Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 2 Issue 2

Gravitational observatory on the base of phase array of compact high-sensitive detectors SQUID/magnetostrictor

Izmailov GN,1 Ryabov VA,2 Tskhovrebov AM,2 Zherikhina LN2

1Moscow Aviation Institute (National Research University), Moscow, Russia
2P.N. Lebedev Physical Institute of RAS, Moscow, Russia

Correspondence: Zherikhina Larisa Nikolayevna, P.N. Lebedev Physical Institute of RAS, Moscow, Russia, Tel 7499 1326 4956 495

Received: February 01, 2018 | Published: March 7, 2018

Citation: Izmailov GN, Ryabov VA, Tskhovrebov AM, et al. Gravitational observatory on the base of phase array of compact high-sensitive detectors SQUID/ magnetostrictor. Phys Astron Int J. 2018;2(2):132-13 4. DOI: 10.15406/paij.2018.02.00059

Download PDF

Abstract

SQUID-magnetostrictor is the high sensitive system capable to measure deviations of mechanical tension. This measuring system may find application in different fields but it seems to be rather promising as a gravitational waves detector. The reason is that the working magnetostrictive body serves as a receiving antenna sensitive to the deviations of the metric tensor g ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaDaaajeaibaqcLbmacaWGPbGaamOAaaqcbasa aKqzadGaeyyPI4faaaaa@40A5@  in the gravitational wave and converts it directly to the magnetic flux deviation detected by SQUID. Estimations of the sensitivity of such system give the value on the level of δP / Hz = 10 13 Pa/ Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcLbsacqaH0oazcaWGqbaakiaawMYicaGLQmca juaGdaWgaaqcbasaaKqzadGaai4laSWaaOaaaKqaGeaajugWaiaadI eacaWG6baajiaibeaaaSqabaqcLbsacqGH9aqpcaaIXaGaaGimaSWa aWbaaKqaGeqabaqcLbmacqGHsislcaaIXaGaaG4maaaajugibiaadc facaWGHbGaai4laKqbaoaakaaakeaajugibiaadIeacaWG6baaleqa aaaa@5168@  (P–the mechanical pressure on the magnetostrictive cylinder cross section) that corresponds to deviation of the transverse metric tensor component | δ g ij |/ Hz = 10 24 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaabdaGcbaqcLbsacqaH0oazcaWGNbWcdaqhaaqcbasaaKqz adGaamyAaiaadQgaaKqaGeaajugWaiabgwQiEbaaaOGaay5bSlaawI a7aKqzGeGaai4laKqbaoaakaaakeaajugibiaadIeacaWG6baaleqa aKqzGeGaeyypa0JaaGymaiaaicdalmaaCaaajeaibeqaaKqzadGaey OeI0IaaGOmaiaaisdaaaqcLbsacaGGVaqcfa4aaOaaaOqaaKqzGeGa amisaiaadQhaaSqabaaaaa@55A4@ . It may be noted that the signal in the famous LIGO experiment was on the level of 10-21. Additional advantage of the considered system is its compactness and cheapness. It permits to construct a phase array of n such detectors. Creation of phase array may enable both to determine the direction to the source of gravitational waves and to enhance the sensitivity in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaakaaabaqcLbsacaWGUbaajuaGbeaaaaa@3B8D@ times.

Keywords: SQUID-magnetostrictor system, gravitational wave, LIGO, phased array

Introduction

Registration of gravitational waves-the sensational discovery of the 2015 by Abbott BP et al.1 was not awarded the Nobel Prize. The main objective reason for this seems to be the low level of confirmation of the event. The second factor causing the “disbelief” may be some estimates which noted extremely low probability to find in the Universe a pair of black holes of appropriate scale. LIGO group proved the existence of the outburst by the mutually consistent record of gravitational noise on two giant gravitational antennas. Besides there were some “foggy messages” about time correlation with Gamma bursts. As the result the localization of this hypothetical pair of black holes on the sky is characterized by the wide arc with the angular area 600 square degrees, or otherwise it is not localized. No wonder that only on two detectors the fact of registration has been declared. LIGO collaboration has staked on the giant Michelson interferometers 4x4 km and naturally cannot cover the Earth surface by the net of so expensive antennas. The cooperation with Italian and Japanese scientific groups could hardly improve the situation radically since their antennas one can count on the fingers of hand (Virgo, GEO 600). In general, we may conclude that gravitational detectors such as a modified Michelson interferometer2 are very expensive and cumbersome. Substantially more compact and cheaper are Weber's detectors.3

