically displaced positions, and hence no spherical gravitational symmetry is valid for this object. This appears surprising and we may keep this result in mind as a challenge for our further investigations.

Aberration of the gravity source for the moving object at Keplerian motions

Regarding the relativistic dislocation of a planetary object orbiting the central gravity source, the Sun, in a quasicircular orbit, it is interesting to pay attention to the already pronounced difference between the situation A: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbGaaiOoaaaa@379B@  in the Suns rest frame, and B: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGcbGaaiOoaaaa@379C@  in the frame of the moving planetary object.  In the Suns rest frame the object moving in a circular orbit around the sun, at its actual position with respect to the direction of its circular motion U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGvbWdayaalaaaaa@3712@ , sees the center of gravity, i.e. the sun, at an angle θ=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcqGH9aqpcqaHapaCcaGGVaGaaGOmaaaa@3C8D@  or cosθ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGJbGaae4BaiaabohacqaH4oqCcqGH9aqpcaaIWaaaaa@3CE9@ .  In its own rest frame moving with U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGvbWdayaalaaaaa@3712@ , however, the object recognizes the gravity center at an angle θ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaW baaSqabeaacaGGNaaaaaaa@3884@  which latter as already presented in the section ahead depends on β=U/c. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaWGvbGaai4laiaadogacaGGUaaaaa@3C73@ This means that instead of seeing the center of gravitation from the moving planet under the angle θ= 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH4oqCcqGH9aqpcaaI5aGaaGima8aadaahaaqabeaapeGa eSigI8gaaaaa@3C59@ , under these prerequisites it sees it under the angle 90 +δθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaI5aGaaGima8aadaahaaqabeaapeGaeSigI8gaaiabgUca Riabes7aKjabeI7aXbaa@3DDA@ , with δθ=U/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqaH4oqCcqGH9aqpcqGHsislcaWGvbGaai4laiaa dogaaaa@3E68@  (see Equ. (??)) which implies that there permanently exists a gravitational force component acting on the moving planet at its circular motion antiparallel to its orbital velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGvbWdayaalaaaaa@3712@  .

Hence evidently this force tends to reduce the orbital velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbaaaa@377F@  by the following amount

m d U dt =cosθ Gm M s R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGTbWaaSaaa8aabaWdbiaadsgaceWGvbWdayaalaaabaWd biaadsgacaWG0baaaiabg2da9iabgkHiTiaabogacaqGVbGaae4Cai abeI7aXnaalaaapaqaa8qacaWGhbGaamyBaiaad2eapaWaaSbaaeaa peGaam4CaaWdaeqaaaqaa8qacaWGsbWdamaaCaaabeqaa8qacaaIYa aaaaaaaaa@47FD@   (6)

consequently causing a decrease of the orbital velocity U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  and leading to the following first-order equation of motion under the action of the first-order perturbation force K =( U/c )K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWdamaaBaaabaWdbiablwIiqbWdaeqaa8qacqGH9aqp cqGHsisldaqadaWdaeaapeGaamyvaiaac+cacaWGJbaacaGLOaGaay zkaaGaam4saaaa@3FDB@  :

d U dt = U c G M s R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qadaWcaaWdaeaapeGaamizaiqadwfapaGbaSaaaeaapeGaamiz aiaadshaaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaadwfaa8aaba WdbiaadogaaaWaaSaaa8aabaWdbiaadEeacaWGnbWdamaaBaaabaWd biaadohaa8aabeaaaeaapeGaamOua8aadaahaaqabeaapeGaaGOmaa aaaaaaaa@43A4@   (7)

or with introduction of the orbital period of the Earth around the Sun with     Y E =2π R E / U E =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabi qaaaqaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaacaWGzbWd amaaBaaabaWdbiaadweaa8aabeaapeGaeyypa0JaaGOmaiabec8aWj aadkfapaWaaSbaaeaapeGaamyraaWdaeqaa8qacaGGVaGaamyva8aa daWgaaqaa8qacaWGfbaapaqabaWdbiabg2da9iaaigdaaaa@4514@   leading to:

U( t )= U E exp[ c U E 2πG M s c 2 R E ( t t 0 ) Y E ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWGvbWdamaaBaaabaWdbiaadweaa8aabeaapeGaaeyzaiaabI hacaqGWbWaamWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGJbaa paqaa8qacaWGvbWdamaaBaaabaWdbiaadweaa8aabeaaaaWdbmaala aapaqaa8qacaaIYaGaeqiWdaNaam4raiaad2eapaWaaSbaaeaapeGa am4CaaWdaeqaaaqaa8qacaWGJbWdamaaCaaabeqaa8qacaaIYaaaai aadkfapaWaaSbaaeaapeGaamyraaWdaeqaaaaapeWaaSaaa8aabaWd bmaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aadaWgaaqaa8qaca aIWaaapaqabaaapeGaayjkaiaawMcaaaWdaeaapeGaamywa8aadaWg aaqaa8qacaWGfbaapaqabaaaaaWdbiaawUfacaGLDbaaaaa@57AD@   (8)

With the Schwartzschildradius of the sun, r SS =(2G M s )/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGYbWdamaaBaaabaWdbiaadofacaWGtbaapaqabaWdbiab g2da9iaacIcacaaIYaGaam4raiaad2eapaWaaSbaaeaapeGaam4Caa Wdaeqaa8qacaGGPaGaai4laiaadogapaWaaWbaaeqabaWdbiaaikda aaaaaa@4253@  , this thus leads to:

U( t )= U E exp[ c U E π r SS R E ( t t 0 ) Y E ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGvbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWGvbWdamaaBaaabaWdbiaadweaa8aabeaapeGaaeyzaiaabI hacaqGWbWaamWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGJbaa paqaa8qacaWGvbWdamaaBaaabaWdbiaadweaa8aabeaaaaWdbmaala aapaqaa8qacqaHapaCcaWGYbWdamaaBaaabaWdbiaadofacaWGtbaa paqabaaabaWdbiaadkfapaWaaSbaaeaapeGaamyraaWdaeqaaaaape WaaSaaa8aabaWdbmaabmaapaqaa8qacaWG0bGaeyOeI0IaamiDa8aa daWgaaqaa8qacaaIWaaapaqabaaapeGaayjkaiaawMcaaaWdaeaape Gaamywa8aadaWgaaqaa8qacaWGfbaapaqabaaaaaWdbiaawUfacaGL Dbaaaaa@551D@   (9)

This formula tells us that a typical relativistic decay period of the quasi-circular spiralling-in orbital motion of e.g. the Earth is given by about a period of τ E =( U E /c )( R E /π r SS )1.6 10 3 Y E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHepaDpaWaaSbaaeaapeGaamyraaWdaeqaa8qacqGH9aqp daqadaWdaeaapeGaamyva8aadaWgaaqaa8qacaWGfbaapaqabaWdbi aac+cacaWGJbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadkfapaWa aSbaaeaapeGaamyraaWdaeqaa8qacaGGVaGaeqiWdaNaamOCa8aada Wgaaqaa8qacaWGtbGaam4uaaWdaeqaaaWdbiaawIcacaGLPaaacqWI djYocaaIXaGaaiOlaiaaiAdacqGHflY1caaIXaGaaGima8aadaahaa qabeaapeGaaG4maaaacaWGzbWdamaaBaaabaWdbiaadweaa8aabeaa aaa@530F@  and does indicate the very astonishing result that circumsolar orbits at distances smaller than or equal to R= R E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbGaeyypa0JaamOua8aadaWgaaqaa8qacaWGfbaapaqa baaaaa@3A72@  should have a decay period of only a few thousand years. How under these circumstances the solar system and its planets could have reached an age of 4.5 Billion years? - That represents another challenge to this theory of relativistically mislocated gravity sources.

