Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 4

Fibonacci oscillator’s and (p,q)–deformed lorentz transformations

Carlos Castro Perelman

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Georgia

Correspondence: Carlos Castro Perelman, Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314, Georgia

Received: July 24, 2018 | Published: August 8, 2018

Citation: Perelman CC. Fibonacci oscillator’s and (p,q)-deformed lorentz transformations. Phys Astron Int J. 2018;2(4):341-347. DOI: 10.15406/paij.2018.02.00108

Download PDF

Abstract

The two-parameter quantum calculus used in the construction of Fibonacci oscillators is briefly reviewed before presenting the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -deformed Lorentz transformations which leave invariant the Minkowski spacetime interval t 2 x 2 y 2 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaWG4bWc daahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaWG5bqcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacqGHsislcaWG6bWc daahaaqcbasabeaajugWaiaaikdaaaaaaa@487E@ . Such transformations require the introduction of three different types of exponential functions leading to the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -analogs of hyperbolic and trigonometric functions. The composition law of two successive Lorentz boosts (rotations) is no longer additive ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajqwaa+FaaKqzadGaaG4maaqcKfaG=hqaaKqzGeGabGyp ayaawaGaeqOVdG3cdaWgaaqcKfaG=haajugWaiaaigdaaKazba4=be aajugibiabgUcaRiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIYaaa leqaaaaa@4D60@  ( θ 3 = θ 1 + θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qClmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiqai2dagaGf aiabeI7aXTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey 4kaSIaeqiUde3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaaaa@45C9@ ). We finalize with a discussion on quantum groups, noncommutative spacetimes, κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3837@ -deformed Poincare algebra and quasi-crystals1.

Keywords: fibonacci oscillators, quantum groups, golden mean, noncommutative geometry

Introduction: the Fibonacci and (p,q) oscillators

Fibonacci oscillators1 offer a natural unification of quantum oscillators which are related to quantum groups.2-8 They are the most general oscillators having the property of spectrum degeneracy and invariance under the quantum group. The quantum algebra with two deformation parameters may have a greater flexibility when it comes to applications in realistic phenomenological physical models.9-11 One of the main problems in the theory of quantum groups and algebras is to interpret the physical meaning of the deformation parameters.1 In this respect, one possible explanation for the deformation parameters was accomplished by a relativistic quantum mechanical model.12-14 In such a model, the multi-dimensional Fibonacci oscillator can be interpreted as a relativistic oscillator corresponding to the bound state of two particles with masses m 1 , m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaISaGaamyB aSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaa@3E81@ . Therefore, the additional parameter has a physical significance so that it can be related to the mass of the second bosonic particle in a two particle relativistic quantum harmonic oscillator bound state.

Most recently, the two-parameter-deformed Hermite polynomials were computed in Marinho & Brito15 by replacing the quantum harmonic oscillator problem for Fibonacci oscillators, and by changing the ordinary derivative for the Jackson derivative. The deformed energy spectrum was found in terms of these parameters. The ordinary quantum mechanics case was easily recovered when p=q=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiaadghacaaI9aGaaGymaaaa@3AB9@ . Although, any quantum algebra with one or more deformation parameters may be mapped onto the standard single-parameter case,16,17 it has been argued that the physical results obtained from a two-parameter deformed oscillator system are not the same.18-20 Before embarking into a discussion of the Fibonacci and (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ oscillators we shall follow closely the definitions and results about quantum calculus and (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -numbers found in Duran et al.21, Kac &Cheung22 where many references can be found. The (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ number is defined for any number n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb aaaa@3778@ as

[n] p,q = [n ] q,p p n q n pq = p n1 + p n2 q + + p q n2 + q n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGiiaiaai2dacaaIGaGaaG4waiaad6gacaaIDb WcdaWgaaqcbasaaKqzadGaamyCaiaaiYcacaWGWbaajeaibeaajugi biaaiccacqGHHjIUcaaIGaGcdaWcaaqaaKqzGeGaamiCaSWaaWbaaK qaGeqabaqcLbmacaWGUbaaaKqzGeGaeyOeI0IaamyCaKqbaoaaCaaa leqajeaibaqcLbmacaWGUbaaaaGcbaqcLbsacaWGWbGaeyOeI0Iaam yCaaaacaaIGaGaaGypaiaaiccacaWGWbWcdaahaaqcbasabeaajugW aiaad6gacqGHsislcaaIXaaaaKqzGeGaaGiiaiabgUcaRiaaiccaca WGWbWcdaahaaqcbasabeaajugWaiaad6gacqGHsislcaaIYaaaaKqz GeGaamyCaiaaiccacqGHRaWkcaaIGaGaeSOjGSKaaGiiaiabgUcaRi aaiccacaWGWbGaamyCaSWaaWbaaKqaGeqabaqcLbmacaWGUbGaeyOe I0IaaGOmaaaajugibiaaiccacqGHRaWkcaaIGaGaamyCaSWaaWbaaK qaGeqabaqcLbmacaWGUbGaeyOeI0IaaGymaaaaaaa@7BFB@  (1.1)

which is a natural generalization of the q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb aaaa@377B@ -number

[n] q 1 q n 1q = 1 + q + + q n2 + q n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGXbaajeaibeaajugi biaaiccacqGHHjIUcaaIGaGcdaWcaaqaaKqzGeGaaGymaiabgkHiTi aadghalmaaCaaajeaibeqaaKqzadGaamOBaaaaaOqaaKqzGeGaaGym aiabgkHiTiaadghaaaGaaGiiaiaai2dacaaIGaGaaGymaiaaiccacq GHRaWkcaaIGaGaamyCaiaaiccacqGHRaWkcaaIGaGaeSOjGSKaaGii aiabgUcaRiaaiccacaWGXbWcdaahaaqcbasabeaajugWaiaad6gacq GHsislcaaIYaaaaKqzGeGaaGiiaiabgUcaRiaaiccacaWGXbWcdaah aaqcbasabeaajugWaiaad6gacqGHsislcaaIXaaaaaaa@610C@ (1.2)

The (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -derivative of a function f(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb GaaGikaiaadIhacaaIPaaaaa@39D2@ is

D p,q f(x) f(px)f(qx) (pq)x , x = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaadAgacaaIOaGaamiEaiaaiMcacaaIGaGaeyyyIORaaGiiaKqbao aalaaabaGaamOzaiaaiIcacaWGWbGaamiEaiaaiMcacqGHsislcaWG MbGaaGikaiaadghacaWG4bGaaGykaaqaaiaaiIcacaWGWbGaeyOeI0 IaamyCaiaaiMcacaWG4baaaKqzGeGaaGilaiaaiccacaaIGaGaamiE aiqai2dagaGfaiaaicdaaaa@5714@  (1.3)

A very important function is the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Gauss Binomial defined by

(xy) p,q n = (x+y) (px+qy) ( p 2 x+ q 2 y) ( p n2 x+ q n2 y) ( p n1 x+ q n1 y), n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiEaiabgwPiflaadMhacaaIPaWcdaqhaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibaqcLbmacaWGUbaaaKqzGeGaaGiiaiaai2 dacaaIGaGaaGikaiaadIhacqGHRaWkcaWG5bGaaGykaiaaiccacaaI OaGaamiCaiaadIhacqGHRaWkcaWGXbGaamyEaiaaiMcacaaIGaGaaG ikaiaadchalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaadIha cqGHRaWkcaWGXbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsaca WG5bGaaGykaiaaiccacqWIMaYscaaIGaGaaGikaiaadchalmaaCaaa jeaibeqaaKqzadGaamOBaiabgkHiTiaaikdaaaqcLbsacaWG4bGaey 4kaSIaamyCaSWaaWbaaKqaGeqabaqcLbmacaWGUbGaeyOeI0IaaGOm aaaajugibiaadMhacaaIPaGaaGiiaiaaiIcacaWGWbWcdaahaaqcba sabeaajugWaiaad6gacqGHsislcaaIXaaaaKqzGeGaamiEaiabgUca RiaadghalmaaCaaajeaibeqaaKqzadGaamOBaiabgkHiTiaaigdaaa qcLbsacaWG5bGaaGykaiaaiYcacaaIGaGaaGiiaiaad6gacqGHLjYS caaIXaaaaa@844E@  (1.4)

(xy) p,q n = k=0 n [ n k ] p,q p k(k1)/2 q (nk)(nk1)/2 x k y nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiEaiabgwPiflaadMhacaaIPaWcdaqhaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibaqcLbmacaWGUbaaaKqzGeGaaGiiaiaai2 dacaaIGaqcfa4aaabCaOqabKqaGeaajugWaiaadUgacaaI9aGaaGim aaqcbasaaKqzadGaamOBaaqcLbsacqGHris5aiaaiccajuaGdaWada qcLbsaeaqabOqaaKqzGeGaamOBaaGcbaqcLbsacaWGRbaaaOGaay5w aiaaw2faaKqbaoaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaS qabaqcLbsacaaIGaGaamiCaSWaaWbaaKqaGeqabaqcLbmacaWGRbGa aGikaiaadUgacqGHsislcaaIXaGaaGykaiaai+cacaaIYaaaaKqzGe GaaGiiaiaadghalmaaCaaajeaibeqaaKqzadGaaGikaiaad6gacqGH sislcaWGRbGaaGykaiaaiIcacaWGUbGaeyOeI0Iaam4AaiabgkHiTi aaigdacaaIPaGaaG4laiaaikdaaaqcLbsacaaIGaGaamiEaSWaaWba aKqaGeqabaqcLbmacaWGRbaaaKqzGeGaaGiiaiaadMhalmaaCaaaje aibeqaaKqzadGaamOBaiabgkHiTiaadUgaaaaaaa@7E87@  (1.5)

(xy) n =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiEaiabgwPiflaadMhacaaIPaWcdaahaaqcbasabeaajugWaiaa d6gaaaqcLbsacaaI9aGaaGymaaaa@4076@ , for n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb GaaGypaiaaicdaaaa@38F9@ , and the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Gauss Binomial coefficient is given by

  [ n k ] p,q [n] p,q ! [nk] p,q ! [k ] p,q ! , nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaK qzGeabaeqakeaajugibiaad6gaaOqaaKqzGeGaam4AaaaakiaawUfa caGLDbaalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGiiaiabggMi6kaaiccakmaalaaabaqcLbsacaaIBbGa amOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaK qaGeqaaKqzGeGaaGyiaaGcbaqcLbsacaaIBbGaamOBaiabgkHiTiaa dUgacaaIDbqcfa4aaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaa WcbeaajugibiaaigcacaaIGaGaaG4waiaadUgacaaIDbWcdaWgaaqc basaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaigcaaa GaaGilaiaaiccacaaIGaGaamOBaiabgwMiZkaadUgaaaa@66DB@ (1.6)

[n] p,q ! = [n ] p,q [n 1] p,q [n 2] p,q [2] p,q [1] p,q , nN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGyiaiaaiccacaaI9aGaaGiiaiaaiUfacaWGUb GaaGyxaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasa baqcLbsacaaIGaGaaG4waiaad6gacqGHsislcaaIXaGaaGyxaSWaaS baaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaI GaGaaG4waiaad6gacqGHsislcaaIYaGaaGyxaSWaaSbaaKqaGeaaju gWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIGaGaeSOjGSKa aGiiaiaaiUfacaaIYaGaaGyxaSWaaSbaaKqaGeaajugWaiaadchaca aISaGaamyCaaqcbasabaqcLbsacaaIGaGaaG4waiaaigdacaaIDbWc daWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibi aaiYcacaaIGaGaaGiiaiaad6gacqGHiiIZcaWGobaaaa@73A3@ (1.7)

There are three types of (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -exponential functions

e p,q (x) n=0 p n(n1)/2 x n [n] p,q ! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaWG4bGaaGykaiaaiccacqGHHjIUcaaIGaqcfa4aaabCaO qabKqaGeaajugWaiaad6gacaaI9aGaaGimaaqcbasaaKqzadGaeyOh IukajugibiabggHiLdGaaGiiaiaadchajuaGdaahaaWcbeqcbasaaK qzadGaamOBaiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIVaGa aGOmaaaajugibiaaiccakmaalaaabaqcLbsacaWG4bqcfa4aaWbaaS qabKqaGeaajugWaiaad6gaaaaakeaajugibiaaiUfacaWGUbGaaGyx aSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLb sacaaIHaaaaaaa@6493@  (1.8)

E p,q (x) n=0 q n(n1)/2 x n [n] p,q ! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaWG4bGaaGykaiaaiccacqGHHjIUcaaIGaqcfa4aaabCaO qabKqaGeaajugWaiaad6gacaaI9aGaaGimaaqcbasaaKqzadGaeyOh IukajugibiabggHiLdGaaGiiaiaadghalmaaCaaajeaibeqaaKqzad GaamOBaiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIVaGaaGOm aaaajugibiaaiccakmaalaaabaqcLbsacaWG4bqcfa4aaWbaaSqabK qaGeaajugWaiaad6gaaaaakeaajugibiaaiUfacaWGUbGaaGyxaKqb aoaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaSqabaqcLbsaca aIHaaaaaaa@644A@ (1.9)

e p,q ˜ (x) n=0 x n [n] p,q ! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamyzaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyC aaqcbasabaaakiaawoWaaKqzGeGaaGikaiaadIhacaaIPaGaaGiiai abggMi6kaaiccajuaGdaaeWbGcbeqcbasaaKqzadGaamOBaiaai2da caaIWaaajeaibaqcLbmacqGHEisPaKqzGeGaeyyeIuoacaaIGaGcda WcaaqaaKqzGeGaamiEaKqbaoaaCaaaleqajeaibaqcLbmacaWGUbaa aaGcbaqcLbsacaaIBbGaamOBaiaai2falmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGyiaaaaaaa@5B4E@  (1.10)

which satisfy the basic identities

e p,q (x) E p,q (y) = e p,q ˜ (xy) = n=0 (xy) p,q n [n] p,q ! , e p,q (x) E p,q (x) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb qcfa4aaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaWcbeaajugi biaaiIcacaWG4bGaaGykaiaaiccacaWGfbWcdaWgaaqcbasaaKqzad GaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacaWG5bGaaGyk aiaaiccacaaI9aGaaGiiaKqbaoaaGaaakeaajugibiaadwgalmaaBa aajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaa jugibiaaiIcacaWG4bGaeyyLIuSaamyEaiaaiMcacaaIGaGaaGypai aaiccajuaGdaaeWbGcbeqcbasaaKqzadGaamOBaiaai2dacaaIWaaa jeaibaqcLbmacqGHEisPaKqzGeGaeyyeIuoacaaIGaGcdaWcaaqaaK qzGeGaaGikaiaadIhacqGHvksXcaWG5bGaaGykaSWaa0baaKqaGeaa jugWaiaadchacaaISaGaamyCaaqcbasaaKqzadGaamOBaaaaaOqaaK qzGeGaaG4waiaad6gacaaIDbqcfa4aaSbaaKqaGeaajugWaiaadcha caaISaGaamyCaaWcbeaajugibiaaigcaaaGaaGilaiaaiccacaaIGa GaamyzaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasa baqcLbsacaaIOaGaamiEaiaaiMcacaaIGaGaamyraSWaaSbaaKqaGe aajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeyOe I0IaamiEaiaaiMcacaaIGaGaaGypaiaaiccacaaIXaaaaa@9024@  (1.11)

e 1 p , 1 q (x) = E p,q (x), E 1 p , 1 q (x) = e p,q (x), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb WcdaWgaaqaamaalaaabaqcLbmacaaIXaaaleaajugWaiaadchaaaGa aGilaSWaaSaaaeaajugWaiaaigdaaSqaaKqzadGaamyCaaaaaSqaba qcLbsacaaIOaGaamiEaiaaiMcacaaIGaGaaGypaiaaiccacaWGfbWc daWgaaqaaKqzadGaamiCaiaaiYcacaWGXbaaleqaaKqzGeGaaGikai aadIhacaaIPaGaaGilaiaaiccacaaIGaGaamyraOWaaSbaaSqaamaa laaabaqcLbmacaaIXaaaleaajugWaiaadchaaaGaaGilaSWaaSaaae aajugWaiaaigdaaSqaaKqzadGaamyCaaaaaSqabaqcLbsacaaIOaGa amiEaiaaiMcacaaIGaGaaGypaiaaiccacaWGLbWcdaWgaaqaaKqzad GaamiCaiaaiYcacaWGXbaaleqaaKqzGeGaaGikaiaadIhacaaIPaGa aGilaaaa@674B@  (1.12)