The compact detector system SQUID-magnetostrictor

In the classical Weber work low frequency oscillations of the test body, aluminum cylinder of one meter length, arisen under the action of "tidal" forces of the gravitational wave field were transformed into the low frequency electric signal by the piezoelectric transducer. We suggest using a magnetostrictor transducer4 or even making the test body from the magnetostrictor material.5 In order to achieve the maximum sensitivity, the magnetic response of the test body originated due to the inverse magnetostrictive effect (Villary1985year) should be registered by the superconducting quantum interference device (SQUID). It is obvious that the system SQUID-magnetostrictor (Figure 1) should be much more sensitive than the Weber's “electrometric amplifier "- piezoelectric. The main reason is that the amplifier is a classic device, and SQUID is a quantum one. In whole high sensitivity of the system SQUID-magnetostrictor is the consequence of uniting on one hand the high tensometric effectiveness of magnetostrictor sensor, acting on principles of the inverse magnetostrictive effect, based in its turn on the collective quantum solid-state effects, and on the other hand the high (of the quantum scale level) sensitivity of SQUID to the magnetic response of the sensor. The basic scale of the measured magnetic field induction is the quantum of magnetic field flux Φ 0 =π/e2,07× 10 15 Wb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuOPdy0cpaWaaSbaaKqaGeaajugWa8qa cqGHWaamaKqaG8aabeaajugib8qacqGH9aqpcqaHapaCcqWIpecAca GGVaGaamyzaiabgIKi7kaaikdacaGGSaGaaGimaiaaiEdacqGHxdaT caaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaig dacaaI1aaaaKqzGeGaam4vaiaadkgaaaa@5259@ . The change of magnetic field flux through the SQUID ring by one quantum Φ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuOPdy0cpaWaaSbaaKazba4=baqcLbma peGaeyimaadajqwaa+=daeqaaaaa@4136@ corresponds to the one period change of the interference of the Cooper condensate wave in the SQUID working ring.6,7

Figure 1 Qualitative correlation between the geometry of gravitational wave propagation and the magnetostriction antenna, the resultant change in the magnetic flux of which is registered by SQUID.

A plane-polarized gravitational wave is shown schematically in the foreground, and in the background is the registering SQUID/magnetostrictor system consisting of a magnetostriction cylinder connected with the DC SQUID by flux transducer loops. Arrows show the regions of the trial body contraction and expansion caused by the action of the gravitational wave. The wavelength-to-antenna (cylinder) size ratio is deliberately distorted ( λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3B22@ is “actually” about five orders of magnitude greater than L), and for obviousness, the effect of change in the trial body geometrical sizes in the gravitational wave field is also enlarged by 20 orders of magnitude.

Where one (RF-SQUID} or two (DC_SQUID) Josephson junctions are included.8,9 It is just the smallness of the flux quantum value corresponding to the change of the Cooper condensate phase on 2π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGOmaiabec8aWbaa@3BE7@ , provides the high sensitivity of SQUID, which registers flux change on the small part of Ф 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamijeSWdamaaBaaajeaibaqcLbmapeGa aGimaaqcbaYdaeqaaaaa@3CB1@ . The estimation of the dilatometric sensitivity of the Weber system electrometric amplifier - piezoelectric gives the value δ/ / Hz 10 17 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcLbsacqaH0oazcqWItecBcaWGVaGaeS4eHWga kiaawMYicaGLQmcajuaGdaWgaaqcbasaaKqzadGaai4laSWaaOaaaK qaGeaajugWaiaadIeacaWG6baajiaibeaaaSqabaqcLbsacqGHijYU caaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIXaGaaG 4naaaajugibiaac+cajuaGdaGcaaGcbaqcLbsacaWGibGaamOEaaWc beaaaaa@529D@ . The corresponding limit value for the system SQUID-magnetostrictor is δ/ / Hz 10 24 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcLbsacqaH0oazcqWItecBcaWGVaGaeS4eHWga kiaawMYicaGLQmcalmaaBaaajeaibaqcLbmacaGGVaWcdaGcaaqcba saaKqzadGaamisaiaadQhaaKGaGeqaaaqcbasabaqcLbsacqGHijYU caaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaGaaG inaaaajugibiaac+cajuaGdaGcaaGcbaqcLbsacaWGibGaamOEaaWc beaaaaa@5237@ .

