Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 2 Issue 4

Gravitational theories with topological invariant

Yoshimasa Kurihara

The High Energy Accelerator Organization (KEK), Japan

Correspondence: Yoshimasa Kurihara, The High Energy Accelerator Organization (KEK), Oho 1?1, Tsukuba, Ibaraki 305?0801, Japan, Tel 8129 8796 088

Received: July 30, 2018 | Published: August 16, 2018

Citation: Kurihara Y. Gravitational theories with topological invariant. Phys Astron Int J. 2018;2(4):361-363 DOI: 10.15406/paij.2018.02.00110

Download PDF

Abstract

This paper provides a brief review of the gravitational theories which have topological classes, such as the Chern–Simmons, BF Theory and Chern–Weil theory. For quantization of the Yang–Mills field theory, gauge symmetries and corresponding conserved charges play an essential role. These properties, symmetries and conserved charges, correspond to a structural group and topological classes of a principal bundle in differential geometry. Gravitational theories which have topological classes with respect to the structural group of the principal bundle are possible starting point of the still–unknown quantum gravitational theory.

Keywords: Chern–Weil field theory, gauge symmetries, conserved charges, topological classes, structural group, gravitational theories

Classical general relativity

A four–dimensional pseudo–Riemannian manifold (M,g) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZest caaISaGaam4zaiaaiMcaaaa@443C@ with GL(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaamitaiaaiIcacaWGUbGaaGykaaaa@3A7A@ symmetry is introduced as a model of the universe. General relativity is constructed in M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=ntinbaa@4135@ as follows: The line element is defined using the metric tensor as d s 2 := g μ 1 μ 2 (x)d x μ 1 d x μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiQda caaI9aGaam4zaKqbaoaaBaaajeaibaqcLbmacqaH8oqBjuaGdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbmacqaH8oqBjuaGdaWgaaqc basaaKqzadGaaGOmaaqcbasabaaabeaajugibiaaiIcacaWG4bGaaG ykaiaadsgacaWG4bqcfa4aaWbaaSqabKqaGeaajugWaiabeY7aTLqb aoaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaqcLbsacqGHxkcXca WGKbGaamiEaKqbaoaaCaaajeaibeqaaKqzadGaeqiVd0wcfa4aaSba aKqaGeaajugWaiaaikdaaKqaGeqaaaaaaaa@615F@ . (The Einstein convention for repeated indices is used throughout this report.) It is always possible to find a frame of reference whose affine connection as Γ μν ρ (p)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHto WrlmaaDaaajeaibaqcLbmacaaIGaGaeqiVd0MaeqyVd4gajeaibaqc LbmacqaHbpGCaaqcLbsacaaIOaGaamiCaiaaiMcacaaI9aGaaGimaa aa@450C@ at any point pM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFZestaaa@43AE@ . A local manifold with a vanishing affine connection displays Poincaré symmetry ISO(n)=SO(n)T(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGjb Gaam4uaiaad+eacaaIOaGaamOBaiaaiMcacaaI9aGaam4uaiaad+ea caaIOaGaamOBaiaaiMcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbaiab=LSiIlaadsfacaaIOaGaamOBaiaaiMcaaaa@4F2F@ , where T(n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaaGikaiaad6gacaaIPaaaaa@39B6@ is a group of n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ –dimensional translations. We introduce a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ –dimensional Riemannian manifold ( M p ,η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamytaKqbaoaaBaaajeaibaqcLbmacaWGWbaaleqaaKqzGeGaaGil aiabeE7aOjaaiMcaaaa@3EB4@ with vanishing affine connection at pM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFZestaaa@43AE@ and a bundle M:= p M p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GaaGOoaiaai2dajuaGdaWeqaGcbeqcbasaaKqzadGaamiCaaWcbeqc LbsacqWIQisvaiaad2ealmaaBaaajeaibaqcLbmacaWGWbaajeaibe aaaaa@4133@ . The diffeomorphism map E:MM:gη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=btifjaaiQda cqWFZestcqGHsgIRcaWGnbGaaGOoaiaahEgacqWIMgsycqaH3oaAaa a@4AEC@ is represented using standard coordinates on any chart of M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZestaaa@40A6@  as

η ab = E μ 1 a ( x μ ) E μ 2 b ( x μ ) g μ 1 μ 2 ( x μ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH3o aAlmaaCaaajeaibeqaaKqzadGaamyyaiaadkgaaaqcLbsacaaI9aWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWesrlm aaDaaajeaibaqcLbmacqaH8oqBlmaaBaaajeaibaqcLbmacaaIXaaa jeaibeaaaeaajugWaiaadggaaaqcLbsacaaIOaGaamiEaSWaaWbaaK qaGeqabaqcLbmacqaH8oqBaaqcLbsacaaIPaGae8hmHu0cdaqhaaqc basaaKqzadGaeqiVd02cdaWgaaqcbasaaKqzadGaaGOmaaqcbasaba aabaqcLbmacaWGIbaaaKqzGeGaaGikaiaadIhajuaGdaahaaWcbeqc basaaKqzadGaeqiVd0gaaKqzGeGaaGykaiaadEgalmaaCaaajeaibe qaaKqzadGaeqiVd02cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbmacqaH8oqBlmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaaqcLb sacaaIOaGaamiEaSWaaWbaaKqaGeqabaqcLbmacqaH8oqBaaqcLbsa caaIPaGaaGOlaaaa@7960@