The (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ hyperbolic functions are defined by

sin h p,q (x) = e p,q (x) e p,q (x) 2 , SIN H p,q (x) = E p,q (x) E p,q (x) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb GaamyAaiaad6gacaWGObWcdaWgaaqcKfaG=haajugWaiaadchacaaI SaGaamyCaaqcKfaG=hqaaKqzGeGaaGikaiaadIhacaaIPaGaaGiiai aai2dacaaIGaqcfa4aaSaaaOqaaKqzGeGaamyzaSWaaSbaaKazba4= baqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiaadI hacaaIPaGaeyOeI0IaamyzaSWaaSbaaKazba4=baqcLbmacaWGWbGa aGilaiaadghaaKazba4=beaajugibiaaiIcacqGHsislcaWG4bGaaG ykaaGcbaqcLbsacaaIYaaaaiaaiYcacaaIGaGaaGiiaiaadofacaWG jbGaamOtaiaadIealmaaBaaajqwaa+FaaKqzadGaamiCaiaaiYcaca WGXbaajqwaa+FabaqcLbsacaaIOaGaamiEaiaaiMcacaaIGaGaaGyp aiaaiccajuaGdaWcaaGcbaqcLbsacaWGfbWcdaWgaaqcKfaG=haaju gWaiaadchacaaISaGaamyCaaqcKfaG=hqaaKqzGeGaaGikaiaadIha caaIPaGaeyOeI0IaamyraSWaaSbaaKazba4=baqcLbmacaWGWbGaaG ilaiaadghaaKazba4=beaajugibiaaiIcacqGHsislcaWG4bGaaGyk aaGcbaqcLbsacaaIYaaaaiaaiYcacaaIGaGaaGiiaaaa@90F0@

sin h p,q ˜ (x) = e p,q ˜ (x) e p,q ˜ (x) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai aadIhacaaIPaGaaGiiaiaai2dacaaIGaqcfa4aaSaaaOqaaKqbaoaa GaaakeaajugibiaadwgajuaGdaWgaaqcbasaaKqzadGaamiCaiaaiY cacaWGXbaaleqaaaGccaGLdmaajugibiaaiIcacaWG4bGaaGykaiab gkHiTKqbaoaaGaaakeaajugibiaadwgalmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaajugibiaaiIcacqGH sislcaWG4bGaaGykaaGcbaqcLbsacaaIYaaaaaaa@5D7F@  (1.13)

cos h p,q (x) = e p,q (x)+ e p,q (x) 2 , COS H p,q (x) = E p,q (x)+ E p,q (x) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9a GaaGiiaKqbaoaalaaabaqcLbsacaWGLbWcdaWgaaqcfasaaKqzadGa amiCaiaaiYcacaWGXbaajuaibeaajugibiaaiIcacaWG4bGaaGykai abgUcaRiaadwgajuaGdaWgaaqcfasaaKqzadGaamiCaiaaiYcacaWG XbaajuaGbeaajugibiaaiIcacqGHsislcaWG4bGaaGykaaqcfayaaK qzGeGaaGOmaaaacaaISaGaaGiiaiaaiccacaWGdbGaam4taiaadofa caWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibe aajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9aGaaGiiaKqbaoaa laaabaqcLbsacaWGfbWcdaWgaaqcfasaaKqzadGaamiCaiaaiYcaca WGXbaajuaibeaajugibiaaiIcacaWG4bGaaGykaiabgUcaRiaadwea lmaaBaaajuaibaqcLbmacaWGWbGaaGilaiaadghaaKqbGeqaaKqzGe GaaGikaiabgkHiTiaadIhacaaIPaaajuaGbaqcLbsacaaIYaaaaiaa iYcacaaIGaGaaGiiaaaa@7F66@

cos h p,q ˜ (x) = e p,q ˜ (x)+ e p,q ˜ (x) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaKqbaoaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaSqabaaakiaawoWaaKqzGeGaaGikai aadIhacaaIPaGaaGiiaiaai2dacaaIGaqcfa4aaSaaaOqaaKqbaoaa GaaakeaajugibiaadwgajuaGdaWgaaqcbasaaKqzadGaamiCaiaaiY cacaWGXbaaleqaaaGccaGLdmaajugibiaaiIcacaWG4bGaaGykaiab gUcaRKqbaoaaGaaakeaajugibiaadwgalmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaajugibiaaiIcacqGH sislcaWG4bGaaGykaaGcbaqcLbsacaaIYaaaaaaa@5DD3@  (1.14)

In particular, they obey the key identity

cos h p,q (x) COS H p,q (x) sin h p,q (x) SIN H p,q (x) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacaWGdb Gaam4taiaadofacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacqGHsi slcaaIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaamiEaiaaiM cacaaIGaGaam4uaiaadMeacaWGobGaamisaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaamiEaiaaiM cacaaIGaGaaGypaiaaiccacaaIXaaaaa@67FE@ (1.15)

Similar definitions hold for the trigonometric functions which obey

co s p,q (x) CO S p,q (x) + si n p,q (x) SI N p,q (x) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGikaiaadIhacaaIPaGaaGiiaiaadoeacaWGpb Gaam4uaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasa baqcLbsacaaIOaGaamiEaiaaiMcacaaIGaGaey4kaSIaaGiiaiaado hacaWGPbGaamOBaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyC aaqcbasabaqcLbsacaaIOaGaamiEaiaaiMcacaaIGaGaam4uaiaadM eacaWGobWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeai beaajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9aGaaGiiaiaaig daaaa@647F@  (1.16)

For further details we refer to.21

When p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGilaiaadghaaaa@3926@ are given by the Golden Mean, and its Galois conjugate, respectively

p = τ = 1+ 5 2 , q = 1/τ = 1 5 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGiiaiaai2dacaaIGaGaeqiXdqNaaGiiaiaai2dacaaIGaqcfa4a aSaaaOqaaKqzGeGaaGymaiabgUcaRKqbaoaakaaakeaajugibiaaiw daaSqabaaakeaajugibiaaikdaaaGaaGilaiaaiccacaaIGaGaamyC aiaaiccacaaI9aGaaGiiaiabgkHiTiaaiccacaaIXaGaaG4laiabes 8a0jaaiccacaaI9aGaaGiiaKqbaoaalaaakeaajugibiaaigdacqGH sisljuaGdaGcaaGcbaqcLbsacaaI1aaaleqaaaGcbaqcLbsacaaIYa aaaaaa@55DA@  (1.17)

the p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGilaiaadghaaaa@3926@ numbers [n] p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaaaa@3D93@ coincide precisely with the Fibonacci numbers as a result of Binet’s formula

[n] p,q = [n ] q,p τ n ( 1) n τ n 5 = F n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajqwaa+FaaKqzadGaamiCaiaaiYcacaWG Xbaajqwaa+FabaqcLbmacaaIGaqcLbsacaaI9aGaaGiiaiaaiUfaca WGUbGaaGyxaSWaaSbaaKazba4=baqcLbmacaWGXbGaaGilaiaadcha aKazba4=beaajugibiaaiccacqGHHjIUcaaIGaqcfa4aaSaaaeaaju gibiabes8a0LqbaoaaCaaabeqcfasaaKqzadGaamOBaaaajugibiaa iccacqGHsislcaaIGaGaaGikaiabgkHiTiaaigdacaaIPaqcfa4aaW baaeqajuaibaqcLbmacaWGUbaaaKqzGeGaeqiXdqxcfa4aaWbaaeqa juaibaqcLbmacqGHsislcaWGUbaaaaqcfayaamaakaaabaqcLbsaca aI1aaajuaGbeaaaaqcLbsacaaIGaGaaGypaiaaiccacaWGgbWcdaWg aaqcbasaaKqzadGaamOBaaqcbasabaaaaa@70CE@ (1.18)

Furthermore, the powers of τ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDjuaGdaahaaWcbeqcbasaaKqzadGaamOBaaaaaaa@3B50@ and τ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDlmaaCaaajeaibeqaaKqzadGaeyOeI0IaamOBaaaaaaa@3BAF@ can be expressed themselves in terms of τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@ and the Fibonacci numbers as follows

τ n = F n+1 + F n τ , τ n = ( 1) n F n1 + ( 1) n+1 F n τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDlmaaCaaajeaibeqaaKqzadGaamOBaaaajugibiaaiccacaaI9aGa aGiiaiaadAealmaaBaaajeaibaqcLbmacaWGUbGaey4kaSIaaGymaa qcbasabaqcLbmacaaIGaqcLbsacqGHRaWkcaaIGaqcfa4aaSaaaOqa aKqzGeGaamOraKqbaoaaBaaajeaibaqcLbmacaWGUbaaleqaaaGcba qcLbsacqaHepaDaaGaaGilaiaaiccacaaIGaGaeqiXdq3cdaahaaqc basabeaajugWaiabgkHiTiaad6gaaaqcLbsacaaIGaGaaGypaiaaic cacaaIOaGaeyOeI0IaaGymaiaaiMcalmaaCaaajeaibeqaaKqzadGa amOBaaaajugibiaaiccacaWGgbqcfa4aaSbaaKqaGeaajugWaiaad6 gacqGHsislcaaIXaaaleqaaKqzGeGaaGiiaiabgUcaRiaaiccacaaI OaGaeyOeI0IaaGymaiaaiMcalmaaCaaajeaibeqaaKqzadGaamOBai abgUcaRiaaigdaaaqcLbsacaaIGaqcfa4aaSaaaOqaaKqzGeGaamOr aKqbaoaaBaaajeaibaqcLbmacaWGUbaaleqaaaGcbaqcLbsacqaHep aDaaaaaa@7666@  (1.19)

Consequently, the powers of τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@ are just Dirichlet integers which have the form m+n 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb Gaey4kaSIaamOBaKqbaoaakaaakeaajugibiaaiwdaaSqabaaaaa@3B4D@ , with m,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb GaaGilaiaad6gaaaa@3920@ integers, and the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -factorial

[n] p,q ! = F n F n1 F n2 .... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGyiaiaaiccacaaI9aGaaGiiaiaadAealmaaBa aajeaibaqcLbmacaWGUbaajeaibeaajugibiaaiccacaWGgbWcdaWg aaqcbasaaKqzadGaamOBaiabgkHiTiaaigdaaKqaGeqaaKqzGeGaaG iiaiaadAeajuaGdaWgaaqcbasaaKqzadGaamOBaiabgkHiTiaaikda aSqabaqcLbsacaaIGaGaeSOjGSKaaGOlaiaai6cacaaIUaGaaGOlaa aa@568E@  (1.20)

becomes a product of descending Fibonacci numbers. Therefore, all the numerical factors which define the hyperbolic and trigonometric (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -functions will simplify enormously in this special case (1.17).

An early (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ oscillator realization (a la Jordan-Schwinger) of two parameter quantum algebras, s u p,q (2);s u p,q (1,1);os p p,q (2|1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb GaamyDaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasa baqcLbsacaaIOaGaaGOmaiaaiMcacaaI7aGaam4CaiaadwhalmaaBa aajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGik aiaaigdacaaISaGaaGymaiaaiMcacaaI7aGaam4BaiaadohacaWGWb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaaIYaGaaGiFaiaaigdacaaIPaaaaa@5702@ , and the centerless Virasoro algebra was constructed.9-11

Given the creation A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaahaaqcbasabeaajugWaiaaccciaaaaaa@3994@ and annihilation A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb aaaa@374B@ operators, the spectrum was found to obey

A A = [N+ 1] p,q , A A = [N ] p,q , [N, A] = A, [N, A ] = A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaamyqaSWaaWbaaKqaGeqabaqcLbmacaGGGacaaiaaiccajugibiaa i2dacaaIGaGaaG4waiaad6eacqGHRaWkcaaIXaGaaGyxaSWaaSbaaK qaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaISaGa aGiiaiaaiccacaWGbbWcdaahaaqcbasabeaajugWaiaaccciaaqcLb sacaWGbbGaaGiiaiaai2dacaaIGaGaaG4waiaad6eacaaIDbWcdaWg aaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiY cacaaIGaGaaGiiaiaaiUfacaWGobGaaGilaiaaiccacaWGbbGaaGyx aiaaiccacaaI9aGaaGiiaiabgkHiTiaadgeacaaISaGaaGiiaiaaic cacaaIBbGaamOtaiaaiYcacaaIGaGaamyqaKqbaoaaCaaaleqajeai baqcLbmacaGGGacaaKqzGeGaaGyxaiaaiccacaaI9aGaaGiiaiaadg ealmaaCaaajeaibeqaaKqzadGaaiiiGaaaaaa@7020@ (1.21)

A A q A A = p N , A A p A A = q N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaamyqaSWaaWbaaKqaGeqabaqcLbmacaGGGacaaiaaiccajugibiab gkHiTiaaiccacaWGXbGaaGiiaiaadgealmaaCaaajeaibeqaaKqzad GaaiiiGaaajugibiaadgeacaaIGaGaaGypaiaaiccacaWGWbWcdaah aaqcbasabeaajugWaiaad6eaaaqcLbsacaaISaGaaGiiaiaaiccaca WGbbGaamyqaKqbaoaaCaaaleqajeaibaqcLbmacaGGGacaaKqzGeGa aGiiaiabgkHiTiaaiccacaWGWbGaaGiiaiaadgeajuaGdaahaaWcbe qcbasaaKqzadGaaiiiGaaajugibiaadgeacaaIGaGaaGypaiaaicca caWGXbqcfa4aaWbaaSqabKqaGeaajugWaiaad6eaaaaaaa@5EEA@  (1.22)

Furthermore, [n] p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaaaa@3D93@ is the unique solution of the generalized Fibonacci recursion relation9-11