Let us see now how we can get this so high value of sensitivity for the system SQUID-magnetostrictor. High but not the record value of magnetostrictive sensitivity Λ ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4MdW0cpaWaaWbaaKqaGeqabaWcdaqa daqcbasaaKqzadWdbiabgkHiTiaaigdaaKqaG8aacaGLOaGaayzkaa aaaaaa@4026@  for instance for the alloy 54%Pt 46%Fe is Λ ( 1 ) 7× 10 6 T/Pa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4MdW0cpaWaaWbaaKqaGeqabaWcdaqa daqcbasaaKqzadWdbiabgkHiTiaaigdaaKqaG8aacaGLOaGaayzkaa aaaKqzGeWdbiabgIKi7kaaiEdacqGHxdaTcaaIXaGaaGimaSWdamaa CaaajeaibeqaaKqzadWdbiabgkHiTiaaiAdaaaqcLbsacaWGubGaai 4laiaadcfacaWGHbaaaa@4DEA@ . The magnetostrictive sensitivity is defined as the differential ratio of the magnetic inductance enhance to the change of the elastic stress causing this enhance in concrete magnetostrictive material, Λ ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4MdW0cpaWaaWbaaKqaGeqabaWcdaqa daqcbasaaKqzadWdbiabgkHiTiaaigdaaKqaG8aacaGLOaGaayzkaa aaaaaa@4026@ is calculated from the Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4MdWeaaa@3AE3@ on the base of the reciprocity theorem.10

In the limit case the registration of magnetic response ΔΦ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeuOPdyeaaa@3C4E@ by the SQUID correspond to the condition ΔΦ=δΦ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaeuOPdyKaeyypa0JaeqiTdqMa euOPdyeaaa@4073@ , i.e. equality of the magnetic response to the resolving power of the SQUID or otherwise to the magnetic noise reduced to the SQUID input. The change of the magnetic inductance flux in the cross-section area Sms of the magnetostrictor cylinder is δΦ=ΔΦ= S ms ΔB= S ms Λ (1) ΔP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaeuOPdyKaeyypa0JaeuiLdqKa euOPdyKaeyypa0Jaam4uaKqba+aadaWgaaqcbasaaKqzadWdbiaad2 gacaWGZbaal8aabeaajugib8qacqqHuoarcaWGcbGaeyypa0Jaam4u aSWdamaaBaaajeaibaqcLbmapeGaamyBaiaadohaaKqaG8aabeaaju gib8qacqqHBoatl8aadaahaaqcbasabeaajugWaiaacIcapeGaeyOe I0IaaGyma8aacaGGPaaaaKqzGeWdbiabfs5aejaadcfaaaa@588D@ . Hence the limit sensitivity of the system SQUID-magnetostrictor to the tension or factually pressure ΔP MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaamiuaaaa@3BA9@ , compressing or elongating the cylinder, is expressed through the possibility of the quantum interferometer as δp=δΦ/( S ms Λ ( 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamiCaiabg2da9iabes7aKjab fA6agjaac+capaGaaiika8qacaWGtbqcfa4damaaBaaajeaibaqcLb mapeGaamyBaiaadohaaSWdaeqaaKqzGeWdbiabfU5amTWdamaaCaaa jeaibeqaaSWaaeWaaKqaGeaajugWa8qacqGHsislcaaIXaaajeaipa GaayjkaiaawMcaaaaajugibiaacMcaaaa@4F40@ . The possibility of the system to the tension could be transformed into the possibility to the elongation δ/=δP/E=δΦ/(E S ms Λ ( 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaeS4eHWMaai4laiabloriSjab g2da9iabes7aKjaadcfacaGGVaGaamyraiabg2da9iabes7aKjabfA 6agjaac+capaGaaiika8qacaWGfbGaam4uaSWdamaaBaaajeaibaqc LbmapeGaamyBaiaadohaaKqaG8aabeaajugib8qacqqHBoatl8aada ahaaqcbasabeaalmaabmaajeaibaqcLbmapeGaeyOeI0IaaGymaaqc baYdaiaawIcacaGLPaaaaaqcLbsacaGGPaaaaa@56C3@  through the Hook law ΔP=EΔ/ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeuiLdqKaamiuaiabg2da9iaadweacqqH uoarcqWItecBcaGGVaGaeS4eHWgaaa@41F4@ , here E –Yung module, for solid matter it is about 100 GPa.