The function E μ a ( x μ )=[E( x μ )] μ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=btifTWaa0ba aKqaGeaajugWaiabeY7aTbqcbasaaKqzadGaamyyaaaajugibiaaiI cacaWG4bWcdaahaaqcbasabeaajugWaiabeY7aTbaajugibiaaiMca caaI9aGaaG4waiab=btifjaaiIcacaWG4bWcdaahaaqcbasabeaaju gWaiabeY7aTbaajugibiaaiMcacaaIDbWcdaqhaaqcbasaaKqzadGa eqiVd0gajeaibaqcLbmacaWGHbaaaaaa@5CB1@ is referred to as a vierbein. The spin connection wso(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hmWFNaeyic I4Sae8hlWpNae8hkW=MaaGikaiaaigdacaaISaGaaG4maiaaiMcaaa a@4C99@ is introduced as a Lie–algebra–valued one–form, and is referred to as the spin form. It can be represented in standard coordinates as w ab = ω μ c a η cb d x μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hmWF3cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaKqzGeGaaGypaiabeM8a3T Waa0baaKqaGeaajugWaiabeY7aTjaaiccacaWGJbaajeaibaqcLbma caaIGaGaamyyaaaajugibiabeE7aOTWaaWbaaKqaGeqabaqcLbmaca WGJbGaamOyaaaajugibiaadsgacaWG4bWcdaahaaqcbasabeaajugW aiabeY7aTbaaaaa@5CCB@ , and is antisymmetric, i.e., w ab = w ba MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hmWF3cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaKqzGeGaaGypaiabgkHiTi ab=bd83TWaaWbaaKqaGeqabaqcLbmacaWGIbGaamyyaaaaaaa@4E65@ .

The Einstein–Hilbert gravitational action can be expressed as

I= 1 2 Σ n ( ε a 1 a n a 1 a 2 e a 3 e a n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijjaai2da juaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4aa8 qaaeaajugibiabfo6atLqbaoaaBaaajuaibaqcLbmacaWGUbaajuaG beaadaqadaqaaKqzGeGaeqyTduwcfa4aaSbaaeaajugibiaadggalm aaBaaajuaibaqcLbmacaaIXaaajuaibeaajugibiabl+Uimjaadgga juaGdaWgaaqcfasaaKqzadGaamOBaaqcfayabaaabeaajugibiaaic catuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaGae4hh Hivcfa4aaWbaaeqajuaibaqcLbmacaWGHbWcdaWgaaqcfasaaKqzad GaaGymaaqcfasabaqcLbmacaWGHbWcdaWgaaqcfasaaKqzadGaaGOm aaqcfasabaaaaKqzGeGaey4jIKTae4NhWx2cdaahaaqcfasabeaaju gWaiaadggalmaaBaaajuaibaqcLbmacaaIZaaajuaibeaaaaqcLbsa cqGHNis2cqWIVlctcqGHNis2cqGFEaFzlmaaCaaajuaibeqaaKqzad GaamyyaSWaaSbaaKqbGeaajugWaiaad6gaaKqbGeqaaaaaaKqbakaa wIcacaGLPaaajugibiaaiYcaaKqbagqabeqcLbsacqGHRiI8aaaa@8C55@

where ab :=d w ab + w c a w cb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hhHi1cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaKqzGeGaaGOoaiaai2daca WGKbGae8hmWF3cdaahaaqcbasabeaajugWaiaadggacaWGIbaaaKqz GeGaey4kaSIae8hmWF3cdaqhaaqcbasaaKqzadGaaGiiaiaadogaaK qaGeaajugWaiaadggaaaqcLbsacqGHNis2cqWFWa=DlmaaCaaajeai beqaaKqzadGaam4yaiaadkgaaaaaaa@5EAC@ is a curvature two–form. Theories which have topological (characteristic) classes are referred to as the topological theory in this article. We note that the topological theory does not means the so–called “topological field theory”, which has the metric independent correlation functions, and thus, it does not exhibit any dynamics. Three examples of the topological theories are reviewed.