[n+1] p,q = (p+q) [n ] p,q pq [n ] p,q , [1] p,q =1, [0] p,q =0, n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiabgUcaRiaaigdacaaIDbWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaajugibiaaiccacaaI9aGaaGiiaiaaiI cacaWGWbGaey4kaSIaamyCaiaaiMcacaaIGaGaaG4waiaad6gacaaI DbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaaju gibiaaiccacqGHsislcaaIGaGaamiCaiaadghacaaIGaGaaG4waiaa d6gacaaIDbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaaje aibeaajugibiaaiYcacaaIGaGaaGiiaiaaiUfacaaIXaGaaGyxaSWa aSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsaca aI9aGaaGymaiaaiYcacaaIGaGaaGiiaiaaiUfacaaIWaGaaGyxaSWa aSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsaca aI9aGaaGimaiaaiYcacaaIGaGaaGiiaiaad6gacqGHLjYScaaIXaaa aa@7624@  (1.23)

when p=τ, q= τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiabes8a0jaaiYcacaaIGaGaamyCaiaai2dacqGHsislcqaH epaDlmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaaaaa@4302@ , the above equation (1.23) reduces to the standard recursion relation of the Fibonacci numbers2 F n+1 = F n + F n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb WcdaWgaaqcbasaaKqzadGaamOBaiabgUcaRiaaigdaaKqaGeqaaKqz GeGaaGypaiaadAeajuaGdaWgaaqcbasaaKqzadGaamOBaaWcbeaaju gibiabgUcaRiaadAealmaaBaaajeaibaqcLbmacaWGUbGaeyOeI0Ia aGymaaqcbasabaaaaa@4739@ . When q=p(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaaGypaiaadchacaaIOaGaeyOeI0IaamiCaiaaiMcaaaa@3C7E@ the relations (1.22) reduce to the (anti) commutation relations of bosonic (fermionic) q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb aaaa@377B@ -oscillators. The special case (q=0,p = 0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamyCaiaai2dacaaIWaGaaGilaiaadchaceaI9aGbaybacaaIWaGa aGykaaaa@3DAA@ , or (q = 0,p=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamyCaiqai2dagaGfaiaaicdacaaISaGaamiCaiaai2dacaaIWaGa aGykaaaa@3DAA@ gives a deformation of a single mode of the oscillators exhibiting “infinite statistics".23 These hypothetical particles of “infinite-statistics" were coined quons MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb GaamyDaiaad+gacaWGUbGaam4Caaaa@3B54@ . The (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ analogs of the fermionic, parafermionic and parabosonic oscillators were also identified.9-11

A generating function for the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -numbers [n] p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaaaa@3D93@ is9-11

n=0 [n ] p,q z n = z (1qz) (1pz) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qabKqaGeaajugWaiaad6gacaaI9aGaaGimaaqcbasaaKqzadGaeyOh IukajugibiabggHiLdGaaGiiaiaaiUfacaWGUbGaaGyxaKqbaoaaBa aaleaajugibiaadchacaaISaGaamyCaaWcbeaajugibiaaiccacaWG 6bqcfa4aaWbaaSqabKqaGeaajugWaiaad6gaaaqcLbsacaaIGaGaaG ypaiaaiccajuaGdaWcaaGcbaqcLbsacaWG6baakeaajugibiaaiIca caaIXaGaeyOeI0IaamyCaiaadQhacaaIPaGaaGiiaiaaiIcacaaIXa GaeyOeI0IaamiCaiaadQhacaaIPaaaaaaa@5C9F@  (1.24)

The e p,q ˜ (z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamyzaKqbaoaaBaaajeaibaqcLbmacaWGWbGaaGilaiaa dghaaSqabaaakiaawoWaaKqzGeGaaGikaiaadQhacaaIPaaaaa@4079@ exponential allows to construct the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -coherent states, for z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3784@ complex:

|z > p.q = N(z) e p,q ˜ (z A ) |0>, N(z) = 1 e p,q ˜ (|z | 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8b GaamOEaiaai6dalmaaBaaajeaibaqcLbmacaWGWbGaaGOlaiaadgha aKqaGeqaaKqzGeGaaGiiaiaai2dacaaIGaGaamOtaiaaiIcacaWG6b GaaGykaiaaiccajuaGdaaiaaGcbaqcLbsacaWGLbWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaaaOGaay5adaqcLbsaca aIOaGaamOEaiaadgealmaaCaaajeaibeqaaKqzadGaaiiiGaaajugi biaaiMcacaaIGaGaaGiFaiaaicdacaaI+aGaaGilaiaaiccacaaIGa GaamOtaiaaiIcacaWG6bGaaGykaiaaiccacaaI9aGaaGiiaKqbaoaa laaakeaajugibiaaigdaaOqaaKqbaoaakaaakeaajuaGdaaiaaGcba qcLbsacaWGLbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaa jeaibeaaaOGaay5adaqcLbsacaaIOaGaaGiFaiaadQhacaaI8bqcfa 4aaWbaaSqabKqaGeaajugWaiaaikdaaaqcLbsacaaIPaaaleqaaaaa jugibiaaiYcaaaa@6FF6@  (1.25)

The inner product is9-11

< z 1 | z 2 > = N( z 1 ) N( z 2 ) e p,q ˜ ( z ¯ 1 z 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI8a GaamOEaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaGiF aiaadQhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaai6 dacaaIGaGaaGypaiaaiccacaWGobGaaGikaiaadQhalmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaamOtaiaaiI cacaWG6bWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaI PaGaaGiiaKqbaoaaGaaakeaajugibiaadwgajuaGdaWgaaqcbasaaK qzadGaamiCaiaaiYcacaWGXbaaleqaaaGccaGLdmaajugibiaaiIca ceWG6bGbaebalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibi aadQhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMca aaa@6261@  (1.26)

The non-extensive Tsallis entropy of bosonic Fibonacci oscillators was studied in1 where connections between the thermo-statistical properties of a gas of the two-parameter deformed bosonic particles called Fibonacci oscillators and the properties of the Tsallis thermostatistics was found. It was shown that the thermo-statistics of the two-parameter deformed bosons can be studied by the formalism of Fibonacci calculus.

Having presented this brief tour of the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -oscillator and its connection to the generalized Fibonacci recursion relations we shall proceed with the explicit construction of (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz transformations and its role in deformations of Special Relativity.

(p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFOaGaa8hCaiaa=XcacaWFXbGaa8xkaaaa@3A74@ -Lorentz transformations

In this section we shall construct the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFOaGaa8hCaiaa=XcacaWFXbGaa8xkaaaa@3A74@ -Lorentz transformations based on the deformed trigonometric and hyperbolic functions associated with the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcLbsaca WFOaGaa8hCaiaa=XcacaWFXbGaa8xkaaaa@3A74@ -quantum calculus. These transformations reflect the nature of the two parameter deformed Lorentz algebra so (1,3) p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb Gaam4BaiaaiIcacaaIXaGaaGilaiaaiodacaaIPaWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaaaaa@4053@ .9-11 The (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz boost transformations along the x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b aaaa@3782@ -direction in 4D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaI0a Gaamiraaaa@380C@ that we propose are given by

t = t cos h p,q (ξ) COS H p,q (ξ) x sin h p,q (ξ) SIN H p,q (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaacaaIGaGaaGypaiaaiccacaWG0bGaaGiiaKqbaoaakaaakeaa jugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMca caaIGaGaam4qaiaad+eacaWGtbGaamisaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGNaaGyk aaWcbeaajugibiaaiccacqGHsislcaaIGaGaamiEaiaaiccajuaGda GcaaGcbaqcLbsacaWGZbGaamyAaiaad6gacaWGObWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+o aEcaaIPaGaaGiiaiaadofacaWGjbGaamOtaiaadIealmaaBaaajeai baqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe6 7a4jaaiMcaaSqabaaaaa@71BD@  (2.1)

x = x cos h p,q (ξ) COS H p,q (ξ) t sin h p,q (ξ) SIN H p,q (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauaacaaIGaGaaGypaiaaiccacaWG4bGaaGiiaKqbaoaakaaakeaa jugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMca caaIGaGaam4qaiaad+eacaWGtbGaamisaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGNaaGyk aaWcbeaajugibiaaiccacqGHsislcaaIGaGaamiDaiaaiccajuaGda GcaaGcbaqcLbsacaWGZbGaamyAaiaad6gacaWGObWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+o aEcaaIPaGaaGiiaiaadofacaWGjbGaamOtaiaadIealmaaBaaajeai baqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe6 7a4jaaiMcaaSqabaaaaa@71C1@  (2.2)

y = y, z = z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b GbauaacaaIGaGaaGypaiaaiccacaWG5bGaaGilaiaaiccacaaIGaGa bmOEayaafaGaaGiiaiaai2dacaaIGaGaamOEaaaa@40D7@ (2.3)

due to the identity

cos h p,q (ξ) COS H p,q (ξ) sin h p,q (ξ) SIN H p,q (ξ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacqaH+oaEcaaIPaGaaGiiaiaado eacaWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGil aiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4jaaiMcacaaIGaGaey OeI0IaaGiiaiaadohacaWGPbGaamOBaiaadIgalmaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4j aaiMcacaaIGaGaam4uaiaadMeacaWGobGaamisaSWaaSbaaKqaGeaa jugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG NaaGykaiaaiccacaaI9aGaaGiiaiaaigdaaaa@6B16@ (2.4)

It follows that under (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz transformations the Minkowski spacetime interval remains invariant

( t ) 2 ( x ) 2 ( y ) 2 ( z ) 2 = (t ) 2 (x ) 2 (y ) 2 (z ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GabmiDayaafaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaaGiiaiabgkHiTiaaiccacaaIOaGabmiEayaafaGaaGykaKqbao aaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHiTiaa iccacaaIOaGabmyEayaafaGaaGykaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaaIOaGabmOEayaafaGa aGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGiiaiaai2 dacaaIGaGaaGikaiaadshacaaIPaWcdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsacaaIGaGaeyOeI0IaaGiiaiaaiIcacaWG4bGaaGykaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHiTiaa iccacaaIOaGaamyEaiaaiMcalmaaCaaajeaibeqaaKqzadGaaGOmaa aacaaIGaqcLbsacqGHsislcaaIGaGaaGikaiaadQhacaaIPaWcdaah aaqcbasabeaajugWaiaaikdaaaaaaa@6FE3@  (2.5)

Because

( cos h p,q ˜ (A)) 2 ( sin h p,q ˜ (A )) 2 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa qcfa4aaacaaOqaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSba aKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaK qzGeGaaGikaiaadgeacaaIPaGaaGykaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaaIOaqcfa4aaacaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai aadgeacaaIPaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGabGypayaawaGaaGymaaaa@5C4E@  (2.6)

the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz transformations do not have the form

t = t cos h p,q ˜ (ξ) x sin h p,q ˜ (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaacaaIGaGaaGypaiaaiccacaWG0bGaaGiiaKqbaoaaGaaakeaa jugibiaadogacaWGVbGaam4CaiaadIgajuaGdaWgaaqcbasaaKqzad GaamiCaiaaiYcacaWGXbaaleqaaaGccaGLdmaajugibiaaiIcacqaH +oaEcaaIPaGaaGiiaiabgkHiTiaaiccacaWG4bGaaGiiaKqbaoaaGa aakeaajugibiaadohacaWGPbGaamOBaiaadIgalmaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaajugibiaaiI cacqaH+oaEcaaIPaaaaa@5B0D@  (2.7a)

x = x cos h p,q ˜ (ξ) t sin h p,q ˜ (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauaacaaIGaGaaGypaiaaiccacaWG4bGaaGiiaKqbaoaaGaaakeaa jugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaajugibiaaiIcacqaH +oaEcaaIPaGaaGiiaiabgkHiTiaaiccacaWG0bGaaGiiaKqbaoaaGa aakeaajugibiaadohacaWGPbGaamOBaiaadIgajuaGdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaaleqaaaGccaGLdmaajugibiaaiI cacqaH+oaEcaaIPaaaaa@5B11@ (2.7b)

but must have the form indicated by eqs-(2.1-2.2). Therefore,

t = t cos h p,q ˜ (ξ) x sin h p,q ˜ (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaacaaIGaGabGypayaawaGaaGiiaiaadshacaaIGaqcfa4aaaca aOqaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaaju gWaiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGik aiabe67a4jaaiMcacaaIGaGaeyOeI0IaaGiiaiaadIhacaaIGaqcfa 4aaacaaOqaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqa GeaajugWaiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGe GaaGikaiabe67a4jaaiMcaaaa@5AC6@  (2.8a)

x = x cos h p,q ˜ (ξ) t sin h p,q ˜ (ξ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauaacaaIGaGabGypayaawaGaaGiiaiaadIhacaaIGaqcfa4aaaca aOqaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaKqbaoaaBaaajeaiba qcLbmacaWGWbGaaGilaiaadghaaSqabaaakiaawoWaaKqzGeGaaGik aiabe67a4jaaiMcacaaIGaGaeyOeI0IaaGiiaiaadshacaaIGaqcfa 4aaacaaOqaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqa GeaajugWaiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGe GaaGikaiabe67a4jaaiMcaaaa@5B2E@  (2.8b)

The composition law of two successive (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz transformations with boost parameters ξ 1 , ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYcacqaH +oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaaa@4023@  is given by an ordinary matrix product leading to

t = t cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauGbauaacaaIGaGaaGypaiaaiccacaWG0bGaaGiiaKqbaoaakaaa keaajugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLb macaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4Lqb aoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaGykaiaaiccaca WGdbGaam4taiaadofacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaa iYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaiba qcLbmacaaIYaaajeaibeaajugibiaaiMcacaaIGaGaam4yaiaad+ga caWGZbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaa qcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaaIPaGaaGiiaiaadoeacaWGpbGaam4uaiaadI eajuaGdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaa jugibiaaiIcacqaH+oaEjuaGdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacaaIPaaaleqaaKqzGeGaaGiiaiabgUcaRiaaiccaaaa@7CC0@

t sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGiiaKqbaoaakaaakeaajugibiaadohacaWGPbGaamOBaiaadIga lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGykaiaaiccacaWGtbGaamysaiaad6eacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcaca aIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaa dchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadofa caWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacqGHsi slcaaIGaaaaa@784A@

x cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaaGiiaKqbaoaakaaakeaajugibiaadogacaWGVbGaam4CaiaadIga lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcaca aIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaa dchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadofa caWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacqGHsi slcaaIGaaaaa@7844@

x sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaaGiiaKqbaoaakaaakeaajugibiaadohacaWGPbGaamOBaiaadIga lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaaGykaiaaiccacaWGtbGaamysaiaad6eacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaEjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcaca aIGaGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugWaiaa dchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadoea caWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaaaaa@763C@ (2.9)

x = x cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauGbauaacaaIGaGaaGypaiaaiccacaWG4bGaaGiiaKqbaoaakaaa keaajugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLb macaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWa aSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGykaiaaiccaca WGdbGaam4taiaadofacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaa iYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaiba qcLbmacaaIYaaajeaibeaajugibiaaiMcacaaIGaGaam4yaiaad+ga caWGZbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaa qcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaaIPaGaaGiiaiaadoeacaWGpbGaam4uaiaadI ealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqz GeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaK qzGeGaaGykaaWcbeaajugibiaaiccacqGHRaWkcaaIGaaaaa@7B5E@

x sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaaGiiaKqbaoaakaaakeaajugibiaadohacaWGPbGaamOBaiaadIga lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGykaiaaiccacaWGtbGaamysaiaad6eacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcaca aIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaa dchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadofa caWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacqGHsi slcaaIGaaaaa@784E@

t sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGiiaKqbaoaakaaakeaajugibiaadohacaWGPbGaamOBaiaadIga juaGdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaaleqaaKqzGe GaaGikaiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaaGykaiaaiccacaWGtbGaamysaiaad6eacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcaca aIGaGaam4yaiaad+gacaWGZbGaamiAaKqbaoaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaSqabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadoea caWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacqGHsi slcaaIGaaaaa@796C@

t cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGiiaKqbaoaakaaakeaajugibiaadogacaWGVbGaam4CaiaadIga lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH +oaEjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcaca aIGaGaam4CaiaadMgacaWGUbGaamiAaKqbaoaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaSqabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadofa caWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaaaaa@7638@  (2.10)

y = y, z = z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b GbauGbauaacaaIGaGaaGypaiaaiccacaWG5bGaaGilaiaaiccacaaI GaGabmOEayaafyaafaGaaGiiaiaai2dacaaIGaGaamOEaaaa@40ED@  (2.11)