If we use the resolution of a good modern but not the record SQUID δΦ / Hz = 10 6 Φ 0 / Hz =2,07× 10 21 Wb/ Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcLbsacqaH0oazcqqHMoGraOGaayzkJiaawQYi aKqbaoaaBaaaleaajugibiaac+cajuaGdaGcaaWcbaqcLbsacaWGib GaamOEaaadbeaaaSqabaqcLbsacqGH9aqpcaaIXaGaaGimaKqbaoaa CaaaleqajeaibaqcLbmacqGHsislcaaI2aaaaKqzGeGaeuOPdy0cda WgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaGGVaqcfa4aaOaa aOqaaKqzGeGaamisaiaadQhaaSqabaqcLbsacqGH9aqpcaaIYaGaai ilaiaaicdacaaI3aGaey41aqRaaGymaiaaicdalmaaCaaajeaibeqa aKqzadGaeyOeI0IaaGOmaiaaigdaaaqcLbsacaWGxbGaamOyaiaac+ cajuaGdaGcaaGcbaqcLbsacaWGibGaamOEaaWcbeaaaaa@6585@ , transformation coefficient of magnetic signal by the superconducting flux transformer κ0,001 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOUdSMaeyisISRaaGimaiaacYcacaaI WaGaaGimaiaaigdaaaa@406A@ 11 and take into account mechanical quality factor of longitudinal deformation oscillations of cylinder Q1000  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaiabgIKi7kaaigdacaaIWaGaaGim aiaaicdacaGGGcaaaa@4002@ as the factor arising the amplitude of δ/ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaeS4eHWMaai4laiabloriSbaa @3E28@ we shall get

δ / Hz = κQ E S ms Λ (1) δΦ / Hz 10 24 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcfa4aaSaaaOqaaKqzGeGaeqiTdqMaeS4eHWga keaajugibiabloriSbaaaOGaayzkJiaawQYiaSWaaSbaaKqaGeaaju gWaiaac+calmaakaaajeaibaqcLbmacaWGibGaamOEaaqccasabaaa jeaibeaajugibiabg2da9KqbaoaalaaakeaajugibiabeQ7aRjaadg faaOqaaKqzGeGaamyraiaadofalmaaBaaajeaibaqcLbmacaWGTbGa am4CaaqcbasabaqcLbsacqqHBoatlmaaCaaajeaibeqaaKqzadGaai ikaiabgkHiTiaaigdacaGGPaaaaaaajuaGdaaadaGcbaqcLbsacqaH 0oazcqqHMoGraOGaayzkJiaawQYiaSWaaSbaaKqaGeaajugWaiaac+ calmaakaaajeaibaqcLbmacaWGibGaamOEaaqccasabaaajeaibeaa jugibiabgIKi7kaaigdacaaIWaWcdaahaaqcbasabeaajugWaiabgk HiTiaaikdacaaI0aaaaKqzGeGaai4laKqbaoaakaaakeaajugibiaa dIeacaWG6baaleqaaaaa@7060@ .