Topological theories

On a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ –dimensional Riemannian manifold (M,g) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFZest caaISaGaam4zaiaaiMcaaaa@443C@ , a principal bundle P(M,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e83mH0KaaGilaiaadEeacaaIPaaaaa@44F1@ is introduced, where G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb aaaa@3751@ is the structural Lie–group. The connection one–form A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8haWheaaa@42FC@ and the corresponding curvature two–form F=dA+AA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xbWBKaaGyp aiaadsgacqWFaaFqcqGHRaWkcqWFaaFqcqGHNis2cqWFaaFqaaa@4C68@ are equipped on the base manifold M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb aaaa@3757@ . A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8haWheaaa@42FC@ is a Lie–algebra valued one–form Ag MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8haWhKaeyic I4Sae8hiWFgaaa@467C@ , where g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hiWFgaaa@4342@ is a Lie–algebra of the structural group G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb aaaa@3751@ .

Chern–Simons topological theory
In 1988, Witten shows that general relativity in the (1+2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaikdacaaIPaaaaa@3A43@ –dimensional space can be considered as a Chern–Simons topological theory.1 In this theory, we employ a principal bundle consists of the base manifold M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=ntinbaa@4135@ with (1+2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaikdacaaIPaaaaa@3A43@ space–time dimension and the structural group ISO(1,2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGjb Gaam4uaiaad+eacaaIOaGaaGymaiaaiYcacaaIYaGaaGykaaaa@3C91@ . The connection one–form and curvature two–form can be respectively introduced as

A CS :={ J ab , P c }×{ w ab , e c }= J ab w ab + P c e c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8haWhucfa4a aSbaaKqaGeaajugWaiaadoeacaWGtbaaleqaaKqzGeGaaGOoaiaai2 dacaaI7bGaamOsaSWaaSbaaKqaGeaajugWaiaadggacaWGIbaajeai beaajugibiaaiYcacaWGqbWcdaWgaaqcbasaaKqzadGaam4yaaqcba sabaqcLbsacaaI9bGaey41aqRaaG4Eaiab=bd83TWaaWbaaKqaGeqa baqcLbmacaWGHbGaamOyaaaajugibiaaiYcacqWFEaFzlmaaCaaaje aibeqaaKqzadGaam4yaaaajugibiaai2hacaaI9aGaamOsaSWaaSba aKqaGeaajugWaiaadggacaWGIbaajeaibeaajugibiab=bd83TWaaW baaKqaGeqabaqcLbmacaWGHbGaamOyaaaajugibiabgUcaRiaadcfa lmaaBaaajeaibaqcLbmacaWGJbaajeaibeaajugibiab=5b8LTWaaW baaKqaGeqabaqcLbmacaWGJbaaaKqzGeGaaGilaaaa@7A4A@

F CS :=d A CS + A CS A CS = J ab ab + P c T c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xbWBucfa4a aSbaaKqaGeaajugWaiaadoeacaWGtbaaleqaaKqzGeGaaGOoaiaai2 dacaWGKbGae8haWh0cdaWgaaqcbasaaKqzadGaam4qaiaadofaaKqa GeqaaKqzGeGaey4kaSIae8haWh0cdaWgaaqcbasaaKqzadGaam4qai aadofaaKqaGeqaaKqzGeGaey4jIKTae8haWh0cdaWgaaqcbasaaKqz adGaam4qaiaadofaaKqaGeqaaKqzGeGaaGypaiaadQealmaaBaaaje aibaqcLbmacaWGHbGaamOyaaqcbasabaqcLbsacqWFCeIulmaaCaaa jeaibeqaaKqzadGaamyyaiaadkgaaaqcLbsacqGHRaWkcaWGqbqcfa 4aaSbaaKqaGeaajugWaiaadogaaSqabaqcLbsacqWFtapvlmaaCaaa jeaibeqaaKqzadGaam4yaaaajugibiaaiYcaaaa@7267@

where J ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaaaa@3ACF@ and P a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaWgaaqcbasaaKqzadGaamyyaaqcbasabaaaaa@39EE@ are respectively the Lie–algebra of a rotation and a translation, and T a :=d e a + w b a e b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae83eWt1cdaah aaqcbasabeaajugWaiaadggaaaqcLbsacaaI6aGaaGypaiaadsgacq WFEaFzlmaaCaaajeaibeqaaKqzadGaamyyaaaajugibiabgUcaRiab =bd83TWaa0baaKqaGeaajugWaiaaiccacaWGIbaajeaibaqcLbmaca WGHbaaaKqzGeGaey4jIKTae8NhWx2cdaahaaqcbasabeaajugWaiaa dkgaaaaaaa@5C75@ is a torsion two–form. The Chern–Simons action is thus obtained as