If the above composition is consistent with a group composition law, one should have

t = t cos h p,q ( ξ 3 ) COS H p,q ( ξ 3 ) x sin h p,q ( ξ 3 ) SIN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauGbauaacaaIGaGaaGypaiaaiccacaWG0bGaaGiiaKqbaoaakaaa keaajugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLb macaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWa aSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGykaiaaiccaca WGdbGaam4taiaadofacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaa iYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaiba qcLbmacaaIZaaajeaibeaajugibiaaiMcaaSqabaqcLbsacaaIGaGa eyOeI0IaaGiiaiaadIhacaaIGaqcfa4aaOaaaOqaaKqzGeGaam4Cai aadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGa amyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzad GaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaadofacaWGjbGaamOt aiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGikaiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIZaaa leqaaKqzGeGaaGykaaWcbeaaaaa@7E14@ (2.12)

x = x cos h p,q ( ξ 3 ) COS H p,q ( ξ 3 ) t sin h p,q ( ξ 3 ) SIN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauGbauaacaaIGaGaaGypaiaaiccacaWG4bGaaGiiaKqbaoaakaaa keaajugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaibaqcLb macaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWa aSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGykaiaaiccaca WGdbGaam4taiaadofacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaa iYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaiba qcLbmacaaIZaaajeaibeaajugibiaaiMcaaSqabaqcLbsacaaIGaGa eyOeI0IaaGiiaiaadshacaaIGaqcfa4aaOaaaOqaaKqzGeGaam4Cai aadMgacaWGUbGaamiAaKqbaoaaBaaajeaibaqcLbmacaWGWbGaaGil aiaadghaaSqabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzad GaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaadofacaWGjbGaamOt aiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaiodaaKqa GeqaaKqzGeGaaGykaaWcbeaaaaa@7E18@  (2.13)

y = y, z = z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b GbauGbauaacaaIGaGaaGypaiaaiccacaWG5bGaaGilaiaaiccacaaI GaGabmOEayaafyaafaGaaGiiaiaai2dacaaIGaGaamOEaaaa@40ED@ (2.14)

where the resulting boost parameter ξ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaaaaa@3AB3@ is now a complicated MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4Baiaad2gacaWGWbGaamiBaiaadMgacaWGJbGaamyyaiaadsha caWGLbGaamizaaaa@40C1@ function ξ 3 ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiIcacqaH +oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYcacq aH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMca aaa@46D4@ of ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaa@3AB1@ and ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaaa@3B16@ as shown below. It will no longer be given by the naive addition law ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRiab e67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaa@404F@ . Once again, from eqs-(2.12-2.14) one can show the invariance of the Minkwoski spacetime interval

( t ) 2 ( x ) 2 ( y ) 2 ( z ) 2 = (t ) 2 (x ) 2 (y ) 2 (z ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GabmiDayaafyaafaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaaGiiaiabgkHiTiaaiccacaaIOaGabmiEayaafyaafaGaaG ykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHi TiaaiccacaaIOaGabmyEayaafyaafaGaaGykaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaaIOaGabmOE ayaafyaafaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe GaaGiiaiaai2dacaaIGaGaaGikaiaadshacaaIPaWcdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacaaIGaGaeyOeI0IaaGiiaiaaiIcaca WG4bGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGii aiabgkHiTiaaiccacaaIOaGaamyEaiaaiMcalmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiaaiccacqGHsislcaaIGaGaaGikaiaadQha caaIPaWcdaahaaqcbasabeaajugWaiaaikdaaaaaaa@6F81@  (2.15)

Equating eqs-(2.9, 2.10) with eqs-(2.12, 2.13) yields

sin h p,q ( ξ 3 ) SIN H p,q ( ξ 3 ) = cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGxcfa 4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLbsacaaIPaGaaGiiaiaa dofacaWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaiodaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccaca aI9aGaaGiiaKqbaoaakaaakeaajugibiaadogacaWGVbGaam4Caiaa dIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaK qzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWgaa qcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIca cqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiM cacaaIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaa dofacaWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacq GHRaWkcaaIGaaaaa@9809@

sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaGaaGiiaiaa dofacaWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaikdaaKqaGeqaaKqzGeGaaGykaiaaiccacaWGJbGaam4Bai aadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaa jeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIXa aajeaibeaajugibiaaiMcacaaIGaGaam4qaiaad+eacaWGtbGaamis aSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLb sacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsacaaIPaaaleqaaaaa@733E@  (2.16)

cos h p,q ( ξ 3 ) COS H p,q ( ξ 3 ) = cos h p,q ( ξ 2 ) COS H p,q ( ξ 2 ) cos h p,q ( ξ 1 ) COS H p,q ( ξ 1 ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGxcfa 4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLbsacaaIPaGaaGiiaiaa doeacaWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaiodaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccaca aI9aGaaGiiaKqbaoaakaaakeaajugibiaadogacaWGVbGaam4Caiaa dIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaK qzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqa aKqzGeGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWgaa qcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIca cqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiM cacaaIGaGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaa doeacaWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccacq GHRaWkcaaIGaaaaa@97F5@

sin h p,q ( ξ 2 ) SIN H p,q ( ξ 2 ) sin h p,q ( ξ 1 ) SIN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaGaaGiiaiaa dofacaWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaikdaaKqaGeqaaKqzGeGaaGykaiaaiccacaWGZbGaamyAai aad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaa jeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIXa aajeaibeaajugibiaaiMcacaaIGaGaam4uaiaadMeacaWGobGaamis aSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLb sacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqc LbsacaaIPaaaleqaaaaa@7348@  (2.17)

Dividing equation (2.16) by equation (2.17) gives in the left hand side: tan h p,q ( ξ 3 ) TAN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGxcfa 4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLbsacaaIPaGaaGiiaiaa dsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaiodaaKqaGeqaaKqzGeGaaGykaaWcbeaaaaa@5544@ . As a result of the identities21

tan h p,q (A) = TAN H p,q (A) sin h p,q (A) COS H p,q (A) = cos h p,q (A) SIN H p,q (A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWGbbGaaGykaiaaiccacaaI9a GaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiaadgeacaaIPa GaaGiiaiabgsDiBlaaiccacaWGZbGaamyAaiaad6gacaWGObWcdaWg aaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiI cacaWGbbGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWg aaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiI cacaWGbbGaaGykaiaaiccacaaI9aGaaGiiaiaadogacaWGVbGaam4C aiaadIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGikaiaadgeacaaIPaGaaGiiaiaadofacaWGjbGaamOt aiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGikaiaadgeacaaIPaaaaa@7F01@ (2.18)

this left-hand side becomes
tan h p,q ( ξ 3 ) TAN H p,q ( ξ 3 ) = tan h p,q ( ξ 3 ) = TAN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaa dsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaa jugWaiaaiodaaKqaGeqaaKqzGeGaaGykaaWcbeaajugibiaaiccaca aI9aGaaGiiaiaadshacaWGHbGaamOBaiaadIgalmaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4T WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGykaiaaicca caaI9aGaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBaaajeaiba qcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a 4TWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGykaaaa@76A3@  (2.19)

The right-handside is of the form

A + B C + D = (A/C) + (B/C) 1 + (D/C) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamyqaiaaiccacqGHRaWkcaaIGaGaamOqaaGcbaqcLbsa caWGdbGaaGiiaiabgUcaRiaaiccacaWGebaaaiaaiccacaaI9aGaaG iiaKqbaoaalaaakeaajugibiaaiIcacaWGbbGaaG4laiaadoeacaaI PaGaaGiiaiabgUcaRiaaiccacaaIOaGaamOqaiaai+cacaWGdbGaaG ykaaGcbaqcLbsacaaIXaGaaGiiaiabgUcaRiaaiccacaaIOaGaamir aiaai+cacaWGdbGaaGykaaaaaaa@536A@ (2.20)

where A,B,C,D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb GaaGilaiaadkeacaaISaGaam4qaiaaiYcacaWGebaaaa@3BC5@ are the square roots of products of four hyperbolic functions. Due to the identities (2.18) it allows to eliminate the square roots in equation (2.20), and finally one arrives at

tan h p,q ( ξ 3 ) = tan h p,q ( ξ 1 ) + tan h p,q ( ξ 2 ) 1 + tan h p,q ( ξ 1 ) tan h p,q ( ξ 2 ) = TAN H p,q ( ξ 3 ) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLb macaaIZaaajeaibeaajugibiaaiMcacaaIGaGaaGypaiaaiccajuaG daWcaaqaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqbGe aajugWaiaadchacaaISaGaamyCaaqcfasabaqcLbsacaaIOaGaeqOV dG3cdaWgaaqcfasaaKqzadGaaGymaaqcfasabaqcLbsacaaIPaGaaG iiaiabgUcaRiaaiccacaWG0bGaamyyaiaad6gacaWGObWcdaWgaaqc fasaaKqzadGaamiCaiaaiYcacaWGXbaajuaibeaajugibiaaiIcacq aH+oaEjuaGdaWgaaqcfasaaKqzadGaaGOmaaqcfayabaqcLbsacaaI PaaajuaGbaqcLbsacaaIXaGaaGiiaiabgUcaRiaaiccacaWG0bGaam yyaiaad6gacaWGObWcdaWgaaqcfasaaKqzadGaamiCaiaaiYcacaWG XbaajuaibeaajugibiaaiIcacqaH+oaElmaaBaaajuaibaqcLbmaca aIXaaajuaibeaajugibiaaiMcacaaIGaGaamiDaiaadggacaWGUbGa amiAaSWaaSbaaKqbGeaajugWaiaadchacaaISaGaamyCaaqcfasaba qcLbsacaaIOaGaeqOVdGxcfa4aaSbaaKqbGeaajugWaiaaikdaaKqb agqaaKqzGeGaaGykaiaaiccaaaGaaGypaiaaiccacaWGubGaamyqai aad6eacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaa jeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIZa aajeaibeaajugibiaaiMcacaaIGaGaaGypaiaaiccaaaa@9EEB@

TAN H p,q ( ξ 1 ) + TAN H p,q ( ξ 2 ) 1 + TAN H p,q ( ξ 1 ) TAN H p,q ( ξ 2 ) , ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aajugibiaadsfacaWGbbGaamOtaiaadIeajuaGdaWgaaqcfasaaKqz adGaamiCaiaaiYcacaWGXbaajuaGbeaajugibiaaiIcacqaH+oaElm aaBaaajuaibaqcLbmacaaIXaaajuaibeaajugibiaaiMcacaaIGaGa ey4kaSIaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBaaajuaiba qcLbmacaWGWbGaaGilaiaadghaaKqbGeqaaKqzGeGaaGikaiabe67a 4TWaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaKqzGeGaaGykaaqcfa yaaKqzGeGaaGymaiaaiccacqGHRaWkcaaIGaGaamivaiaadgeacaWG obGaamisaSWaaSbaaKqbGeaajugWaiaadchacaaISaGaamyCaaqcfa sabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcfasaaKqzadGaaGymaaqc fasabaqcLbsacaaIPaGaaGiiaiaadsfacaWGbbGaamOtaiaadIealm aaBaaajuaibaqcLbmacaWGWbGaaGilaiaadghaaKqbGeqaaKqzGeGa aGikaiabe67a4TWaaSbaaKqbGeaajugWaiaaikdaaKqbGeqaaKqzGe GaaGykaaaacaaISaGaaGiiaiaaiccacqaH+oaElmaaBaaajeaibaqc LbmacaaIZaaajeaibeaajugibiqai2dagaGfaiabe67a4TWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeqOVdG3cdaWg aaqcbasaaKqzadGaaGOmaaqcbasabaaaaa@899F@  (2.21)