In this estimation we used the cross-section area of the cylinder S ms 3× 10 3 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGa amyBaiaadohaaKqaG8aabeaajugib8qacqGHijYUcaaIZaGaey41aq RaaGymaiaaicdal8aadaahaaqcbasabeaajugWa8qacqGHsislcaaI ZaaaaKqzGeGaamyBaSWdamaaCaaajeaibeqaaKqzadWdbiaaikdaaa aaaa@4BD4@ and magnetostrictor sensitivity Λ ( 1 ) 7× 10 6 Т/πа) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4MdW0cpaWaaWbaaKqaGeqabaWcdaqa daqcbasaaKqzadWdbiabgkHiTiaaigdaaKqaG8aacaGLOaGaayzkaa aaaKqzGeWdbiabgIKi7kaaiEdacqGHxdaTcaaIXaGaaGimaSWdamaa CaaajeaibeqaaKqzadWdbiabgkHiTiaaiAdaaaqcLbsacaWGIqGaai 4laiabec8aWjaadcdbpaGaaiykaaaa@4F33@ .

The phase array of gravdetectors SQUID-magnetostrictor

This rather optimistic estimation does not seem absolutely unreal in the context of supposed using of the system SQUID-magnetiostrictor as a part of the many element phase array, each node of which will be such detector. In this case different noises not taken into account in previous calculations will be suppressed into n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaakaaabaqcLbsacaWGUbaajuaGbeaaaaa@3B8D@ times. Here n is the number of detectors united in the phase array. We may note that in passive hydrolocative systems a phase array of hydrophones permit not only to determine the direction on to the source of sound, produced by the marine screw, but also due to the large number hydrophones to detect the acoustic signal with the amplitude 1 mkPa/ Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaabccacaWGTbGaam4Aaiaadcfa caWGHbGaai4laKqbaoaakaaakeaajugibiaadIeacaWG6baaleqaaa aa@422A@ in conditions of one ball sea storm, which corresponds to the noise on the level 10 mkPa/ Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaaicdacaqGGaGaamyBaiaadUga caWGqbGaamyyaiaac+cajuaGdaGcaaGcbaqcLbsacaWGibGaamOEaa Wcbeaaaaa@42E4@ . The sensitivity of phase array consisting of n=100 gravdetectors to the variation of the metric tensor is formally evaluated on the level δ/ / Hz 10 25 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaadaGcbaqcLbsacqaH0oazcqWItecBcaWGVaGaeS4eHWga kiaawMYicaGLQmcajuaGdaWgaaqcbasaaKqzadGaai4laSWaaOaaaK qaGeaajugWaiaadIeacaWG6baajiaibeaaaSqabaqcLbsacqGHijYU caaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaGaaG ynaaaajugibiaac+cajuaGdaGcaaGcbaqcLbsacaWGibGaamOEaaWc beaaaaa@529C@ . It may be even more important on practice that using of such a phase array of gravitational detectors would permit to weaken “not considered noises” by an order. (By the way, realistic financial estimates of the cost of such phase array of gravitational detectors of the type SQUID-magnetostrictor give the value of about ten million dollars).

Let us consider the action of such an array specifically. The period of the nodes in the array should be of the order of gravitational wave length min|Lik-Ljm|=λ. In the classical Weber experiment3 the supposed wave length λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3B22@ was 300 km, i.e. the resonance frequency of the test body–aluminum cylinder of one meter length, was of the order of 1 kHz. The system SQUID-magnetostrictor can operate both in resonant and nonresonant regimes, but in the last case the sensitivity will decrease for about 3 orders 10 24 / Hz 10 21 / Hz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaIWaWcdaahaaqcbasabeaajugWaiabgkHiTiaa ikdacaaI0aaaaKqzGeGaai4laKqbaoaakaaakeaajugibiaadIeaca WG6baaleqaaKqzGeGaeyOKH4QaaGymaiaaicdalmaaCaaajeaibeqa aKqzadGaeyOeI0IaaGOmaiaaigdaaaqcLbsacaGGVaqcfa4aaOaaaO qaaKqzGeGaamisaiaadQhaaSqabaaaaa@4F29@ , since the mechanical Q-factor decreases from 1000 down to 1. This decline of sensitivity is partially compensated, at list on the order, by the array factor n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaakaaabaqcLbsacaWGUbaajuaGbeaaaaa@3B8D@ .