Propagation of cosmic photons over stellar limbs

Challenged by the above results, we now shall study the effect of how, in view of the new auspices mentioned in this present article here, a central gravity source like a star should influence a photon propagating on a straight line just passing over the limb of the stellar photosphere of this star. As elaborated in detail by Fahr21 a photon with the energy E ν =hν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWdamaaBaaabaWdbiabe27aUbWdaeqaa8qacqGH9aqp caWGObGaeqyVd4gaaa@3D30@  passing along the x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4baaaa@37A1@ -axis over the limb y= r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG5bGaeyypa0JaamOCa8aadaWgaaqaa8qacaWGZbaapaqa baaaaa@3AE6@  of a star will undergo an energy change per increment dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadIhaaaa@386A@  on the x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4baaaa@37A1@ -axis (for an illustrative view see Figure 3) given by:

Figure 3 Propagation of a photon just over the limb of a stellar photosphere.

d( hν )=dx hν c 2 GM [ x 2 + y 2 ] cos ϑ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGKbWaaeWaa8aabaWdbiaadIgacqaH9oGBaiaawIcacaGL PaaacqGH9aqpcqGHsislcaWGKbGaamiEamaalaaapaqaa8qacaWGOb GaeqyVd4gapaqaa8qacaWGJbWdamaaCaaabeqaa8qacaaIYaaaaaaa daWcaaWdaeaapeGaam4raiaad2eaa8aabaWdbmaadmaapaqaa8qaca WG4bWdamaaCaaabeqaa8qacaaIYaaaaiabgUcaRiaadMhapaWaaWba aeqabaWdbiaaikdaaaaacaGLBbGaayzxaaaaaiaabogacaqGVbGaae 4Caiabeg9aknaaCaaabeqaaiaacEcaaaaaaa@52A2@   (10)

where in this case the relativistically relevant angle ϑ ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHrpGsdaahaaqabeaacaGGNaaaaaaa@3919@ , associated with the real position angle ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHrpGsaaa@384C@ , for the photon with ß =U/c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGvbGaai4laiaadogacqGH9aqpcaaIXaaaaa@3BE0@  is given by:

cosϑ`= cosϑ+1 1+cosϑ =±1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaam4BaiaadohacqaHrpGscaGGGbGaeyypa0ZaaSaa a8aabaWdbiaabogacaqGVbGaae4Caiabeg9akjabgUcaRiaaigdaa8 aabaWdbiaaigdacqGHRaWkcaqGJbGaae4BaiaabohacqaHrpGsaaGa eyypa0JaeyySaeRaaGymaaaa@4D2D@   (11)

while (see Figure 3) in the stellar rest frame the position angle ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHrpGsaaa@384C@  is given by     cosϑ=x/ x 2 + y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaybaeaabi qaaaqaaabaaaaaaaaapeGaaiiOaaWdaeaapeGaaiiOaaaacaWGJbGa am4BaiaadohacqaHrpGscqGH9aqpcaWG4bGaai4lamaakaaapaqaa8 qacaWG4bWdamaaCaaabeqaa8qacaaIYaaaaiabgUcaRiaadMhapaWa aWbaaeqabaWdbiaaikdaaaaabeaaaaa@454F@ .

Consequently at the propagation of a photon from x= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaeyypa0JaeyOeI0IaeyOhIukaaa@3A78@  to x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ , in view of the physical work done by the photon, the photon frequency v(x) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG2bGaaiikaiaadIhacaGGPaaaaa@39F6@  changes as given by the following relation:

ν( x )= ν exp[ 1 c 2 x dx GM x 2 + y 2 cosϑ` ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH9oGBdaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiab g2da9iabe27aU9aadaWgaaqaa8qacqGHEisPa8aabeaapeGaaeyzai aabIhacaqGWbWaamWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGJbWdamaaCaaabeqaa8qacaaIYaaaaaaadaGfWb qab8aabaWdbiabgkHiTiabg6HiLcWdaeaapeGaamiEaaWdaeaapeGa ey4kIipaaiaadsgacaWG4bWaaSaaa8aabaWdbiaadEeacaWGnbaapa qaa8qacaWG4bWdamaaCaaabeqaa8qacaaIYaaaaiabgUcaRiaadMha paWaaWbaaeqabaWdbiaaikdaaaaaaiaabogacaqGVbGaae4Caiabeg 9akjaaccgaaiaawUfacaGLDbaaaaa@5C66@   (12)

Here G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbaaaa@3771@  is the gravitational constant, and M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGnbaaaa@3777@  is the stellar mass. For a photon propagating from x= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0JaeyOeI0IaeyOhIukaaa@3B06@  to x=+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG4bGaeyypa0Jaey4kaSIaeyOhIukaaa@3AFB@  one, when inserting cos ϑ ' =±1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGJbGaae4BaiaabohacqaHrpGsdaahaaqabeaacaGGNaaa aiabg2da9iabgglaXkaaigdaaaa@3F97@ , the following frequency change:

ν( ,+ )= ν exp[ 1 c 2 x=0 dx GM x 2 + y 2 + 1 c 2 x=0 + dx GM x 2 + y 2 ]= ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH9oGBdaqadaWdaeaapeGaeyOeI0IaeyOhIuQaaiilaiab gUcaRiabg6HiLcGaayjkaiaawMcaaiabg2da9iabe27aU9aadaWgaa qaa8qacqGHEisPa8aabeaapeGaeyyXICTaaeyzaiaabIhacaqGWbWa amWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qaca WGJbWdamaaCaaabeqaa8qacaaIYaaaaaaadaGfWbqab8aabaWdbiab gkHiTiabg6HiLcWdaeaapeGaamiEaiabg2da9iaaicdaa8aabaWdbi abgUIiYdaacaqGnaIaamizaiaadIhadaWcaaWdaeaapeGaam4raiaa d2eaa8aabaWdbiaadIhapaWaaWbaaeqabaWdbiaaikdaaaGaey4kaS IaamyEa8aadaahaaqabeaapeGaaGOmaaaaaaGaey4kaSYaaSaaa8aa baWdbiaaigdaa8aabaWdbiaadogapaWaaWbaaeqabaWdbiaaikdaaa aaamaawahabeWdaeaapeGaamiEaiabg2da9iaaicdaa8aabaWdbiab gUcaRiabg6HiLcWdaeaapeGaey4kIipaaiaab2aicaWGKbGaamiEam aalaaapaqaa8qacaWGhbGaamytaaWdaeaapeGaamiEa8aadaahaaqa beaapeGaaGOmaaaacqGHRaWkcaWG5bWdamaaCaaabeqaa8qacaaIYa aaaaaaaiaawUfacaGLDbaacqGH9aqpcqaH9oGBpaWaaSbaaeaapeGa eyOhIukapaqabaaaaa@7997@   (13)

namely no! change of the photon frequency occurs, as already obtained by Einstein6 or later by Sexl and Sexl.7,8

But opposite to Einstein‘s result we now find that under the new auspices of a mis-location of the gravity source one obtains (see Fahr5) that the photon at such a limb passage also remains undeflected from its original x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai abgkHiTaaa@386F@ axis due to the permanent vanishing of force components perpendicular to this axis along the whole x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiEai abgkHiTaaa@386F@ axis , proven by the expression:

K ( hν,x )= hν c 2 GM x 2 + y 2 1 cos 2 ϑ+ cos 2 ϑ1 1+cosϑ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGlbWdamaaBaaabaWdbiabgwQiEbWdaeqaa8qadaqadaWd aeaapeGaamiAaiabe27aUjaacYcacaWG4baacaGLOaGaayzkaaGaey ypa0JaeyOeI0YaaSaaa8aabaWdbiaadIgacqaH9oGBa8aabaWdbiaa dogapaWaaWbaaeqabaWdbiaaikdaaaaaamaalaaapaqaa8qacaWGhb GaamytaaWdaeaapeGaamiEa8aadaahaaqabeaapeGaaGOmaaaacqGH RaWkcaWG5bWdamaaCaaabeqaa8qacaaIYaaaaaaadaWcaaWdaeaape WaaOaaa8aabaWdbiaaigdacqGHsislcaqGJbGaae4BaiaabohapaWa aWbaaeqabaWdbiaaikdaaaGaeqy0dOKaey4kaSIaae4yaiaab+gaca qGZbWdamaaCaaabeqaa8qacaaIYaaaaiabeg9akjabgkHiTiaaigda aeqaaaWdaeaapeGaaGymaiabgUcaRiaabogacaqGVbGaae4Caiabeg 9akbaacqGH9aqpcaaIWaaaaa@6475@   (14)

This is in opposition to Einstein‘s findings that a deflection of the photon by an angle δ=2GM/y c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGH9aqpcaaIYaGaam4raiaad2eacaGGVaGaamyE aiaadogapaWaaWbaaeqabaWdbiaaikdaaaaaaa@3F40@   = R s /y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqGH9aqpcaWGsbWdamaaBaaabaWdbiaadohaa8aabeaapeGa ai4laiaadMhaaaa@3B8A@  should occur with R S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGsbWdamaaBaaabaWdbiaadofaa8aabeaaaaa@38A2@  denoting the Schwarzschild radius of the star with mass M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytaa aa@3756@ .