It remains to explain that when (p,q) = (1,1) ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaiqai2dagaGfaiaaiIcacaaIXaGa aGilaiaaigdacaaIPaGaeyO0H4TaeqOVdG3cdaWgaaqaaKqzadGaaG 4maaWcbeaajugibiqai2dagaGfaiabe67a4TWaaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaey4kaSIaeqOVdG3cdaWgaaqcbasaaK qzadGaaGOmaaqcbasabaaaaa@507F@ . Therefore, the composition rule for the boost parameters is no longer additive. The reason behind this is because now the actual addition laws for the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -hyperbolic functions are of the form

cos h p,q ˜ ( ξ 1 ξ 2 ) = cos h p,q ( ξ 1 ) COS H p,q ( ξ 2 ) + sin h p,q ( ξ 1 ) SIN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsaca aIPaGaaGiiaiaai2dacaaIGaGaam4yaiaad+gacaWGZbGaamiAaSWa aSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsaca aIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsa caaIPaGaaGiiaiaadoeacaWGpbGaam4uaiaadIealmaaBaaajeaiba qcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a 4LqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaGykaiaaic cacqGHRaWkcaaIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqa GeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeq OVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGa aGiiaiaadofacaWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmaca WGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4Lqbaoaa BaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaGykaaaa@8DE1@  (2.22)

sin h p,q ˜ ( ξ 1 ξ 2 )) = sin h p,q ( ξ 1 ) COS H p,q ( ξ 2 ) + cos h p,q ( ξ 1 ) SIN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsaca aIPaGaaGykaiaaiccacaaI9aGaaGiiaiaadohacaWGPbGaamOBaiaa dIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaK qzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqa aKqzGeGaaGykaiaaiccacaWGdbGaam4taiaadofacaWGibWcdaWgaa qcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIca cqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiM cacaaIGaGaey4kaSIaaGiiaiaadogacaWGVbGaam4CaiaadIgalmaa BaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaG ikaiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGa aGykaiaaiccacaWGtbGaamysaiaad6eacaWGibWcdaWgaaqcbasaaK qzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaE lmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcacaaIGa GaeyO0H4naaa@91A0@  (2.23)

tan h p,q ˜ ( ξ 1 ξ 2 ) = sin h p,q ( ξ 1 ) COS H p,q ( ξ 2 ) + cos h p,q ( ξ 1 ) SIN H p,q ( ξ 2 )cos h p,q ( ξ 1 ) COS H p,q ( ξ 2 ) + sin h p,q ( ξ 1 ) SIN H p,q ( ξ 2 ) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsaca aIPaGaaGiiaiaai2dacaaIGaqcfa4aaSaaaOqaaKqzGeGaam4Caiaa dMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaam yCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGa aGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadoeacaWGpbGaam4uai aadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqa aKqzGeGaaGikaiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIYaaale qaaKqzGeGaaGykaiaaiccacqGHRaWkcaaIGaGaam4yaiaad+gacaWG ZbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcba sabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqc basabaqcLbsacaaIPaGaaGiiaiaadofacaWGjbGaamOtaiaadIealm aaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaaGcbaqc LbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasaba qcLbsacaaIPaGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaa jugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG 3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGii aiaadoeacaWGpbGaam4uaiaadIealmaaBaaajeaibaqcLbmacaWGWb GaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqa GeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGykaiaaiccacqGHRaWkca aIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaa dchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaa qcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiaadofa caWGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugW aiaaikdaaKqaGeqaaKqzGeGaaGykaaaacaaIGaGaaGypaiaaiccaaa a@CECD@

tan h p,q ( ξ 1 ) + TAN H p,q ( ξ 2 ) 1 + tan h p,q ( ξ 1 ) TAN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGiiaiab gUcaRiaaiccacaWGubGaamyqaiaad6eacaWGibWcdaWgaaqcbasaaK qzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaE juaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcaaOqaaK qzGeGaaGymaiaaiccacqGHRaWkcaaIGaGaamiDaiaadggacaWGUbGa amiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasaba qcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaaIPaGaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBa aajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGik aiabe67a4LqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaG ykaaaaaaa@7855@  (2.24)

The functions cos h p,q ˜ ( ξ 1 ξ 2 ), sin h p,q ˜ ( ξ 1 ξ 2 ), tan h p,q ˜ ( ξ 1 ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsaca aIPaGaaGilaKqbaoaaGaaakeaajugibiaadohacaWGPbGaamOBaiaa dIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaa GccaGLdmaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaI XaaajeaibeaajugibiabgwPiflabe67a4TWaaSbaaKqaGeaajugWai aaikdaaKqaGeqaaKqzGeGaaGykaiaaiYcajuaGdaaiaaGcbaqcLbsa caWG0bGaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCai aaiYcacaWGXbaajeaibeaaaOGaay5adaqcLbsacaaIOaGaeqOVdG3c daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHvksXcqaH+o aElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiMcaaaa@7DC7@ admit a power series expansion in terms of the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Gauss binomial ( ξ 1 ξ 2 ) p,q n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH vksXcqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibi aaiMcalmaaDaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeaa jugWaiaad6gaaaaaaa@49DA@ , and defined by equations (1.4,1.5).

Due to the identity tan h p,q (A) = TAN H p,q (A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWGbbGaaGykaiaaiccacaaI9a GaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiaadgeacaaIPa aaaa@4DB0@ , one can see that the expressions in equations (2.21, 2.24) are both the same and one ends up with

tan h p,q ˜ ( ξ 1 ξ 2 ) = tan h p,q ( ξ 3 ) = TAN H p,q ( ξ 3 ) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaKqbaoaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaSqabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsaca aIPaGaaGiiaiaai2dacaaIGaGaamiDaiaadggacaWGUbGaamiAaSWa aSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsaca aIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsa caaIPaGaaGiiaiaai2dacaaIGaGaamivaiaadgeacaWGobGaamisaS WaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsa caaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLb sacaaIPaGaaGiiaiaai2dacaaIGaaaaa@711D@

tan h p,q ( ξ 1 ) + tan h p,q ( ξ 2 ) 1 + tan h p,q ( ξ 1 ) tan h p,q ( ξ 2 ) = TAN H p,q ( ξ 1 ) + TAN H p,q ( ξ 2 ) 1 + TAN H p,q ( ξ 1 ) TAN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aajugibiaadshacaWGHbGaamOBaiaadIgalmaaBaaajuaibaqcLbma caWGWbGaaGilaiaadghaaKqbGeqaaKqzGeGaaGikaiabe67a4TWaaS baaKqbGeaajugWaiaaigdaaKqbGeqaaKqzGeGaaGykaiaaiccacqGH RaWkcaaIGaGaamiDaiaadggacaWGUbGaamiAaKqbaoaaBaaajuaiba qcLbmacaWGWbGaaGilaiaadghaaKqbagqaaKqzGeGaaGikaiabe67a 4LqbaoaaBaaajuaibaqcLbmacaaIYaaajuaGbeaajugibiaaiMcaca aIGaaajuaGbaqcLbsacaaIXaGaaGiiaiabgUcaRiaaiccacaWG0bGa amyyaiaad6gacaWGObqcfa4aaSbaaKqbGeaajugWaiaadchacaaISa GaamyCaaqcfayabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcfasaaKqz adGaaGymaaqcfasabaqcLbsacaaIPaGaaGiiaiaadshacaWGHbGaam OBaiaadIgalmaaBaaajuaibaqcLbmacaWGWbGaaGilaiaadghaaKqb GeqaaKqzGeGaaGikaiabe67a4LqbaoaaBaaajuaibaqcLbmacaaIYa aajuaGbeaajugibiaaiMcaaaGaaGypaiaaiccajuaGdaWcaaGcbaqc LbsacaWGubGaamyqaiaad6eacaWGibWcdaWgaaqcbasaaKqzadGaam iCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaa jeaibaqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaey4kaS IaaGiiaiaadsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaS baaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGykaaGcbaqcLbsa caaIXaGaaGiiaiabgUcaRiaaiccacaWGubGaamyqaiaad6eacaWGib WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaaju gibiaaiMcacaaIGaGaamivaiaadgeacaWGobGaamisaSWaaSbaaKqa GeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeq OVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaaa aaaa@BF85@  (2.25a)

               
Because of the following inequalities MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGPb GaamOBaiaadwgacaWGXbGaamyDaiaadggacaWGSbGaamyAaiaadsha caWGPbGaamyzaiaadohaaaa@41CE@  
tan h p,q ˜ (A) = tan h p,q (A) = TAN H p,q (A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai aadgeacaaIPaGaaGiiaiqai2dagaGfaiaaiccacaWG0bGaamyyaiaa d6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaaje aibeaajugibiaaiIcacaWGbbGaaGykaiaaiccacaaI9aGaaGiiaiaa dsfacaWGbbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaG ilaiaadghaaKqaGeqaaKqzGeGaaGikaiaadgeacaaIPaGaaGiiaaaa @5CBE@ (2.25b)

one learns that

ξ 3 = ξ 1 ξ 2 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiqai2dagaGf aiabe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey yLIuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsa caaI9aGaeqOVdG3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacqGHRaWkcqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaa aaa@5236@  (2.25c)

this last inequality in (2.26b) can be deduced by a simple inspection of the equalities in equation(2.25). Since the function tan h p,q ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaaaa@3FF7@ appearing in the first term of equation(2.25a) is not the same as tan h p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaaaaa@3E93@ , and TAN H p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub Gaamyqaiaad6eacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaaaaa@3E13@ , the argument ξ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaaaaa@3AB3@ cannot be the same as the argument ξ 1 ξ 2 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabgwPiflab e67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGypai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey4k aSIaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaaaaa@4C95@ . Therefore, when (p,q) = (1,1) ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaiqai2dagaGfaiaaiIcacaaIXaGa aGilaiaaigdacaaIPaGaeyO0H4TaeqOVdG3cdaWgaaqcbasaaKqzad GaaG4maaqcbasabaqcLbsaceaI9aGbaybacqaH+oaElmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiabgUcaRiabe67a4TWaaSbaaK qaGeaajugWaiaaikdaaKqaGeqaaaaa@50C8@ . It is only when p=q=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiaadghacaaI9aGaaGymaaaa@3AB9@  that the boost parameters are additive ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaai2dacqaH +oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabgUcaRi abe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaa@45D3@ .

Concluding, the complicated expression for ξ 3 = ξ 3 ( ξ 1 , ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaai2dacqaH +oaElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiIcacq aH+oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYca cqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiM caaaa@4C58@ is explicitly given by evaluating the arctan h p,q ,ARCTAN H p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb GaamOCaiaadogacaWG0bGaamyyaiaad6gacaWGObWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiYcacaWGbb GaamOuaiaadoeacaWGubGaamyqaiaad6eacaWGibWcdaWgaaqcbasa aKqzadGaamiCaiaaiYcacaWGXbaajeaibeaaaaa@4C90@  of the right hand side of equations (2.25), respectively. Both results lead to the same ξ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaaaaa@3AB3@

ξ 3 = arctan h p,q ( tan h p,q ( ξ 1 ) + tan h p,q ( ξ 2 ) 1 + tan h p,q ( ξ 1 ) tan h p,q ( ξ 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiccacaaI 9aGaaGiiaiaadggacaWGYbGaam4yaiaadshacaWGHbGaamOBaiaadI galmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqb aoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWG0bGaamyyaiaad6gaca WGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaa jugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibe aajugibiaaiMcacaaIGaGaey4kaSIaaGiiaiaadshacaWGHbGaamOB aiaadIgalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGe qaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaikdaaKqa GeqaaKqzGeGaaGykaaGcbaqcLbsacaaIXaGaaGiiaiabgUcaRiaaic cacaWG0bGaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaamiDaiaa dggacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaam yCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGa aGOmaaqcbasabaqcLbsacaaIPaGaaGiiaaaaaOGaayjkaiaawMcaaa aa@8D9C@ (2.26a)

ξ 3 =ARCTAN H p,q ( TAN H p,q ( ξ 1 ) + TAN H p,q ( ξ 2 ) 1 + TAN H p,q ( ξ 1 ) TAN H p,q ( ξ 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aElmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiccacaaI 9aGaamyqaiaadkfacaWGdbGaamivaiaadgeacaWGobGaamisaSWaaS baaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcfa4aaeWa aOqaaKqbaoaalaaakeaajugibiaadsfacaWGbbGaamOtaiaadIealm aaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGa aGikaiabe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGe GaaGykaiaaiccacqGHRaWkcaaIGaGaamivaiaadgeacaWGobGaamis aSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLb sacaaIOaGaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqc LbsacaaIPaaakeaajugibiaaigdacaaIGaGaey4kaSIaaGiiaiaads facaWGbbGaamOtaiaadIealmaaBaaajeaqbaqcLboacaWGWbGaaGil aiaadghaaKqaafqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaaGykaiaaiccacaWGubGaamyqaiaa d6eacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaaje aibeaajugibiaaiIcacqaH+oaEjuaGdaWgaaqcbasaaKqzadGaaGOm aaWcbeaajugibiaaiMcaaaaakiaawIcacaGLPaaaaaa@8A90@ (2.26b)

Furthermore, because

( cos h p,q ˜ (A)) 2 ( sin h p,q ˜ (A )) 2 = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa qcfa4aaacaaOqaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSba aKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaK qzGeGaaGikaiaadgeacaaIPaGaaGykaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaaIOaqcfa4aaacaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai aadgeacaaIPaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaaGiiaiqai2dagaGfaiaaiccacaaIXaaaaa@5DA2@ (2.26c)

a careful inspection of eqs-(2.8) reveals that

sin h p,q ˜ ( ξ 1 ξ 2 )) = sin h p,q ( ξ 3 ) SIN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsaca aIPaGaaGykaiaaiccaceaI9aGbaybacaaIGaqcfa4aaOaaaOqaaKqz GeGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWaiaadc hacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqc basaaKqzadGaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaadofaca WGjbGaamOtaiaadIealmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaa dghaaKqaGeqaaKqzGeGaaGikaiabe67a4TWaaSbaaKqaGeaajugWai aaiodaaKqaGeqaaKqzGeGaaGykaaWcbeaaaaa@6F54@ (2.27a)

cos h p,q ˜ ( ξ 1 ξ 2 ) = cos h p,q ( ξ 3 ) COS H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdG3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsaca aIPaGaaGiiaiqai2dagaGfaiaaiccajuaGdaGcaaGcbaqcLbsacaWG JbGaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiY cacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeaibaqc LbmacaaIZaaajeaibeaajugibiaaiMcacaaIGaGaam4qaiaad+eaca WGtbGaamisaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqc basabaqcLbsacaaIOaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaG4maa qcbasabaqcLbsacaaIPaaaleqaaaaa@6E92@ (2.27b)

but their ratio is equal: tan h p,q ˜ ( ξ 1 ξ 2 )=tan h p,q ( ξ 3 )=TAN H p,q ( ξ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbGaamiAaKqbaoaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaSqabaaakiaawoWaaKqzGeGaaGikai abe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyyL IuSaeqOVdGxcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsaca aIPaGaaGypaiaadshacaWGHbGaamOBaiaadIgalmaaBaaajeaibaqc LbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiabe67a4T WaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGykaiaai2da caWGubGaamyqaiaad6eacaWGibWcdaWgaaqcbasaaKqzadGaamiCai aaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeai baqcLbmacaaIZaaajeaibeaajugibiaaiMcaaaa@6CBE@ . From equations (2.25) one can derive the addition law of velocities as in ordinary Special Relativity. Given

β 1 v 1 c tan h p,q ( ξ 1 ) = TAN H p,q ( ξ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabggMi6kaa iccajuaGdaWcaaGcbaqcLbsacaWG2bqcfa4aaSbaaKqaGeaajugWai aaigdaaSqabaaakeaajugibiaadogaaaGaaGiiaiabggMi6kaaicca caWG0bGaamyyaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCai aaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaaGypaiaaic cacaWGubGaamyqaiaad6eacaWGibWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH+oaElmaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiaaiMcaaaa@6643@ (2.28a)

β 2 v 2 c tan h p,q ( ξ 2 ) = TAN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiccacqGH HjIUcaaIGaqcfa4aaSaaaOqaaKqzGeGaamODaSWaaSbaaKqaGeaaju gWaiaaikdaaKqaGeqaaaGcbaqcLbsacaWGJbaaaiaaiccacqGHHjIU caaIGaGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdGxcfa4a aSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacaaIPaGaaGiiaiaai2 dacaaIGaGaamivaiaadgeacaWGobGaamisaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaaaaa@66F1@ (2.28b)