For illustration let us consider the simplified particular case. The square flat phase array of n nodes is on the Earth surface. The compact gravitational waves detector SQUID-magnetostrictor is placed in the each node. The incidence plane of gravitational wave is parallel to one side of the phase array (parallel to the lines of phase array) and perpendicular to another side (perpendicular to the rows of phase array). Let us consider two nodes lying in the k-th line and separated by the distance | L ik L jk | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaabdaGcbaqcLbsaqaaaaaaaaaWdbiaadYeal8aadaWgaaqc basaaKqzadWdbiaadMgacaWGRbaajeaipaqabaqcLbsapeGaeyOeI0 IaamitaKqba+aadaWgaaqcbasaaKqzadWdbiaadQgacaWGRbaal8aa beaaaOGaay5bSlaawIa7aaaa@4839@ . Then time difference between the moments of detecting of the signal with the same phase on these two notes is defined by the relation
t ik t jk = L ik L jk c sinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadshalmaaBaaajeaibaqcLbmacaWGPbGaam4Aaaqcbasa baqcLbsacqGHsislcaWG0bWcdaWgaaqcfayaaKqzadGaamOAaiaadU gaaKqbagqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamitaSWa aSbaaKqaGeaajugWaiaadMgacaWGRbaajeaibeaajugibiabgkHiTi aadYealmaaBaaajuaGbaqcLbmacaWGQbGaam4Aaaqcfayabaaakeaa jugibiaadogaaaGaci4CaiaacMgacaGGUbGaeqy1dygaaa@5889@ ,
Where ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew9aMbaa@3B16@ -the angle between the normal to the phase array plane and the direction to the source of the gravitational waves. We suppose that the distance to the source is many orders more than the phase array dimensions. In this case the ratio
c( t ik t jk ) L ik L jk =sinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGJbqcfa4aaeWaaOqaaKqzGeGaamiD aSWaaSbaaKqaGeaajugWaiaadMgacaWGRbaajeaibeaajugibiabgk HiTiaadshalmaaBaaajuaGbaqcLbmacaWGQbGaam4Aaaqcfayabaaa kiaawIcacaGLPaaaaeaajugibiaadYealmaaBaaajeaibaqcLbmaca WGPbGaam4AaaqcbasabaqcLbsacqGHsislcaWGmbWcdaWgbaqcbasa aKqzadGaamOAaiaadUgaaKqaGeqaaaaajugibiabg2da9iGacohaca GGPbGaaiOBaiabew9aMbaa@59E3@