I CS := 1 4 Σ 4 F CS F CS , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijTWaaSba aKazba4=baqcLbmacaWGdbGaam4uaaqcKfaG=hqaaKqzGeGaaGOoai aai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaisdaaaqc fa4aa8qaaeaalmaaBaaajuaibaWcdaWgaaqcfasaaKqzadGaeu4Odm 1cdaWgaaqcKvaq=haajugWaiaaisdaaKqbGeqaaaqabaaabeaatuuD JXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaqcLbsacqGFfa VrlmaaBaaajqwba9FaaKqzadGaam4qaiaadofaaKqbGeqaaKqzGeGa ey4jIKTae4xbWBucfa4aaSbaaKazfa0=baqcLbmacaWGdbGaam4uaa qcfayabaqcLbsacaaISaaajuaGbeqabKqzGeGaey4kIipaaaa@7517@

= 1 2 Σ 4 Tr[ A CS d A CS + 2 3 A CS A CS A CS ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9a qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaKqbaoaa pebakeqaleaajugWaiabfo6atTWaaSbaaKqaGeaajugWaiaaisdaaS qabaaabeqcLbsacqGHRiI8aiaadsfacaWGYbqcfa4aamWaaOqaamrr 1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaajugibiab=b a8bTWaaSbaaKqaGeaajugWaiaadoeacaWGtbaajeaibeaajugibiab gEIizlaadsgacqWFaaFqjuaGdaWgaaqcbasaaKqzadGaam4qaiaado faaSqabaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaaIYaaakeaa jugibiaaiodaaaGae8haWh0cdaWgaaqcbasaaKqzadGaam4qaiaado faaKqaGeqaaKqzGeGaey4jIKTae8haWh0cdaWgaaqcbasaaKqzadGa am4qaiaadofaaKqaGeqaaKqzGeGaey4jIKTae8haWh0cdaWgaaqcba saaKqzadGaam4qaiaadofaaKqaGeqaaaGccaGLBbGaayzxaaqcLbsa caaISaaaaa@7982@

= 1 2 Σ 4 d( ε abc e a bc ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9a qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaKqbaoaa pebakeqaleaajugWaiabfo6atTWaaSbaaKqaGeaajugWaiaaisdaaK qaGeqaaaWcbeqcLbsacqGHRiI8aiaadsgajuaGdaqadaGcbaqcLbsa cqaH1oqzlmaaBaaajeaibaqcLbmacaWGHbGaamOyaiaadogaaKqaGe qaaKqzadGaaGiiamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaajugibiab=5b8LLqbaoaaCaaaleqajeaibaqcLbmacaWGHb aaaKqzGeGaey4jIKTae8hhHi1cdaahaaqcbasabeaajugWaiaadkga caWGJbaaaaGccaGLOaGaayzkaaqcLbsacaaISaaaaa@6691@

= 1 2 Σ 4 = Σ 3 ( ε abc e a bc ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI9a qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaKqbaoaa peaabaWaaSbaaKqbGeaajugWaiabgkGi2kabfo6atTWaaSbaaKqbGe aajugWaiaaisdaaKqbGeqaaKqzadGaaGypaiabfo6atTWaaSbaaKqb GeaajugWaiaaiodaaKqbGeqaaaqcfayabaWaaeWaaeaajugibiabew 7aLLqbaoaaBaaajuaibaqcLbmacaWGHbGaamOyaiaadogaaKqbagqa aKqzGeGaaGiiamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1j haiuaacqWFEaFzlmaaCaaajuaibeqaaKqzadGaamyyaaaajugibiab gEIizlab=XrisTWaaWbaaKqbGeqabaqcLbmacaWGIbGaam4yaaaaaK qbakaawIcacaGLPaaajugibiaaiYcaaKqbagqabeqcLbsacqGHRiI8 aaaa@6D60@

where Σ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo WujuaGdaWgaaqcbasaaKqzadGaaGinaaWcbeaaaaa@3AD9@ is an appropriate simply connected and orientable four–dimensional manifold in which a three–dimensional manifold Σ 3 M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo WulmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiabgkOimlaa d2eaaaa@3DD1@ is immersed. This is nothing other than the Einstein–Hilbert action without the cosmological term, and thus, it is shown that general relativity can be constructed as the Chern–Simons topological theory in three–dimension. This coincidence between the Chern–Simons and Einstein–Hilbert actions is rather accidental only in the three dimensional space.2,3

Quantization of the theory can be performed using the canonical commutation–relations on e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NhWxgaaa@433E@ . Whereas the Chern–Simins quantum gravity in three–dimensional space does not have any dynamical degree, this is not owing to a topological aspect of the theory. From a simple counting of the degree of freedom (DOF), one can understand that the dynamical DOF in three–dimensional general relativity is zero at the classical level. Detailed summary of Chern–Simons (super) gravity can be found in a textbook.4

BF topological theory

In 1977, the BF topological theory is introduced at first by Plebański,5 while the term “BF theory” did not exist yet at that time. In 1989, Horowitz first treated general relativity of the BF theory as the topological theory in general n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E9@ –dimensional space–time.6 Review articles of the BF topological theory can be found.7,8