β 3 v 3 c tan h p,q ( ξ 3 ) = TAN H p,q ( ξ 3 ), ξ 3 = ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiccacqGH HjIUcaaIGaqcfa4aaSaaaOqaaKqzGeGaamODaSWaaSbaaKqaGeaaju gWaiaaiodaaKqaGeqaaaGcbaqcLbsacaWGJbaaaiaaiccacqGHHjIU caaIGaGaamiDaiaadggacaWGUbGaamiAaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cdaWg aaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaai2 dacaaIGaGaamivaiaadgeacaWGobGaamisaSWaaSbaaKqaGeaajugW aiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqOVdG3cda WgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsacaaIPaGaaGilaiaa iccacaaIGaGaeqOVdG3cdaWgaaqcbasaaKqzadGaaG4maaqcbasaba qcLbsaceaI9aGbaybacqaH+oaElmaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiabgUcaRiabe67a4TWaaSbaaKqaGeaajugWaiaaik daaKqaGeqaaaaa@7806@ (2.28c)

the addition law is

β 3 = β 1 + β 2 1 + β 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiccacaaI 9aGaaGiiaKqbaoaalaaakeaajugibiabek7aITWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaaGiiaiabgUcaRiaaiccacqaHYoGy juaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaaGymai aaiccacqGHRaWkcaaIGaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaaIGaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaG Omaaqcbasabaaaaaaa@5688@  (2.9)

similarly one can obtain the subtraction law

β 3 = β 1 β 2 1 β 1 β 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiccacaaI 9aGaaGiiaKqbaoaalaaakeaajugibiabek7aITWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaaGiiaiabgkHiTiaaiccacqaHYoGy lmaaBaaajeaibaqcLbmacaaIYaaajeaibeaaaOqaaKqzGeGaaGymai aaiccacqGHsislcaaIGaGaeqOSdi2cdaWgaaqcbasaaKqzadGaaGym aaqcbasabaqcLbsacaaIGaGaeqOSdiwcfa4aaSbaaKqaGeaajugWai aaikdaaSqabaaaaaaa@569E@  (2.30)

such that β 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaabaqcLbmacaaIZaaaleqaaaaa@3A48@ never exceeds 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa aaaa@3740@ when β 1 , β 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHYo GylmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaaGilaiabek7aITWa aSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaeyizImQaaGymaa aa@4295@ . So far we have studied the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz boosts transformations. A (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -rotation transformation along the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3784@ -direction gives

x = x co s p,q (θ) CO S p,q (θ) y si n p,q (θ) SI N p,q (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG4b GbauaacaaIGaGaaGypaiaaiccacaWG4bGaaGiiaKqbaoaakaaakeaa jugibiaadogacaWGVbGaam4CaSWaaSbaaKqaGeaajugWaiaadchaca aISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUdeNaaGykaiaaicca caWGdbGaam4taiaadofalmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabeI7aXjaaiMcaaSqabaqcLbsa caaIGaGaeyOeI0IaaGiiaiaadMhacaaIGaqcfa4aaOaaaOqaaKqzGe Gaam4CaiaadMgacaWGUbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacqaH4oqCcaaIPaGaaGiiaiaado facaWGjbGaamOtaKqbaoaaBaaajeaibaqcLbmacaWGWbGaaGilaiaa dghaaSqabaqcLbsacaaIOaGaeqiUdeNaaGykaaWcbeaaaaa@6E82@ (2.31a)

y = y co s p,q (θ) CO S p,q (θ) +x si n p,q (θ) SI N p,q (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG5b GbauaacaaIGaGaaGypaiaaiccacaWG5bGaaGiiaKqbaoaakaaakeaa jugibiaadogacaWGVbGaam4CaSWaaSbaaKqaGeaajugWaiaadchaca aISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUdeNaaGykaiaaicca caWGdbGaam4taiaadofalmaaBaaajeaibaqcLbmacaWGWbGaaGilai aadghaaKqaGeqaaKqzGeGaaGikaiabeI7aXjaaiMcaaSqabaqcLbsa caaIGaGaey4kaSIaamiEaiaaiccajuaGdaGcaaGcbaqcLbsacaWGZb GaamyAaiaad6galmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGikaiabeI7aXjaaiMcacaaIGaGaam4uaiaadM eacaWGobWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeai beaajugibiaaiIcacqaH4oqCcaaIPaaaleqaaaaa@6D6A@ (2.31b)

t = t, z = z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaacaaIGaGaaGypaiaaiccacaWG0bGaaGilaiaaiccacaaIGaGa bmOEayaafaGaaGiiaiaai2dacaaIGaGaamOEaaaa@40CD@  (2.31c)

and leaves invariant the Minkowski spacetime line interval (2.5) due to the identity

co s p,q (θ) CO S p,q (θ) + si n p,q (θ) SI N p,q (θ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohalmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaKqzGeGaaGikaiabeI7aXjaaiMcacaaIGaGaam4qaiaad+ eacaWGtbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeai beaajugibiaaiIcacqaH4oqCcaaIPaGaaGiiaiabgUcaRiaaiccaca WGZbGaamyAaiaad6galmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaa dghaaKqaGeqaaKqzGeGaaGikaiabeI7aXjaaiMcacaaIGaGaam4uai aadMeacaWGobWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaa jeaibeaajugibiaaiIcacqaH4oqCcaaIPaGaaGiiaiaai2dacaaIGa GaaGymaaaa@6763@  (2.32)

The following relations among hyperbolic and trigonometric (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ functions21

sin h p,q (x) = i si n p,q (ix), SIN H p,q (x) = i SI N p,q (ix), sin h p,q ˜ (x) = i si n p,q ˜ (ix), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb GaamyAaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9a GaaGiiaiabgkHiTiaadMgacaaIGaGaam4CaiaadMgacaWGUbWcdaWg aaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiI cacaWGPbGaamiEaiaaiMcacaaISaGaaGiiaiaaiccacaWGtbGaamys aiaad6eacaWGibWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXb aajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9aGaaGii aiabgkHiTiaadMgacaaIGaGaam4uaiaadMeacaWGobWcdaWgaaqcba saaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacaWG PbGaamiEaiaaiMcacaaISaGaaGiiaiaaiccajuaGdaaiaaGcbaqcLb sacaWGZbGaamyAaiaad6gacaWGObWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaaaOGaay5adaqcLbsacaaIOaGaamiEai aaiMcacaaIGaGaaGypaiaaiccacqGHsislcaWGPbGaaGiiaKqbaoaa GaaakeaajugibiaadohacaWGPbGaamOBaSWaaSbaaKqaafaajug4ai aadchacaaISaGaamyCaaqcbauabaaakiaawoWaaKqzGeGaaGikaiaa dMgacaWG4bGaaGykaiaaiYcaaaa@8EBC@  (2.33)

cos h p,q (x) = co s p,q (ix), COS H p,q (x) = CO S p,q (ix), cos h p,q ˜ (x) = co s p,q ˜ (ix), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb Gaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaaiYca caWGXbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaaiccacaaI9a GaaGiiaiaadogacaWGVbGaam4CaSWaaSbaaKqaGeaajugWaiaadcha caaISaGaamyCaaqcbasabaqcLbsacaaIOaGaamyAaiaadIhacaaIPa GaaGilaiaaiccacaaIGaGaam4qaiaad+eacaWGtbGaamisaSWaaSba aKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOa GaamiEaiaaiMcacaaIGaGaaGypaiaaiccacaWGdbGaam4taiaadofa lmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaKqzGe GaaGikaiaadMgacaWG4bGaaGykaiaaiYcacaaIGaGaaGiiaKqbaoaa GaaakeaajugibiaadogacaWGVbGaam4CaiaadIgalmaaBaaajeaiba qcLbmacaWGWbGaaGilaiaadghaaKqaGeqaaaGccaGLdmaajugibiaa iIcacaWG4bGaaGykaiaaiccacaaI9aGaaGiiaKqbaoaaGaaakeaaju gibiaadogacaWGVbGaam4CaSWaaSbaaKqaGeaajugWaiaadchacaaI SaGaamyCaaqcbasabaaakiaawoWaaKqzGeGaaGikaiaadMgacaWG4b GaaGykaiaaiYcaaaa@86AF@  (2.34)

will allow to evaluate the composition rule for two successive rotations with angles θ 1 , θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qClmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYcacqaH 4oqClmaaBaaabaqcLbmacaaIYaaaleqaaaaa@3FC0@ about the z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG6b aaaa@3784@ -axis. The composition rule for the angles is

ta n p,q ˜ ( θ 1 θ 2 ) = ta n p,q ( θ 3 ) = TA N p,q ( θ 3 ) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamiDaiaadggacaWGUbWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaaaOGaay5adaqcLbsacaaIOaGaeqiUde 3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHvksXcqaH 4oqCjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaaiMcaca aIGaGaaGypaiaaiccacaWG0bGaamyyaiaad6galmaaBaaabaqcLbma caWGWbGaaGilaiaadghaaSqabaqcLbsacaaIOaGaeqiUde3cdaWgaa qcbasaaKqzadGaaG4maaqcbasabaqcLbsacaaIPaGaaGiiaiaai2da caaIGaGaamivaiaadgeacaWGobWcdaWgaaqcbasaaKqzadGaamiCai aaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH4oqCjuaGdaWgaaWc baqcLbmacaaIZaaaleqaaKqzGeGaaGykaiaaiccacaaI9aGaaGiiaa aa@6E3E@

ta n p,q ( θ 1 ) + ta n p,q ( θ 2 ) 1 ta n p,q ( θ 1 ) ta n p,q ( θ 2 ) = TA N p,q ( θ 1 ) + TA N p,q ( θ 2 ) 1 TA N p,q ( θ 1 ) TA N p,q ( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiDaiaadggacaWGUbWcdaWgaaqcbasaaKqzadGaamiC aiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH4oqClmaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaey4kaSIa aGiiaiaadshacaWGHbGaamOBaSWaaSbaaKqaGeaajugWaiaadchaca aISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUde3cdaWgaaqcbasa aKqzadGaaGOmaaqcbasabaqcLbsacaaIPaaakeaajugibiaaigdaca aIGaGaeyOeI0IaaGiiaiaadshacaWGHbGaamOBaSWaaSbaaKqaGeaa jugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUde 3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGaaGii aiaadshacaWGHbGaamOBaSWaaSbaaKqaGeaajugWaiaadchacaaISa GaamyCaaqcbasabaqcLbsacaaIOaGaeqiUde3cdaWgaaqcbasaaKqz adGaaGOmaaqcbasabaqcLbsacaaIPaGaaGiiaaaacaaI9aqcfa4aaS aaaOqaaKqzGeGaamivaiaadgeacaWGobWcdaWgaaqcbasaaKqzadGa amiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqaH4oqClmaaBa aajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiMcacaaIGaGaey4k aSIaaGiiaiaadsfacaWGbbGaamOtaSWaaSbaaKqaGeaajugWaiaadc hacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUde3cdaWgaaqc basaaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaaakeaajugibiaaig dacaaIGaGaeyOeI0IaaGiiaiaadsfacaWGbbGaamOtaSWaaSbaaKqa GeaajugWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaGaeq iUde3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaIPaGa aGiiaiaadsfacaWGbbGaamOtaSWaaSbaaKqaGeaajugWaiaadchaca aISaGaamyCaaqcbasabaqcLbsacaaIOaGaeqiUde3cdaWgaaqcbasa aKqzadGaaGOmaaqcbasabaqcLbsacaaIPaaaaaaa@B35B@  (2.35)

where θ 3 = θ 1 θ 2 = θ 1 + θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qClmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiqai2dagaGf aiabeI7aXTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaey yLIuSaeqiUde3cdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsa caaI9aGaeqiUde3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLb sacqGHRaWkcqaH4oqClmaaBaaajeaibaqcLbmacaaIYaaajeaibeaa aaa@51F5@ . The composition law of two succesive (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz boosts transformations along two different axis directions are more complicated. The same occurs with a (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz boost transformation along any arbitrary direction. In general, the ordinary Lorentz transformations can be written in terms of the Pauli spin 2×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa Gaey41aqRaaGOmaaaa@3A14@ matrices σ 1 , σ 2 , σ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WClmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYcacqaH dpWClmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaaiYcacq aHdpWClmaaBaaajeaibaqcLbmacaaIZaaajeaibeaaaaa@4596@ , and the unit matrix 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIXa aaaa@3740@ as follows. Let us firstly define the 2×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa Gaey41aqRaaGOmaaaa@3A14@ matrix

X x μ σ μ = t 1 + x σ 1 + y σ 2 + z σ 3 = ( t+z xiy x+iy tz ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaGiiaiabggMi6kaaiccacaWG4bWcdaahaaqcbasabeaajugWaiab eY7aTbaajugibiaaiccacqaHdpWCjuaGdaWgaaqcbasaaKqzadGaeq iVd0galeqaaKqzGeGaaGiiaiaai2dacaaIGaGaamiDaiaaiccacaaI XaGaaGiiaiabgUcaRiaaiccacaWG4bGaaGiiaiabeo8aZTWaaSbaaK qaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaaGiiaiabgUcaRiaaicca caWG5bGaaGiiaiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdaaKqaGe qaaKqzGeGaaGiiaiabgUcaRiaaiccacaWG6bGaaGiiaiabeo8aZTWa aSbaaKqaGeaajugWaiaaiodaaKqaGeqaaKqzGeGaaGiiaiaai2daca aIGaqcfa4aaeWaaOqaaKqzGeGaaGiiauaabeqaciaaaOqaaKqzGeGa amiDaiabgUcaRiaadQhaaOqaaKqzGeGaamiEaiabgkHiTiaadMgaca WG5baakeaajugibiaadIhacqGHRaWkcaWGPbGaamyEaaGcbaqcLbsa caWG0bGaeyOeI0IaamOEaaaaaOGaayjkaiaawMcaaaaa@79A4@ (2.36)

One can show that an ordinary Lorentz boost with parameter ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH+o aEaaa@3848@ along any direction can be realized in terms of three parameters defined as

ξ = ( ξ 1 , ξ 2 , ξ 3 ); ξ || ξ || = ( ξ 1 ) 2 + ( ξ 2 ) 2 + ( ξ 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH+o aEgaWcaiaaiccacaaI9aGaaGiiaiaaiIcacqaH+oaEjuaGdaWgaaqc basaaKqzadGaaGymaaWcbeaajugibiaaiYcacqaH+oaElmaaBaaaje aibaqcLbmacaaIYaaajeaibeaajugibiaaiYcacqaH+oaElmaaBaaa jeaibaqcLbmacaaIZaaajeaibeaajugibiaaiMcacaaI7aGaaGiiai aaiccacqaH+oaEcaaIGaGaeyyyIORaaGiiaiaaiYhacaaI8bGafqOV dGNbaSaacaaI8bGaaGiFaiaaiccacaaI9aGaaGiiaKqbaoaakaaake aajugibiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIXaaajeai beaajugibiaaiMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abgUcaRiaaiIcacqaH+oaElmaaBaaajeaibaqcLbmacaaIYaaajeai beaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiabgUcaRiaaiIcacqaH+oaEjuaGdaWgaaqcbasaaKqzadGaaG4m aaWcbeaajugibiaaiMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaS qabaaaaa@791B@  (2.37)

and associated with the three directions x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b GaaGilaiaadMhacaaISaGaamOEaaaa@3AEB@ , respectively. The Lorentz boost in this general case is