For any 1<i< n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiabgYda8iaadMgacqGH8aapjuaG daGcaaGcbaqcLbsacaWGUbaaleqaaaaa@3F54@  and 1<j< n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiabgYda8iaadQgacqGH8aapjuaG daGcaaGcbaqcLbsacaWGUbaaleqaaaaa@3F55@  is to be invariable and random deviations caused by the noise of the system will be suppressed through the averaging for all possible combinations i and j. The whole number of these combinations is
C n 2 = ( n )! 2!( n 2 )! = 1 2 n ( n 1 ) n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaDaaajeaibaWcdaGcaaqcbasaaKqzadGaamOB aaqccasabaaajeaibaqcLbmacaaIYaaaaKqzGeGaeyypa0tcfa4aaS aaaOqaaKqbaoaabmaakeaajuaGdaGcaaGcbaqcLbsacaWGUbaaleqa aaGccaGLOaGaayzkaaqcLbsacaaMe8UaaiyiaaGcbaqcLbsacaaIYa GaaGjbVlaacgcacaaMe8Ecfa4aaeWaaOqaaKqbaoaakaaakeaajugi biaad6gaaSqabaqcLbsacqGHsislcaaIYaaakiaawIcacaGLPaaaju gibiaaysW7caGGHaaaaiabg2da9Kqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaaGOmaaaajuaGdaGcaaGcbaqcLbsacaWGUbaaleqaaK qbaoaabmaakeaajuaGdaGcaaGcbaqcLbsacaWGUbaaleqaaKqzGeGa eyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacqGHijYUjuaGdaWcaa GcbaqcLbsacaWGUbaakeaajugibiaaikdaaaaaaa@69B5@ ,
And consequently, the mistake of determining of the angle ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew9aMbaa@3B16@ of the direction to the source is suppressed by n/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaakaaakeaajugibiaad6gacaGGVaGaaGOm aaWcbeaaaaa@3C83@ times. Furthermore if we have the square array with equal distances between all nearest neighboring nodes the magnitude of index k does not matter, second indexes of nodes (k) may be arbitrary and different, i.e. we may consider nodes ik and jl. We must write the distance ( L i r L j r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbma caWGYbaaaKqzGeGaeyOeI0IaamitaSWaa0baaKqaGeaajugWaiaadQ gaaKqaGeaajugWaiaadkhaaaaaaa@45F1@ ) between i-th and j-th rows in the denominator of the formula
c( t ik t jl ) L i r L j r =sinϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGJbqcfa4aaeWaaOqaaKqzGeGaamiD aSWaaSbaaKqaGeaajugWaiaadMgacaWGRbaajeaibeaajugibiabgk HiTiaadshalmaaBeaajeaibaqcLbmacaWGQbGaamiBaaqcbasabaaa kiaawIcacaGLPaaaaeaajugibiaadYealmaaDaaajeaibaqcLbmaca WGPbaajeaibaqcLbmacaWGYbaaaKqzGeGaeyOeI0IaamitaSWaa0ba aKqaGeaajugWaiaadQgaaKqaGeaajugWaiaadkhaaaaaaKqzGeGaey ypa0Jaci4CaiaacMgacaGGUbGaeqy1dygaaa@5B88@
It will be correct for all kand l. It means that number of all possible combinations is
C n 2 = ( n )! 2!( n2 )! = 1 2 n( n1 ) n 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaDaaajeaibaqcLbmacaWGUbaajeaibaqcLbma caaIYaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaaju gibiaad6gaaOGaayjkaiaawMcaaKqzGeGaaGjbVlaacgcaaOqaaKqz GeGaaGOmaiaaysW7caGGHaGaaGjbVNqbaoaabmaakeaajugibiaad6 gacqGHsislcaaIYaaakiaawIcacaGLPaaajugibiaaysW7caGGHaaa aiabg2da9KqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaa aacaWGUbqcfa4aaeWaaOqaaKqzGeGaamOBaiabgkHiTiaaigdaaOGa ayjkaiaawMcaaKqzGeGaeyisISBcfa4aaSaaaOqaaKqzGeGaamOBaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYaaa aaaa@679B@
And hence the mistake is suppressed in( 2 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGOmaKqbaoaakaaakeaajugibiaad6ga aSqabaaaaa@3C5F@ ) times. We have considered the simplified case but it may be easily generalized on the case of arbitrary orientation of the phase array with respect to the direction of the gravitational wave source.

Conclusion

In conclusion we want to emphasize that the realization of the possibilities of the phase array of gravitational detectors: statistical suppression of the noise of alone detector, more precise determination of the angular coordinates of the source, registration of the gravitational waves of more complicated structure, corresponding to the paired turning sources, -is capable only with compact and relatively cheap detectors such as proposed system SQUID-magnetostrictor.

Acknowledgements

This work was supported by the program “Strongly Correlated Electrons in Solid State Matter and Structures” of the Physical Sciences Department of the RAS (project MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOfHaaa@3A2A@ II-3).

Conflict of interest

Authors declare there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Izmailov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.