In the BF theory, the base manifold M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb aaaa@3757@ is chosen as a four–dimensional Riemannian manifold and the structural group is taken as SO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BC4@ or SO(4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaI0aGaaGykaaaa@3A54@ . The connection one–form and curvature two–form can be respectively taken as the spin form w ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hmWF3cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@46B4@ and curvature form ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hhHi1cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@45AC@ . In addition, new Lie–algebra valued two–form B ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWl0cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@4650@ is introduced, and an action in the BF theory is defined as

I ˜ BF := 1 2 Σ 4 ε abcd B ab cd , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiqb=brijzaaiaWc daWgaaqcbasaaKqzadGaamOqaiaadAeaaKqaGeqaaKqzGeGaaGOoai aai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaqc fa4aa8qeaOqabKqaGeaajugWaiabfo6atTWaaSbaaKqaGeaajugWai aaisdaaKqaGeqaaaWcbeqcLbsacqGHRiI8aiabew7aLTWaaSbaaKqa GeaajugWaiaadggacaWGIbGaam4yaiaadsgaaKqaGeqaaKqzGeGaaG iiamrr1ngBPrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiyaacqGF baVqlmaaCaaajeaibeqaaKqzadGaamyyaiaadkgaaaqcLbsacqGHNi s2cqGFCeIulmaaCaaajeaibeqaaKqzadGaam4yaiaadsgaaaqcLbsa caaISaaaaa@720E@

where Σ 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHJo WulmaaBaaajeaibaqcLbmacaaI0aaajeaibeaaaaa@3A75@ is an appropriate simply connected and orientable four–dimensional manifold. This action cannot be simply recognized as the topological action of the structural group SO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BC4@ , because the form B ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWl0cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@4650@ does not belong to the principal bundle in general. Instead, the form B ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWl0cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@4650@ must be understood as a connection form on a 2–bundle, and it forms principal 2–bundle in the higher–gauge theory.9 Whereas the action I ˜ BF MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiqb=brijzaaiaWc daWgaaqcbasaaKqzadGaamOqaiaadAeaaKqaGeqaaaaa@445D@ can be topological by means of the 2–gauge theory, it is not coincide with the Einstein–Hilbert action. To convert the BF topological theory to a gravitational theory, additional constraints5,10 must be implement as, e.g., a Lagrange multiplier term such as

I BF := 1 2 Σ 4 ( ε abcd B ab cd 1 2 ϕ abcd B ab B cd ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijTWaaSba aKqaGeaajugWaiaadkeacaWGgbaajeaibeaajugibiaaiQdacaaI9a qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaKqbaoaa pebakeqajeaibaqcLbmacqqHJoWulmaaBaaajeaibaqcLbmacaaI0a aajeaibeaaaSqabKqzGeGaey4kIipajuaGdaqadaGcbaqcLbsacqaH 1oqzlmaaBaaajeaibaqcLbmacaWGHbGaamOyaiaadogacaWGKbaaje aibeaajugibiaaiccatuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxy RrxDYbacgaGae4xaWlucfa4aaWbaaSqabKqaGeaajugWaiaadggaca WGIbaaaKqzGeGaey4jIKTae4hhHi1cdaahaaqcbasabeaajugWaiaa dogacaWGKbaaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaa GcbaqcLbsacaaIYaaaaiabew9aMLqbaoaaBaaajeaibaqcLbmacaWG HbGaamOyaiaadogacaWGKbaaleqaaKqzGeGae4xaWl0cdaahaaqcba sabeaajugWaiaadggacaWGIbaaaKqzGeGaey4jIKTae4xaWl0cdaah aaqcbasabeaajugWaiaadogacaWGKbaaaaGccaGLOaGaayzkaaqcLb sacaaISaaaaa@8E64@

where ϕ abcd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp GzlmaaBaaajeaibaqcLbmacaWGHbGaamOyaiaadogacaWGKbaajeai beaaaaa@3D99@ is a Lagrange multiplier of a scalar symmetric traceless matrix. The equation of motion with respect to ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvp Gzaaa@384D@ appears as the additional constraint, which is referred to as the simplicity condition. The simplicity condition is discussed in detail by Gielen & Oritti11 (linear constraints) and Celada et al.,12 (constraints on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaajugibiab=jqidbaa@4113@ formalism).

We note that the action I BF MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijTWaaSba aKqaGeaajugWaiaadkeacaWGgbaajeaibeaaaaa@444E@ does not have any topological characteristic–classes any more after implementing the constraint term. One of possible choices of the simplicity condition is to identify the form e a e b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NhWx2cdaah aaqcbasabeaajugWaiaadggaaaqcLbsacqGHNis2cqWFEaFzlmaaCa aajeaibeqaaKqzadGaamOyaaaaaaa@4C4A@ as B ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWl0cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@4650@ , and thus, a shape of the BF action coincides with the Einstein–Hilbert action. This coincidence of the shape of the action is true only for solutions of the equation of motion (on–shell condition) in the classical level, and the on–shell condition cannot be simply fulfilled after quantization of the BF theory. The BF gravitational theory is complicated12 owing to this fact.