X' = exp( ξ 1 2 σ 1 + ξ 2 2 σ 2 + ξ 3 2 σ 3 ) X exp( ξ 1 2 σ 1 ξ 2 2 σ 2 ξ 3 2 σ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaG4jaiaaiccacaaI9aGaaGiiaiaadwgacaWG4bGaamiCaiaaiIca juaGdaWcaaGcbaqcLbsacaaIGaGaeqOVdG3cdaWgaaqcKfaG=haaju gWaiaaigdaaKazba4=beaaaOqaaKqzGeGaaGOmaaaacqaHdpWClmaa Baaajqwaa+FaaKqzadGaaGymaaqcKfaG=hqaaKqzGeGaey4kaSscfa 4aaSaaaOqaaKqzGeGaeqOVdG3cdaWgaaqcKfaG=haajugWaiaaikda aKazba4=beaaaOqaaKqzGeGaaGOmaaaacqaHdpWClmaaBaaajqwaa+ FaaKqzadGaaGOmaaqcKfaG=hqaaKqzGeGaey4kaSscfa4aaSaaaOqa aKqzGeGaeqOVdG3cdaWgaaqcKfaG=haajugWaiaaiodaaKazba4=be aaaOqaaKqzGeGaaGOmaaaacqaHdpWClmaaBaaajqwaa+FaaKqzadGa aG4maaqcKfaG=hqaaKqzGeGaaGiiaiaaiMcacaaIGaGaamiwaiaaic cacaWGLbGaamiEaiaadchacaaIOaGaaGiiaiabgkHiTKqbaoaalaaa keaajugibiabe67a4LqbaoaaBaaajqwaa+FaaKqzadGaaGymaaqcba sabaaakeaajugibiaaikdaaaGaeq4Wdm3cdaWgaaqcKfaG=haajugW aiaaigdaaKazba4=beaajugibiabgkHiTKqbaoaalaaakeaajugibi abe67a4LqbaoaaBaaajqwaa+FaaKqzadGaaGOmaaqcbasabaaakeaa jugibiaaikdaaaGaeq4Wdm3cdaWgaaqcKfaG=haajugWaiaaikdaaK azba4=beaajugibiabgkHiTKqbaoaalaaakeaajugibiabe67a4TWa aSbaaKazba4=baqcLbmacaaIZaaajqwaa+Fabaaakeaajugibiaaik daaaGaeq4Wdm3cdaWgaaqcKfaG=haajugWaiaaiodaaKazba4=beaa jugibiaaiMcaaaa@B7F0@ (2.38)

Due to exp(A) exp(A)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb GaamiEaiaadchacaaIOaGaamyqaiaaiMcacaaIGaGaamyzaiaadIha caWGWbGaaGikaiabgkHiTiaadgeacaaIPaGaaGypaiaaigdaaaa@43AC@ , and because the determinant of a product of matrices is equal to the product of the determinants of the matrices, one then has

det(X') = det[exp(A)] det(X) det[exp(A)] = det(X) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamyzaiaadshacaaIOaGaamiwaiaaiEcacaaIPaGaaGiiaiaai2da caaIGaGaamizaiaadwgacaWG0bGaaG4waiaadwgacaWG4bGaamiCai aaiIcacaWGbbGaaGykaiaai2facaaIGaGaamizaiaadwgacaWG0bGa aGikaiaadIfacaaIPaGaaGiiaiaadsgacaWGLbGaamiDaiaaiUfaca WGLbGaamiEaiaadchacaaIOaGaeyOeI0IaamyqaiaaiMcacaaIDbGa aGiiaiaai2dacaaIGaGaamizaiaadwgacaWG0bGaaGikaiaadIfaca aIPaGaaGiiaiaai2dacaaIGaaaaa@6230@

t 2 x 2 y 2 z 2 = t 2 x 2 y 2 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiccacqGH sislcaaIGaGabmiEayaafaqcfa4aaWbaaSqabKqaGeaajugWaiaaik daaaqcLbsacaaIGaGaeyOeI0IaaGiiaiqadMhagaqbaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccaceWG6b GbauaalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiccacaaI 9aGaaGiiaiaadshajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaju gibiaaiccacqGHsislcaaIGaGaamiEaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaWG5bWcdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaaIGaGaeyOeI0IaaGiiaiaadQha lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaa@6549@ (2.39)

so that the transformations (2.38) leave the Minkowski spacetime interval invariant as expected. Given the unit vector

ξ ^ ( ξ 1 ξ , ξ 2 ξ , ξ 3 ξ ), ξ ^ i ξ ^ i = 1 ( ξ ^ i σ i ) ( ξ ^ j σ j ) = ξ ^ i ξ ^ j ( δ ij 1 +i ε ijk σ k ) = ξ ^ i ξ ^ j δ ij 1 = 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH+o aEgaqcaiaaiccacqGHHjIUcaaIGaGaaGikaKqbaoaalaaabaqcLbsa cqaH+oaElmaaBaaajuaibaqcLbmacaaIXaaajuaibeaaaKqbagaaju gibiabe67a4baacaaISaqcfa4aaSaaaeaajugibiabe67a4TWaaSba aKqbGeaajugWaiaaikdaaKqbGeqaaaqcfayaaKqzGeGaeqOVdGhaai aaiYcajuaGdaWcaaqaaKqzGeGaeqOVdGxcfa4aaSbaaKqbGeaajugW aiaaiodaaKqbagqaaaqaaKqzGeGaeqOVdGhaaiaaiMcacaaISaGaaG iiaiqbe67a4zaajaWcdaahaaqcbasabeaajugWaiaadMgaaaqcLbsa caaIGaGafqOVdGNbaKaalmaaBaaajeaibaqcLbmacaWGPbaajeaibe aajugibiaaiccacaaI9aGaaGiiaiaaigdacaaIGaGaeyO0H4TaaGii aiaaiIcacuaH+oaEgaqcaSWaaWbaaKqaGeqabaqcLbmacaWGPbaaaK qzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsa caaIPaGaaGiiaiaaiIcacuaH+oaEgaqcaKqbaoaaCaaaleqajeaiba qcLbmacaWGQbaaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaa dQgaaSqabaqcLbsacaaIPaGaaGiiaiaai2dacaaIGaGafqOVdGNbaK aalmaaCaaajeaibeqaaKqzadGaamyAaaaajugibiaaiccacuaH+oaE gaqcaKqbaoaaCaaaleqajeaibaqcLbmacaWGQbaaaKqzGeGaaGiiai aaiIcacqaH0oazlmaaBaaajeaibaqcLbmacaWGPbGaamOAaaqcbasa baqcLbsacaaIXaGaaGiiaiabgUcaRiaadMgacaaIGaGaeqyTdu2cda WgaaqcbasaaKqzadGaamyAaiaadQgacaWGRbaajeaibeaajugibiab eo8aZLqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaKqzGeGaaGykai aaiccacaaI9aGaaGiiaiqbe67a4zaajaWcdaahaaqcbasabeaajugW aiaadMgaaaqcLbsacaaIGaGafqOVdGNbaKaajuaGdaahaaWcbeqcba saaKqzadGaamOAaaaajugibiabes7aKLqbaoaaBaaaleaajugibiaa dMgajugWaiaadQgaaSqabaqcLbsacaaIGaGaaGymaiaaiccacaaI9a GaaGiiaiaaigdacaaISaGaaGiiaiaaiccaaaa@C09D@

( ξ ^ i σ i ) ( ξ ^ j σ j ) ( ξ ^ k σ k ) = ( ξ ^ k σ k ), ( ξ ^ i σ i ) 2n = 1, ( ξ ^ i σ i ) 2n+1 = ξ ^ i σ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GafqOVdGNbaKaalmaaCaaajeaibeqaaKqzadGaamyAaaaajugibiab eo8aZTWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaaGykai aaiccacaaIOaGafqOVdGNbaKaajuaGdaahaaWcbeqcbasaaKqzadGa amOAaaaajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWGQbaaje aibeaajugibiaaiMcacaaIGaGaaGikaiqbe67a4zaajaqcfa4aaWba aKqaGeqabaqcLbmacaWGRbaaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGe aajugWaiaadUgaaKqaGeqaaKqzGeGaaGykaiaaiccacaaI9aGaaGii aiaaiIcacuaH+oaEgaqcaKqbaoaaCaaajeaibeqaaKqzadGaam4Aaa aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWGRbaajeaibeaa jugibiaaiMcacaaISaGaaGiiaiaaiccacaaIOaGafqOVdGNbaKaaju aGdaahaaqcbasabeaajugWaiaadMgaaaqcLbsacqaHdpWCjuaGdaWg aaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacaaIPaqcfa4aaWbaaK qaGeqabaqcLbmacaaIYaGaamOBaaaajugibiaaiccacaaI9aGaaGii aiaaigdacaaISaGaaGiiaiaaiccacaaIOaGafqOVdGNbaKaajuaGda ahaaqcbasabeaajugWaiaadMgaaaqcLbsacqaHdpWCjuaGdaWgaaqc basaaKqzadGaamyAaaqcbasabaqcLbsacaaIPaqcfa4aaWbaaKqaGe qabaqcLbmacaaIYaGaamOBaiabgUcaRiaaigdaaaqcLbsacaaIGaGa aGypaiaaiccacuaH+oaEgaqcaKqbaoaaCaaajeaibeqaaKqzadGaam yAaaaajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaWGPbaajeai beaaaaa@9F7F@ (2.40)

upon performing a Taylor series expansion one arrives at

exp( ξ 1 2 σ 1 + ξ 2 2 σ 2 + ξ 3 2 σ 3 ) = cosh( ξ 2 ) 1 + ξ ^ i σ i sinh( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb GaamiEaiaadchacaaIOaGaaGiiaKqbaoaalaaabaqcLbsacqaH+oaE lmaaBaaajuaibaqcLbmacaaIXaaajuaibeaaaKqbagaajugibiaaik daaaGaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsa cqGHRaWkjuaGdaWcaaGcbaqcLbsacqaH+oaElmaaBaaajeaibaqcLb macaaIYaaajeaibeaaaOqaaKqzGeGaaGOmaaaacqaHdpWCjuaGdaWg aaqcbasaaKqzadGaaGOmaaWcbeaajugibiabgUcaRKqbaoaalaaake aajugibiabe67a4TWaaSbaaKqaGeaajugWaiaaiodaaKqaGeqaaaGc baqcLbsacaaIYaaaaiabeo8aZTWaaSbaaKqaGeaajugWaiaaiodaaK qaGeqaaKqzGeGaaGiiaiaaiMcacaaIGaGaaGypaiaaiccacaWGJbGa am4BaiaadohacaWGObGaaGikaKqbaoaalaaabaqcLbsacqaH+oaEaK qbagaajugibiaaikdaaaGaaGykaiaaiccacaaIXaGaaGiiaiabgUca RiaaiccacuaH+oaEgaqcaKqbaoaaCaaaleqajeaibaqcLbmacaWGPb aaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqc LbsacaaIGaGaam4CaiaadMgacaWGUbGaamiAaiaaiIcajuaGdaWcaa qaaKqzGeGaeqOVdGhajuaGbaqcLbsacaaIYaaaaiaaiMcaaaa@861B@ (2.41a)

exp( ξ 1 2 σ 1 ξ 2 2 σ 2 ξ 3 2 σ 3 ) = cosh( ξ 2 ) 1 ξ ^ i σ i sinh( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb GaamiEaiaadchacaaIOaGaaGiiaiabgkHiTKqbaoaalaaakeaajugi biabe67a4TWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaaGcbaqcLb sacaaIYaaaaiabeo8aZTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqa aKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeqOVdGxcfa4aaSbaaK qaGeaajugWaiaaikdaaSqabaaakeaajugibiaaikdaaaGaeq4Wdm3c daWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqGHsisljuaGda WcaaGcbaqcLbsacqaH+oaEjuaGdaWgaaqcbasaaKqzadGaaG4maaWc beaaaOqaaKqzGeGaaGOmaaaacqaHdpWCjuaGdaWgaaqcbasaaKqzad GaaG4maaWcbeaajugibiaaiccacaaIPaGaaGiiaiaai2dacaaIGaGa am4yaiaad+gacaWGZbGaamiAaiaaiIcajuaGdaWcaaGcbaqcLbsacq aH+oaEaOqaaKqzGeGaaGOmaaaacaaIPaGaaGiiaiaaigdacaaIGaGa eyOeI0IaaGiiaiqbe67a4zaajaWcdaahaaqcbasabeaajugWaiaadM gaaaqcLbsacqaHdpWCjuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaa jugibiaaiccacaWGZbGaamyAaiaad6gacaWGObGaaGikaKqbaoaala aakeaajugibiabe67a4bGcbaqcLbsacaaIYaaaaiaaiMcaaaa@85ED@  (2.41b)

and after evaluating the matrix product (2.38) one can read-off the expressions for t , x , y , z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaacaaISaGabmiEayaafaGaaGilaiqadMhagaqbaiaaiYcaceWG 6bGbauaaaaa@3CCA@ in terms of t,x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaaGilaiaadIhacaaISaGaamyEaiaaiYcacaWG6baaaa@3C9A@ and the boost parameters.