Concluding remarks

In this article we have made use of the standpoint justified by Fahr and Heyl2,3,9,10 that - not only electromagnetic radiation sources -, but as well gravitational sources in space seen from moving objects, like massive particles in motion or propagating photons, should appear at aberrated, dis-located positions. This gravitational source aberration should evidently occur - just like in the analogous electromagnetic case (see: stellar aberration, James Bradley, 1728) - as long as gravitational fields are communicated to space by gravitons, analogous to electromagnetic radiation fields by electromagnetic photons, and as long as both field quanta propagate with the same velocity c= c g = c e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbGaeyypa0Jaam4ya8aadaWgaaqaa8qacaWGNbaapaqa baWdbiabg2da9iaadogapaWaaSbaaeaapeGaamyzaaWdaeqaaaaa@3DED@ , as is the physical knowledge of our present epoch. Based on this knowledge one has to expect aberrations in the recognition of gravitational source positions by moving massive objects or photons as already discussed by the above mentioned authors.

In this article here it is shown that due to this relativistic mis-location of a gravitational source, e.g. like a star, aberrational effects should occur in many important cases when photons or massive particles move over extended distances in cosmic space being influenced by cosmic masses, or scratch closely over photospheric limbs of surrounding stars. As we have shown (see section 4) in the latter case the photon, due to this aberrational effect, will not change its energy at such a limb passage, however, due to this aberrational effect at the same time will also always see the center of the stellar gravity field displaced in such a way that no force component perpendicular to its passage line appears. This means the photon should pass the star undeflected, which would be in contrast to Einstein‘s prediction of a deflection angle by δ=2GM/ r s c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaH0oazcqGH9aqpcaaIYaGaam4raiaad2eacaGGVaGaamOC a8aadaWgaaqaa8qacaWGZbaapaqabaWdbiaadogapaWaaWbaaeqaba Wdbiaaikdaaaaaaa@4090@  and to observations made by Fomalont.11,12 Also the lensing effects observed at recent times by astronomers at stars appearing for us behind a massive foreground galaxy need to be newly interpreted in the light of this new view. We are waiting impatiently for a timely solution of this embarrassing scientific situation.

Especially the general, cosmic "deceleration effect" presented in section 2 needs to be understood, i.e. the effect that peculiar velocities of massive objects are permanently reduced in magnitude at the progress of cosmic time, and the analogue effect onto cosmic photons that they are permanently increasing their redshifts, the longer they propagate through the universe. These effects are most surprising in all their indicated consequences and have encouraged us here in this paper to apply these relativistic gravitational aberration effects in ambient cosmic gravity fields also now to more local and smaller-scaled motions like those of objects and photons through the gravity fields of galaxy clusters or even to Keplerian motions of planetary bodies orbiting their parent central stars. And again at these new applications the results which we derive here are highly surprising, shocking and still looking for observational confirmations and interpretations.

In this paper here we are not presenting a very conclusive result, but we are essentially only raising questions putting the finger on something unexplained and want to excite other scientists from the astronomical community to follow us in these thinkings. Maybe in view of these results we are going so far as to say that the physics and doctrine of gravitons - thought to be the light-fast messengers of gravitational fields - has to be newly conceived.

Even though the theory of a Keplerian object under relativistic gravity effects of the Sun presented in section 4 was simplified in many theoretical respects, the shocking result implying orbital decay times of terrestrial planets of only a few 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIXaGaaGima8aadaahaaqabeaapeGaaG4maaaaaaa@3918@  years nevertheless is fairly solid and unavoidable. The presented calculation had assumed a planetary orbit which at its loss of orbital angular momentum stays quasicircular over the whole decay period. This of course is not exactly true, but the permanent loss of angular momentum of the planetary object under the given conditions would turn the circular into an elliptical orbit, and a more reliable numerical calculation should be carried out, however, as can easily be proven, would not change the decay time period by an order of magnitude.