Chern–Weil topological theory

The four–dimensional Einstein–Hilbert gravitational action can be constructed using the Chern–Weil topological theory whose principal bundle consists of the co–Poincaré group3 as the structural group. The co–Poincaré principal bundle Θ=( w ab , S cd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo qucaaI9aqcfa4aaeWaaOqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgz GyKCHTgD1jhaiuaajugibiab=bd83TWaaWbaaKqaGeqabaqcLbmaca WGHbGaamOyaaaajugibiaaiYcacqWFsa=ulmaaBaaajeaibaqcLbma caWGJbGaamizaaqcbasabaaakiaawIcacaGLPaaaaaa@524A@ is introduced into four–dimensional space–time manifold M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=ntinbaa@4135@ , where S ab := 1 2 ε abcd e c e d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NeWp1cdaWg aaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaKqzGeGaaGOoaiaai2 dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaGaeqyT du2cdaWgaaqcbasaaKqzadGaamyyaiaadkgacaWGJbGaamizaaqcba sabaqcLbsacqWFEaFzlmaaCaaajeaibeqaaKqzadGaam4yaaaajugi biabgEIizlab=5b8LTWaaWbaaKqaGeqabaqcLbmacaWGKbaaaaaa@5E86@ is the surface form. Corresponding connection form A CW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=ba8bnaaBaaaleaa caWGdbGaam4vaaqabaaaaa@443D@  and curvature form F CW MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=va8gnaaBaaaleaa caWGdbGaam4vaaqabaaaaa@4447@  are respectively expresses as follows:

A CW :=( J ab , P cd )×( w ab , S cd )= J ab w ab + P ab S ab , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8haWh0cdaWg aaqcbasaaKqzadGaam4qaiaadEfaaKqaGeqaaKqzGeGaaGOoaiaai2 dajuaGdaqadaGcbaqcLbsacaWGkbWcdaWgaaqcbasaaKqzadGaamyy aiaadkgaaKqaGeqaaKqzGeGaaGilaiaadcfalmaaCaaajeaibeqaaK qzadGaam4yaiaadsgaaaaakiaawIcacaGLPaaajugibiabgEna0Mqb aoaabmaakeaajugibiab=bd83TWaaWbaaKqaGeqabaqcLbmacaWGHb GaamOyaaaajugibiaaiYcacqWFsa=ulmaaBaaajeaibaqcLbmacaWG JbGaamizaaqcbasabaaakiaawIcacaGLPaaajugibiaai2dacaWGkb WcdaWgaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaKqzGeGae8hm WF3cdaahaaqcbasabeaajugWaiaadggacaWGIbaaaKqzGeGaey4kaS IaamiuaSWaaWbaaKqaGeqabaqcLbmacaWGHbGaamOyaaaajugibiab =jb8tTWaaSbaaKqaGeaajugWaiaadggacaWGIbaajeaibeaajugibi aaiYcaaaa@7EA6@

F CW :=d A CW + A CW A CW = J ab ab + P v d w S ab , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xbWB0cdaWg aaqcbasaaKqzadGaam4qaiaadEfaaKqaGeqaaKqzGeGaaGOoaiaai2 dacaWGKbGae8haWh0cdaWgaaqcbasaaKqzadGaam4qaiaadEfaaKqa GeqaaKqzGeGaey4kaSIae8haWh0cdaWgaaqcbasaaKqzadGaam4qai aadEfaaKqaGeqaaKqzGeGaey4jIKTae8haWh0cdaWgaaqcbasaaKqz adGaam4qaiaadEfaaKqaGeqaaKqzGeGaaGypaiaadQealmaaBaaaje aibaqcLbmacaWGHbGaamOyaaqcbasabaqcLbsacqWFCeIulmaaCaaa jeaibeqaaKqzadGaamyyaiaadkgaaaqcLbsacqGHRaWkcaWGqbqcfa 4aaWbaaSqabKqaGeaajugWaiaadAhaaaqcLbsacaWGKbWcdaWgaaqc basaaKqzadGae8hmWFhajeaibeaajugibiab=jb8tTWaaSbaaKqaGe aajugWaiaadggacaWGIbaajeaibeaajugibiaaiYcaaaa@7875@

where d w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb WcdaWgaaqcbasaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaajugWaiab=bd83bqcbasabaaaaa@45F9@ is the covariant derivative with respect to SO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BC4@ , and J ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaaaa@3ACF@ and P cd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaahaaqcbasabeaajugWaiaadogacaWGKbaaaaaa@3AB0@ are respectively generators of SO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BC4@ and the co–translation, whose Lie algebra is expresses as