Guided by the above construction, a (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -Lorentz boost along any direction can be realized in terms of the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ deformed Pauli spin algebra generators σ i (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WClmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaaIOaGaamiC aiaaiYcacaWGXbGaaGykaaaaaaa@4019@ , and the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ exponentials (1.8-1.10) as follows3

X' = e p,q ( ξ 1 σ 1 (p,q) + ξ 2 σ 2 (p,q) + ξ 3 σ 3 (p,q) ) X E p,q ( ξ 1 σ 1 (p,q) ξ 2 σ 2 (p,q) ξ 3 σ 3 (p,q) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGyb GaaG4jaiaaiccacaaI9aGaaGiiaiaadwgalmaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiaaiccacqaH+o aElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiabeo8aZTWa a0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaiIcacaWGWbGaaG ilaiaadghacaaIPaaaaKqzGeGaey4kaSIaeqOVdG3cdaWgaaqcbasa aKqzadGaaGOmaaqcbasabaqcLbsacqaHdpWClmaaDaaajeaibaqcLb macaaIYaaajeaibaqcLbmacaaIOaGaamiCaiaaiYcacaWGXbGaaGyk aaaajugibiabgUcaRiabe67a4TWaaSbaaKqaGeaajugWaiaaiodaaK qaGeqaaKqzGeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaaG4maaqcbasa aKqzadGaaGikaiaadchacaaISaGaamyCaiaaiMcaaaqcLbsacaaIGa GaaGykaiaaiccacaWGybGaaGiiaiaadwealmaaBaaajeaibaqcLbma caWGWbGaaGilaiaadghaaKqaGeqaaKqzGeGaaGikaiaaiccacqGHsi slcqaH+oaElmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugibiab eo8aZTWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaiIcaca WGWbGaaGilaiaadghacaaIPaaaaKqzGeGaeyOeI0IaeqOVdG3cdaWg aaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacqaHdpWClmaaDaaaje aibaqcLbmacaaIYaaajeaibaqcLbmacaaIOaGaamiCaiaaiYcacaWG XbGaaGykaaaajugibiabgkHiTiabe67a4LqbaoaaBaaajeaibaqcLb macaaIZaaaleqaaKqzGeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaaG4m aaqcbasaaKqzadGaaGikaiaadchacaaISaGaamyCaiaaiMcaaaqcLb sacaaIGaGaaGykaaaa@AA3E@  (2.42)

Due to the key relations

e p,q (A) E p,q (A)=1 e p,q (A) = M, E p,q (A) = M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaWGbbGaaGykaiaaiccacaWGfbWcdaWgaaqcbasaaKqzad GaamiCaiaaiYcacaWGXbaajeaibeaajugibiaaiIcacqGHsislcaWG bbGaaGykaiaai2dacaaIXaGaaGiiaiabgkDiElaaiccacaWGLbWcda WgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugibiaa iIcacaWGbbGaaGykaiaaiccacaaI9aGaaGiiaiaad2eacaaISaGaaG iiaiaaiccacaWGfbWcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWG XbaajeaibeaajugibiaaiIcacqGHsislcaWGbbGaaGykaiaaiccaca aI9aGaaGiiaiaad2ealmaaCaaajeaibeqaaKqzadGaeyOeI0IaaGym aaaaaaa@68D9@ (2.43a)

one will have4
det(X') = det(M) det(X) det( M 1 ) = det(X) = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb GaamyzaiaadshacaaIOaGaamiwaiaaiEcacaaIPaGaaGiiaiaai2da caaIGaGaamizaiaadwgacaWG0bGaaGikaiaad2eacaaIPaGaaGiiai aadsgacaWGLbGaamiDaiaaiIcacaWGybGaaGykaiaaiccacaWGKbGa amyzaiaadshacaaIOaGaamytaSWaaWbaaKqaGeqabaqcLbmacqGHsi slcaaIXaaaaKqzGeGaaGykaiaaiccacaaI9aGaaGiiaiaadsgacaWG LbGaamiDaiaaiIcacaWGybGaaGykaiaaiccacaaI9aGaaGiiaaaa@5BC7@

t 2 x 2 y 2 z 2 = t 2 x 2 y 2 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG0b GbauaajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiaaicca cqGHsislcaaIGaGabmiEayaafaWcdaahaaqcbasabeaajugWaiaaik daaaqcLbsacaaIGaGaeyOeI0IaaGiiaiqadMhagaqbaSWaaWbaaKqa GeqabaqcLbmacaaIYaaaaKqzGeGaaGiiaiabgkHiTiaaiccaceWG6b GbauaalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaaiccacaaI 9aGaaGiiaiaadshalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi aaiccacqGHsislcaaIGaGaamiEaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGiiaiabgkHiTiaaiccacaWG5bWcdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacaaIGaGaeyOeI0IaaGiiaiaadQhalmaa CaaajeaibeqaaKqzadGaaGOmaaaaaaa@64BB@  (2.43b)

and such that the Minkowski spacetime interval5 remains invariant under the transformations (2.42). One may notice that in the (p,q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GaamiCaiaaiYcacaWGXbGaaGykaaaa@3A8B@ -deformed case the relations in equation (2.40) are no longer obeyed, ( ξ ^ i σ i (p,q) ) ( ξ ^ j σ j (p,q) ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIOa GafqOVdGNbaKaalmaaCaaajeaibeqaaKqzadGaamyAaaaajugibiab eo8aZTWaa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaaiIcaca WGWbGaaGilaiaadghacaaIPaaaaKqzGeGaaGykaiaaiccacaaIOaGa fqOVdGNbaKaalmaaCaaajeaibeqaaKqzadGaamOAaaaajugibiabeo 8aZTWaa0baaKqaGeaajugWaiaadQgaaKqaGeaajugWaiaaiIcacaWG WbGaaGilaiaadghacaaIPaaaaKqzGeGaaGykaiqai2dagaGfaiaaig daaaa@598A@ , consequently the exponentials of the deformed generators

e p,q ( ξ i 2 σ i (p,q) ) = cos h p,q ( ξ 2 ) 1 + ξ ^ i σ i (p,q) sin h p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaaIGaqcfa4aaSaaaOqaaKqzGeGaeqOVdG3cdaahaaqcba sabeaajugWaiaadMgaaaaakeaajugibiaaikdaaaGaeq4Wdm3cdaqh aaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaGikaiaadchacaaISa GaamyCaiaaiMcaaaqcLbsacaaIGaGaaGykaiaaiccaceaI9aGbayba caaIGaGaam4yaiaad+gacaWGZbGaamiAaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaqcfa4aaSaaaOqa aKqzGeGaeqOVdGhakeaajugibiaaikdaaaGaaGykaiaaiccacaaIXa GaaGiiaiabgUcaRiaaiccacuaH+oaEgaqcaSWaaWbaaKqaGeqabaqc LbmacaWGPbaaaKqzGeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaamyAaa qcbasaaKqzadGaaGikaiaadchacaaISaGaamyCaiaaiMcaaaqcLbsa caaIGaGaam4CaiaadMgacaWGUbGaamiAaSWaaSbaaKqaGeaajugWai aadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaqcfa4aaSaaaOqa aKqzGeGaeqOVdGhakeaajugibiaaikdaaaGaaGykaaaa@820B@  (2.44a)

E p,q ( ξ i 2 σ i (p,q) ) = COS H p,q ( ξ 2 ) 1 + ξ ^ i σ i (p,q) SIN H p,q ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqcbasaaKqzadGaamiCaiaaiYcacaWGXbaajeaibeaajugi biaaiIcacaaIGaqcfa4aaSaaaOqaaKqzGeGaeqOVdGxcfa4aaWbaaS qabKqaGeaajugWaiaadMgaaaaakeaajugibiaaikdaaaGaeq4Wdm3c daqhaaqcbasaaKqzadGaamyAaaqcbasaaKqzadGaaGikaiaadchaca aISaGaamyCaiaaiMcaaaqcLbsacaaIGaGaaGykaiaaiccaceaI9aGb aybacaaIGaGaam4qaiaad+eacaWGtbGaamisaSWaaSbaaKqaGeaaju gWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaqcfa4aaSaa aOqaaKqzGeGaeqOVdGhakeaajugibiaaikdaaaGaaGykaiaaiccaca aIXaGaaGiiaiabgUcaRiaaiccacuaH+oaEgaqcaSWaaWbaaKqaGeqa baqcLbmacaWGPbaaaKqzGeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaam yAaaqcbasaaKqzadGaaGikaiaadchacaaISaGaamyCaiaaiMcaaaqc LbsacaaIGaGaam4uaiaadMeacaWGobGaamisaSWaaSbaaKqaGeaaju gWaiaadchacaaISaGaamyCaaqcbasabaqcLbsacaaIOaqcfa4aaSaa aOqaaKqzGeGaeqOVdGhakeaajugibiaaikdaaaGaaGykaaaa@8179@ (2.44b)

e p,q ˜ ( ξ i 2 σ i (p,q) ) = cos h p,q ˜ ( ξ 2 ) 1 + ξ ^ i σ i (p,q) sin h p,q ˜ ( ξ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaacaaO qaaKqzGeGaamyzaSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyC aaqcbasabaaakiaawoWaaKqzGeGaaGikaiaaiccajuaGdaWcaaGcba qcLbsacqaH+oaElmaaCaaajeaibeqaaKqzadGaamyAaaaaaOqaaKqz GeGaaGOmaaaacqaHdpWClmaaDaaajeaibaqcLbmacaWGPbaajeaiba qcLbmacaaIOaGaamiCaiaaiYcacaWGXbGaaGykaaaajugibiaaicca caaIPaGaaGiiaiqai2dagaGfaiaaiccajuaGdaaiaaGcbaqcLbsaca WGJbGaam4BaiaadohacaWGObWcdaWgaaqcbasaaKqzadGaamiCaiaa iYcacaWGXbaajeaibeaaaOGaay5adaqcLbsacaaIOaqcfa4aaSaaaO qaaKqzGeGaeqOVdGhakeaajugibiaaikdaaaGaaGykaiaaiccacaaI XaGaaGiiaiabgUcaRiaaiccacuaH+oaEgaqcaSWaaWbaaKqaGeqaba qcLbmacaWGPbaaaKqzGeGaeq4Wdm3cdaqhaaqcbasaaKqzadGaamyA aaqcbasaaKqzadGaaGikaiaadchacaaISaGaamyCaiaaiMcaaaqcLb sacaaIGaqcfa4aaacaaOqaaKqzGeGaam4CaiaadMgacaWGUbGaamiA aSWaaSbaaKqaGeaajugWaiaadchacaaISaGaamyCaaqcbasabaaaki aawoWaaKqzGeGaaGikaKqbaoaalaaakeaajugibiabe67a4bGcbaqc LbsacaaIYaaaaiaaiMcaaaa@8755@ (2.44c)

cannot longer be written in the Euler form, and this is one of the reasons behind the inequalities in equation(2.8).

1 Dedicated to the loving memory of Diana Eaton Riggle, a wonderful human being


2 Alternatively, one could flip the location of the exponentials in eq-(2.42)

3 The determinant here is the ordinary one and not the quantum determinant of a quantum matrix with non commuting entries

4 Deformations of the Minkowski spacetime interval (like the quantum determinant) will be the subject of future investigation

5 The mathematician Hemachandra and the Sanskrit poets like Virahanka, Gopala many centuries before Fibonacci were aware of these numbers that should be properly called Hemachandra numbers. See the Fields Institute Lectures on “Patterns of Numbers in Nature" by Manjul Bhargava

Concluding remarks

We finalize with a brief discussion on quantum groups, noncommutative spacetimes, κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3837@ -deformed Poincare algebra and quasi-crystals. In the case of κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3837@ -deformed quantum Poincare algebra it is not the deformation of the algebra that really matters, but the co-algebra (coproduct) and the associated non-commutative spacetime structure.24,25 The phase space as a whole does not have the Hopf algebra structure. In order to deform the phase space, one presumably has to make use of more general structures, like the one of Hopf algebroid. The momentum space associated with κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3837@ -deformation is curved.24,25 It remains to extend this work to the case of noncommutative spacetimes involving noncommuting coordinates, and to find the corresponding co-algebraic structures; i.e. the coproduct, antipode, counit.
It is known that with quantum groups one can introduce a form of coordinate quantization while preserving, continuously, all group symmetries.2-8 One can introduce coordinate quantization using discrete lattices, but prior to quantum groups no one could achieve quantization without breaking the continuous spacetime symmetries.2-8 We saw earlier that for the special values p=τ,q= τ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiabes8a0jaaiYcacaWGXbGaaGypaiabgkHiTiabes8a0TWa aWbaaKqaGeqabaqcLbmacqGHsislcaaIXaaaaaaa@4258@ , the p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGilaiaadghaaaa@3926@ integers [n] p,q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIBb GaamOBaiaai2falmaaBaaajeaibaqcLbmacaWGWbGaaGilaiaadgha aKqaGeqaaaaa@3D93@ reduce to the Fibonacci numbers. The Golden mean τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@ is ubiquitous in the construction of quasi-crystals, and their associated non-crystallographic groups. Quasi-crystals (like the Penrose tiling with five-fold symmetry) can be constructed via the cut-and-projection mechanism of higher dimensional regular lattices; i.e. the projection onto lower dimensions is performed along directions with irrational slopes. It is warranted to explore further the results of this work within the context of coordinate quantization and Noncommutative geometry that will help us cast some light into Quantum Gravity.

Acknowledgements

We are indebted to M. Bowers for assistance, and to the referee for suggestions to improve this work.

Conflict of interest

Author dealers there are no conflict of interest.

References

  1. Algin A. Non–extensive entropy of bosonic Fibonacci oscillators. USA: Cornell University Library; 2009. p. 1–30.
  2. Biedenharn LC, Lohe MA. Quantum Group Symmetry and –Tensor Algebras. Singapore: World Scientific; 1995.
  3. Grensing G. Structural Aspects of Quantum Field Theory and Noncommutative Geometry. Singapore: World Scientific; 2013.
  4. Chari V, Pressley A. A guide to Quantum Groups. UK: Cambridge University Press; 1994.
  5. Kassel C. Quantum groups: Graduate Texts in Mathematics. Germany; Springer–Verlag; 1995.
  6. Lusztig G. Introduction to Quantum Groups. Switzerland: Birkhäuser Verlag; 2010.
  7. Majid S. A Quantum Groups primer. UK: Cambridge University; 2002.
  8. Street R. Quantum Groups. UK: Cambridge University Press; 2009.
  9. Chakrabarti R, Jagannathan R. A (p, q)–oscillator realization of two–parameter quantum algebras. Journal of Physics A: Mathematical and General. 1991;24(13):L711–L718.
  10. Daoud M, Kibler M. Statistical mechanics of qp–bosons in D dimensions. Physics Letters A. 1995;206(1–2):13–17.
  11. Gong R. Thermodynamic characteristics of the (p, q)–deformed ideal Bose gas. Physics Letters A. 1995;199(1–2)81–85.
  12. Arik M, Demircan E, Turgut T, et al. Fibonacci oscillators. Zeitschrift für Physik C Particles and Fields. 1992;55(1):89–95.
  13. Arik M. Symmetries in Science VI. In: Gruber B, editor. USA: Plenum Press; 1993: 47 p.
  14. Arikan A. Multiparameter generalization of deformed particle algebras. Turkey: Bogazici University; 2004.
  15. Marinho A, Brito F. Hermite polynomials and Fibonacci Oscillators. USA: Cornell University Library; 2018. p. 1–30.
  16. Curtright TL, Zachos C. Deforming maps for quantum algebras. Physics Letters. 1990;243(3):237–244.
  17. Polychronakos A. Modern Physics Letters A. 1990;2325.
  18. Kibler M, Meyer J, Daoud M. On qp–Deformations in Statistical Mechanics of Bosons in D Dimensions. USA: Cornell University Library; 1996. p. 1–15.
  19. Bonatsos B, Daskaloyannis C. Quantum Groups and Their Applications in Nuclear Physics. Progress in Particle and Nuclear Physics. 1999;43:537–618.
  20. Adamska LV, Gavrilik AM. Multi–particle correlations in qp–Bose gas model. Journal of Physics A: Mathematical and General. 2004;37(17).
  21. Duran U, Acikgoz M, Araci S. A Study on Some New Results Arising from–Calculus. Switzerland: Preprints.org; 2018.
  22. Kac V, Cheung P. Quantum Calculus. USA: Springer; 2002.
  23. Greenberg OW. Example of infinite statistics. Physical Review Letters. 1990;64(7).
  24. Kowalski–Glikman J. A short introduction to K–deformation. USA: Cornell University Library; 2017. p. 1–27.
  25. Lukierski L. Kappa–deformations: Historical Developments and Recent Results. Journal of Physics: Conference Series. 2017;804(1):1–20.
Creative Commons Attribution License

©2018 Perelman. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.