At the end of this article this means we do in fact at this moment not see any rational explanation for the very short orbital decay time periods of planets under this special-relativistic gravitational action of the Sun. What kind of a solution of these indicated problems could be imagined? Perhaps the whole concept of gravitational fields being propagated to other gravitationally attracted massive bodies derived in a linearized version of the GRT field equations by Einstein13 or later e.g. by Goenner14 must become again a subject of reinvestigations. Perhaps one must finally even dare to presume that there are in fact no gravitons, and that gravity fields in fact are no quantum fields, even though their existence since long ago,15 has been claimed for - or these gravitons are perhaps faster than light, gradually removing the presented challenge with c g c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGJbWdamaaBaaabaWdbiaadEgaa8aabeaatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqba8qacqWFxlsGcaWGJbaaaa@4561@ .

At least since up to now there has been no success in the attempt to quantize gravity fields, i.e. Einstein‘s General Relativistic gravity fields, it must be allowed to also hesitate believing in the up to now given concept of gravitons as the quantum bosons of gravitational fields, expected as mass-less and with spin "2". It is perhaps an error to believe that with the recently installed big gravity wave antennas the existence of gravitons had been clearly verified. Maybe gravitational waves have been proven to exist with LIGO- or Virgo-,16,17 but gravitons up to the present have not been confirmed with these antenna devices.18 But if in fact gravitational fields are no quantum fields, then one also might find therein the evident solution of the above presented "orbit decay problem".

References

  1. Michelson AA, Morley EW. American Journal of Science. 1887;34:333.
  2. Fahr HJ, Heyl M. A universe with constant expansion rate abolishes the need for vacuum energy. Physics & Astronomy Intern Journal. 2020a;4(4):156‒163.
  3. Fahr HJ, Heyl M. Redshifting cosmic photons in a non‒expanding universe, Advances in Theoret. & Computat. Physics. 2020b;3(3):220‒227.
  4. French AP. In: Special Relativity, Massachusetts Institute of Technology, 1968.
  5. Fahr HJ. Passage of cosmic photons over stellar limbs. Advances in Theoret and Computational Physics. 2021;4(4):301.
  6. Einstein A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Annalen der Physik. 1911;35.
  7. Sexl R, Schmidt HK. Braunschweig/Wiesbaden. 1979.
  8. Sexl R, Sexl H. Weisse Zwerge ‒ Schwarze Löcher, Vieweg Verlag. Braunschweig. 1979.
  9. Fahr HJ, Heyl M. Stellar matter distribution with scale‒invariant hierarchical structuring. Physics & Astronomy Intern Journal. 2019;3(4):146‒150.
  10. Fahr HJ, Heyl M. Energy change of particles and photons at crossing gravity fields of galaxy clusters or single stars: The concept of gravitatons. Advances in Theoretical & Computational Physics. 2020a;3(4):239‒242.
  11. Fomalont EB, Sramek RA. Measurement of the solar gravitational deflection of radiowaves in agreement with general relativity. Phys Rev Lett. 1976;36:1475‒1478.
  12. Fomalont EB. The deflection of radiowaves by the Sun. Comments in Astrophysics. 1977;7:19‒33.
  13. Einstein A. Näherungsweise Integration der linearisierten Feldgleichungen der Gravitation, Sitzungsberichte d. Preuß. Akad. Wiss., Berlin, Math. Nat. Kl. 1916;688‒696.
  14. Goenner, H. Einführung in die spez. und allgem. Relativitätstheorie, Spektrum Akad. Verlag, Heidelberg‒Berlin‒Oxford, 1996, pp. 325‒350.
  15. Davies PCW. The search for gravity waves, Cambridge University Press, 1980.
  16. Abbott BP. Observation of gravitational waves from a binary black hole merger. Physical Rev Letters. 2016;116(6).
  17. Castelvecchi D, Witze W. Einstein‘s gravitational waves found at last. NATURE NEWS 11. 2016.
  18. Dyson F. Is a graviton detectable?, Int Journal of Modern Physics A. 2013;25.
Creative Commons Attribution License

©2022 Fahr. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.