[ P ab , P cd ]=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaamiuaSWaaSbaaKqaGeaajugWaiaadggacaWGIbaajeai beaajugibiaaiYcacaWGqbWcdaWgaaqcbasaaKqzadGaam4yaiaads gaaKqaGeqaaaGccaGLBbGaayzxaaqcLbsacaaI9aGaaGimaiaaiYca aaa@45C8@

[ J ab , P cd ]= η ac P bd + η bc P ad , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaamOsaSWaaSbaaKqaGeaajugWaiaadggacaWGIbaajeai beaajugibiaaiYcacaWGqbWcdaWgaaqcbasaaKqzadGaam4yaiaads gaaKqaGeqaaaGccaGLBbGaayzxaaqcLbsacaaI9aGaeyOeI0Iaeq4T dG2cdaWgaaqcbasaaKqzadGaamyyaiaadogaaKqaGeqaaKqzGeGaam iuaSWaaSbaaKqaGeaajugWaiaadkgacaWGKbaajeaibeaajugibiab gUcaRiabeE7aOTWaaSbaaKqaGeaajugWaiaadkgacaWGJbaajeaibe aajugibiaadcfalmaaBaaajeaibaqcLbmacaWGHbGaamizaaqcbasa baqcLbsacaaISaaaaa@5C09@

[ J ab , J cd ]= η ac J bd + η bc J ad η bd J ac + η ad J bc . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeGaamOsaKqbaoaaBaaajeaibaqcLbmacaWGHbGaamOyaaWc beaajugibiaaiYcacaWGkbWcdaWgaaqcbasaaKqzadGaam4yaiaads gaaKqaGeqaaaGccaGLBbGaayzxaaqcLbsacaaI9aGaeyOeI0Iaeq4T dG2cdaWgaaqcbasaaKqzadGaamyyaiaadogaaKqaGeqaaKqzGeGaam OsaSWaaSbaaKqaGeaajugWaiaadkgacaWGKbaajeaibeaajugibiab gUcaRiabeE7aOTWaaSbaaKqaGeaajugWaiaadkgacaWGJbaajeaibe aajugibiaadQealmaaBaaajeaibaqcLbmacaWGHbGaamizaaqcbasa baqcLbsacqGHsislcqaH3oaAlmaaBaaajeaibaqcLbmacaWGIbGaam izaaqcbasabaqcLbsacaWGkbWcdaWgaaqcbasaaKqzadGaamyyaiaa dogaaKqaGeqaaKqzGeGaey4kaSIaeq4TdG2cdaWgaaqcbasaaKqzad GaamyyaiaadsgaaKqaGeqaaKqzGeGaamOsaSWaaSbaaKqaGeaajugW aiaadkgacaWGJbaajeaibeaajugibiaai6caaaa@7352@

It is proven in Kurihara3 that the Einstein–Hilbert gravitational action without the cosmological constant can be written as L=Tr[FF] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae83cWZKaaGyp aiaadsfacaWGYbGaaG4waiab=va8gjabgEIizlab=va8gjaai2faaa a@4CA3@ , and thus, it has a topological invariant as Chern–classes due to the Chern–Weil theory. This result suggests that appropriate fundamental forms (phase space) of the symplectic geometry for general relativity can be identified as (w,S) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa Wefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bd8 3jaaiYcacqWFsa=ucaaIPaaaaa@4757@ .

The base manifold (1+3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaiodacaaIPaaaaa@3A44@ is taken as Riemannian manifold with (1+3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaiodacaaIPaaaaa@3A44@ space–time dimension and the structural group is (1+3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaaGymaiabgUcaRiaaiodacaaIPaaaaa@3A44@ –dimensional co–Poincaré group.3 The action integral of the Chern–Weil topological theory can be introduced as

I CW := 1 4 Σ 5 Tr[ FF ]= 1 2 Σ 4 S . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibiab=brijTWaaSba aKqaGeaajugWaiaadoeacaWGxbaajeaibeaajugibiaaiQdacaaI9a qcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaI0aaaaKqbaoaa pebakeqajeaibaqcLbmacqqHJoWulmaaBaaajeaibaqcLbmacaaI1a aajeaibeaaaSqabKqzGeGaey4kIipacaqGubGaaeOCaKqbaoaadmaa keaatuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacgaqcLb sacqGFfaVrcqGHNis2cqGFfaVraOGaay5waiaaw2faaKqzGeGaaGyp aKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaajuaGda WdraGcbeqcbasaaKqzadGaeu4Odm1cdaWgaaqcbasaaKqzadGaaGin aaqcbasabaaaleqajugibiabgUIiYdGae4NeWpvcfa4aaSbaaSqaaK qzGeGaeyyXICTaeyyXICnaleqaaKqzGeGaey4jIKTae4hhHivcfa4a aWbaaSqabeaajugibiabgwSixlabgwSixdaacaaIUaaaaa@85C0@

In contrast with the BF gravitational theory, both forms S ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NeWp1cdaWg aaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaaaa@469B@ and ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hhHi1cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@45AC@  re directly obtained from the principal bundle, and thus, the Einstein–Hilbert action itself preserves the characteristic class (second Chern–class), which is ensured by the Chern–Weil theory.3,13 Even though forms B ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWl0cdaah aaqcbasabeaajugWaiaadggacaWGIbaaaaaa@4650@ and S ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NeWp1cdaWg aaqcbasaaKqzadGaamyyaiaadkgaaKqaGeqaaaaa@469B@ are equivalent when the simplicity condition is required in the BF theory, the Chern–Weil gravitaional theory based on the different principal bundle with different structural group from those of the BH theory, and thus, they are completely different each other. The simplicity condition of the BF gravitational theory corresponds to the definition of the surface form in the Chern–Weil topological theory, and thus, it is exact after quantization. Quantization of the Chern–Weil topological theory can be performed using gauge fixing terms with respect to the global GL(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb GaamitaiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BB5@ and local ISO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGjb Gaam4uaiaad+eacaaIOaGaaGymaiaaiYcacaaIZaGaaGykaaaa@3C92@ .14

In contrast with the gravitational theory in a three–dimensional space–time, the Chern–Weil theory in four–dimension has the dynamical DOF after quantization. Among 10 DOF on the symplectic fields of the vierbein and spin forms, 2 physical degrees are remaining as the dynamical DOF, corresponding to 2 spin–states of graviton. Quantization of constrained system can be performed using the Kugo–Ojima formalism.15 At first, the auxiliary, ghost and anti–ghost fields are introduced to fix the gauge and unphysical DOF in the system. Then the BRS transformations are required on all of physical and unphysical fields. At this stage, number of constraints due to the BRS transformations is the same as a total DOF in the system, and thus, there is no dynamical degree if all constraints are independent each other. In reality, as explained in Kurihara14 all constraints are not independent and there are two conserved BRS charges in the system. Therefore, the system still has two dynamical DOF after quantization. At the end, principal bundle and its structural group for three topological theories are summarized in Table 1.

 Topological theory

 Principal bundle

 Structural group

Chern–Simons

 ( e,w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8NhWxMaaGil aiab=bd83baa@4610@ )

SO(1,2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaikdacaaIPaaaaa@3BC3@

BF

( B,w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8xaWlKaaGil aiab=bd83baa@45D0@ )

SO(1,3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb Gaam4taiaaiIcacaaIXaGaaGilaiaaiodacaaIPaaaaa@3BC4@

Cherm–Weil

( w,S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqzGeGae8hmWFNaaGil aiab=jb8tbaa@45F2@ )

 Co–Poincarè (1,3)

Table 1 A summary of topological theories.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

  1. Witten E. Topological quantum field theory. Communications in Mathematical Physics. 1988;117(3):353–386.
  2. Zanelli J. Chern–Simons forms in gravitation theories. Classical and Quantum Gravity. 2012;29(3).
  3. Kurihara Y. Characteristic classes in general relativity on a modified Poincaré curvature bundle. Journal of Mathematical Physics. 2017;58(9):1–10.
  4. Hassaine M, Zanelli J. Chern–Simons (Super) Gravity. Singapore: World Scientific; 2016.
  5. Plebanski JF. On the separation of Einsteinian substructures. Journal of Mathematical Physics. 1977;18(12).
  6. Horowitz GT. Exactly soluble diffeomorphism invariant theories. Communications in Mathematical Physics. 1989;125(3):417–437.
  7. Birmingham D, Blau M, Rakowski M, et al. Topological field theory. Physics Report. 1991;209(4–5):129–340.
  8. Krasnov K. Plebański formulation of general relativity: a practical introduction. General Relativity and Gravitation. 2011;43(1):1–15.
  9. Girelli F, Pfeiffer H. Higher gauge theory—differential versus integral formulation. Journal of Mathematical Physics. 2004;45(10).
  10. Pietri RD, Freidel L. so(4) Plebanski action and relativistic spin–foam model. Classical and Quantum Gravity. 1999;16(17).
  11. Gielen S, Oriti D. Classical general relativity as BF–Plebanski theory with linear constraints. Classical and Quantum Gravity. 2010;27(18).
  12. Celada M, Gonzalez D, Montesinos M. BF gravity. Classical and Quantum Gravity. 2016;33(21).
  13. Chern SS. Differential geometry of fiber bundles. USA: International Congress of Mathematicians; 1952. p. 397–411.
  14. Kurihara Y. General relativity as the four–dimensional Chern–Weil theory. USA: Cornell University Library; 2017. 1–41.
  15. Nakanishi N, Ojima I. Covariant Operator Formalism of Gauge Theories and Quantum Gravity. Singapore: World Scientific Publishing Company; 1990.
Creative Commons Attribution License

©2018 Kurihara. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.